JP4884487B2 - Carbon aggregate molded material and method for producing carbon aggregate molded article - Google Patents

Carbon aggregate molded material and method for producing carbon aggregate molded article Download PDF

Info

Publication number
JP4884487B2
JP4884487B2 JP2009024377A JP2009024377A JP4884487B2 JP 4884487 B2 JP4884487 B2 JP 4884487B2 JP 2009024377 A JP2009024377 A JP 2009024377A JP 2009024377 A JP2009024377 A JP 2009024377A JP 4884487 B2 JP4884487 B2 JP 4884487B2
Authority
JP
Japan
Prior art keywords
carbon
molding material
carbon aggregate
group
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009024377A
Other languages
Japanese (ja)
Other versions
JP2010180087A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009024377A priority Critical patent/JP4884487B2/en
Publication of JP2010180087A publication Critical patent/JP2010180087A/en
Application granted granted Critical
Publication of JP4884487B2 publication Critical patent/JP4884487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cookers (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

この発明は、電磁誘導加熱が可能な炊飯釜などの調理器具に使用するカーボン凝結体に係り、カーボン凝結体成形材料及びカーボン凝結体成形品の製造方法に関するものである。さらに詳しくは、カーボン粉粒と高炭素含有物質である結合材を主体とするカーボン凝結体成形材料を用い、金型内で加圧及び加熱を行う射出成型などにより得たカーボン凝結体成形品を、無酸素の高温雰囲気下で炭化させる焼成処理を施すことにより、カーボン凝結体成形品を得るカーボン凝結体成形品の製造方法に関する。   The present invention relates to a carbon aggregate used in a cooking utensil such as a rice cooker capable of electromagnetic induction heating, and relates to a carbon aggregate molding material and a method for producing a carbon aggregate molded article. More specifically, a carbon aggregate molded product obtained by injection molding or the like using a carbon aggregate molding material mainly composed of carbon powder and a binder that is a high carbon content substance, and pressurizing and heating in a mold. The present invention also relates to a method for producing a carbon aggregate molded product, which obtains a carbon aggregate molded product by performing a baking treatment for carbonization in an oxygen-free high temperature atmosphere.

電磁加熱調理器のコンロや炊飯器は、電磁誘導加熱コイルからの渦電流によって発熱する電磁誘導加熱を利用したもので、調理器の速やかで均一な加熱が得られるという特徴を有する。当該電磁加熱調理器には、アルミニウムや銅等の高熱伝導金属と磁性金属を積層したクラッド材を鍋状に成形したものが主流である。しかし、クラッド材は、鍋や釜などの形状加工が困難で、表面をフッ素樹脂などの耐熱樹脂塗装面の各積層界面が剥離し易いという課題があった。   The stove or rice cooker of an electromagnetic heating cooker uses electromagnetic induction heating that generates heat due to eddy currents from an electromagnetic induction heating coil, and has a feature that quick and uniform heating of the cooker can be obtained. The mainstream of the electromagnetic heating cooker is a clad formed by laminating a highly heat conductive metal such as aluminum or copper and a magnetic metal into a pan shape. However, the clad material has a problem that it is difficult to process the shape of a pan, a pot, or the like, and the laminated interface of the surface of the heat-resistant resin coating surface such as fluororesin is easily peeled off.

このため、従来の鉄やステンレスなどに代わる電磁誘導加熱調理器の素材として、優れた導電性と誘電性と優れた熱伝導度を有しているカーボン凝結体の使用が提案されている(例えば、特許文献1参照)。   For this reason, the use of a carbon aggregate having excellent electrical conductivity, dielectric properties, and excellent thermal conductivity has been proposed as a material of an electromagnetic induction heating cooker that replaces conventional iron and stainless steel (for example, , See Patent Document 1).

また、棒柱状に加圧して凝縮させたカーボン圧縮体の切削加工物が提案されており、カーボン素材が高温での調理器具として有効であることが述べられている(例えば、特許文献2参照)。   Further, a cut product of a carbon compression body that has been pressed and condensed into a columnar shape has been proposed, and it is stated that a carbon material is effective as a cooking utensil at a high temperature (for example, see Patent Document 2). .

上述の調理器具の製造方法によれば、コークスなどのカーボン粉粒にフェノールやピッチなどの高炭素含有物である結合材を主体とする混合物を成形し、これを無酸素雰囲気下の1000〜3000℃で加熱してカーボン凝結体を得た後、任意の形状に切削加工するものである。しかし、カーボン焼結体を切削加工して任意の形状に加工することは、切削の大半を占める容器の凹状を成す中空部分にある素材の廃棄が多く、加工工数も大きい、という課題があった。また、カーボン圧縮体に内在する気孔などの欠陥を事前に検知することが困難で、切削によって露出して意匠および強度などの諸特性に悪影響を及ぼすことになる。   According to the above-described method of manufacturing a cooking utensil, a mixture mainly composed of a binder that is a high carbon content such as phenol or pitch is formed on carbon particles such as coke, and this mixture is 1000 to 3000 in an oxygen-free atmosphere. After heating at ℃ to obtain a carbon aggregate, it is cut into an arbitrary shape. However, cutting the carbon sintered body into an arbitrary shape has the problem that the material in the hollow part of the concave portion of the container that occupies most of the cutting is discarded, and the number of processing steps is large. . In addition, it is difficult to detect defects such as pores in the carbon compression body in advance, and it is exposed by cutting and adversely affects various properties such as design and strength.

これらの課題を解決する手段として、カーボン粉粒とフェノール樹脂の原料液やタールピッチなどの結合材との混合物である成形材料を金型内に注入して加圧して賦型した後、得られた成形品を焼成処理することにより、鍋状に成形されたカーボン凝結体を得る手段が提案されている(例えば、特許文献3参照)。   As a means to solve these problems, it is obtained after injecting a molding material, which is a mixture of carbon powder and a binder material such as a phenolic resin raw material liquid and tar pitch, into a mold and pressurizing and molding. There has been proposed a means for obtaining a carbon aggregate formed into a pan shape by firing the molded product (see, for example, Patent Document 3).

しかし、電磁誘導加熱が可能な調理器具として使用するうえで必要な特性として、強度、電気伝導及び熱伝導に優れるカーボン凝結体成形品を得るには、フェノール樹脂の含有量を少なくした原料は見掛けの粘度が向上して流動性が低下するうえ、カーボン粉粒の表面が十分に濡れずに滑り難いので凝集し易く、従って、流動性を喪失して未充填な部分が形成され易くなる。このため、成形材料が十分な流動性を得るまでフェノール樹脂の含有量を増すことが必要となる。   However, as a necessary characteristic for use as a cooking utensil capable of electromagnetic induction heating, in order to obtain a carbon aggregate molded product with excellent strength, electrical conduction, and thermal conduction, raw materials with reduced phenol resin content are apparent. In addition, the viscosity of the carbon particle is improved and the fluidity is lowered, and the surface of the carbon powder particles is not sufficiently wet and is difficult to slip, so that it is easy to agglomerate. Therefore, the fluidity is lost and an unfilled portion is easily formed. For this reason, it is necessary to increase the content of the phenol resin until the molding material has sufficient fluidity.

