JP2008174403A - Method of producing slow reacting quicklime using heat of hydration reaction - Google Patents

Method of producing slow reacting quicklime using heat of hydration reaction Download PDF

Info

Publication number
JP2008174403A
JP2008174403A JP2007007018A JP2007007018A JP2008174403A JP 2008174403 A JP2008174403 A JP 2008174403A JP 2007007018 A JP2007007018 A JP 2007007018A JP 2007007018 A JP2007007018 A JP 2007007018A JP 2008174403 A JP2008174403 A JP 2008174403A
Authority
JP
Japan
Prior art keywords
quicklime
reaction
water
particles
saturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007007018A
Other languages
Japanese (ja)
Inventor
Mitsutaka Ando
三敬 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007007018A priority Critical patent/JP2008174403A/en
Priority to KR1020070045940A priority patent/KR100832225B1/en
Publication of JP2008174403A publication Critical patent/JP2008174403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing slow reacting quicklime using the heat of hydration reaction by which slow reacting quicklime excellent in stability in which the entire surfaces of quicklime particles are covered with a saturated fatty acid can be economically produced using the heat of reaction of quicklime with water without using any heating equipment. <P>SOLUTION: The method of producing slow reacting quicklime using the heat of hydration reaction includes adding 0.5-5.0 pts.wt. of water to 100 pts.wt. of quicklime particles having an average particle diameter of 0.005-5 mm, mixing those by stirring, adding 0.1-5.0 pts.wt. of a 12-28C saturated fatty acid, and mixing those by stirring to cover the entire surfaces of the quicklime particles with the saturated fatty acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水和反応熱を利用した反応遅延性生石灰の製造方法に関する。さらに詳しくは、本発明は、生石灰粒子の全表面が飽和脂肪酸によって被覆された安定性に優れた反応遅延性生石灰を、生石灰と水との反応熱を利用して、加熱設備を用いることなく、経済的に製造することができる水和反応熱を利用した反応遅延性生石灰の製造方法に関する。   The present invention relates to a method for producing reaction-retarded quicklime using heat of hydration reaction. More specifically, in the present invention, the reaction-retarded quicklime with excellent stability in which the entire surface of the quicklime particles is coated with saturated fatty acids, using the heat of reaction between quicklime and water, without using heating equipment, The present invention relates to a method for producing reaction-retarded quicklime using heat of hydration reaction that can be produced economically.

