JP2008174428A - Electromagnetic induction heating cooker and method of manufacturing electromagnetic induction heating cooker - Google Patents

Electromagnetic induction heating cooker and method of manufacturing electromagnetic induction heating cooker Download PDF

Info

Publication number
JP2008174428A
JP2008174428A JP2007010923A JP2007010923A JP2008174428A JP 2008174428 A JP2008174428 A JP 2008174428A JP 2007010923 A JP2007010923 A JP 2007010923A JP 2007010923 A JP2007010923 A JP 2007010923A JP 2008174428 A JP2008174428 A JP 2008174428A
Authority
JP
Japan
Prior art keywords
induction heating
temperature
heating cooker
molded product
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010923A
Other languages
Japanese (ja)
Other versions
JP4787179B2 (en
Inventor
Yoshio Nishimoto
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007010923A priority Critical patent/JP4787179B2/en
Publication of JP2008174428A publication Critical patent/JP2008174428A/en
Application granted granted Critical
Publication of JP4787179B2 publication Critical patent/JP4787179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cookers (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic induction heating cooker manufactured by a simple production process and securing firm lamination and boiling prompting effect in water boiling conditions and a method of manufacturing the electromagnetic induction heating cooker. <P>SOLUTION: The method of manufacturing the electromagnetic induction heating cooker comprises a step of forming a molding by injecting a mixture of carbon granular powder with a binder into a molding mold, compacting and curing to mold a molding precursor and placing the molding precursor in an oven under an oxygen-free state replaced by nitrogen and firing, and a step of applying a slurry liquid prepared by dispersing ceramic powder and additives in a solvent on the molding and after drying, carrying out a firing treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、誘電加熱に供する鍋または釜状の調理器に関するものであり、さらに詳しくはカーボンを基材とした表面にセラミックスを積層した構造を有する誘導加熱式調理器とその製造方法に関する。   The present invention relates to, for example, a pot or a pot-shaped cooker used for dielectric heating, and more particularly, to an induction heating cooker having a structure in which ceramics are laminated on a carbon-based surface and a method for manufacturing the same. .

誘電加熱式調理器は、誘導加熱コイルが発生する渦電流が磁性金属を発熱させるように構成したもので、コンロや炊飯器に用いられている。しかし、磁性金属である鉄やステンレスなどは熱伝導率が劣る。そこで、食品を速やかに均一に加熱するために、アルミニウムや銅などの熱伝導に優れた金属を積層したクラッド材を圧延加工したものを用いていた。しかし、任意形状、特に肉厚の成型品を得ることが困難であった。   A dielectric heating cooker is configured such that an eddy current generated by an induction heating coil generates heat in a magnetic metal, and is used in a stove or rice cooker. However, magnetic metals such as iron and stainless steel have poor thermal conductivity. Therefore, in order to quickly and uniformly heat the food, a rolled clad material made of a metal having excellent heat conductivity such as aluminum or copper was used. However, it has been difficult to obtain a molded product having an arbitrary shape, particularly a thick wall.

このため、調理器本体に載置される鍋と、この鍋の外底面部または外周面部に対向するように設けられ鍋を誘導加熱する誘導加熱コイルと、この誘導加熱コイルを通電制御する制御手段とを備え、鍋を黒鉛から構成し、鍋の表面にフッ素樹脂を塗布した誘導加熱調理器が提案されている(例えば、特許文献1参照)。   For this reason, a pan placed on the cooker body, an induction heating coil that is provided so as to face the outer bottom surface portion or the outer peripheral surface portion of the pan, and a control means that controls energization of the induction heating coil An induction heating cooker is proposed in which the pan is made of graphite and the surface of the pan is coated with a fluororesin (see, for example, Patent Document 1).

また、天然炭素もしくは人造炭素から選択される素材の炭素圧縮成型器物の表面にフッ素系合成樹脂膜が被着形成され、高周波磁場により発熱する電磁加熱調理器が提案されている(例えば、特許文献2参照)。   Further, an electromagnetic heating cooker has been proposed in which a fluorine-based synthetic resin film is deposited on the surface of a carbon compression molding material made of natural carbon or artificial carbon, and generates heat by a high-frequency magnetic field (for example, Patent Documents). 2).

しかし、カーボン粉粒の凝結体は、粉粒を凝結したことに伴う態様からくる脆くて割れ易いという課題があり、落下や衝突などの大きな応力の付与に対する破損に対しても十分な耐性を付与する必要があった。   However, the aggregates of carbon particles have the problem of being brittle and easy to break due to the mode accompanying the condensation of particles, and give sufficient resistance against damage due to application of large stress such as dropping or collision There was a need to do.

前記特許文献1によれば、コークスなどの高炭素含有物粉粒を1000〜3000℃の高温下で凝結させた焼結体は適度な導電性と誘電性を有しており、従来の鉄などに代わって誘電加熱の調理器、例えば炊飯釜などに用いることができる。このなかで、当該調理器はカーボン焼結体を切削加工して鍋の形状に加工した後、鍋の表面にフッ素樹脂または鍋の表面にガラス状カーボンを塗布することによって調理物を容易に剥離して洗浄を容易にする機能や耐摩耗性を向上させる機能を付与している。   According to Patent Document 1, a sintered body obtained by agglomerating high carbon-containing powder particles such as coke at a high temperature of 1000 to 3000 ° C. has appropriate conductivity and dielectric properties, such as conventional iron Instead of this, it can be used in a cooking device of dielectric heating, for example, a rice cooker. Among these, the cooker easily cuts the cooked product by cutting the carbon sintered body into a pan shape and then applying fluorocarbon resin to the pan surface or glassy carbon on the pan surface. Thus, a function for facilitating cleaning and a function for improving wear resistance are provided.

また、SiCを主成分とする焼成体の上部にSiを入れた坩堝を設置し、坩堝を加熱してSiを溶融状態とし、Siの融液を坩堝が有する孔を通じて焼成体表面に供給し、Siを含浸させるSi−SiC複合材の製造方法が提案されている(例えば、特許文献3参照)。   In addition, a crucible containing Si is placed on the upper part of the fired body containing SiC as a main component, the crucible is heated to bring Si into a molten state, and a melt of Si is supplied to the surface of the fired body through the holes of the crucible. A method for producing a Si—SiC composite material impregnated with Si has been proposed (see, for example, Patent Document 3).

また、予め製作した焼結体を金型内に載置し、この金型内に多孔質セラミックス体となる原料粉末を充填し、加圧成形して一体化した後焼成するセラミックス接合体の製造方法が提案されている(例えば、特許文献4参照)。   In addition, a sintered body manufactured in advance is placed in a mold, a raw material powder that becomes a porous ceramic body is filled in the mold, and is molded by pressure forming and then fired, and then a ceramic joined body is manufactured. A method has been proposed (see, for example, Patent Document 4).

さらに、反りのない、高強度の積層セラミックス薄板を製造することを主な目的とし、シート状セラミックス生成形体の厚さ方向における粉末充填率が低い面同士が接するように成形体を積層し、次いで焼成する積層セラミックス薄板の製造方法が提案されている(例えば、特許文献5参照)。
特開平09−075211号公報 特開平09−070352号公報 特開2003−071555号公報 特開平06−144941号公報 特開平07−291738号公報
Furthermore, the main object is to produce a high-strength laminated ceramic thin plate without warping, and the molded body is laminated so that the surfaces with a low powder filling rate in the thickness direction of the sheet-like ceramic production form are in contact with each other, A method for manufacturing a laminated ceramic thin plate to be fired has been proposed (see, for example, Patent Document 5).
Japanese Patent Application Laid-Open No. 09-075211 Japanese Patent Laid-Open No. 09-070352 JP 2003-071555 A Japanese Patent Laid-Open No. 06-144941 Japanese Patent Laid-Open No. 07-291738

しかしながら、前記特許文献1では、ブロックを切削加工した成型品の表面にフッ素樹脂などを塗布したために、沸騰時の気泡発生を促す効果が損なわれるという課題があった。このため、表面の保護を多孔質のセラミックスで行う素材構成とすることが好ましい。   However, in the said patent document 1, since the fluororesin etc. were apply | coated to the surface of the molded product which cut the block, there existed a subject that the effect which accelerates | stimulates the bubble generation at the time of boiling was impaired. For this reason, it is preferable to use a material configuration in which the surface is protected with porous ceramics.