また、金型内における成形材料は成形時の流動を伴って生じる内部応力が残存するので、成形品の焼成段階に歪みの解放挙動とフェノール樹脂などから発生する分解ガスの放散により、比較的、脆弱な部位であるウエルドや、粗粒子が集合して粒子間の接着が不十分な状態に至る内層部分、さらにフェノール樹脂が多く集合してガスを放散する気孔が残存し難い表面層、にクラックを発生させるという課題があった。   In addition, since the internal stress generated with the flow during molding remains in the molding material in the mold, relatively, due to the strain release behavior and the diffusion of decomposition gas generated from phenol resin, etc. during the firing stage of the molded product, Cracks in welds that are fragile parts, inner layer parts where coarse particles gather and the adhesion between the particles is insufficient, and surface layers where a large amount of phenolic resin collects and the pores that dissipate gas hardly remain There was a problem of generating.

従って、カーボン粉粒と結合材を混合した成形材料を用いた成形品は、均質で高い物性を得るため、金型内を減圧状態に維持しながら成形材料を充填するなど、良好な流動状態を確保することが肝要である。従って、成形材料の流動性を確保する施策として、フェノール樹脂などの溶融樹脂成分の増量、または高圧付加が必須であった。   Therefore, a molded product using a molding material in which carbon powder and binder are mixed has a good flow state such as filling the molding material while maintaining the inside of the mold in a reduced pressure state in order to obtain homogeneous and high physical properties. It is important to ensure. Therefore, as a measure for ensuring the fluidity of the molding material, it is essential to increase the amount of a molten resin component such as a phenol resin or to add a high pressure.

上述の如く、十分な流動性、高い強度と熱伝導性を確保するために、カーボン粉粒表面にフェノール樹脂などの液状の高炭素含有物質である結合材を十分に塗布した成形材料を用いて、カーボン粉粒同士が密接するように高圧の負荷状態を維持して成形することが肝要である。その反面、内部応力が増加すること加えて、結合材が粒子間に形成される空隙を埋めることに伴って、焼成処理時に発生する分解ガスの飛散に供する気孔を確保することが困難な状態を醸し出すこととなる。   As described above, in order to ensure sufficient fluidity, high strength and thermal conductivity, a molding material in which a binder, which is a liquid high-carbon content substance such as a phenol resin, is sufficiently applied to the surface of carbon powder particles is used. It is important to mold while maintaining a high pressure load so that the carbon powder particles are in close contact with each other. On the other hand, in addition to the increase in internal stress, it is difficult to secure pores for scattering of decomposition gas generated during the firing process as the binder fills the voids formed between the particles. It will be brewed.

これは、分解ガスの発生に伴う内部圧力の上昇が、樹脂の収縮やカーボン粉粒が受けた圧縮応力の解放に伴う膨張による成形品内部の亀裂の生成と、分解ガスの集合による亀裂の拡大や表面層が鱗片状に剥離するなどの欠陥を招くこととなり、この課題を回避するために樹脂成分が分解する焼成時の昇温速度緩和や低温での長時間保持によって分解ガスの発生速度を緩慢にすることが必須となるので、焼成処理に長い時間を必要とする状況を生みだしていた。   This is because the increase in internal pressure due to generation of cracked gas generates cracks inside the molded product due to resin shrinkage and expansion due to release of compressive stress received by the carbon particles, and crack expansion due to the aggregate of cracked gas In order to avoid this problem, the rate of generation of cracked gas can be reduced by relaxing the heating rate during firing when the resin component decomposes and maintaining it at a low temperature for a long time. Since it is essential to slow down, a situation has arisen that requires a long time for the baking treatment.

上記課題を回避する手段として、結合材である有機バインダーに熱可塑性樹脂を混合した成形材料を用いて加圧成形したものを非酸化雰囲気下で焼結することにより、割れ、フクレ、空泡等の欠陥が少ない緻密なカーボン焼結体を製造する手段が提案されている(例えば、特許文献4参照)。   As a means of avoiding the above problems, cracking, blistering, air bubbles, etc. by sintering in a non-oxidizing atmosphere a pressure molded material using a molding material in which an organic binder as a binder is mixed with a thermoplastic resin Means for manufacturing a dense carbon sintered body with few defects has been proposed (see, for example, Patent Document 4).

特開平9−75211号公報JP-A-9-75211 特開平9−70352号公報JP-A-9-70352 特開2007−044257号公報JP 2007-04257 A 特開平08−113668号公報Japanese Patent Laid-Open No. 08-113668

しかし、上記特許文献4の手段によれば、結合材である有機バインダーが熱可塑性樹脂であるから、形状保持が困難となる。しかも、微細な気孔を全体に生成することになるので、密度が低くなって粒子間の結合力が低下して調理器具としての成形品強度の低下を招くうえ、成形品全体に生じた微細な気孔によってカーボン焼結体本来の高い熱伝導率を損なうという課題がある。   However, according to the means of the above-mentioned Patent Document 4, it is difficult to maintain the shape because the organic binder as the binder is a thermoplastic resin. Moreover, since fine pores are generated as a whole, the density is lowered and the bonding force between the particles is reduced, leading to a reduction in the strength of the molded product as a cooking utensil, and the fine generated in the entire molded product. There is a problem that the high thermal conductivity inherent to the carbon sintered body is impaired by the pores.

この発明は、上記のような課題を解決するためになされたもので、カーボン焼結体成形品の強度と熱伝導率を向上することができるカーボン凝結体成形材料及びカーボン凝結体成形品の製造方法を提供する。   The present invention has been made to solve the above-described problems, and is capable of improving the strength and thermal conductivity of a carbon sintered compact, and the production of the carbon aggregate molding and the carbon aggregate molded article. Provide a method.

この発明に係るカーボン凝結体成形材料は、カーボン粉粒の表面に、フェノール基とアルデヒド基を含む化合物とを界面活性剤の存在下で重合したフェノール樹脂未硬化物が被覆され、被覆された前記フェノール樹脂未硬化物の塗膜上に、熱可塑性樹脂微粉末を保持して成るものである。   In the carbon aggregate molding material according to the present invention, the surface of the carbon particle is coated with an uncured phenol resin obtained by polymerizing a compound containing a phenol group and an aldehyde group in the presence of a surfactant. A thermoplastic resin fine powder is held on a coating film of an uncured phenol resin.

この発明に係るカーボン凝結体成形材料は、カーボン粉粒の表面に、フェノール基とアルデヒド基を含む化合物とを界面活性剤の存在下で重合したフェノール樹脂未硬化物が被覆され、被覆されたフェノール樹脂未硬化物の塗膜上に、熱可塑性樹脂微粉末を保持して成るので、成形品の焼成処理時間の短縮も可能となり、凝結成形品内に滞留する分解ガスの圧力が原因となる亀裂などの欠陥発生が抑制できるので、カーボン焼結体成形品の強度および熱伝導率が向上する。   The carbon aggregate molding material according to the present invention is obtained by coating the surface of carbon particles with an uncured phenol resin obtained by polymerizing a compound containing a phenol group and an aldehyde group in the presence of a surfactant. Since the thermoplastic resin fine powder is held on the uncured resin coating film, the firing time of the molded product can be shortened, and cracks caused by the pressure of the decomposition gas remaining in the condensed molded product As a result, the strength and thermal conductivity of the sintered carbon article can be improved.

実施の形態1を示す図で、成形材料におけるフェノール樹脂の被覆状態に関する概念を示す模式図。FIG. 5 shows the first embodiment and is a schematic diagram showing a concept relating to a covering state of a phenol resin in a molding material. 実施の形態2を示す図で、カーボン凝結成形品の曲げ強度及び塗膜密着性の評価結果を示す図。The figure which shows Embodiment 2, and is a figure which shows the bending strength of a carbon condensation molding product, and the evaluation result of coating-film adhesiveness. 比較のために示す図で、カーボン粉粒物とフェノール樹脂未硬化物を押出機などで加圧混練して得た樹脂付着の状態に関する概念を示す模式図。It is a figure shown for a comparison, and is a schematic diagram which shows the concept regarding the state of resin adhesion obtained by press-kneading a carbon granular material and a phenol resin uncured material with an extruder or the like.