生石灰は、カーバイド製造原料のほか、その強反応性を利用した化学工業原料、高融点であることを利用した工業用炉壁内張り材料、農業用、建築用などの従来からの用途のほかに、近年では、環境保全対策として、汚染土壌浄化処理などに使用されはじめ、急速に需要が増加している。国内各地で産出する石灰石(主成分炭酸カルシウム)を、連続式又はバッチ式で高温焼成し、大量生産されている。
生石灰は吸湿性が極めて大きく、保管にあたっては水分との接触を絶って完全に密封することが必要である。また、生石灰は、あまりにも反応性が大きいために、反応性を抑制して使用すべき用途も多い。このような有害物質の無害化処理などには、特定の条件下で緩慢に反応する生石灰が必要である。例えば、簡単な方法によって廃棄物質、特に使用済みの油及び油状物質を安全に無害化できる方法として、油状又は高分子有機廃棄物質に、界面活性を有し水との反応を遅延させる物質で処理された酸化カルシウムを加え、上記廃棄物質を吸収した上記酸化カルシウムをほぼ化学量論的量の水で水酸化カルシウムになるまで反応させる方法が提案されている(特許文献1)。
従来より、反応遅延性生石灰は、生石灰の塊を、界面活性剤などの反応遅延剤の存在下に粉砕して、反応遅延剤による被覆が形成された生石灰粒子として製造されている。例えば、反応遅延性の面でバラツキが少ない粉状の反応遅延性生石灰の合理的な製造方法として、所定粒度に粗粉砕された生石灰に、界面活性剤又は油脂を、該界面活性剤の液化温度以上蒸発温度以下で添加するとともに、上記界面活性剤又は油脂が添加された生石灰を微粉砕して粉末状とする粉状反応遅延性生石灰の製造方法が提案されている(特許文献2)。しかし、この製造方法では、均一な反応遅延機能を有する製品を製造することが困難である。また、市販の生石灰を原料として反応遅延性生石灰を製造する場合には、石灰石の焼成熱を利用することができず、生石灰や該製品製造機を加熱する必要がある。
本発明者は、先に、生石灰の粗粒子の表面が高級脂肪酸により被覆され、水と接触したときの反応速度が遅い反応遅延性生石灰を、簡単な設備により経済的に製造することができる方法として、粗粉砕された生石灰をシュートに投入し、シュート内において高級脂肪酸を添加し、シュートから落下する生石灰を、複数枚の邪魔板を両側に交互に設置したベルトコンベヤに受けて移送しつつ、生石灰の粗粒子の表面を高級脂肪酸で被覆する反応遅延性生石灰の製造方法を提案し、焼成後の温度85℃の生石灰の粗粒子に、75℃に加熱溶融したステアリン酸を噴霧状で添加する例を示した(特許文献3)。この例では、石灰石の焼成の余熱を利用しているが、焼成直後に生石灰の被覆処理をしない場合には、生石灰粒子の加熱が必要である。また、いずれにせよ、高級脂肪酸を溶融する装置と噴霧する装置が必要である。
生石灰表面が部分的に露出された状態で脂肪酸又はその誘導体により被覆され、生石灰が土壌中の水分と接触しやすく、短時間で十分な水和反応が起こりやすく、土壌として埋め戻した後も十分な圧縮強度が発現しやすい土質改良剤用遅延性生石灰の製造法として、粉末状又は粒子状の生石灰と、その生石灰に対して0.1〜5重量%の範囲の量の脂肪酸又はその誘導体を混合したのち、その混合物に生石灰に対して1〜10重量%の範囲の量の水を添加し、この水分含有混合物を70℃以上の温度で混合する土質改良剤用遅延性生石灰の製造法が提案され、生石灰にステアリン酸を添加して一次混合したのち、水を加えて二次混合することにより、水和反応による発熱が見られ、混合物の温度が約110℃まで上昇した例が示されている(特許文献4)。この方法によれば、生石灰と水との反応熱を、生石灰と脂肪酸などとの混合物の昇温に利用することができ、該混合物の加熱に必要な装置を省略し、熱エネルギーを節減することができる。しかし、この方法では生石灰粒子の全表面を脂肪酸などで被覆することができず、生石灰表面が部分的に露出された状態となる。生石灰表面が部分的に露出され、土壌中の水分と接触しやすく、短時間で十分な水和反応が起こりやすいことが必要とされる用途も存在するが、生石灰を汚染土壌中の有害物質と反応させ無害化する目的には不適当である。土壌中の有害物質を分散させ、反応遅延性生石灰粒子に吸着させるには、汚染土壌と反応遅延性生石灰とが均一に混合され、有害物質が反応遅延性生石灰に吸収されるまでは、生石灰と水との反応が起こらないようにする必要がある。その前提条件として、生石灰粒子の全表面が反応遅延剤によって被覆されている必要があり、汚染土壌中などの有害物質と十分に撹拌混合されたのちに、生石灰粒子の表面が傷ついた段階で初めて、あるいは土壌などに添加混合されたのち、土中微生物などにより反応遅延剤が分解ないし剥離された段階で、初めて反応遅延剤に吸収された有害物質と生石灰が共存する状態下において、生石灰粒子の表面が緩慢に水との反応を開始することが重要である。
特開昭50−32075号公報 特開平9−169551号公報 特開2001−240436号公報 特開平10−60431号公報
In addition to conventional raw materials such as carbide manufacturing raw materials, chemical industrial raw materials that use its strong reactivity, industrial furnace wall lining materials that use high melting points, agriculture, and construction, In recent years, it has begun to be used for contaminated soil purification treatment as an environmental conservation measure, and the demand is rapidly increasing. Limestone (main component calcium carbonate) produced in various parts of the country is mass-produced by high-temperature firing in a continuous or batch manner.
Quicklime is extremely hygroscopic and must be completely sealed without contact with moisture during storage. In addition, quick lime is so reactive that there are many uses that should be used while suppressing the reactivity. Such detoxification treatment of harmful substances requires quick lime that reacts slowly under specific conditions. For example, as a way to safely detoxify waste materials, especially used oils and oily materials by a simple method, treat them with oily or polymeric organic waste materials that have surface activity and delay reaction with water There has been proposed a method in which the calcium oxide that has been absorbed is absorbed and the calcium oxide that has absorbed the waste material is reacted with a substantially stoichiometric amount of water until it becomes calcium hydroxide (Patent Document 1).
Conventionally, reaction-retarded quicklime has been produced as quicklime particles in which a quicklime lump is pulverized in the presence of a reaction retarder such as a surfactant to form a coating with the reaction retarder. For example, as a rational method for producing a powdery reaction-retarded quick lime with little variation in terms of reaction retardance, a surfactant or oil is added to the quick lime coarsely pulverized to a predetermined particle size, and the liquefaction temperature of the surfactant. There has been proposed a method for producing a powdery reaction-retarded quicklime that is added at a temperature equal to or lower than the evaporation temperature and finely pulverized with the above-mentioned surfactant or oil / fat into a powder form (Patent Document 2). However, with this manufacturing method, it is difficult to manufacture a product having a uniform reaction delay function. Moreover, when producing reaction-retarded quicklime using commercially available quicklime as a raw material, the calcined heat of limestone cannot be used, and it is necessary to heat the quicklime and the product manufacturing machine.
The present inventor previously described a method in which the surface of coarse particles of quicklime is coated with higher fatty acids, and the reaction-retarded quicklime having a slow reaction rate when contacted with water can be produced economically with simple equipment. As, put coarsely crushed quick lime into the chute, add higher fatty acid in the chute, and receive the quick lime falling from the chute on the belt conveyor with alternately installed baffle plates on both sides, Proposing a method for producing reaction-retarded quicklime that coats the surface of coarse particles of quicklime with higher fatty acids, and adding stearic acid heated and melted to 75 ° C in a spray form to the coarse particles of quicklime at a temperature of 85 ° C after firing. An example was shown (Patent Document 3). In this example, the residual heat of calcining limestone is used. However, when the calcined lime is not coated immediately after calcining, the calcined lime particles must be heated. In any case, an apparatus for melting and spraying higher fatty acids is required.
Covered with fatty acid or its derivative with the surface of quicklime partially exposed, quicklime is easy to come into contact with moisture in the soil, sufficient hydration reaction is likely to occur in a short time, enough even after refilling as soil As a method for producing delayed quicklime for soil conditioner that easily develops compressive strength, powdered or particulate quicklime, and an amount of fatty acid or derivative thereof in the range of 0.1 to 5% by weight with respect to the quicklime After mixing, an amount of water in the range of 1 to 10% by weight with respect to quicklime is added to the mixture, and this moisture-containing mixture is mixed at a temperature of 70 ° C. or higher. An example is shown in which heat generation due to a hydration reaction was observed by adding stearic acid to quicklime, followed by primary mixing, followed by secondary mixing with water, and the temperature of the mixture rose to about 110 ° C. (Special Permissible literature 4). According to this method, the reaction heat between quicklime and water can be used to raise the temperature of the mixture of quicklime and fatty acid, etc., and the apparatus necessary for heating the mixture is omitted, thereby saving thermal energy. Can do. However, with this method, the entire surface of the quicklime particles cannot be covered with fatty acid or the like, and the quicklime surface is partially exposed. Although there are some applications where the surface of quicklime is partially exposed, easily contacted with moisture in the soil, and sufficient hydration reaction is likely to occur in a short time, quicklime is considered a harmful substance in contaminated soil. It is not suitable for the purpose of reacting and detoxifying. In order to disperse harmful substances in the soil and adsorb to the delayed reaction quicklime particles, the contaminated soil and the delayed reaction quicklime are mixed uniformly, and until the harmful substances are absorbed by the delayed reaction quicklime, It is necessary to prevent reaction with water. The precondition is that the entire surface of the quicklime particles must be coated with a reaction retarding agent, and after being thoroughly stirred and mixed with harmful substances such as in contaminated soil, the surface of the quicklime particles is the first time it has been damaged. In addition, after being added to and mixed with soil, etc., when the reaction retardant is decomposed or separated by microorganisms in the soil, the lime particle It is important that the surface slowly begins to react with water.
JP 50-32075 A JP-A-9-169551 JP 2001-240436 A Japanese Patent Laid-Open No. 10-60431