しかし、従来のセラミックス積層体の製造方法は、焼結体にセラミックス原料粉を載置して加圧・固化後、焼結させる前記特許文献4を事例とすれば、既に焼成処理をした成型品を用いて異種材料の積層を行うことにより達成している。しかし、調理器容器が鍋状の曲面を備えた成型品であるから、賦型された基材であるカーボン凝結体が気孔を有する加圧装置に、容器状成型品を極めて高い形状精度で保持面を備えることは非常に困難であり、成形時と両素材を強固に結合させるのに必要な加圧力に耐えることは非現実的である。   However, according to the conventional method for manufacturing a ceramic laminate, in the case of Patent Document 4 in which ceramic raw material powder is placed on a sintered body, pressed, solidified, and sintered, as an example, a molded product that has already been fired. This is achieved by stacking dissimilar materials using However, since the cooker container is a molded product with a pan-shaped curved surface, the molded carbon material, which is a molded substrate, holds the container-shaped molded product with extremely high shape accuracy in a pressurizing device having pores. It is very difficult to provide a surface, and it is impractical to withstand the pressing force required to firmly bond both materials during molding.

一方、スラリー状セラミックスを乾燥させた後、粉末充填率の低い上面同士を重ねて加圧接合した状態で焼成する前記特許文献5の「積層セラミックス薄板の製造方法」を用いて、容器状成型品の表面に積層しようとすれば、乾燥状態のセラミックス前駆体が脆く、曲面を形成する際に割れを来して平滑な面を形成することが困難であるという課題があった。   On the other hand, after the slurry-like ceramic is dried, the container-like molded product is used by using the “method for producing a laminated ceramic thin plate” of Patent Document 5 in which the upper surfaces having a low powder filling rate are stacked and pressure bonded together. If it is going to be laminated on the surface, there is a problem that the dried ceramic precursor is brittle and it is difficult to form a smooth surface by cracking when forming a curved surface.

また、本質的に、セラミックスとカーボンの凝結体、特にグラファイトとの接着性が劣り、調理器として実用に耐えうる態様を成すことは困難である。   In addition, the adhesiveness between ceramics and carbon aggregates, particularly graphite, is essentially inferior, and it is difficult to achieve an embodiment that can withstand practical use as a cooking device.

この発明は、上記のような課題を解決するためになされたもので、製造工程を簡素化できる上、強固な積層状態を確保でき、水の沸騰状態で優れた沸騰促進効果を確保できる誘導加熱式調理器及び誘導加熱式調理器の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can simplify the manufacturing process and secure a strong lamination state, and can ensure an excellent boiling promotion effect in a boiling state of water. An object of the present invention is to provide a method for manufacturing a cooking device and an induction heating cooking device.

この発明に係る誘導加熱式調理器の製造方法は、カーボンの粉粒と結合材との混合物を金型内に投入し、圧縮・硬化させることによって前駆体成形品を成形し、これを窒素で置換した無酸素状態の炉中に配置して焼成処理を行い成型品を作製する工程と、セラミックス粉末と、添加剤とを溶媒に分散させたスラリー液を成型品に塗布して乾燥した後に焼成処理を行う工程とから成ることを特徴とする。
また、成形品上に塗布されたセラミックス粉末が、粒子間に備えた空隙を充填することなしに結合して形成されていることを特徴とする。
In the method of manufacturing an induction heating cooker according to the present invention, a precursor molded product is formed by putting a mixture of carbon particles and a binder into a mold, and compressing and curing the mixture. Place in a substituted oxygen-free furnace and perform a firing process to produce a molded product, and apply a slurry liquid in which ceramic powder and additives are dispersed in a solvent to the molded product, dry it, and fire And a process for performing processing.
In addition, the ceramic powder coated on the molded product is formed by being bonded without filling the voids provided between the particles.

この発明に係る誘導加熱式調理器の製造方法は、カーボン凝結体およびセラミックスの何れもが前駆体状態で積層状態を確保して同時に焼成処理を行うことができるので、製造工程を簡素化できる上、セラミックスが焼成時に形成するカーボン凝結体の気孔に侵入することができるので、強固な積層状態を確保できるという効果を有する。また、調理器容器の内面を成すセラミックス塗膜には、表面に開口した気孔を備えているので、水の沸騰状態では優れた沸騰促進効果を確保できる。   The method for manufacturing an induction heating cooker according to the present invention can simplify the manufacturing process because both the carbon aggregate and the ceramic can ensure the lamination state in the precursor state and simultaneously perform the firing process. Since the ceramic can enter the pores of the carbon aggregate formed during firing, it has an effect of ensuring a strong laminated state. Moreover, since the ceramic coating film which comprises the inner surface of a cooking vessel container is equipped with the pore opened on the surface, the boiling promotion effect excellent in the boiling state of water is securable.

実施の形態1.
図1、図2は実施の形態1を示す図で、図1はジャー炊飯器の内釜10の断面図、図2はジャー炊飯器の内釜10の製造工程図である。
Embodiment 1 FIG.
1 and 2 are diagrams showing Embodiment 1, FIG. 1 is a sectional view of an inner pot 10 of a jar rice cooker, and FIG. 2 is a manufacturing process diagram of the inner pot 10 of a jar rice cooker.

本実施の形態における誘電加熱式調理器であるジャー炊飯器の内釜10は、図1に示す断面構造を有している。つまり、基材であるカーボン凝結体1の内面部分をセラミックスの層2で覆うことにより、カーボン凝結体1の弱点である引っ掻きや摩耗による損傷から保護している。併せて、沸騰時の気泡の発生を助長させる効果を有することにより、炊飯時の撹拌促進効果を具備している。   An inner pot 10 of a jar rice cooker that is a dielectric heating cooker in the present embodiment has a cross-sectional structure shown in FIG. That is, by covering the inner surface portion of the carbon aggregate 1 which is a base material with the ceramic layer 2, the carbon aggregate 1 is protected from scratches and damages due to the weak points of the carbon aggregate 1. In addition, it has the effect of promoting the generation of bubbles at the time of boiling, thereby providing an effect of promoting stirring during cooking.

以下に、実施の形態1におけるジャー炊飯器の内釜10の製造方法を、図2を参照しながら詳述する。   Below, the manufacturing method of the inner pot 10 of the jar rice cooker in Embodiment 1 is explained in full detail, referring FIG.

自然木や種子殻の炭化物、石油コークスや石炭コークスを、無酸素状態下でカーボンがグラファイト結晶となる2600℃〜3000℃で焼成することによって得た10〜300μmの粒度分布を有するカーボンの粉粒を用い、これにフェノール樹脂を結合材として混合(混練)したものを鍋状の圧縮成形用金型内に投入して圧縮、硬化させることによって前駆体成形品を得た。   Carbon particles having a particle size distribution of 10 to 300 μm obtained by firing natural wood, seed shell carbide, petroleum coke or coal coke at 2600 ° C. to 3000 ° C. in which carbon becomes graphite crystals in an oxygen-free state. A precursor molded product was obtained by mixing (kneading) a phenolic resin with a binder as a binder into a pan-like compression molding mold and compressing and curing.

カーボンの粉粒が、グラファイト結晶を有さないものであれば電気の伝導性が劣って誘電加熱を十分に行うことが出来ないので不適である。また、カーボン粒子とフェノール樹脂の混合物が金型内での圧縮力を付与せずに成形した場合、粒子間に空隙が残存して十分な結合力が確保できない他、焼成時にクラックが発生する原因となるので好ましくない。   If the carbon particles do not have graphite crystals, the electrical conductivity is inferior and dielectric heating cannot be performed sufficiently. In addition, when a mixture of carbon particles and phenol resin is molded without imparting compressive force in the mold, voids remain between the particles and sufficient bonding strength cannot be secured, and cracks may occur during firing Therefore, it is not preferable.