実施の形態1.
先ず、本実施の形態の概要を説明する。本実施の形態は電磁誘導加熱が可能な調理器具に用いるものであって、加熱に伴う温度上昇の促進と均一性に優れた特性を確保する高い熱伝導性を備えたカーボン凝結体成形品に関する。
Embodiment 1 FIG.
First, an outline of the present embodiment will be described. The present embodiment is used for cooking utensils capable of electromagnetic induction heating, and relates to a carbon aggregate molded article having high thermal conductivity that ensures excellent temperature uniformity and excellent uniformity of heating. .

ここで用いるカーボン凝結体成形材料は、カーボン粉粒面を水やアルコールなどの溶媒中でフェノールとホルムアルデヒドが共存する重合段階で分散させて、フェノール樹脂が濡れ易い状態を維持して粉粒表面にフェノール樹脂を被覆する態様を備える。   The carbon aggregate molding material used here has a carbon particle surface dispersed in a polymerization stage in which phenol and formaldehyde coexist in a solvent such as water or alcohol to maintain a state in which the phenol resin is easily wetted to the particle surface. A mode in which a phenol resin is coated is provided.

さらに、カチオン系乳化剤を介在させたことによって、フェノール樹脂がカーボン粉粒を核とする安定凝集を保有するよう、カーボン粉粒表面に平滑面を備えるように球状を成すように保護コロイド(ポリイオンコンプレックス)を形成しながら重合が進行し、未硬化状態のフェノール樹脂を被覆して溶媒中で分散しながら安定状態を確保することになる。   Furthermore, by interposing a cationic emulsifier, a protective colloid (polyion complex) is formed so that the phenol resin has a spherical shape so as to have a smooth surface on the surface of the carbon particle so that the phenol resin has stable aggregation centered on the carbon particle. ) Is formed, and the uncured phenol resin is coated and a stable state is secured while being dispersed in the solvent.

界面活性剤は、高分子電解質挙動を示して重合過程のフェノール樹脂とポリイオンコンプレックスを形成するカチオン系溶液を成すものである。   The surfactant forms a cationic solution that exhibits polyelectrolyte behavior and forms a polyion complex with the phenol resin in the polymerization process.

以上の反応工程を経た段階で、粒子同志の融着防止を目的に溶媒を除去するために低温下で減圧乾燥すれば、カーボン凝結体成形材料を得ることが出来る。   After the above reaction steps, a carbon aggregate molding material can be obtained by drying under reduced pressure at a low temperature in order to remove the solvent for the purpose of preventing fusion between particles.

カーボン凝結体は、上述のカーボン凝結体成形材料を加温した金型内に射出して充填することによって得た成形品を無酸素の高温下に放置して焼成処理を施すことによって得たものである。金型内に加圧下で充填されたカーボン凝結体成形材料は、フェノール樹脂が溶融しながら充填した後に完全硬化するので、金型内での賦型が、カーボン粉粒の表面に被覆したフェノール樹脂未硬化物が溶融するので、優れた濡れ性を備えたことに伴う成形時の高い流動性によって金型内での均質化が達成され、成形材料同士の融着がもれなく達成できることに伴って高い強度が得られる。   The carbon aggregate was obtained by injecting the above-mentioned carbon aggregate molding material into a heated mold and filling it, leaving the molded product at an oxygen-free high temperature and subjecting it to a firing treatment. It is. The carbon agglomerate molding material filled under pressure in the mold is completely cured after the phenolic resin is melted and filled, so that the phenol resin in which the molding in the mold is coated on the surface of the carbon particles Since the uncured material melts, high fluidity at the time of molding due to having excellent wettability achieves homogenization in the mold, and high due to the fact that fusion between the molding materials can be achieved without exception Strength is obtained.

反面、金型内での流動性が向上したことに伴う粒子間の空隙が少なくなったので、焼成工程における収縮や分解ガス圧によるフクレや亀裂発生に対する不具合の解消が必要である。本実施の形態は、溶融状態における収縮時の歪みの緩和と、低温分解による分解ガス排出に寄与する気孔を生成するため、熱可塑性樹脂を混合したことに特徴がある。従って、熱可塑性樹脂微粉末は、金型温度よりも低い融点であることが要求される。   On the other hand, since the voids between the particles are reduced due to the improvement of the fluidity in the mold, it is necessary to solve the problem of shrinkage and cracking caused by the decomposition gas pressure in the firing process. This embodiment is characterized in that a thermoplastic resin is mixed in order to relax strain during shrinkage in a molten state and to generate pores that contribute to decomposition gas discharge by low-temperature decomposition. Therefore, the thermoplastic resin fine powder is required to have a melting point lower than the mold temperature.

本実施の形態に係るカーボン凝結体は、無酸素雰囲気下の高温で炭化させたカーボン凝結体を得るための成形品に係り、成形時の流動性改善と焼成時の割れを抑止することを特徴とする成形材料から得られるもので、結合材のフェノール樹脂が重合後期のカーボン粉粒の表面層に被覆した段階で熱可塑性樹脂を混合することにより、成形材料の表面に保持したことを特徴とする。   The carbon aggregate according to the present embodiment relates to a molded product for obtaining a carbon aggregate carbonized at a high temperature in an oxygen-free atmosphere, and is characterized by suppressing fluidity improvement during molding and cracking during firing. It is obtained from the molding material and is characterized in that it is held on the surface of the molding material by mixing the thermoplastic resin at the stage where the phenolic resin of the binder is coated on the surface layer of the carbon particles in the late polymerization stage. To do.

カーボン粉粒に被覆したフェノール樹脂の表面に保持したポリエチレンなどの熱可塑性樹脂微粉末は、成形時に凝集した粒子間で溶融して空隙を埋めながら流動するので、一層の流動性を付与する。   The thermoplastic resin fine powder such as polyethylene held on the surface of the phenol resin coated with the carbon powder particles flows between the aggregated particles at the time of molding and fills the voids, and thus provides further fluidity.

また、成形材料同士が接して形成する空隙内に熱可塑性樹脂が滞留し易く、焼成処理の途中段階で溶融して、成形品の硬化収縮に応じて系外への流出や低圧領域への移動を容易に来たして発生応力を緩和できる。さらに高温の雰囲気下では、熱可塑性樹脂が結合材であるフェノール樹脂に先立って分解して気孔を生成するので、フェノール樹脂の分解ガスの放出が容易になるという特徴が得られる。   In addition, the thermoplastic resin tends to stay in the gap formed by the molding materials in contact with each other, melts during the firing process, and flows out of the system or moves to the low pressure region in response to the curing shrinkage of the molded product. Can easily relieve the generated stress. Furthermore, in a high temperature atmosphere, the thermoplastic resin is decomposed prior to the phenol resin as the binder to generate pores, so that it is possible to easily release the decomposition gas of the phenol resin.

この結果、成形品の焼成処理時間の短縮も可能となり、凝結成形品内に滞留する分解ガスの圧力が原因となる亀裂などの欠陥発生が抑制できるので、強度および熱伝導率が向上する。また、シロキサン系化合物を添加剤として混合した場合には、より一層、強度が向上できるという特徴も付与できる。   As a result, the firing time of the molded product can be shortened, and the occurrence of defects such as cracks caused by the pressure of the decomposition gas staying in the condensed molded product can be suppressed, so that the strength and thermal conductivity are improved. In addition, when a siloxane-based compound is mixed as an additive, a feature that the strength can be further improved can be imparted.