本発明は、生石灰粒子の全表面が飽和脂肪酸によって被覆された安定性に優れた反応遅延性生石灰を、生石灰と水との反応熱を利用して、加熱設備を用いることなく、経済的に製造することができる水和反応熱を利用した反応遅延性生石灰の製造方法を提供することを目的としてなされたものである。   The present invention is an economical production of reaction-retarded quicklime with excellent stability in which the entire surface of quicklime particles is coated with saturated fatty acids, without using heating equipment, utilizing the heat of reaction between quicklime and water. The object of the present invention is to provide a method for producing a reaction-retarded quicklime using heat of hydration reaction.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、生石灰粒子に水を添加して撹拌混合し、生石灰と水との反応熱により生石灰粒子を昇温し、次いで炭素数12〜28の飽和脂肪酸を添加して撹拌混合することにより、生石灰表面に露出部分を残すことなく、生石灰粒子の全表面を飽和脂肪酸によって被覆することが可能となることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)平均粒径0.005〜5mmの生石灰粒子100重量部に対し、水0.5〜5.0重量部を添加して撹拌混合し、次いで炭素数12〜28の飽和脂肪酸0.1〜5.0重量部を添加して撹拌混合し、生石灰粒子の全表面を飽和脂肪酸によって被覆することを特徴とする水和反応熱を利用した反応遅延性生石灰の製造方法、
(2)水を添加して撹拌混合する際に、生石灰粒子の温度が飽和脂肪酸の融点以上となるように、水の添加量及び添加速度を調節する(1)記載の水和反応熱を利用した反応遅延性生石灰の製造方法、
(3)生石灰粒子100重量部に対し、水1.5〜3.5重量部を60秒以内で添加する(1)又は(2)記載の水和反応熱を利用した反応遅延性生石灰の製造方法、
(4)生石灰粒子100重量部に対し、炭素数14〜20の直鎖飽和脂肪酸0.3〜2.5重量部を添加する(1)記載の水和反応熱を利用した反応遅延性生石灰の製造方法、及び、
(5)飽和脂肪酸が、ステアリン酸である(1)又は(4)記載の水和反応熱を利用した反応遅延性生石灰の製造方法、
を提供するものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor added water to the quicklime particles, mixed with stirring, raised the temperature of the quicklime particles by the heat of reaction between the quicklime and water, and then had 12 carbon atoms. Based on this finding, it was found that by adding ~ 28 saturated fatty acids and stirring and mixing, the entire surface of quicklime particles can be covered with saturated fatty acids without leaving an exposed portion on the quicklime surface. The present invention has been completed.
That is, the present invention
(1) To 100 parts by weight of quicklime particles having an average particle diameter of 0.005 to 5 mm, 0.5 to 5.0 parts by weight of water is added and mixed with stirring, and then 0.1 to 0.1 saturated fatty acid having 12 to 28 carbon atoms. -5.0 parts by weight and stirring and mixing, a method for producing reaction-retarded quick lime using heat of hydration, characterized in that the entire surface of quick lime particles is covered with saturated fatty acids,
(2) When adding water and stirring and mixing, adjust the amount and rate of addition of water so that the temperature of the quicklime particles is equal to or higher than the melting point of the saturated fatty acid. A method for producing delayed reaction quicklime,
(3) Addition of 1.5 to 3.5 parts by weight of water within 60 seconds to 100 parts by weight of quicklime particles Production of reaction-retarded quicklime using heat of hydration reaction as described in (1) or (2) Method,
(4) Addition of 0.3 to 2.5 parts by weight of a linear saturated fatty acid having 14 to 20 carbon atoms to 100 parts by weight of quicklime particles of the reaction-retarding quicklime using the heat of hydration reaction according to (1) Manufacturing method, and
(5) The method for producing reaction-retarded quicklime using the heat of hydration reaction according to (1) or (4), wherein the saturated fatty acid is stearic acid,
Is to provide.

本発明の水和反応熱を利用した反応遅延性生石灰の製造方法によれば、生石灰粒子の全表面が飽和脂肪酸により被覆され、反応遅延性が大きい反応遅延性生石灰を、生石灰粒子の加熱装置を用いることなく、経済的に製造することができる。本発明方法により製造された反応遅延性生石灰は、優れた反応遅延性を有するので、有害物質を含む汚染土壌と混合し、有害物質が生石灰粒子に吸着されたのちに分解がはじまるような、長期の反応遅延性が要求される用途に好適に用いることができる。   According to the method for producing reaction-retarded quick lime using the heat of hydration reaction of the present invention, a reaction retarding quick lime having a large reaction retardance is prepared by coating the entire surface of the quick lime particles with saturated fatty acids. It can be manufactured economically without using it. The reaction-retarded quicklime produced by the method of the present invention has an excellent reaction-retardability, so it is mixed with contaminated soil containing harmful substances, and decomposition begins after the harmful substances are adsorbed on the quicklime particles. It can be suitably used for applications that require a reaction delay.

本発明の水和反応熱を利用した反応遅延性生石灰の製造方法においては、平均粒径0.005〜5mmの生石灰粒子100重量部に対し、水0.5〜5.0重量部を添加して撹拌混合し、次いで炭素数12〜28の飽和脂肪酸0.1〜5.0重量部を添加して撹拌混合し、生石灰粒子の全表面を飽和脂肪酸によって被覆する。
本発明に用いる生石灰粒子の平均粒径は、0.005〜5mmであり、より好ましくは0.05〜4mmであり、さらに好ましくは0.5〜3mmである。生石灰粒子の平均粒径が0.005mm未満であると、微細な粒子による発塵が生じて取り扱い作業性が低下するとともに、単位重量当たりの表面積が増加して、生石灰粒子の全表面を被覆するために必要な飽和脂肪酸の量が増大するおそれがある。生石灰粒子の平均粒径が5mmを超えると、単位重量当たりの表面積が減少し、土質安定、土壌改良、有害物質除去などの処理において、十分な反応速度が得られないおそれがある。生石灰は、炭酸カルシウムを主成分とする石灰石の焼成により製造され、鉄鋼用、化学工業用、建設用、公害防止用、肥料用、農薬用などの各種の用途に種々の平均粒径及び粒度分布を有する製品が市販されているので、市販品の中から適度な平均粒径を有する製品を適宜選択することができる。
In the method for producing delayed reaction quicklime using the heat of hydration reaction of the present invention, 0.5 to 5.0 parts by weight of water is added to 100 parts by weight of quicklime particles having an average particle diameter of 0.005 to 5 mm. Then, 0.1 to 5.0 parts by weight of a saturated fatty acid having 12 to 28 carbon atoms is added and mixed by stirring to coat the entire surface of the quicklime particles with the saturated fatty acid.
The average particle diameter of the quicklime particle | grains used for this invention is 0.005-5 mm, More preferably, it is 0.05-5 mm, More preferably, it is 0.5-3 mm. When the average particle size of the quicklime particles is less than 0.005 mm, dusting due to fine particles occurs, handling workability is reduced, and the surface area per unit weight is increased to cover the entire surface of the quicklime particles. Therefore, there is a possibility that the amount of saturated fatty acid necessary for the increase. When the average particle size of the quicklime particles exceeds 5 mm, the surface area per unit weight decreases, and there is a possibility that a sufficient reaction rate may not be obtained in treatments such as soil stabilization, soil improvement, and removal of harmful substances. Quicklime is manufactured by calcining limestone with calcium carbonate as the main component, and has various average particle sizes and particle size distributions for various uses such as steel, chemical industry, construction, pollution prevention, fertilizer, and agricultural chemicals. Since the product which has this is marketed, the product which has a moderate average particle diameter can be suitably selected from a commercial item.