上述した圧縮成型品である前駆体成形品を窒素で置換した無酸素状態の炉中に配置して、700℃以上、好ましくは1300℃以上の無酸素下で焼成処理(第一の焼成処理)を行い、電気伝導性に優れた鍋状の成型品を得た。このとき、カーボン凝結体1の結合材であるフェノール樹脂は、主に400〜450℃で分解してカーボン凝結体1に微細な気孔を形成しながら気散して収縮する。そこで、1〜10℃/hrのゆっくりした昇温と冷却を行う焼成処理において、350℃〜550℃の昇温時に限っては1〜3℃/hrの昇温速度で焼成を行った。   The precursor molded product, which is the compression molded product described above, is placed in an oxygen-free furnace substituted with nitrogen, and is fired in an oxygen-free state at 700 ° C. or higher, preferably 1300 ° C. or higher (first baking treatment). To obtain a pot-shaped molded article having excellent electrical conductivity. At this time, the phenol resin which is a binder of the carbon aggregate 1 is mainly decomposed at 400 to 450 ° C. and diffuses and contracts while forming fine pores in the carbon aggregate 1. Therefore, in the firing treatment in which the temperature is slowly raised and cooled at 1 to 10 ° C./hr, the firing is performed at a temperature raising rate of 1 to 3 ° C./hr only when the temperature is raised to 350 to 550 ° C.

また、結合材であるフェノール樹脂の含有量の多い場合や、本実施の形態の圧縮成形に代えて射出成形で賦型した成型品の場合には、成形時に混合物が流動することに伴って結合材が表面に多く保持され、その結果、形成される気孔が極めて微細になる傾向から、後段の工程である塗布したガラス質セラミックスの含浸が不十分でとなり、気孔内部への侵入に伴う機械的に塗膜を固着させることが困難な場合がある。このような極めて微細な気孔が表面に保持され、ガラス質のセラミックスの含浸が困難な態様を成したときには、表面に形成された結合材が多く保持されて形成された薄い層を、焼成処理(第一の焼成処理)の前にブラストやサンドペーパなどで削除することが好ましい(表面層の削除)。これにより、後段の工程におけるガラス質セラミックスの含浸が十分に行えるようになる。   In addition, when the content of the phenolic resin as a binder is high, or in the case of a molded product formed by injection molding instead of the compression molding of the present embodiment, binding occurs as the mixture flows during molding. Many materials are retained on the surface, and as a result, the pores formed tend to be extremely fine, so that the impregnation of the applied glassy ceramic, which is a subsequent step, becomes insufficient, and the mechanical accompanying the penetration into the pores In some cases, it is difficult to fix the coating film on the surface. When such extremely fine pores are retained on the surface and impregnation with glassy ceramics is difficult, a thin layer formed by retaining a large amount of binder formed on the surface is subjected to a firing treatment ( It is preferable to delete by blasting or sandpaper before the first baking treatment (deleting the surface layer). As a result, the glass ceramics can be sufficiently impregnated in the subsequent process.

次に、焼成を完了した鍋状の成型品は、調理具として調理に伴う食品の付着防止や付着物除去に伴う摩擦などによる摩耗損傷などの破損抑制、さらに沸騰促進効果の付与を目的とした表面処理としてセラミックスを塗布したのち、これを1000℃以上、好ましくは1300℃以上で焼成処理を行う。   Next, the pot-shaped molded product that has been baked has the purpose of preventing breakage such as wear damage due to friction, etc. due to friction accompanying prevention of food adhering to cooking and removal of adhering food as a cooking utensil, and further providing a boiling promotion effect After applying ceramics as the surface treatment, the ceramic is fired at 1000 ° C. or higher, preferably 1300 ° C. or higher.

前記成型品は結合材が炭化する際、主に残留有機物が分解して生成する種々物質が飛散したことに伴って生成した多くの気孔を備える。また、表面層に付着する塗膜の態様を接着のみで得た場合、カーボン凝結体1を構成するカーボン粒子同士の結合力が十分でなく、剥離時にカーボン粒子の脱離を含んだ見掛けの強度が得難い。さらに、グラファイト化したカーボンは、本質的にセラミックスとの接着性に劣るため、表面層にある気孔内部に塗膜の一部が侵入して機械的な結合力を醸し出す構造とすることが肝要である。   The molded product has many pores generated when various materials generated mainly by decomposition of residual organic substances are scattered when the binder is carbonized. Moreover, when the mode of the coating film adhering to the surface layer is obtained only by adhesion, the bonding strength between the carbon particles constituting the carbon aggregate 1 is not sufficient, and the apparent strength including the desorption of the carbon particles at the time of peeling. It is hard to get. Furthermore, since graphitized carbon is inherently inferior in adhesion to ceramics, it is important to have a structure in which part of the coating penetrates into the pores in the surface layer and creates mechanical bonding force. is there.

従って、塗膜を構成する高融点セラミックスにガラス質セラミックスを混合することによって、表面層上には融点が高くて摩耗などの機械的強度に優れたセラミックスが残るように各粒子の大きさを調整した。高融点セラミックスとガラス質セラミックスとの混合物をセラミックス粉末と呼ぶ。また、ガラス質セラミックスを第一のセラミックス、高融点セラミックスを第二のセラミックスと呼ぶ。つまり、本実施の形態に係るセラミックス粉末は、調理器としての使用温度以上の耐熱性を有し、前記気孔内に侵入および加熱溶融時に流動性を呈して容易に含浸し、機械的に塗膜を固着させる態様を備えることが肝要である。具体的には、ガラス質セラミックス(ガラス質物質)は、第一の焼成処理によって得たカーボン粉粒を含む成型品が備える気孔の径よりも小さいものを含む。   Therefore, by mixing glassy ceramics with the high melting point ceramics that make up the coating film, the size of each particle is adjusted so that ceramics with a high melting point and excellent mechanical strength such as wear remain on the surface layer. did. A mixture of high melting point ceramics and glassy ceramics is called ceramic powder. Further, the vitreous ceramic is referred to as a first ceramic, and the high melting point ceramic is referred to as a second ceramic. That is, the ceramic powder according to the present embodiment has a heat resistance equal to or higher than the use temperature as a cooking device, and easily impregnates the pores by entering into the pores and exhibiting fluidity when heated and melted. It is important to provide a mode for fixing the material. Specifically, the vitreous ceramic (glassy substance) includes a material smaller than the pore diameter of the molded product including the carbon powder particles obtained by the first baking treatment.

従って、セラミックス粉末にはジルコニアやアルミナなどの酸化物系のほか、窒化硼素や窒化ケイ素などの非酸化物系の融点の高い高融点セラミックスを使用する。また、ガラス質粒子として酸化ケイ素や酸化硼素を含んで成り、次工程での焼成処理において溶融して低粘度を呈して気孔内部を充填する挙動を呈するものが好ましい。また、上記セラミックス粉末を分散させる溶媒には水のほかにエタノールなどの有機溶媒を使用し、塗布後の乾燥時に各粒子同士を保持して塗布状態を維持する目的でバインダーを添加する。当該添加剤には焼成時に過度に灰分が残留しないポリビニルアルコールとその誘導体が好適であり、他に可塑性や分散性を向上させる界面活性剤や油脂類などを添加することも有効である。   Accordingly, high-melting-point ceramics having a high melting point such as boron nitride and silicon nitride as well as oxides such as zirconia and alumina are used as the ceramic powder. Further, it is preferable that the glassy particles contain silicon oxide or boron oxide and exhibit the behavior of being melted and exhibiting a low viscosity and filling the pores in the firing process in the next step. In addition to water, an organic solvent such as ethanol is used as the solvent in which the ceramic powder is dispersed, and a binder is added for the purpose of maintaining each particle during drying after application and maintaining the application state. As the additive, polyvinyl alcohol and its derivatives in which excessive ash content does not remain at the time of firing are suitable, and it is also effective to add surfactants and fats and oils that improve plasticity and dispersibility.