圧縮成形によって鍋状の成形品を得る手段に関し、カーボン粉粒と結合材との混合物を原料として鍋状の金型に充填して得られる電磁誘導加熱調理器の製造方法について、以下に詳述する。   Regarding a means for obtaining a pot-shaped molded product by compression molding, a method for producing an electromagnetic induction heating cooker obtained by filling a pot-shaped mold with a mixture of carbon powder and a binder as a raw material will be described in detail below. To do.

図1は実施の形態1を示す図で、成形材料におけるフェノール樹脂の被覆状態に関する概念を示す模式図である。   FIG. 1 is a diagram showing the first embodiment, and is a schematic diagram showing a concept relating to a covering state of a phenol resin in a molding material.

図3は比較のために示す図で、カーボン粉粒物とフェノール樹脂未硬化物を押出機などで加圧混練して得た樹脂付着の状態に関する概念を示す模式図である。   FIG. 3 is a diagram for comparison, and is a schematic diagram showing a concept relating to the state of resin adhesion obtained by pressure-kneading carbon powder and an uncured phenol resin with an extruder or the like.

まず、成形材料の製造方法について述べる。石油コークスを無酸素状態の高温(約3000℃)で焼成してグラファイト化した塊状物を300μm以下に粉砕したカーボン粉粒を水とフェノールの混合液に撹拌しながら投入して分散させ、これに第四級アンモニウム塩型カチオン活性剤を界面活性剤として用いるために混合した。   First, a method for producing a molding material will be described. Carbon granules obtained by pulverizing petroleum coke at an oxygen-free high temperature (about 3000 ° C.) and graphitized lump to 300 μm or less are poured into a mixture of water and phenol with stirring, and dispersed. A quaternary ammonium salt type cationic surfactant was mixed for use as a surfactant.

カーボン粉粒はグラファイトを含む態様もある。グラファイトは、六角形に並び網目状の面構造をした炭素原子が、層状に集まった結晶のことである。   There is also an embodiment in which the carbon particles contain graphite. Graphite is a crystal in which carbon atoms with a mesh-like surface structure arranged in a hexagonal shape gather in layers.

ここで用いる第四級アンモニウム塩型カチオン活性剤としてアルキルトリメチル型とアルキルジメチルベンジル型カチオン活性剤が好ましい。   As the quaternary ammonium salt type cationic activator used here, alkyltrimethyl type and alkyldimethylbenzyl type cationic activators are preferable.

また、アルキル基(炭素と水素が結合した有機体(有機結合)のことをいう)部分も、高純度のラウリル基、パルミチル基、ステアリル基及びベヘニル基などの、C数が10〜25程度のものが有効である。アルキル基は、少なくともラウリル基(C数;12)、パルミチル基(C数;15)、ステアリル基(C数;18)またはベヘニル基(C数;22)の何れかを含んで成るものとする。   In addition, an alkyl group (referring to an organic substance (organic bond) in which carbon and hydrogen are bonded) is also a high-purity lauryl group, a palmityl group, a stearyl group, a behenyl group, or the like having about 10 to 25 carbon atoms. Things are effective. The alkyl group includes at least one of a lauryl group (C number; 12), a palmityl group (C number; 15), a stearyl group (C number; 18), or a behenyl group (C number; 22). .

界面活性剤は保護コロイドを形成し、溶液が高分子電解質挙動を示してアニオン性水溶性樹脂とポリイオンコンプレックスを形成するので、溶液中に分散した樹脂が過度に大きくないカーボン粉粒の粉粒が300μm以下であれば、球状を成すように作用するので、好ましい。   Surfactant forms a protective colloid, and the solution exhibits polyelectrolyte behavior to form an anionic water-soluble resin and a polyion complex, so that the carbon dispersed particles in which the resin dispersed in the solution is not excessively large If it is 300 micrometers or less, since it acts so that a spherical shape may be comprised, it is preferable.

次に、任意温度に加温しながらカーボン粉粒が均一分散するように撹拌し、ホルムアルデヒドを添加して重合させる。フェノールとホルムアルデヒドの添加量は粒子の表面を被覆する半硬化のフェノール樹脂が30wt%になるように調整し、任意の重合度を反応時の温度と時間により調整した。   Next, while heating to an arbitrary temperature, stirring is performed so that the carbon powder particles are uniformly dispersed, and formaldehyde is added for polymerization. The addition amount of phenol and formaldehyde was adjusted so that the semi-cured phenol resin covering the surface of the particles would be 30 wt%, and the arbitrary degree of polymerization was adjusted by the temperature and time during the reaction.

得られた半硬化状態の熱可塑性樹脂のポリエチレン(PE)の熱可塑性樹脂微粉末を、半硬化のフェノール樹脂の2wt%相当を添加して均一分散するまで混合したのち、0.05wt%のミクロフィブリル化したセルロースを添加した。ミクロフィブリル化したセルロースは、熱可塑性樹脂微粉末を保持する。   The obtained semi-cured thermoplastic resin polyethylene (PE) fine powder is mixed until 2 wt% of the semi-cured phenol resin is added and uniformly dispersed, and then 0.05 wt% of the micro resin is mixed. Fibrilized cellulose was added. The microfibrillated cellulose retains the thermoplastic resin fine powder.

以上の方法によって得た未硬化状態のフェノール樹脂は、カーボン粉粒物の表面がフェノール樹脂の原料液で常に濡れた状態で重合したので、カーボン粉粒の外周面に膜として保持されて成る粒状の成形用原料となる。このとき、熱可塑性樹脂のPEは、脱水後の半硬化状態のフェノール樹脂表面に担持される。   The uncured phenolic resin obtained by the above method was polymerized in a state where the surface of the carbon particle was always wet with the phenol resin raw material liquid, so that the granular resin formed as a film on the outer peripheral surface of the carbon particle It becomes a raw material for molding. At this time, the PE of the thermoplastic resin is carried on the surface of the semi-cured phenol resin after dehydration.

PE微粒子が半硬化フェノール樹脂表面に担持した成形材料の分散した溶液は、減圧吸引して濾過脱水した後、40℃の低温で乾燥処理を行った。   The solution in which the molding material in which PE fine particles were carried on the surface of the semi-cured phenol resin was dispersed under reduced pressure, filtered and dehydrated, and then dried at a low temperature of 40 ° C.

一方、上述手段で得た成形材料同士が成形時の加熱・加圧による結合状態について概念図(図1、図3)を用いて説明する。   On the other hand, the bonding state of the molding materials obtained by the above-described means by heating and pressing during molding will be described with reference to conceptual diagrams (FIGS. 1 and 3).

図3に示すカーボン粉粒1とフェノール樹脂未硬化物2を押出機などで加圧混練して得た従来の樹脂付着の状態と比較して、図1に示すフェノール樹脂の重合過程でカーボン粉粒1を備える鋭角な破断面を覆うようにカーボン粉粒1の表面にフェノール樹脂未硬化物2が塗膜を形成して平滑な面を形成することになる。   Compared with the conventional resin adhesion state obtained by pressure-kneading the carbon powder particles 1 and the phenol resin uncured product 2 shown in FIG. The phenol resin uncured product 2 forms a coating film on the surface of the carbon powder particles 1 so as to cover the acute fracture surface including the particles 1 to form a smooth surface.