本発明方法において、生石灰と水とを撹拌混合する装置、及び、生石灰と水とを撹拌混合し、次いで飽和脂肪酸を添加して撹拌混合する装置には特に制限はなく、例えば、水平円筒型混合機、撹拌羽根付きV型混合機、二重円錐型混合機、揺動回転型混合機、短軸リボン型混合機、複軸パドル型混合機、回転鋤型混合機、二軸遊星撹拌型混合機、円錐スクリュー型混合機、高速撹拌型混合機、回転円盤型混合機、ローラー付き回転容器型混合機、撹拌付き回転容器型混合機、高速楕円ローター型混合機、気流撹拌型混合機、無撹拌型混合機などを挙げることができる。これらの中で、短い撹拌混合時間で高い混合分散到達度が得られる回転鋤型混合機、高速撹拌型混合機、撹拌付き回転容器型混合機などを好適に用いることができる。
本発明方法においては、生石灰粒子100重量部に対し、水0.5〜5.0重量部、より好ましくは1.5〜3.5重量部を添加して撹拌混合する。生石灰に対して水を添加して撹拌混合すると、次式のごとく生石灰と水が反応して消石灰が生成し、1モル当たり15.2kcalの反応熱が発生する。
CaO + H2O → Ca(OH)2 + 15.2kcal
この反応熱によって生石灰粒子の温度が上昇し、次に添加される飽和脂肪酸の融点以上に達する。生石灰粒子100重量部に対する水の添加量が0.5重量部未満であると、反応熱の発生量が不足して、生石灰粒子の温度が十分に上昇しないおそれがある。生石灰粒子100重量部に対する水の添加量が5.0重量部を超えると、必要以上の反応熱が発生するとともに、生石灰が必要以上に消石灰となり、得られる反応遅延性生石灰の有効成分量が低下するおそれがある。
In the method of the present invention, there is no particular limitation on the apparatus for stirring and mixing quick lime and water, and the apparatus for stirring and mixing quick lime and water, and then adding and mixing with saturated fatty acid. For example, horizontal cylindrical mixing , V-type mixer with stirring blades, double cone type mixer, oscillating rotary type mixer, short axis ribbon type mixer, double axis paddle type mixer, rotary saddle type mixer, biaxial planetary agitation type mixing Machine, conical screw type mixer, high speed stirring type mixer, rotary disk type mixer, rotary container type mixer with roller, rotary container type mixer with stirring, high speed elliptical rotor type mixer, air flow stirring type mixer, none Examples thereof include a stirring type mixer. Among these, a rotary vertical mixer, a high-speed stirring mixer, a rotating container mixer with stirring, and the like that can achieve high mixing dispersion at a short stirring and mixing time can be suitably used.
In the method of the present invention, 0.5 to 5.0 parts by weight, more preferably 1.5 to 3.5 parts by weight of water is added to 100 parts by weight of quicklime particles and mixed with stirring. When water is added to quicklime and stirred, the quicklime and water react to form slaked lime as shown in the following formula, and 15.2 kcal heat of reaction is generated per mole.
CaO + H 2 O → Ca (OH) 2 + 15.2 kcal
This heat of reaction raises the temperature of the quicklime particles and reaches the melting point of the saturated fatty acid to be added next. If the amount of water added relative to 100 parts by weight of quicklime particles is less than 0.5 parts by weight, the amount of reaction heat generated may be insufficient, and the temperature of the quicklime particles may not be sufficiently increased. If the amount of water added to 100 parts by weight of quicklime particles exceeds 5.0 parts by weight, more than necessary reaction heat is generated, and quicklime is converted to slaked lime more than necessary, resulting in a decrease in the amount of active ingredient in the resulting reaction-retarded quicklime. There is a risk.

本発明方法においては、生石灰粒子に水を添加して撹拌混合する際に、生石灰粒子の温度が次に添加する飽和脂肪酸の融点以上となるように、水の添加量を調節することが好ましい。撹拌混合装置を用いて生石灰粒子と水を撹拌混合するとき、生石灰粒子が到達する温度は、原材料である生石灰粒子と水の温度、外気の温度、撹拌混合機の缶体の温度などによって影響される。原材料、外気、撹拌混合機の缶体の温度が低い場合には、添加する水の量を増加して発生する反応熱の量を増やし、生石灰粒子の温度が飽和脂肪酸の融点以上となるように調節することが好ましい。また、同日の製造であっても、最初のバッチの製造においては、缶体の温度は外気の温度にほぼ等しいが、次のバッチの製造においては、缶体は最初のバッチの製造において温められているので、添加する水の量を減少することができる。必要以上に水を添加すると、生石灰が必要以上に消石灰となり、得られる反応遅延性生石灰の有効成分量が低下するので、環境条件に応じて水の添加量を調節することが好ましい。
本発明方法においては、生石灰粒子に水を添加して撹拌混合する際に、生石灰粒子の温度が次に添加する飽和脂肪酸の融点以上となるように、水の添加速度を調節することが好ましい。水の添加速度が遅くなり、水の添加に要する時間が長くなると、生石灰粒子と水の反応による反応熱の発生が完了する前に、生石灰粒子から放熱によって失われる熱量が多くなり、添加すべき水の量が増加する。生石灰粒子に水を添加するために要する時間は、60秒以内であることが好ましく、30秒以内であることがより好ましく、10秒以内であることがさらに好ましい。
In the method of the present invention, when adding water to the quicklime particles and stirring and mixing, it is preferable to adjust the amount of water added so that the temperature of the quicklime particles becomes equal to or higher than the melting point of the saturated fatty acid to be added next. When quicklime particles and water are stirred and mixed using a stirring and mixing device, the temperature reached by quicklime particles is affected by the temperature of raw lime particles and water, the temperature of the outside air, the temperature of the can body of the stirred mixer, etc. The When the temperature of raw materials, outside air, and the can of the stirring mixer is low, increase the amount of reaction heat generated by increasing the amount of water to be added, so that the temperature of the quicklime particles is above the melting point of the saturated fatty acid. It is preferable to adjust. Also, even on the same day, in the first batch production, the temperature of the can body is approximately equal to the temperature of the outside air, but in the next batch production, the can body is warmed in the production of the first batch. Therefore, the amount of water to be added can be reduced. When water is added more than necessary, quick lime is converted to slaked lime more than necessary, and the amount of the active ingredient in the obtained reaction-retarded quick lime is reduced. Therefore, it is preferable to adjust the amount of water added according to environmental conditions.
In the method of the present invention, when adding water to the quicklime particles and stirring and mixing, it is preferable to adjust the water addition rate so that the temperature of the quicklime particles becomes equal to or higher than the melting point of the saturated fatty acid to be added next. If the rate of water addition is slow and the time required for water addition is increased, the amount of heat lost by heat dissipation from the quicklime particles is increased before the generation of heat of reaction due to the reaction between the quicklime particles and water is completed. The amount of water increases. The time required for adding water to quicklime particles is preferably within 60 seconds, more preferably within 30 seconds, and even more preferably within 10 seconds.