ここで、高融点セラミックス粉末とガラス質粒子の混合比は、前者の10に対して、後者を2.5〜5.0、好ましくは10:3.0〜3.5とした。高融点セラミックス粉末は、第一の焼成処理によって得たカーボン粉粒を含む成型品が備える気孔の径よりも大きいので、カーボン凝結体1の表面から含浸しない。一方、ガラス質セラミックスは、上述したセラミックス粉末等を分散させたスラリー液の塗布段階と高温での溶融状態でカーボン凝結体の表面から含浸する。即ち、ガラス質セラミックス(ガラス質物質)は、第一の焼成処理によって得たカーボン粉粒を含む成型品が備える気孔の径よりも小さいものを含む。後者の場合、ガラス質セラミックスは、カーボン凝結体に含浸せずに表面部分を覆う態様にある焼成時の高温で溶融しないセラミックス粒子同士が接したことで形成した空隙を埋めるに至らず、単に結合する機能が主となる。従って、焼成後のセラミックス塗膜には、表面に微細な空隙を備えた態様を成すようにしたものである。   Here, the mixing ratio of the high melting point ceramic powder and the vitreous particles was 2.5 to 5.0, preferably 10: 3.0 to 3.5, with respect to the former 10. The high melting point ceramic powder is not impregnated from the surface of the carbon aggregate 1 because it is larger than the pore diameter of the molded product including the carbon particles obtained by the first firing treatment. On the other hand, the vitreous ceramic is impregnated from the surface of the carbon aggregate in the application stage of the slurry liquid in which the above-described ceramic powder is dispersed and in the molten state at a high temperature. That is, the glassy ceramic (glassy substance) includes a material smaller than the pore diameter of the molded product including the carbon powder particles obtained by the first baking treatment. In the latter case, the vitreous ceramic is not bonded to the carbon aggregate, but covers the surface portion. The function to do is the main. Accordingly, the fired ceramic coating film is formed so as to have a fine void on the surface.

また、下層を形成する初期の塗布は、カーボン凝結体1に含浸して表面が乾燥した後、次の塗布を行うようにすることが、カーボン凝結体1への含浸を十分に達成し、高い耐剥離性を醸し出すうえで有効である。   In addition, the initial coating for forming the lower layer can be achieved by sufficiently impregnating the carbon aggregate 1, since the carbon aggregate 1 is impregnated and the surface is dried and then the next coating is performed. It is effective in producing peeling resistance.

上述したセラミックス粉末等を分散させたスラリー液は、焼成処理を行う鍋状成型品内面を均一に濡らすようにして50〜200μm程度の厚さになるまで数回に分けて塗布した後、静置状態で風乾させる。塗布したスラリー液が乾燥後、これを1000℃以上、好ましくは1300℃以上に保った炉中で焼成処理(第二の焼成処理)することによってカーボン凝結体1の表面に保持される。さらに、焼成完了後、成形品が備える曲率や厚さの異なる部位に冷却時に生じる応力の差異に基づく歪みを残存させないように、1〜10℃/hrのゆっくりした冷却を行う。これによって、クラックや変形などの不具合を防止するうえで有効である。   The slurry liquid in which the ceramic powder or the like is dispersed is applied several times until the inner surface of the pot-shaped molded product to be fired is uniformly wetted to a thickness of about 50 to 200 μm, and then left to stand. Allow to air dry. After the applied slurry is dried, it is held on the surface of the carbon aggregate 1 by baking (second baking) in a furnace maintained at 1000 ° C. or higher, preferably 1300 ° C. or higher. Furthermore, after the completion of firing, slow cooling of 1 to 10 ° C./hr is performed so that distortion based on the difference in stress generated at the time of cooling does not remain in parts having different curvatures and thicknesses of the molded product. This is effective in preventing defects such as cracks and deformation.

得られたセラミックス塗装膜には、表面に硬度の高いアルミナなどの粒子が多く突出した状態で保持された耐摩耗性に優れた粗面を形成して成り、調理時の摩耗などや、物品の落下による変形にも十分な耐性を備えて、調理器としての機能を十分に満たしていることを確認した。   The obtained ceramic coating film is formed by forming a rough surface with excellent wear resistance that is held in a state where many particles such as alumina having high hardness protrude on the surface. It was confirmed that it had sufficient resistance to deformation caused by falling and sufficiently fulfilled its function as a cooker.

また、当該セラミックス塗膜を備えたことにより、炊飯および汁物調理において、沸騰状態を助長させて、米飯や具材などの撹拌が促進されるなど、調理上の都合が良いという利点を備えたことも確認した。   In addition, the provision of the ceramic coating provided the advantage of convenient cooking, such as promoting boiling in rice cooking and soup cooking, and promoting stirring of cooked rice and ingredients. Also confirmed.

実施の形態2.
実施の形態1と同じ形状の誘電加熱式調理器のうち、特に結合材が比較的少なく配合した混合物を用いて得た成型品であるジャー炊飯器の内釜10について、以下に製造方法を詳述する。
Embodiment 2. FIG.
Regarding the inner pot 10 of the jar rice cooker, which is a molded product obtained by using a mixture containing a relatively small amount of the binder among the dielectric heating cookers having the same shape as the first embodiment, the manufacturing method will be described in detail below. Describe.

本実施の形態は、原料中の結合材量を少なくして、気孔を大きく、かつ多くする。これにより、ガラス質セラミックスの含浸が十分に行えるので、表面層の削除等が不要であり工程を簡略化することができる。また、成型品の焼成処理時に、セラミックスの焼成・固化を同時に達成して、効率的なセラミックス層の形成を達成するものである。   In the present embodiment, the amount of the binder in the raw material is reduced, and the pores are increased and increased. Thereby, since the impregnation of the vitreous ceramic can be sufficiently performed, it is not necessary to delete the surface layer, and the process can be simplified. In addition, during the firing treatment of the molded product, firing and solidification of the ceramic is simultaneously achieved, thereby achieving efficient formation of the ceramic layer.

図3は実施の形態2を示す図で、ジャー炊飯器の内釜10の製造工程図である。   FIG. 3 is a diagram showing the second embodiment, and is a manufacturing process diagram of the inner pot 10 of the jar rice cooker.

自然木の炭化物やコークス類を無酸素の状態でカーボンを2600℃〜3000℃で焼成したグラファイト結晶の300μm以下の粉粒と、前記粉粒の結合材である粉末状のフェノール樹脂との混合物を鍋状の圧縮成形用金型内に投入して圧縮、硬化させて前駆体成形品を得た。このとき、金型はフェノール樹脂の硬化に適した温度、例えば120〜210℃であって、好ましくは30〜90秒でゲル化する高温状態としてカーボンの粉粒に濡れ性が十分な条件とすることが肝要である。結合材は、焼成処理(後述)に供する温度以下で分解して飛散する熱硬化性樹脂である。   A mixture of graphite particles of 300 μm or less of graphite crystals obtained by firing carbon at 2600 ° C. to 3000 ° C. with carbonized or coke of natural wood in an oxygen-free state, and a powdery phenol resin that is a binder for the particles. It was put into a pan-shaped compression molding mold and compressed and cured to obtain a precursor molded product. At this time, the mold has a temperature suitable for curing the phenolic resin, for example, 120 to 210 ° C., and preferably has a sufficient wettability to the carbon particles as a high temperature state that gels in 30 to 90 seconds. It is important. The binder is a thermosetting resin that decomposes and scatters at a temperature equal to or lower than a temperature used for a firing treatment (described later).