このため、本実施の形態によるカーボン凝結体成形用原料は、溶融温度以上の加熱下で加圧した時に、金型内で空隙を埋めるなどして好適な位置に移動しやすい、つまり、流動性に優れるという特徴を有することになる。   For this reason, the carbon aggregate forming raw material according to the present embodiment is easy to move to a suitable position by filling a void in the mold when pressed under heating at a temperature equal to or higher than the melting temperature. It has the characteristic of being excellent in.

次に、このカーボン凝結体成形材料を用いて金型内で鍋状のカーボン凝結体成形品を得る具体的手段と、上述のカーボン凝結体成形材料に関する成形上の効果について詳述する。尚、カーボン凝結体成形材料を単に成形材料、カーボン凝結体成形品を単に成形品と呼ぶ場合もある。   Next, specific means for obtaining a pan-like carbon aggregate molded product in the mold using this carbon aggregate molding material and the molding effects related to the above-mentioned carbon aggregate molding material will be described in detail. In some cases, the carbon aggregate molded material is simply referred to as a molding material, and the carbon aggregate molded product is simply referred to as a molded product.

金型は硬化温度である160℃に加熱しておき、任意の量の成形材料を投入する。このとき、フェノール樹脂が硬化反応の初期段階に副生成物として発生する水蒸気などのガスの放散を促し、反応の進行に伴う流動粘度が過度に高くならない時間、本実施の形態では80〜90秒間を、成形材料の粉粒が充分な空孔を備えた状態を維持する触圧で保持した後、緻密な成形品内部構造を有する成形品を得るための高圧、本実施の形態では15Mpaを加圧後に3分間の保持時間を経て、金型から取り出した。   The mold is heated to a curing temperature of 160 ° C., and an arbitrary amount of molding material is charged. At this time, the phenol resin promotes the diffusion of gas such as water vapor generated as a by-product in the initial stage of the curing reaction, and the flow viscosity accompanying the progress of the reaction is not excessively high, in this embodiment, 80 to 90 seconds. Is held at a contact pressure that maintains a state in which the powder particles of the molding material have sufficient pores, and then a high pressure for obtaining a molded product having a dense molded product internal structure, 15 Mpa in this embodiment is applied. After pressing, the sample was removed from the mold after a holding time of 3 minutes.

このとき、上述したカーボン粉粒表面に被覆したフェノール樹脂未硬化物が成形温度での加圧によって流動する時、最表面に担持したPE微粒子が成形材料同士の接触によって形成した空隙を埋めて、ほぼ連続した層を形成することになる。   At this time, when the phenol resin uncured material coated on the surface of the carbon powder flows by pressing at the molding temperature, the fine particles carried on the outermost surface fill the void formed by the contact between the molding materials, An almost continuous layer will be formed.

得られた成形品は、280℃まで酸素雰囲気下で加熱する。フェノール樹脂が過度な酸化分解を来さずにPEの部分酸化を行う後硬化処理条件であり、後段の無酸素雰囲気下における高温での放置下で低分子量の分解ガスの放散を容易にする。   The obtained molded product is heated to 280 ° C. in an oxygen atmosphere. This is a post-curing treatment condition in which the phenol resin partially oxidizes PE without causing excessive oxidative decomposition, and facilitates the diffusion of a low molecular weight decomposition gas when left at high temperature in an oxygen-free atmosphere in the subsequent stage.

このとき、昇温段階の250℃程度の低温領域でもフェノール樹脂の重合が一層の進行を来すので、これに伴って発生した収縮応力を、成形材料によって形成した空隙に残留して溶融状態を呈したPEが成形品の系外または内部に残留する空隙に移動するなどして緩和するので、亀裂などの不具合を抑制する。   At this time, since the polymerization of the phenol resin further proceeds even in a low temperature region of about 250 ° C. in the temperature rising stage, the shrinkage stress generated along with this remains in the voids formed by the molding material, and the molten state remains. Since the exhibited PE is mitigated by moving to the voids remaining outside or inside the molded product, defects such as cracks are suppressed.

上記後硬化処理の完了後、無酸素状態で約1200℃までの高温雰囲気に成形品を放置してフェノール樹脂を炭化させることによって鍋状を成すカーボン凝結体成形品を得た。   After the completion of the post-curing treatment, the molded product was left in a high-temperature atmosphere up to about 1200 ° C. in an oxygen-free state to carbonize the phenol resin, thereby obtaining a carbon aggregate molded product having a pan shape.

焼成処理では、分解ガスが当該成形品内部に滞留して断層亀裂を拡大して発生する局部的な膨れを防止するために、フェノール樹脂の分解が活発になって急激な重量減少を来す350℃、500℃、800℃の近傍では温度の緩い上昇または保持を行うことが有効である。   In the firing treatment, decomposition of phenolic resin becomes active to cause a rapid weight loss in order to prevent local swelling caused by the decomposition gas staying inside the molded product and expanding the fault crack. In the vicinity of ℃, 500 ℃ and 800 ℃, it is effective to raise or maintain the temperature slowly.

具体的には300℃迄を0.5℃/min、350℃迄を1℃/hrの昇温で到達後、5時間の保持をした。成形材料同士が接する連続した空隙に残留するPEの熱分解によって連続した気孔を形成して成るので、分解ガスの放出が容易となり、焼成に要する昇温速度を促進することができる。   Specifically, up to 300 ° C. was reached at a rate of 0.5 ° C./min, and up to 350 ° C. at a rate of 1 ° C./hr, and held for 5 hours. Since continuous pores are formed by thermal decomposition of PE remaining in continuous voids where the molding materials are in contact with each other, the decomposition gas can be easily released, and the heating rate required for firing can be promoted.

この結果、従来の450℃迄を5℃/hr、500℃迄を1℃/hrで到達後に5時間保持、750℃迄を5℃/hr、800℃迄を2℃/hrで到達後に3時間の保持、その後、0.5℃/minで1200℃に到達させて2時間の保持を行っていた昇温と保持時間を、大幅に縮減することができた。   As a result, it was held for 5 hours after reaching the conventional 450 ° C. at 5 ° C./hr, up to 500 ° C. at 1 ° C./hr, up to 750 ° C. at 5 ° C./hr, up to 800 ° C. at 2 ° C./hr and 3 It was possible to significantly reduce the temperature increase and the holding time, which had been held for 2 hours by holding the time and then reaching 1200 ° C. at 0.5 ° C./min.

具体的には、750℃迄を5℃/hr、800℃迄を2℃/hrで到達後に3時間の保持、その後、0.5℃/minで1200℃に到達させて2時間の保持を行うことでも欠陥の発生を生じることなく、約2日間の焼成時間短縮を達成した。   Specifically, hold up to 750 ° C at 5 ° C / hr and up to 800 ° C at 2 ° C / hr for 3 hours, then reach 1200 ° C at 0.5 ° C / min for 2 hours. The firing time was shortened by about 2 days without causing any defects even when it was carried out.

なお、冷却については、0.5℃/minで室温近傍まで冷却することによって、誘電加熱が可能な鍋状の電磁誘導加熱調理器が得られる。   In addition, about cooling, the pot-shaped electromagnetic induction heating cooker in which dielectric heating is possible is obtained by cooling to room temperature vicinity at 0.5 degreeC / min.

実施の形態2.
電磁誘導加熱調理器である鍋状成形品について、調理面を強化したカーボン凝結体を成す成形品を、圧縮成形で得る手段を以下に詳述する。
Embodiment 2. FIG.
With respect to the pot-shaped molded product that is an electromagnetic induction heating cooker, means for obtaining a molded product that forms a carbon aggregate with a strengthened cooking surface by compression molding will be described in detail below.