本発明方法においては、生石灰粒子100重量部に対し、水0.5〜5.0重量部を添加して撹拌混合し、次いで炭素数12〜28の飽和脂肪酸0.1〜5.0重量部を添加して撹拌混合し、生石灰粒子の全表面を飽和脂肪酸によって被覆する。本発明方法においては、生石灰粒子100重量部に対し、炭素数14〜20の直鎖飽和脂肪酸0.3〜2.5重量部を添加することがより好ましい。
本発明方法に用いる炭素数12〜28の飽和脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセラチン酸、セロチン酸、モンタン酸などの直鎖飽和脂肪酸、12−メチルトリデカン酸、14−メチルペンタデカン酸、16−メチルヘプタデカン酸、17−メチルオクタデカン酸、2−メチルイコサン酸、2−メチルドコサン酸、2−メチルトリコサン酸、3−メチルトリコサン酸、22−メチルトリコサン酸、20−エチルドコサン酸、2−メチルテトラコサン酸、3−メチルテトラコサン酸、23−メチルテトラコサン酸、24−メチルヘプタコサン酸、2−エチルテトラコサン酸、2−ブチルドコサン酸、2−ヘキシルイコサン酸、2−メチルヘキサコサン酸などの分岐飽和脂肪酸などを挙げることができる。これらの飽和脂肪酸は、1種を単独で用いることができ、2種以上の飽和脂肪酸の混合物を用いることもでき、少量の不飽和脂肪酸を含む混合物を用いることもできる。これらの中で、直鎖飽和脂肪酸は、天然物を原料として容易に製造することができ、融点が比較的高いので好適に用いることができ、ステアリン酸を特に好適に用いることができる。
In the method of the present invention, 0.5 to 5.0 parts by weight of water is added to 100 parts by weight of quicklime particles, and the mixture is stirred and mixed, and then 0.1 to 5.0 parts by weight of a saturated fatty acid having 12 to 28 carbon atoms. Is added and stirred and mixed to coat the entire surface of the quicklime particles with saturated fatty acids. In the method of the present invention, it is more preferable to add 0.3 to 2.5 parts by weight of a linear saturated fatty acid having 14 to 20 carbon atoms with respect to 100 parts by weight of quicklime particles.
Examples of the saturated fatty acid having 12 to 28 carbon atoms used in the method of the present invention include linear saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceratic acid, serotic acid, and montanic acid. 12-methyltridecanoic acid, 14-methylpentadecanoic acid, 16-methylheptadecanoic acid, 17-methyloctadecanoic acid, 2-methylicosanoic acid, 2-methyldocosanoic acid, 2-methyltricosanoic acid, 3-methyltricosanoic acid 22-methyltricosanoic acid, 20-ethyldocosanoic acid, 2-methyltetracosanoic acid, 3-methyltetracosanoic acid, 23-methyltetracosanoic acid, 24-methylheptacosanoic acid, 2-ethyltetracosanoic acid, 2- Butyl docosanoic acid, 2-hexylicosanoic acid, 2-methylhexacosanoic acid, etc. Or the like can be mentioned 岐飽 sum fatty acid. These saturated fatty acids can be used individually by 1 type, can also use the mixture of 2 or more types of saturated fatty acid, and can also use the mixture containing a small amount of unsaturated fatty acid. Among these, straight-chain saturated fatty acids can be easily used because they can be easily produced from natural products and have a relatively high melting point, and stearic acid can be particularly preferably used.