次に、調理食品の付着防止や付着した具材の除去に伴う摩擦による摩耗損傷などの破損抑制を機能として備える表面層を成すセラミックスを塗布する。ここで用いるセラミックス粉末等が分散したスラリー液は、鍋状成型品内面を均一に濡らすようにして50〜200μm程度に塗布して風乾後、これを1000℃以上、好ましくは1300℃に保った炉中での焼成によってカーボン凝結体1の表面に強固に保持した状態を確保した後、歪みを塗膜内および成型品との界面に残存させないように室温近傍まで1〜10℃のゆっくりとした速度で冷却することによって、セラミックス塗装を形成した。   Next, the ceramic which comprises the surface layer provided with the function of preventing breakage such as wear damage due to friction accompanying the prevention of adhesion of cooked food and the removal of the adhering ingredients is applied. The slurry liquid in which the ceramic powder and the like used here is dispersed is applied to about 50 to 200 μm so as to uniformly wet the inner surface of the pan-shaped molded product, air-dried, and then kept in a furnace at 1000 ° C. or higher, preferably 1300 ° C. After securing the state firmly held on the surface of the carbon aggregate 1 by firing in, a slow speed of 1 to 10 ° C. to near room temperature so as not to leave distortion in the coating film and at the interface with the molded product The ceramic coating was formed by cooling with.

上述の塗膜を構成するセラミックスは、融点が1000℃以下のガラス質セラミックス(ガラス質物質)と、焼成温度以上で溶融せずに摩耗などの機械強度に優れる高融点セラミックスを混合して用い、前者が20〜40vol%の含有率であることが好ましい。ガラス質セラミックスの粒径は、高融点セラミックスの粉粒よりも小さい。また、上記セラミックス粉末を分散させる溶媒には水のほかにエタノールなどの有機溶媒を使用、塗布後の乾燥時に鍋状成型品の表面と剥離することなく保持するバインダーであり、焼成後の灰分が残留し難いポリビニルアルコールとその誘導体を好適に用い、可塑性や分散性を向上させる界面活性剤や油脂類などを添加しても良い。   The ceramics constituting the above-mentioned coating film are a mixture of glassy ceramics (glassy material) having a melting point of 1000 ° C. or less and high melting point ceramics having excellent mechanical strength such as wear without melting at a firing temperature or higher, It is preferable that the former is a content rate of 20-40 vol%. The particle size of the glassy ceramic is smaller than that of the high melting point ceramic. In addition to water, an organic solvent such as ethanol is used as a solvent to disperse the ceramic powder. It is a binder that keeps the surface of the pot-shaped molded product without peeling when dried after coating. Polyvinyl alcohol and its derivatives that are difficult to remain may be suitably used, and surfactants or fats and oils that improve plasticity and dispersibility may be added.

内面にセラミックスを塗布した鍋状の成型品は焼成処理に伴って結合材が炭化し、種々物質が飛散して多くの気孔を生成する。結合材およびスラリー液の添加剤が分解して飛散する。このとき、鍋状成型品から結合材が備える有機物起源の分解物が塗布したセラミックス層を透過して放散する350〜600℃の温度範囲を主とする初期の焼成段階では、前記セラミックス層が相応の気孔を備える態様が必要である。次いで、鍋状成型品の焼成が進行して表面に気孔を生成することに伴って前記分解物からの飛散物が急激に少なくなる段階では、セラミックスの塗布層におけるガラス質が溶融して鍋状成型品の前記気孔に含浸する挙動に支障を来さないようにすることが必須の条件となる。   In a pot-shaped molded product with ceramics applied to the inner surface, the binder is carbonized during the firing process, and various substances are scattered to generate many pores. The binder and slurry liquid additives decompose and scatter. At this time, in the initial firing step mainly in a temperature range of 350 to 600 ° C. where the organic material-derived decomposition product included in the binder is applied and dissipated from the pot-shaped molded product, the ceramic layer is suitable. It is necessary to provide an embodiment having the pores. Next, as the pot-shaped molded product proceeds and the pores are formed on the surface, the amount of scattered matter from the decomposed product decreases rapidly. It is an essential condition that the behavior of impregnating the pores of the molded product is not hindered.

従って、鍋状成型品において気孔生成が発達する350〜600℃、好ましくは300〜750℃では、他の温度域の昇温と冷却が1〜10℃/hrで行うのに対して、1〜3℃/hrの緩い昇温速度を維持することが肝要である。   Therefore, at 350 to 600 ° C., preferably 300 to 750 ° C. at which pore generation develops in a pot-shaped molded product, the temperature rise and cooling in other temperature ranges are performed at 1 to 10 ° C./hr, whereas 1 to It is important to maintain a moderate temperature increase rate of 3 ° C./hr.

さらに、昇温して1000℃近傍に達すると、酸化ケイ素や酸化硼素を含むガラス状物質が溶融して流動性を呈し、上述の焼成段階において生成した気孔内に含浸することによって機械的に塗膜を固着させる態様を備えるので、ガラス状物質が溶融時に低粘度を呈するものが好ましい。一方、ジルコニアやアルミナなどの酸化物系であって、他に、窒化硼素や窒化ケイ素などの非酸化物系のものであっても、融点が高くて1300℃まで昇温する焼成段階で溶融しないセラミックスは、ガラス状物質を結合材として粒子が鍋状成型品の表面に固定されるが、粒子間の空隙を埋めるに至らない量のガラス状物質しか混合していないため、空隙を残存した態様を成すに止まる。   Further, when the temperature rises and reaches around 1000 ° C., the glassy substance containing silicon oxide or boron oxide melts and exhibits fluidity, and is mechanically applied by impregnating the pores generated in the above-described firing step. Since the film is fixed, it is preferable that the glassy substance exhibits a low viscosity when melted. On the other hand, even oxides such as zirconia and alumina and non-oxides such as boron nitride and silicon nitride do not melt at the firing stage where the melting point is high and the temperature is raised to 1300 ° C. In ceramics, particles are fixed on the surface of the pot-shaped molded product using a glassy material as a binder, but only an amount of glassy material that does not lead to filling the voids between the particles is mixed. Stop to make.

以上の手段により得たセラミックス塗装膜には、表面に硬度の高いアルミナなどの粒子が表面に滞留した状態で保持されるので耐摩耗性に優れ、調理時の摩耗や物品の落下による変形に十分な耐性を備えて成り、調理器としての機能を十分に満たしていることを確認した。   The ceramic coating film obtained by the above means is highly wear-resistant because particles such as alumina with high hardness are retained on the surface, and it is sufficiently resistant to deformation during cooking and dropping of articles. It was confirmed that it had sufficient resistance and sufficiently fulfilled the function as a cooker.

実施の形態3.
実施の形態2と同じ形状の誘電加熱式調理器であるジャー炊飯器の内釜10について、以下に製造方法を詳述する。
Embodiment 3 FIG.
About the inner pot 10 of the jar rice cooker which is a dielectric heating type cooking device of the same shape as Embodiment 2, a manufacturing method is explained in full detail below.

本実施の形態は、実施の形態1ほどではないが、比較的気孔の形成が微細で、ガラス質セラミックスの含浸が困難な場合にあっても、非溶融のアルミナなどのセラミックスを含有しないガラス質セラミックスのみの層を載置したことによって含浸が容易に行えるほか、非溶融のセラミックス粒子同士が接する空隙にガラス質セラミックスが過度に充填されずに気孔を残存されやすい、という特徴を備える。従って、実施の形態1,2に比較して、含浸が容易な成形方法である上、沸騰効果を備える表面層が形成し易いという特徴がある。   Although the present embodiment is not as large as the first embodiment, even if the pore formation is relatively fine and impregnation with the vitreous ceramic is difficult, the vitreous does not contain ceramics such as non-molten alumina. In addition to being easily impregnated by placing a ceramic-only layer, pores are easily left without being excessively filled with vitreous ceramic in the voids where non-molten ceramic particles are in contact with each other. Therefore, as compared with the first and second embodiments, the molding method is easy to impregnate and the surface layer having a boiling effect is easily formed.

図4は実施の形態3を示す図で、ジャー炊飯器の内釜10の製造工程図である。   FIG. 4 shows the third embodiment, and is a manufacturing process diagram of the inner pot 10 of the jar rice cooker.