図2は実施の形態2を示す図で、カーボン凝結成形品の曲げ強度及び塗膜密着性の評価結果を示す図である。   FIG. 2 is a diagram showing the second embodiment and is a diagram showing evaluation results of bending strength and coating film adhesion of a carbon condensation molded product.

まず、成形材料の製造方法について述べると、石油コークスを無酸素雰囲気の高温で焼成してグラファイト化したカーボンの塊状物を300μm以下に粉砕したカーボン粉粒の70部と、籾殻を480℃で薫蒸して100μm以下に粉砕した籾殻炭の30部を、混合したカーボン混合物を得た。   First, a method for producing a molding material will be described. 70 parts of carbon particles obtained by pulverizing a carbon lump obtained by calcining petroleum coke at a high temperature in an oxygen-free atmosphere to 300 μm or less, and a rice husk at 480 ° C. A carbon mixture was obtained by mixing 30 parts of rice husk charcoal that had been steamed and ground to 100 μm or less.

次に、カーボン混合物と水で希釈したフェノールとを撹拌しながら混合し、さらにそのなかに界面活性剤としてアルキル部分がラウリル基であるアルキルジメチルベンジル型カチオン活性剤を添加した後、任意温度に加温しながらカーボン粉粒が均一分散するように撹拌しながらホルムアルデヒドを添加して重合させる。   Next, the carbon mixture and phenol diluted with water are mixed with stirring, and an alkyldimethylbenzyl type cationic surfactant having an alkyl moiety as a lauryl group is added as a surfactant, and then the mixture is heated to an arbitrary temperature. While heating, formaldehyde is added and polymerized while stirring so that the carbon particles are uniformly dispersed.

フェノールとホルムアルデヒドの添加量は前記両原料の重合によってカーボン混合物の粒子表面を被覆する半硬化状態のフェノール樹脂量が28wt%になるように調整し、重合物の重合度は好適な粘度が得られるように反応時の温度と時間を調整した。さらに、重合完了後に、0.7wt%相当のPE微粉末を添加した後、半硬化状態のフェノール樹脂量が5wt%になるよう、新たにフェノールとホルムアルデヒドを添加して、再度の重合を同様に行った。   The addition amount of phenol and formaldehyde is adjusted so that the amount of phenol resin in a semi-cured state covering the particle surface of the carbon mixture by the polymerization of both raw materials is 28 wt%, and the polymerization degree of the polymer can obtain a suitable viscosity. Thus, the temperature and time during the reaction were adjusted. Further, after the completion of the polymerization, after adding 0.7 wt% of PE fine powder, phenol and formaldehyde are newly added so that the amount of the phenol resin in a semi-cured state becomes 5 wt%, and the polymerization is repeated in the same manner. went.

任意時間の経過後にフェノール樹脂が所望の重合度に達した溶液は、濾過することによって溶剤の水を除去、さらに乾燥処理を行うことにより、成形材料を得た。   The solution in which the phenol resin reached the desired degree of polymerization after the lapse of an arbitrary time was filtered to remove the solvent water, followed by drying treatment to obtain a molding material.

以上の方法によって得られた成形材料は、カーボン粉粒物の表面を原料液で常に濡れた状態でフェノール樹脂を重合したので、カーボン粉粒の外周面に未硬化状態のフェノール樹脂が被覆して成る。この時、熱可塑性樹脂のPEは、最表面を成す半硬化状態のフェノール樹脂内に取り込まれて複合化した状態で担持して成る。   The molding material obtained by the above method polymerizes the phenol resin in a state where the surface of the carbon particle is always wet with the raw material liquid, so that the uncured phenol resin is coated on the outer peripheral surface of the carbon particle. Become. At this time, the PE of the thermoplastic resin is loaded in a semi-cured phenol resin that forms the outermost surface and is supported in a composite state.

次に、この成形材料は、新たに20%にメタノールで希釈した未硬化のフェノール樹脂の7wt%を添加して混合、メタノールを気散させて乾燥したものを用いた。次いで、未硬化状態のフェノール樹脂の硬化温度である160℃に加熱した金型底面に均一な厚さになるようにして投入、金型を閉塞して加圧を行う。60秒間を成形材料の粉粒が充分な空孔を備えた状態を維持する触圧で保持、反応の副生成物である水蒸気や未反応の残存樹脂原料であるホルムアルデヒドなどのガスが放散した後、15Mpaを加圧して3分間の保持後に金型から取り出した。   Next, as this molding material, 7 wt% of uncured phenol resin newly diluted with methanol to 20% was added and mixed, and then dried by aeration of methanol. Next, the mold is heated to 160 ° C., which is the curing temperature of the uncured phenol resin, so as to have a uniform thickness, and the mold is closed and pressurized. After holding for 60 seconds at a contact pressure that maintains the powder particles of the molding material with sufficient pores, gas such as water vapor as a by-product of reaction and formaldehyde as an unreacted residual resin material is diffused , 15 Mpa was pressurized and held for 3 minutes, and then removed from the mold.

この加圧時に、未硬化状態のフェノール樹脂が濡れた状態で触圧程度の低圧であっても成形材料が接して形成する空隙を埋めるように流動して金型内を流動する。さらに、15Mpaの高圧の付加状態でカーボン粉粒表面に被覆したフェノール樹脂未硬化物が軟化して硬化する。このとき、最表面に担持したPE微粒子が流動して連続したPE層を成形品内に形成することになる。   At the time of this pressurization, even if the uncured phenol resin is wet and flows at a pressure as low as the contact pressure, it flows so as to fill the void formed by contact with the molding material and flows in the mold. Furthermore, the phenol resin uncured material coated on the surface of the carbon particles in a high pressure application state of 15 Mpa is softened and hardened. At this time, the PE fine particles supported on the outermost surface flow to form a continuous PE layer in the molded product.

得られた成形品は、まず、空気中で280℃まで加熱したのち、引き続き、雰囲気を窒素で置換した無酸素状態で約1200℃までの雰囲気下に放置してフェノール樹脂を炭化させて、鍋状を成すカーボン凝結体成形品を得た。   The obtained molded article is first heated in air to 280 ° C., and then left in an oxygen-free atmosphere with nitrogen substituted in an atmosphere up to about 1200 ° C. to carbonize the phenolic resin. A carbon aggregate molded product having a shape was obtained.

このとき、昇温過程の250℃程度の低温領域において、フェノール樹脂の硬化や成形時の残存応力の開放などに伴って発生した収縮応力を、成形材料同士が接する空隙に残留して溶融状態を呈するPEが成形品の系外または成形品内部に残留する空隙に移動するなどして緩和するので、クラックや膨れなどの発生を抑制し、酸化に伴って熱分解が容易な態様を形成できる。   At this time, in the low temperature region of about 250 ° C. during the temperature rising process, the shrinkage stress generated due to the hardening of the phenolic resin or the release of the residual stress at the time of molding remains in the gap where the molding materials are in contact with each other, and the molten state Since the PE to be exhibited is mitigated by, for example, moving to the voids remaining outside the molded product system or inside the molded product, it is possible to suppress the occurrence of cracks and blisters, and to form a mode in which thermal decomposition is easy with oxidation.