本発明方法において、添加する飽和脂肪酸の炭素数が12未満であると、飽和脂肪酸の融点が低く、生石灰粒子の全表面を安定して被覆することが困難となるおそれがある。添加する飽和脂肪酸の炭素数が28を超えると、飽和脂肪酸の融点が高く、生石灰粒子の温度を飽和脂肪酸の融点以上に上昇させるために添加する水の量が多くなりすぎるおそれがある。添加する飽和脂肪酸の量が生石灰粒子100重量部に対し0.1重量部未満であると、飽和脂肪酸の量が不足して生石灰粒子の全表面を被覆することが困難となり、生石灰粒子の表面に露出した部分が残存するおそれがある。添加する飽和脂肪酸の量は、生石灰粒子100重量部に対し5.0重量部以下で十分に生石灰粒子の全表面を被覆することができ、添加する飽和脂肪酸の量が生石灰粒子100重量部に対し5.0重量部を超えると、生石灰粒子を被覆する飽和脂肪酸の膜が厚くなりすぎて、反応遅延性が著しく高くなったり、あるいは、生石灰粒子の被覆に寄与しない飽和脂肪酸が反応遅延性生石灰の中に混在したりするおそれがある。
本発明方法において、生石灰粒子に水を添加して撹拌混合し、次いで飽和脂肪酸を添加して撹拌混合すると、第一の段階では生石灰粒子と水の化学反応により反応熱が発生して生石灰粒子の温度が飽和脂肪酸の融点以上に上昇し、第二の段階では飽和脂肪酸が溶融して液状となり生石灰粒子の全表面を均一に被覆し、温度が低下してタイター以下になると全表面を被覆したままの状態で凝固する。このために、生石灰粒子の全表面が凝固した飽和脂肪酸で被覆され、優れた反応遅延性を有する生石灰粒子となる。これに対して、生石灰粒子に飽和脂肪酸を添加して撹拌混合したのちに水を添加して撹拌混合すると、生石灰粒子と水の化学反応と、飽和脂肪酸の溶融と溶融した飽和脂肪酸による生石灰粒子の被覆という物理的変化が並行して起こるために、生石灰粒子の全表面を均一に被覆することが困難となり、生石灰粒子の表面に露出した部分が残ると考えられる。
In the method of the present invention, if the saturated fatty acid to be added has less than 12 carbon atoms, the melting point of the saturated fatty acid is low, and it may be difficult to stably coat the entire surface of the quicklime particles. When the number of carbon atoms of the saturated fatty acid to be added exceeds 28, the melting point of the saturated fatty acid is high, and the amount of water added to increase the temperature of the quick lime particles above the melting point of the saturated fatty acid may be excessive. When the amount of the saturated fatty acid to be added is less than 0.1 part by weight with respect to 100 parts by weight of the quick lime particles, the amount of the saturated fatty acid is insufficient and it becomes difficult to cover the entire surface of the quick lime particles. The exposed part may remain. The amount of the saturated fatty acid to be added is not more than 5.0 parts by weight with respect to 100 parts by weight of the quicklime particles, so that the entire surface of the quicklime particles can be sufficiently covered, and the amount of the saturated fatty acids to be added is 100 parts by weight with respect to 100 parts by weight of the quicklime particles. When the amount exceeds 5.0 parts by weight, the saturated fatty acid film covering the quicklime particles becomes too thick, and the reaction retarding property becomes remarkably high, or the saturated fatty acid that does not contribute to the coating of the quicklime particles is added to the reaction retarding quicklime. There is a risk of mixing.
In the method of the present invention, when water is added to the quicklime particles and stirred and mixed, and then saturated fatty acid is added and stirred and mixed, in the first stage, reaction heat is generated by a chemical reaction between the quicklime particles and water, and the quicklime particles are mixed. The temperature rises above the melting point of the saturated fatty acid, and in the second stage, the saturated fatty acid melts and becomes liquid to uniformly cover the entire surface of the quicklime particles, and when the temperature drops below the titer, the entire surface remains covered. It solidifies in the state of. For this reason, the whole surface of quicklime particles is covered with solidified saturated fatty acid, and quicklime particles having excellent reaction delay are obtained. On the other hand, after adding saturated fatty acid to quicklime particles and stirring and mixing, adding water and stirring and mixing, the chemical reaction of quicklime particles and water, melting of saturated fatty acids, Since the physical change of coating occurs in parallel, it is difficult to uniformly coat the entire surface of the quicklime particles, and it is considered that a portion exposed on the surface of the quicklime particles remains.