カーボンを2600℃〜3000℃で焼成したグラファイト結晶粉粒と結合材であるフェノール樹脂との混合物を鍋状の圧縮成形用金型内に投入して圧縮成形、硬化させて得た前駆体成形品に調理食品の付着防止や付着具材の除去に伴う摩擦による摩耗損傷などの破損抑制機能を備える表面層を成すセラミックスを塗布する。   A precursor molded product obtained by compression molding and curing a mixture of graphite crystal grains obtained by firing carbon at 2600 ° C. to 3000 ° C. and a phenol resin as a binder into a pan-shaped compression molding die. The ceramic which forms the surface layer having the function of preventing damage such as abrasion damage due to friction accompanying the prevention of the adhesion of cooked food and the removal of the adhering material is applied.

ここでは、まず、第一のスラリー液として、融点が1000℃以下のガラス質セラミックスを溶媒であるエタノールと、塗布後の乾燥時に鍋状成型品の表面と剥離することなく保持するバインダーで焼成後の灰分が残留し難いポリビニルアルコール、可塑性や分散性を向上させる界面活性剤や油脂類などを添加したものを用い、これを塗布した後、風乾させた。   Here, first, after firing with a first slurry liquid, a glass ceramic having a melting point of 1000 ° C. or less and ethanol that is a solvent, and a binder that holds the surface of the pot-shaped molded product without peeling off at the time of drying after coating. The ash content of polyvinyl alcohol, a surfactant added to improve the plasticity and dispersibility, oils and fats, and the like were used, and this was applied and then air-dried.

次に、融点が1000℃以下のガラス質のセラミックスと焼成温度で溶融せずに摩耗などの機械強度に優れる高融点セラミックスを、1:3〜5の比率で混合したものを、同様に、溶媒であるエタノール、塗布後の乾燥時に鍋状成型品の表面と剥離することなく保持するバインダーであるポリビニルアルコール、可塑性や分散性を向上させる界面活性剤や油脂類などを添加して均一に分散させた第二のスラリー液を、前記ガラス質セラミックスに重ねて塗布した後、風乾させた。   Next, a mixture of a glassy ceramic having a melting point of 1000 ° C. or less and a high-melting ceramic having excellent mechanical strength such as wear without melting at the firing temperature is mixed in a ratio of 1: 3 to 5 similarly. Add ethanol, polyvinyl alcohol, which is a binder that keeps the surface of the pan-shaped molded product without peeling when dried after coating, surfactants and oils that improve plasticity and dispersibility, etc. The second slurry was applied over the glassy ceramic and then air-dried.

下地となるガラス質セラミックスのみを含んだ第一のスラリー液は、ガラス質セラミックスが鍋状成型品に含浸し易いように均一な厚さで数μm〜十数μm程度の薄膜を形成する程度とし、その上層に位置する焼成温度で溶融しない高融点セラミックスを主体とする第二のスラリー液は30〜80μm程度のやや厚い薄膜を形成するようにした。   The first slurry liquid containing only glass ceramics as the base is to form a thin film of several μm to several tens μm with a uniform thickness so that the glassy ceramics can easily impregnate the pot-shaped molded product. The second slurry liquid mainly composed of high-melting-point ceramics that does not melt at the firing temperature located in the upper layer forms a slightly thick thin film of about 30 to 80 μm.

次に、これを1000℃(第一の温度)以上、好ましくは約1300℃(第二の温度)に保持した炉中での焼成処理(加熱処理)によってカーボン凝結体1の表面に強固に保持した状態を確保した後、歪みを塗膜内および成型品との界面に残存させないように室温近傍まで1〜10℃のゆっくりとした速度で冷却することによって、セラミックス塗装を形成した。加熱処理は、酸素を排除した不活性ガス雰囲気下で行う。   Next, this is firmly held on the surface of the carbon aggregate 1 by a baking treatment (heat treatment) in a furnace kept at 1000 ° C. (first temperature) or more, preferably about 1300 ° C. (second temperature). After securing the state, a ceramic coating was formed by cooling at a slow rate of 1 to 10 ° C. to near room temperature so as not to leave distortion in the coating film and at the interface with the molded product. The heat treatment is performed in an inert gas atmosphere excluding oxygen.

内面にセラミックスを塗布した鍋状の成型品は焼成に伴って結合材が炭化し、種々物質が飛散して多くの気孔を生成する。このとき、鍋状成型品から結合材が備える有機物起源の分解物が塗布したセラミックス層を透過して放散する350〜600℃の温度範囲を主とする初期の焼成段階では、前記セラミックス層が相応の気孔を備える態様が必要である。次いで、鍋状成型品の焼成が進行して表面に気孔を生成することに伴って前記分解物の飛散が急激に少なくなる段階では、セラミックスの塗布層におけるガラス質セラミックスが溶融して鍋状成型品が形成した気孔に含浸する挙動に支障を来さないように分解物の飛散を完結させるようにすることが必須の条件となる。従って、気孔生成が発達する350〜600℃、好ましくは300〜750℃では1〜3℃/hrの緩い昇温速度を維持し、他の温度域の昇温と冷却は1〜10℃/hrで行うことが肝要である。   In a pot-shaped molded product with ceramics applied to the inner surface, the binder carbonizes with firing, and various substances are scattered to generate many pores. At this time, in the initial firing step mainly in a temperature range of 350 to 600 ° C. where the organic material-derived decomposition product included in the binder is applied and dissipated from the pot-shaped molded product, the ceramic layer is suitable. It is necessary to provide an embodiment having the pores. Next, in the stage where the decomposition of the decomposed product suddenly decreases as the pot-shaped molded product is baked and pores are formed on the surface, the glassy ceramic in the ceramic coating layer is melted to form a pot-shaped mold. It is an indispensable condition to complete the scattering of decomposition products so as not to hinder the behavior of impregnating the pores formed by the product. Therefore, at 350 to 600 ° C., preferably 300 to 750 ° C. at which pore generation develops, a moderate temperature increase rate of 1 to 3 ° C./hr is maintained, and temperature increase and cooling in other temperature ranges are 1 to 10 ° C./hr. It is important to do in

さらに、昇温して1000℃近傍に達するとガラス状物質が溶融して流動性を呈し、上述の焼成段階に生成した気孔内に含浸して機械的に塗膜を固着させる態様を備える。このとき、ガラス状物質が溶融時に低粘度を呈するものが好ましい。一方、ジルコニアやアルミナなどの酸化物系、および窒化硼素や窒化ケイ素などの非酸化物系のもので、融点が高くて1300℃まで昇温する焼成段階で溶融しないセラミックスはガラス質のセラミックスを結合材として粒子が鍋状成型品の表面に固定されるが、粒子間の空隙を埋めない量に調整して混合している上、下面から浸透する挙動を成すので、空隙を残存した態様を成すに止まる。   Furthermore, when the temperature rises and reaches around 1000 ° C., the glassy substance melts and exhibits fluidity, and has an aspect in which the coating film is mechanically fixed by impregnating the pores generated in the above-described firing stage. At this time, it is preferable that the glassy substance exhibits a low viscosity when melted. On the other hand, oxides such as zirconia and alumina, and non-oxides such as boron nitride and silicon nitride, which have a high melting point and do not melt at the firing stage where the temperature is raised to 1300 ° C., bind glassy ceramics. Particles are fixed on the surface of the pan-shaped molded product as a material, but are mixed and adjusted to an amount that does not fill the voids between the particles. Stop on.

以上の手段により得たセラミックス塗装膜には、表面に硬度の高いアルミナなどの粒子が表面に滞留した状態で保持されるので耐摩耗性に優れ、調理時の摩耗や物品の落下による変形に十分な耐性を備えて成り、併せて、沸騰状態を促進する機能を備えた微細な気泡を内在する表面層の形成が、沸騰時に気泡発生が増加することから確認できた。   The ceramic coating film obtained by the above means is highly wear-resistant because particles such as alumina with high hardness are retained on the surface, and it is sufficiently resistant to deformation during cooking and dropping of articles. In addition, the formation of a surface layer containing fine bubbles having a function of promoting the boiling state was confirmed from the fact that the generation of bubbles increased during boiling.