特に、PEの熱分解が予め酸化した状態で存在するので、容易に連続した気孔をフェノール樹脂の分解に先行して形成する。このため、以降の分解ガスの放出が容易となって焼成に要する昇温速度を促進できるので、PEを添加しない場合に比較して昇温速度の促進および保持時間を短縮をしても欠陥が発生しないので、焼成時間を短縮できた。   In particular, since the thermal decomposition of PE exists in a previously oxidized state, continuous pores are easily formed prior to the decomposition of the phenol resin. For this reason, since the subsequent decomposition gas can be easily released and the heating rate required for firing can be accelerated, there is no defect even if the heating rate is accelerated and the holding time is shortened compared to the case where PE is not added. Since it does not occur, the firing time could be shortened.

また、フェノール樹脂が分解時に発生するCOと、カーボン粉粒体を構成する籾殻薫蒸炭が含むシロキサンとが反応して、1000℃以上、好ましくは1200℃以上の領域で保持することにより、SiC(シリコンカーバイト)を生成して大幅な強度の向上を達成することができる。 Further, CO 2 generated when the phenol resin is decomposed and siloxane contained in the rice husk fumigation charcoal constituting the carbon particles react to hold at a temperature of 1000 ° C. or higher, preferably 1200 ° C. or higher, SiC (silicon carbide) can be produced to achieve significant strength improvements.

特に、籾殻薫蒸炭の粒径がグラファイト化したカーボン粉粒に比較して有意に小さければ、カーボン粉粒への被覆量に比較してフェノール樹脂の被覆量が多くなるので、SiCへの転換が進んで、カーボン凝結体成形品の強度が向上し易いので好ましい。   In particular, if the particle size of rice husk fumigation charcoal is significantly smaller than that of graphitized carbon particles, the amount of phenol resin coating increases compared to the amount of carbon particle coating, so conversion to SiC Is preferable because the strength of the carbon aggregate molded product is easily improved.

次に、籾殻薫蒸炭を混合した成形材料を用いて作製したカーボン凝結成形品について、曲げ強度と塗膜密着性を評価し、その結果を図2に示した。   Next, the bending strength and the adhesion of the coating film were evaluated on the carbon condensation molded product produced using the molding material mixed with rice husk fumigation charcoal, and the result is shown in FIG.

塗膜密着性は、耐摩耗性と耐熱性に優れるシリコーン樹脂のスプレーによる塗装を行い、該塗料がカーボン凝結体成形品が備える気孔内に含浸してアンカー効果によって固着する。塗膜の剥離強さは、塗膜のみに1mm間隔で縦横に11本の切れ目を碁盤目状に入れ、該面上にテープを密着させて、これの引き剥しを10回繰返した後、升目部分の欠損箇所を確認、無欠損の升目の数(a/100)で評価した。   Coating film adhesion is performed by applying a silicone resin spray excellent in wear resistance and heat resistance, and the paint is impregnated into pores of the carbon aggregate molded product and fixed by an anchor effect. The peel strength of the coating film was determined by placing 11 cuts vertically and horizontally at a 1 mm interval in a checkerboard pattern on the surface of the coating film, attaching the tape to the surface, and repeating this peeling 10 times. The missing part of the part was confirmed and evaluated by the number of non-deficient cells (a / 100).

一方、本実施の形態で示した製造方法を準じ、籾殻薫蒸炭を投入しない成形材料を用いたカーボン凝結体成形品を比較例し、同様の評価を行い、その結果を図2に併記した。   On the other hand, in accordance with the production method shown in the present embodiment, a carbon aggregate molded product using a molding material into which rice husk fumigation charcoal is not added was compared, the same evaluation was performed, and the result is also shown in FIG. .

図2に示すように、本実施の形態で示した成形材料によるカーボン凝結体成形品は、シロキサン含有物である籾殻薫蒸炭を混入しない比較例よりも有意に高い曲げ強度と塗膜密着性を示した。特に、塗膜密着性は、比較例の剥離面が成形品の表面層で凝集破壊を来しているのに対して、本実施の形態で示した成形材料によるカーボン凝結体成形品は、カーボン粉粒とフェノール樹脂の炭化物との結合力に優れていることが示唆された。   As shown in FIG. 2, the carbon agglomerated molded product by the molding material shown in the present embodiment has significantly higher bending strength and coating film adhesion than the comparative example in which the husk fumigation charcoal, which is a siloxane-containing material, is not mixed. showed that. In particular, the adhesiveness of the coating film is that the release surface of the comparative example causes cohesive failure in the surface layer of the molded product, whereas the carbon aggregate molded product by the molding material shown in this embodiment is carbon. It was suggested that the bonding strength between the powder and the carbide of phenol resin is excellent.

以上に示した如く、シロキサン含有物である籾殻薫蒸炭を併用した成形材料を用いたことにより、大幅な強度の改善効果を有することが確認できた。   As shown above, it was confirmed that the use of a molding material combined with rice husk fumigation charcoal, which is a siloxane-containing material, has a significant strength improvement effect.

なお、本実施の形態で示した籾殻薫蒸炭に代えて、シリコーン油やシラン系のカップリング剤を成形材料に混入して用いた成形や、成形品に塗布するなどして、焼成処理を行っても同様の効果を得ることが出来る。   In addition, instead of the rice husk fumigation charcoal shown in the present embodiment, a molding process using silicone oil or a silane coupling agent mixed in a molding material, or applying to a molded product, a firing treatment is performed. You can get the same effect even if you go.

また、本実施の形態では、結合材としてフェノール樹脂を用いたが、これに替えてタールピッチなどの炭素含有率の高い物質であれば、高温での焼成時における分解生成物を飛散した後の炭素が十分に残存して、収縮や結合力の不足が生じることもないので、代替が可能である。   Further, in this embodiment, a phenol resin is used as the binder, but instead of this, if the substance has a high carbon content such as tar pitch, the decomposition product at the time of firing at high temperature is scattered. Substitution is possible because there is no carbon remaining and no shrinkage or insufficient bonding force occurs.

1 カーボン粉粒、2 フェノール樹脂未硬化物。   1 carbon powder, 2 phenol resin uncured product.

Claims (9)