本発明方法に用いる飽和脂肪酸は高純度であることを必要とせず、不飽和脂肪酸を含有する飽和脂肪酸や、炭素数の異なる飽和脂肪酸の混合物を用いることができる。例えば、牛脂を分解して得られた脂肪酸を冷却プレスして液体酸を除いた生成物は、主成分がステアリン酸であり、少量のオレイン酸などの不飽和脂肪酸と、相当量のミリスチン酸、パルミチン酸などの炭素数の異なる飽和脂肪酸を含有するが、このような混合物を飽和脂肪酸として用いることができる。
本発明方法において、生石灰粒子の全表面が飽和脂肪酸によって被覆されているか否かは、生石灰粒子を水に浸漬したときの状態変化を観察することにより判定することができる。例えば、反応遅延性生石灰を25℃の精製水に浸漬すると、生石灰粒子の全表面が飽和脂肪酸により被覆されている場合は、30分経過後も状態の変化は全く認められないのに対して、生石灰粒子の表面に露出している部分があると、1〜5分で粒子の形状が崩れはじめ、30分経過後にはほとんど原状をとどめない状態となる。また、反応遅延性生石灰を25℃の精製水に浸漬すると、生石灰粒子の全表面が飽和脂肪酸により被覆されている場合は、30分経過後の水のpHの上昇は0.75程度であるのに対して、生石灰粒子の表面に露出している部分があると、1〜5分で水のpHは急激に上昇する。
The saturated fatty acid used in the method of the present invention does not need to be highly pure, and a saturated fatty acid containing an unsaturated fatty acid or a mixture of saturated fatty acids having different carbon numbers can be used. For example, the product obtained by cooling and pressing the fatty acid obtained by decomposing beef tallow and removing the liquid acid is mainly stearic acid, a small amount of unsaturated fatty acid such as oleic acid, and a considerable amount of myristic acid, Although it contains saturated fatty acids having different carbon numbers such as palmitic acid, such a mixture can be used as the saturated fatty acid.
In the method of the present invention, whether or not the entire surface of the quicklime particles is covered with saturated fatty acid can be determined by observing a state change when the quicklime particles are immersed in water. For example, when reaction-retarded quicklime is immersed in purified water at 25 ° C., when the entire surface of the quicklime particles is covered with saturated fatty acids, no change in state is observed even after 30 minutes, If there is a portion exposed on the surface of the quicklime particles, the shape of the particles starts to collapse in 1 to 5 minutes, and after 30 minutes, the original shape is hardly retained. Moreover, when the reaction-retarded quicklime is immersed in purified water at 25 ° C., when the entire surface of the quicklime particles is covered with saturated fatty acids, the pH increase of the water after 30 minutes is about 0.75. On the other hand, if there is a portion exposed on the surface of the quicklime particles, the pH of water rapidly increases in 1 to 5 minutes.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例においては、図1に示す横型円筒混合ドラム1、水平一軸駆動部2、材料投入口3、エア抜き口4、排出ゲート5、鋤型ショベル羽根6による浮遊拡散混合機構及びチョッパー羽根7による高速剪断分散機構を備えた高速混合機[大平洋機工(株)、プロシェアミキサ(商品名)WB−75型]を用いて撹拌混合を行った。
参考例1
高速混合機に粒径0.5〜2.0mmの生石灰[JIS R 9001、特号]35kgを仕込み、主軸167min-1、チョッパー3,000min-1で1分間撹拌混合した。このとき、混合ドラムの内温は17℃であった。次いで、撹拌混合を続けながら水1.050kgを8秒間で添加した。水の添加を終了したとき、混合ドラムの内温は86℃であり、1分経過後81℃、2分経過後69℃、3分経過後64℃、4分経過後61℃となった。
実施例1
高速混合機に粒径0.5〜2.0mmの生石灰[JIS R 9001、特号]35kgを仕込み、主軸167min-1、チョッパー3,000min-1で1分間撹拌混合した。このとき、混合ドラムの内温は24℃であった。次いで、撹拌を続けながら水1.050kgを8秒間で添加し、引き続き1分間撹拌混合したところ、混合ドラムの内温は最高温度108℃を経由して95℃となった。
撹拌混合を続けながら、工業用ステアリン酸[ステアリン酸66重量%、パルミチン酸32重量%、ミリスチン酸1重量%、アラキン酸1重量%]0.350kgを添加し、撹拌混合を継続し、ステアリン酸添加終了から1分経過するごとに、混合ドラムの内温を記録するとともに、生石灰粒子をサンプリングした。
混合ドラムの内温は、1分後80℃、2分後76℃、3分後73℃、4分後70℃、5分後69℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。5点のサンプルは、すべて30分経過後も状態の変化は全く認められず、生石灰粒子の全表面がステアリン酸によって被覆され、優れた反応遅延性を有することが確認された。
また、温度20℃の恒温室において、ステアリン酸添加終了から3分後にサンプリングした生石灰粒子10gをビーカーに入れた精製水200mLに投入し、5分ごとにpHと水温を測定した。生石灰粒子を投入する前の精製水のpHは7.00であり、水温は19.7℃であった。生石灰粒子を投入して撹拌し、30分経過したとき、水のpHは7.75まで上昇したが、水温はこの間ずっと19.7℃を保っていた。pHは0.75上昇するが、水温が上昇しないことから、生石灰粒子と水の反応は極めて僅かしか起こっていないことが分かる。測定したpH及び水温を、第1表に示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the embodiment and the comparative example, the floating diffusion mixing mechanism using the horizontal cylindrical mixing drum 1, the horizontal uniaxial driving unit 2, the material inlet 3, the air outlet 4, the discharge gate 5, and the vertical shovel blade 6 shown in FIG. 1. The mixture was stirred and mixed using a high-speed mixer [Daihei Kiko Co., Ltd., Proshear Mixer (trade name) WB-75 type] equipped with a high-speed shearing dispersion mechanism using chopper blades 7.
Reference example 1
Quicklime having a particle size 0.5~2.0mm to a high-speed mixer [JIS R 9001, Tokugo] g of 35 kg, spindle 167min -1, was mixed with stirring for 1 minute chopper 3,000min -1. At this time, the internal temperature of the mixing drum was 17 ° C. Next, 1.050 kg of water was added over 8 seconds while continuing to mix with stirring. When the addition of water was completed, the internal temperature of the mixing drum was 86 ° C., 81 ° C. after 1 minute passed, 69 ° C. after 2 minutes passed, 64 ° C. after 3 minutes passed, and 61 ° C. after 4 minutes passed.
Example 1
Quicklime having a particle size 0.5~2.0mm to a high-speed mixer [JIS R 9001, Tokugo] g of 35 kg, spindle 167min -1, was mixed with stirring for 1 minute chopper 3,000min -1. At this time, the internal temperature of the mixing drum was 24 ° C. Next, 1.050 kg of water was added over 8 seconds while continuing the stirring, followed by stirring and mixing for 1 minute. As a result, the internal temperature of the mixing drum reached 95 ° C. via the maximum temperature of 108 ° C.
While continuing stirring and mixing, 0.350 kg of industrial stearic acid [stearic acid 66% by weight, palmitic acid 32% by weight, myristic acid 1% by weight, arachidic acid 1% by weight] was added, and stirring and mixing was continued. Every time 1 minute elapsed from the end of the addition, the internal temperature of the mixing drum was recorded, and quicklime particles were sampled.
The internal temperature of the mixing drum was 80 ° C. after 1 minute, 76 ° C. after 2 minutes, 73 ° C. after 3 minutes, 70 ° C. after 4 minutes, and 69 ° C. after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. In all of the five samples, no change in state was observed even after 30 minutes, and it was confirmed that the entire surface of the quicklime particles was coated with stearic acid and had excellent reaction delay.
Further, in a thermostatic chamber at a temperature of 20 ° C., 10 g of quicklime particles sampled 3 minutes after the end of addition of stearic acid was added to 200 mL of purified water in a beaker, and pH and water temperature were measured every 5 minutes. The pH of purified water before adding quicklime particles was 7.00, and the water temperature was 19.7 ° C. When quick lime particles were added and stirred and 30 minutes passed, the pH of the water rose to 7.75, but the water temperature remained at 19.7 ° C. throughout this time. Although the pH rises by 0.75, the water temperature does not rise, so it can be seen that there is very little reaction between the quicklime particles and water. The measured pH and water temperature are shown in Table 1.