実施の形態1を示す図で、ジャー炊飯器の内釜10の断面図。It is a figure which shows Embodiment 1, and is sectional drawing of the inner pot 10 of a jar rice cooker. 実施の形態1を示す図で、ジャー炊飯器の内釜10の製造工程図。It is a figure which shows Embodiment 1, and is a manufacturing process figure of the inner pot 10 of a jar rice cooker. 実施の形態2を示す図で、ジャー炊飯器の内釜10の製造工程図。It is a figure which shows Embodiment 2, and is a manufacturing process figure of the inner pot 10 of a jar rice cooker. 実施の形態3を示す図で、ジャー炊飯器の内釜10の製造工程図。It is a figure which shows Embodiment 3, and is a manufacturing process figure of the inner pot 10 of a jar rice cooker.

符号の説明Explanation of symbols

1 カーボン凝結体、2 セラミックスの層、10 ジャー炊飯器の内釜。   1 Carbon aggregate, 2 Ceramic layer, 10 Jar rice cooker inner pot.

Claims (17)

カーボンの粉粒と結合材との混合物を金型内に投入し、圧縮・硬化させることによって前駆体成形品を成形し、
前記前駆体成形品の表面層を削除し、
前記表面層を削除した前駆体成形品を窒素で置換した無酸素状態の炉中に配置して、第一の焼成処理を行い成型品を作製し、
セラミックス粉末と、添加剤とを溶媒に分散させたスラリー液を前記成型品に塗布し、
塗布した前記スラリー液が乾燥した後、第二の焼成処理を行うことを特徴とする誘導加熱式調理器の製造方法。
A precursor molded product is formed by putting a mixture of carbon particles and a binder into a mold and compressing and curing the mixture.
Removing the surface layer of the precursor molded product,
The precursor molded product from which the surface layer has been removed is placed in an oxygen-free furnace substituted with nitrogen, and a first firing treatment is performed to produce a molded product,
A slurry liquid in which ceramic powder and an additive are dispersed in a solvent is applied to the molded product,
A method for producing an induction heating type cooking device, wherein a second baking treatment is performed after the applied slurry is dried.
前記セラミックス粉末が、前記第二の焼成処理の温度以上で液状を呈するガラス質物質を含んでいることを特徴とする請求項1記載の誘導加熱式調理器の製造方法。   The method for manufacturing an induction heating cooker according to claim 1, wherein the ceramic powder includes a vitreous substance that exhibits a liquid state at a temperature equal to or higher than the temperature of the second baking treatment. 前記ガラス質物質は、前記第一の焼成処理によって得たカーボン粉粒を含む前記成型品が備える気孔の径よりも小さいものを含むことを特徴とする請求項2記載の誘導加熱式調理器の製造方法。   3. The induction heating cooker according to claim 2, wherein the vitreous substance includes a material having a diameter smaller than a pore diameter of the molded product including the carbon particles obtained by the first baking treatment. Production method. 前記セラミックス粉末は、前記第一の焼成処理によって得たカーボン粉粒を含む前記成型品が備える気孔の径よりも大きく、且つ前記第二の焼成処理の温度で不溶融の粉粒を含むことを特徴とする請求項1乃至3のいずれかに記載の誘導加熱式調理器の製造方法。   The ceramic powder is larger than the pore diameter of the molded article including the carbon particles obtained by the first firing treatment, and contains unmelted particles at the temperature of the second firing treatment. The method for manufacturing an induction heating cooker according to any one of claims 1 to 3. 前記セラミックス粉末における前記ガラス質物質の混入量を、前記第二の焼成処理の温度で不溶融の粉粒が形成する空隙を充填しない量とすることを特徴とする請求項1乃至4のいずれかに記載の誘導加熱式調理器の製造方法。   The amount of the vitreous substance mixed in the ceramic powder is set to an amount that does not fill a void formed by infusible powder particles at the temperature of the second baking treatment. The manufacturing method of the induction heating type cooking appliance as described in 2. カーボンの粉粒と結合材との混合物を金型内に投入し、圧縮・硬化させることによって前駆体成形品を成形し、
セラミックス粉末と、添加剤とを溶媒に分散させたスラリー液を前記前駆体成形品に塗布し、
塗布した前記スラリー液が乾燥した後、焼成処理を行うことを特徴とする誘導加熱式調理器の製造方法。
A precursor molded product is formed by putting a mixture of carbon particles and a binder into a mold and compressing and curing the mixture.
A slurry liquid in which ceramic powder and an additive are dispersed in a solvent is applied to the precursor molded product,
A method for producing an induction heating cooker, wherein a baking treatment is performed after the applied slurry is dried.
前記結合材が、前記焼成処理に供する温度以下で分解して飛散する熱硬化性樹脂であることを特徴とする請求項6記載の誘導加熱式調理器の製造方法。   The method for manufacturing an induction heating cooker according to claim 6, wherein the binder is a thermosetting resin that decomposes and scatters at a temperature equal to or lower than a temperature used for the baking treatment. 前記セラミックス粉末は、前記焼成処理の温度以下の融点を有するガラス質物質であって、焼成処理の温度で不溶融の粉粒よりも小さい粒径のものを含んで成ることを特徴とする請求項6記載の誘導加熱式調理器の製造方法。   The ceramic powder is a vitreous substance having a melting point equal to or lower than the temperature of the firing treatment, and includes a material having a particle size smaller than that of the unmelted powder particles at the firing treatment temperature. 6. A method for producing an induction heating cooker according to 6. 前記焼成処理は、前記結合材および前記スラリー液の添加剤が分解して飛散するとともに、前記ガラス質物質が溶融する温度以上で行うことを特徴とする請求項8記載の誘導加熱式調理器の製造方法。   The induction heating cooker according to claim 8, wherein the baking is performed at a temperature equal to or higher than a temperature at which the binder and the additive of the slurry liquid are decomposed and scattered and the vitreous substance is melted. Production method. 前記セラミックス粉末における前記ガラス質物質の混入量を、前記焼成処理の温度で不溶融の粉粒が形成する空隙を充填しない量とすることを特徴とする請求項8又は請求項9記載の誘導加熱式調理器の製造方法。   The induction heating according to claim 8 or 9, wherein an amount of the vitreous substance mixed in the ceramic powder is an amount that does not fill a void formed by infusible powder particles at the temperature of the baking treatment. A method of manufacturing a cooking device. カーボンの粉粒と結合材との混合物を金型内に投入し、圧縮・硬化させることによって前駆体成形品を成形し、
第一の温度で前記前駆体成形品が備える気孔内に溶融して侵入するガラス質物質を添加剤と共に溶媒に分散させた第一のスラリー液を塗布し、
前記ガラス質物と、前記第一の温度より高い第二の温度で不溶性の粒子との混合物を分散させた第二のスラリー液を塗布し、
前記第一の温度又は前記第二の温度の範囲の任意の温度で加熱処理を行うことを特徴とする誘導加熱式調理器の製造方法。
A precursor molded product is formed by putting a mixture of carbon particles and a binder into a mold and compressing and curing the mixture.
Applying a first slurry liquid in which a vitreous substance that melts and penetrates into pores of the precursor molded article at a first temperature is dispersed in a solvent together with an additive,
Applying a second slurry liquid in which a mixture of the vitreous material and insoluble particles at a second temperature higher than the first temperature is dispersed;
The manufacturing method of the induction heating type cooking appliance characterized by performing heat processing in the arbitrary temperature of said 1st temperature or said 2nd temperature range.
前記加熱処理を、前記ガラス質物質の融点以上で行うことを特徴とする請求項11記載の誘導加熱式調理器の製造方法。   The method for manufacturing an induction heating cooker according to claim 11, wherein the heat treatment is performed at a temperature equal to or higher than a melting point of the vitreous substance. 前記加熱処理を、酸素を排除した不活性ガス雰囲気下で行うことを特徴とする請求項11又は請求項12記載の誘導加熱式調理器の製造方法。   The method for manufacturing an induction heating cooker according to claim 11 or 12, wherein the heat treatment is performed in an inert gas atmosphere excluding oxygen. 前記セラミックス粉末における前記ガラス質物質の混入量を、前記加熱処理の温度で不溶融の粉粒が形成する空隙を充填しない量とすることを特徴とする請求項11乃至13のいずれかに記載の誘導加熱式調理器の製造方法。   The amount of the vitreous substance mixed in the ceramic powder is set to an amount that does not fill a void formed by unmelted powder particles at the temperature of the heat treatment. A method of manufacturing an induction heating cooker. カーボンの粉粒と結合材との混合物を圧縮・硬化させることによって成形された前駆体成形品と、
この前駆体成形品の気孔の内部に侵入して表面部分を覆う第一のセラミックスと、
前記第一のセラミックスの上層に形成された第二のセラミックスとを備えたことを特徴とする誘導加熱式調理器。
A precursor molded product formed by compressing and curing a mixture of carbon particles and a binder;
A first ceramic that penetrates into the pores of the precursor molded product and covers the surface portion;
An induction heating cooker comprising: a second ceramic formed on an upper layer of the first ceramic.
前記第二のセラミックスが、前記前駆体成形品が備える気孔に充填しないものを含むこと特徴とする請求項15記載の誘導加熱式調理器。   16. The induction heating cooker according to claim 15, wherein the second ceramic includes a material that does not fill pores of the precursor molded product. 前記第二のセラミックスが、前記第一のセラミックスで粒子間を結合され、前記粒子間に備えた空隙を充填することなく多くの気孔を残留して形成されていること特徴とする請求項15又は請求項16記載の誘導加熱式調理器。   The second ceramic is formed by bonding particles between the first ceramics and leaving many pores without filling a space provided between the particles. The induction heating cooker according to claim 16.
JP2007010923A 2007-01-22 2007-01-22 Method for manufacturing induction heating cooker Active JP4787179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010923A JP4787179B2 (en) 2007-01-22 2007-01-22 Method for manufacturing induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010923A JP4787179B2 (en) 2007-01-22 2007-01-22 Method for manufacturing induction heating cooker