カーボン粉粒と種子殻の薫蒸炭とが混合し、前記カーボン粉粒の表面、フェノールとホルムアルデヒドとカチオン活性剤の存在下で重合したフェノール樹脂未硬化物によって被覆され、前記フェノール樹脂未硬化物の表面部分が、熱可塑性樹脂微粉末と複合して成ることを特徴とするカーボン凝結体成形材料。 Kaoru蒸炭are mixed carbon powder grains and seed shells, the surface of the carbon powder particles is coated with phenol and Holm aldehydes by phenol resin uncured material was polymerized in the presence of a cationic active agent, before Symbol A carbon aggregate molding material characterized in that a surface portion of a phenol resin uncured material is composited with a thermoplastic resin fine powder. 前記カーボン粉粒が、塊状物を破砕して得たグラファイトを含んで成る粒子であることを特徴とする請求項1記載のカーボン凝結体成形材料。   2. The carbon aggregate molding material according to claim 1, wherein the carbon particles are particles containing graphite obtained by crushing a lump. 前記カーボン粉粒の平均粒径が、300μm以下であることを特徴とする請求項1または請求項2記載のカーボン凝結体成形材料。 The average particle size of the carbon powder grains, carbon aggregates molding material as claimed in claim 1 or claim 2, wherein it is under 300μm or less. 前記カチオン活性剤が、アルキルトリメチル基またはアルキルジメチルベンジル基を備えた第四級アンモニウム塩型であり、アルキル基が少なくとも、ラウリル基、パルミチル基、ステアリル基およびベヘニル基のいずれかを含んで成ることを特徴とする請求項1乃至のいずれかに記載のカーボン凝結体成形材料。 The cationic active agent is a quaternary ammonium salt type having an alkyl trimethyl or alkyl dimethyl benzyl group, an alkyl group of at least, lauryl group, palmityl group, include either the stearyl group and a behenyl group The carbon aggregate molding material according to any one of claims 1 to 3 , wherein the carbon aggregate molding material is formed. カーボン粉粒と種子殻の薫蒸炭とが混合し、前記カーボン粉粒の表面が、フェノールとホルムアルデヒドとをカチオン活性剤の存在下で重合したフェノール樹脂未硬化物によって被覆され、前記フェノール樹脂未硬化物の表面部分が、熱可塑性樹脂微粉末と複合して成るカーボン凝結体成形材料を、金型内で加熱および加圧して任意形状の成形品を得た後、これを無酸素状態の高温雰囲気下放置する焼成処理工程を備えたことを特徴とするカーボン凝結体成形品の製造方法。 Were mixed and Kaoru蒸炭of carbon powder grains and seed shells, the surface of the carbon powder particles is coated with a phenolic resin not yet cured product of phenol and formaldehyde polymerize in the presence of a cationic active agent, the phenol tree surface portion of the fat uncured material is carbon aggregate molding material comprising in combination a thermoplastic resin powder, after obtaining a molded article having an arbitrary shape by applying heat and pressure in a mold, which anoxic A method for producing a carbon aggregate molded article, comprising a firing treatment step in which the carbon aggregate is left in a high-temperature atmosphere. 前記カーボン粉粒が、塊状物を破砕して得たグラファイトを含んで成る粒子であることを特徴とする請求項5記載のカーボン凝結体成形品の製造方法。 The carbon powder grains, the production method according to claim 5, wherein the carbon aggregate molded article, characterized in that the particles comprising the Graphite obtained by crushing the lumps. 前記カーボン粉粒の平均粒径、300μm以下であることを特徴とする請求項5または請求項6記載のカーボン凝結体成形品の製造方法。 The average particle size of the carbon powder grains, 3 00μm The method according to claim 5 or claim 6 wherein the carbon aggregates molded article, characterized in that following a pressure. 前記カチオン活性剤が、アルキルトリメチル基またはアルキルジメチルベンジル基を備えた第四級アンモニウム塩型であることを特徴とする請求項乃至のいずれかに記載のカーボン凝結体成形品の製造方法。 The method for producing a carbon aggregate molded article according to any one of claims 5 to 7 , wherein the cationic activator is a quaternary ammonium salt type having an alkyltrimethyl group or an alkyldimethylbenzyl group. 前記焼成処理工程が、前記成形品をフェノール樹脂の分解開始温度以下で、熱可塑性樹脂の分解開始温度以上の酸素を含む雰囲気に放置した後、無酸素状態で前記フェノール樹脂の分解開始温度以上の雰囲気に放置することを特徴とする請求項乃至のいずれかに記載のカーボン凝結体成形品の製造方法。 The firing treatment step, the molded article below decomposition temperature of the phenolic resin was allowed to stand in an atmosphere containing oxygen or decomposition temperature of the thermoplastic resin, decomposition temperature or more of the phenolic resin in the absence of oxygen The method for producing a carbon aggregate molded product according to any one of claims 5 to 8 , wherein the method is left in an atmosphere .
JP2009024377A 2009-02-05 2009-02-05 Carbon aggregate molded material and method for producing carbon aggregate molded article Active JP4884487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024377A JP4884487B2 (en) 2009-02-05 2009-02-05 Carbon aggregate molded material and method for producing carbon aggregate molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024377A JP4884487B2 (en) 2009-02-05 2009-02-05 Carbon aggregate molded material and method for producing carbon aggregate molded article

Publications (2)

Publication Number Publication Date
JP2010180087A JP2010180087A (en) 2010-08-19
JP4884487B2 true JP4884487B2 (en) 2012-02-29

Family

ID=42761913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024377A Active JP4884487B2 (en) 2009-02-05 2009-02-05 Carbon aggregate molded material and method for producing carbon aggregate molded article

Country Status (1)

Country Link
JP (1) JP4884487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889814B1 (en) * 2011-04-06 2012-03-07 三菱電機株式会社 Method for producing carbon aggregate forming raw material and method for producing electromagnetic induction cooking device
CN116283292B (en) * 2021-12-21 2024-06-14 湖南中科星城石墨有限公司 Quick-charge graphite negative electrode material, preparation method thereof and lithium ion battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203268A (en) * 1988-02-09 1989-08-16 Mitsubishi Pencil Co Ltd Production of fully carbonaceous rupture disk
JPH0757682B2 (en) * 1989-01-25 1995-06-21 リグナイト株式会社 Method for producing self-hardening rice husk charcoal granules
JP4537809B2 (en) * 2004-09-13 2010-09-08 リグナイト株式会社 Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
JP5050257B2 (en) * 2004-10-20 2012-10-17 リグナイト株式会社 Carbon nanofiber-containing resin molding
JP4448480B2 (en) * 2005-08-10 2010-04-07 三菱電機株式会社 Electromagnetic induction heating cooking utensil, method for manufacturing the same, and electromagnetic induction heating cooker
JP4435051B2 (en) * 2005-08-10 2010-03-17 三菱電機株式会社 Surface-modified carbon aggregate, method for surface modification of carbon aggregate, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4791410B2 (en) * 2007-05-08 2011-10-12 三菱電機株式会社 Method for manufacturing electromagnetic induction heating cooker
JP5058103B2 (en) * 2008-09-05 2012-10-24 三菱電機株式会社 Carbon aggregate forming raw material and method for producing carbon aggregate molded article
JP4754001B2 (en) * 2009-02-05 2011-08-24 三菱電機株式会社 Molding material and method for producing molded article

Also Published As

Publication number Publication date
JP2010180087A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4791410B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP5058103B2 (en) Carbon aggregate forming raw material and method for producing carbon aggregate molded article
JP2007044257A (en) Electromagnetic induction cooking utensil and method of manufacturing the same, and electromagnetic induction cooking appliance
JP4884487B2 (en) Carbon aggregate molded material and method for producing carbon aggregate molded article
JP4925912B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP4753982B2 (en) Method for producing carbon aggregate molded product
JP2013035703A (en) Molded body, burned body obtained by burning the molded body, and method for manufacturing molded body and burned body
JP4754002B2 (en) Carbon aggregate molded material and method for producing carbon aggregate molded article
JP5052903B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP5063628B2 (en) Molded product and method for producing molded product
JP4754001B2 (en) Molding material and method for producing molded article
JP4478162B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP4787179B2 (en) Method for manufacturing induction heating cooker
JP4889814B1 (en) Method for producing carbon aggregate forming raw material and method for producing electromagnetic induction cooking device
JP4999974B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP2010059036A (en) Carbon aggregate molded article and method for producing carbon aggregate molded article
JP2010202431A (en) Method for producing carbon aggregate
JP5042374B2 (en) Method for manufacturing electromagnetic induction heating cooker
JP5084763B2 (en) Method for producing compression molded product and method for producing carbon aggregate molded product
JP5183525B2 (en) Method for producing carbon aggregate molded product
JP5478652B2 (en) Method for producing carbon aggregate molded article and carbon aggregate molded article
JP5197674B2 (en) Method for producing graphite aggregate molded product
JP4804580B1 (en) Method for surface modification of sintered carbon
JP5225326B2 (en) Molding method of carbon powder composite resin
JP5225327B2 (en) Molding method of carbon powder composite resin

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110726

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250