Publications (2)

Publication Number Publication Date
JP2008174428A true JP2008174428A (en) 2008-07-31
JP4787179B2 JP4787179B2 (en) 2011-10-05

Family

ID=39701726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010923A Active JP4787179B2 (en) 2007-01-22 2007-01-22 Method for manufacturing induction heating cooker

Country Status (1)

Country Link
JP (1) JP4787179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094273A (en) * 2011-10-28 2013-05-20 Kazuyuki Ide Heat-proof dish for microwave oven
EP3957189A4 (en) * 2019-12-18 2023-01-11 Anaori Carbon Co., Ltd. Roaster/roasting device and roasting method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312409A (en) * 1991-04-10 1992-11-04 Mitsubishi Electric Corp Heating cooker
JP2001252184A (en) * 2000-03-09 2001-09-18 Tokai Konetsu Kogyo Co Ltd Earthen pot for induction heating cooker
JP2008174427A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Method of manufacturing electromagnetic induction heating cooker
JP4161351B2 (en) * 2005-12-28 2008-10-08 三菱電機株式会社 Electromagnetic induction heating cooker and electromagnetic induction heating cooking device
JP4347305B2 (en) * 2006-01-30 2009-10-21 三菱電機株式会社 Method for manufacturing induction heating cooker
JP4347306B2 (en) * 2006-01-30 2009-10-21 三菱電機株式会社 Cooking container for induction heating cooker and method for manufacturing cooking container for induction heating cooker
JP4435051B2 (en) * 2005-08-10 2010-03-17 三菱電機株式会社 Surface-modified carbon aggregate, method for surface modification of carbon aggregate, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4448479B2 (en) * 2005-08-10 2010-04-07 三菱電機株式会社 Container for electromagnetic induction heating cooker, manufacturing method thereof, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4448480B2 (en) * 2005-08-10 2010-04-07 三菱電機株式会社 Electromagnetic induction heating cooking utensil, method for manufacturing the same, and electromagnetic induction heating cooker
JP4478162B2 (en) * 2007-01-22 2010-06-09 三菱電機株式会社 Method for manufacturing electromagnetic induction heating cooker
JP4503528B2 (en) * 2005-12-28 2010-07-14 三菱電機株式会社 Cooking pot and rice cooker equipped with the pot

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312409A (en) * 1991-04-10 1992-11-04 Mitsubishi Electric Corp Heating cooker
JP2001252184A (en) * 2000-03-09 2001-09-18 Tokai Konetsu Kogyo Co Ltd Earthen pot for induction heating cooker
JP4435051B2 (en) * 2005-08-10 2010-03-17 三菱電機株式会社 Surface-modified carbon aggregate, method for surface modification of carbon aggregate, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4448479B2 (en) * 2005-08-10 2010-04-07 三菱電機株式会社 Container for electromagnetic induction heating cooker, manufacturing method thereof, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4448480B2 (en) * 2005-08-10 2010-04-07 三菱電機株式会社 Electromagnetic induction heating cooking utensil, method for manufacturing the same, and electromagnetic induction heating cooker
JP4161351B2 (en) * 2005-12-28 2008-10-08 三菱電機株式会社 Electromagnetic induction heating cooker and electromagnetic induction heating cooking device
JP4503528B2 (en) * 2005-12-28 2010-07-14 三菱電機株式会社 Cooking pot and rice cooker equipped with the pot
JP4347305B2 (en) * 2006-01-30 2009-10-21 三菱電機株式会社 Method for manufacturing induction heating cooker
JP4347306B2 (en) * 2006-01-30 2009-10-21 三菱電機株式会社 Cooking container for induction heating cooker and method for manufacturing cooking container for induction heating cooker
JP2008174427A (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp Method of manufacturing electromagnetic induction heating cooker
JP4478162B2 (en) * 2007-01-22 2010-06-09 三菱電機株式会社 Method for manufacturing electromagnetic induction heating cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094273A (en) * 2011-10-28 2013-05-20 Kazuyuki Ide Heat-proof dish for microwave oven
EP3957189A4 (en) * 2019-12-18 2023-01-11 Anaori Carbon Co., Ltd. Roaster/roasting device and roasting method

Also Published As

Publication number Publication date
JP4787179B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4791410B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP5058103B2 (en) Carbon aggregate forming raw material and method for producing carbon aggregate molded article
JP4787179B2 (en) Method for manufacturing induction heating cooker
JP4925912B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP5052903B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP4448479B2 (en) Container for electromagnetic induction heating cooker, manufacturing method thereof, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4753982B2 (en) Method for producing carbon aggregate molded product
JP4478162B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP4435051B2 (en) Surface-modified carbon aggregate, method for surface modification of carbon aggregate, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4884487B2 (en) Carbon aggregate molded material and method for producing carbon aggregate molded article
JP5063628B2 (en) Molded product and method for producing molded product
JP4754002B2 (en) Carbon aggregate molded material and method for producing carbon aggregate molded article
JP4754001B2 (en) Molding material and method for producing molded article
JP4999974B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP4889814B1 (en) Method for producing carbon aggregate forming raw material and method for producing electromagnetic induction cooking device
JP5084763B2 (en) Method for producing compression molded product and method for producing carbon aggregate molded product
JP2010059036A (en) Carbon aggregate molded article and method for producing carbon aggregate molded article
JP5042374B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP2010202431A (en) Method for producing carbon aggregate
KR101530915B1 (en) Method for anti-oxidation coating aircraft brake disc
JP4804580B1 (en) Method for surface modification of sintered carbon
JP5197674B2 (en) Method for producing graphite aggregate molded product
JP5042276B2 (en) Surface-modified carbon aggregate and electromagnetic induction heating cooker or electromagnetic induction heating cooker
JP5183525B2 (en) Method for producing carbon aggregate molded product
JP5478652B2 (en) Method for producing carbon aggregate molded article and carbon aggregate molded article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250