Figure 2008174403
Figure 2008174403

実施例2
生石灰35kgに添加する水の量を0.700kgとし、水の添加に要する時間を5.5秒間とした以外は、実施例1と同じ操作を行った。
生石灰を混合ドラムの中で1分間撹拌混合したとき、混合ドラムの内温は26℃であった。次いで、撹拌混合を続けながら水0.700kgを5.5秒間で添加し、引き続き1分間撹拌混合したところ、混合ドラムの内温は最高温度86℃を経由して80℃となった。
撹拌混合を続けながら、実施例1と同じ工業用ステアリン酸0.350kgを添加し、撹拌混合を継続し、ステアリン酸添加終了から1分経過するごとに、混合ドラムの内温を記録するとともに、生石灰粒子をサンプリングした。
混合ドラムの内温は、1分後71℃、2分後69℃、3分後67℃、4分後66℃、5分後66℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。5点のサンプルは、すべて30分経過後も状態の変化は全く認められず、生石灰粒子の全表面がステアリン酸によって被覆され、優れた反応遅延性を有することが確認された。
実施例3
生石灰35kgに水0.700kgを5.5秒間で添加し、水の添加を終了したのち、30秒後にステアリン酸0.420kgを添加した以外は、実施例1と同じ操作を行った。
生石灰を混合ドラムの中で1分間撹拌混合したとき、混合ドラムの内温は31℃であった。次いで、撹拌混合を続けながら水0.700kgを5.5秒間で添加し、引き続き30秒間撹拌混合したところ、混合ドラムの内温は最高温度86℃を経由して91℃となった。
撹拌混合を続けながら、実施例1と同じ工業用ステアリン酸0.420kgを添加し、撹拌混合を継続し、ステアリン酸添加終了から1分経過するごとに、混合ドラムの内温を記録するとともに、生石灰粒子をサンプリングした。
混合ドラムの内温は、1分後73℃、2分後70℃、3分後67℃、4分後66℃、5分後65℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。5点のサンプルは、すべて30分経過後も状態の変化は全く認められず、生石灰粒子の全表面がステアリン酸によって被覆され、優れた反応遅延性を有することが確認された。
実施例4
高速混合機への生石灰の仕込み量を42kgとし、生石灰に水0.842kgを6秒間で添加し、水の添加を終了したのち、30秒後にステアリン酸0.462kgを添加した以外は、実施例1と同じ操作を行った。
生石灰を混合ドラムの中で1分間撹拌混合したとき、混合ドラムの内温は27℃であった。次いで、撹拌混合を続けながら水0.842kgを6秒間で添加し、引き続き30秒間撹拌混合したところ、混合ドラムの内温は最高温度98℃を経由して96℃となった。
撹拌混合を続けながら、実施例1と同じ工業用ステアリン酸0.462kgを添加し、撹拌混合を継続し、ステアリン酸添加終了から1分経過するごとに、混合ドラムの内温を記録するとともに、生石灰粒子をサンプリングした。
混合ドラムの内温は、1分後81℃、2分後77℃、3分後75℃、4分後74℃、5分後73℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。5点のサンプルは、すべて30分経過後も状態の変化は全く認められず、生石灰粒子の全表面がステアリン酸によって被覆され、優れた反応遅延性を有することが確認された。
Example 2
The same operation as in Example 1 was performed except that the amount of water added to 35 kg of quicklime was 0.700 kg and the time required for the addition of water was 5.5 seconds.
When quicklime was stirred and mixed in the mixing drum for 1 minute, the internal temperature of the mixing drum was 26 ° C. Next, 0.7700 kg of water was added over 5.5 seconds while continuing stirring and mixing, and then stirring and mixing for 1 minute. The internal temperature of the mixing drum reached 80 ° C. via the maximum temperature of 86 ° C.
While continuing the stirring and mixing, 0.35 kg of the same industrial stearic acid as in Example 1 was added, and stirring and mixing were continued. Every 1 minute after the completion of the addition of stearic acid, the internal temperature of the mixing drum was recorded, Quicklime particles were sampled.
The internal temperature of the mixing drum was 71 ° C. after 1 minute, 69 ° C. after 2 minutes, 67 ° C. after 3 minutes, 66 ° C. after 4 minutes, and 66 ° C. after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. In all of the five samples, no change in state was observed even after 30 minutes, and it was confirmed that the entire surface of the quicklime particles was coated with stearic acid and had excellent reaction delay.
Example 3
The same operation as in Example 1 was performed, except that 0.7700 kg of water was added to 35 kg of quicklime for 5.5 seconds, and after the addition of water was completed, 0.420 kg of stearic acid was added 30 seconds later.
When quicklime was stirred and mixed in the mixing drum for 1 minute, the internal temperature of the mixing drum was 31 ° C. Next, 0.7700 kg of water was added over 5.5 seconds while stirring and mixing was continued, followed by stirring and mixing for 30 seconds. As a result, the internal temperature of the mixing drum reached 91 ° C. via the maximum temperature of 86 ° C.
While continuing the stirring and mixing, 0.420 kg of the same industrial stearic acid as in Example 1 was added, and stirring and mixing were continued. Every 1 minute after the completion of the addition of stearic acid, the internal temperature of the mixing drum was recorded, Quicklime particles were sampled.
The internal temperature of the mixing drum was 73 ° C. after 1 minute, 70 ° C. after 2 minutes, 67 ° C. after 3 minutes, 66 ° C. after 4 minutes, and 65 ° C. after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. In all of the five samples, no change in state was observed even after 30 minutes, and it was confirmed that the entire surface of the quicklime particles was coated with stearic acid and had excellent reaction delay.
Example 4
Except that the amount of quick lime charged to the high speed mixer was 42 kg, 0.842 kg of water was added to the quick lime in 6 seconds, and after the addition of water, stearic acid 0.462 kg was added 30 seconds later. The same operation as 1 was performed.
When quicklime was stirred and mixed in the mixing drum for 1 minute, the internal temperature of the mixing drum was 27 ° C. Next, 0.842 kg of water was added over 6 seconds while stirring and mixing was continued, and stirring and mixing was continued for 30 seconds. As a result, the internal temperature of the mixing drum reached 96 ° C. via the maximum temperature of 98 ° C.
While continuing the stirring and mixing, 0.462 kg of the same industrial stearic acid as in Example 1 was added, stirring and mixing were continued, and each minute after the addition of stearic acid, the internal temperature of the mixing drum was recorded, Quicklime particles were sampled.
The internal temperature of the mixing drum was 81 ° C. after 1 minute, 77 ° C. after 2 minutes, 75 ° C. after 3 minutes, 74 ° C. after 4 minutes, and 73 ° C. after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. In all of the five samples, no change in state was observed even after 30 minutes, and it was confirmed that the entire surface of the quicklime particles was coated with stearic acid and had excellent reaction delay.

比較例1
高速混合機に実施例1と同じ生石灰35kgと工業用ステアリン酸0.350kgを同時に仕込み、主軸167min-1、チョッパー3,000min-1で1分間撹拌混合した。このとき、混合ドラムの内温は24℃であった。次いで、撹拌混合を続けながら水1.050kgを8秒間で添加し、水添加終了から1分経過するごとに、混合ドラムの内温を記録するとともに、生石灰粒子をサンプリングした。
混合ドラムの内温は、1分後99℃、2分後85℃、3分後80℃、4分後77℃、5分後75℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。5点のサンプルは、すべて1分経過後には粒子の形状が崩れはじめ、10分経過後にはほとんど原状をとどめず、生石灰粒子の表面が少なくとも部分的に露出していることが確認された。
比較例2
生石灰35kgと工業用ステアリン酸0.350kgの混合物に添加する水の量を0.700kgとし、水の添加に要する時間を5秒間とした以外は、比較例1と同じ操作を行った。
混合ドラムの内温は、水添加終了1分後78℃、2分後69℃、3分後65℃、4分後63℃、5分後62℃であった。サンプリングした5点のステアリン酸によって被覆された生石灰粒子各10gを、それぞれ25℃の精製水200mLに投入し、1分、5分、10分及び30分経過後の状態を観察した。水添加終了1分後のサンプルと2分後のサンプルは、1分経過後には粒子の形状が崩れはじめ、10分経過後にはほとんど原状をとどめなかった。また、水添加終了3分後、4分後、5分後のサンプルは、5分経過後には粒子の形状が崩れはじめ、30分経過後にはほとんど原状をとどめなかった。この結果から、生石灰とステアリン酸の混合物に水を添加して撹拌混合した場合、得られる反応遅延性生石灰は、生石灰粒子の表面が少なくとも部分的に露出していることが確認された。
実施例1〜4の原材料の混合条件を第2表に、混合ドラムの内温の経時変化と得られた生石灰粒子の反応遅延性を第3表に、比較例1〜2の原材料の混合条件を第4表に、混合ドラムの内温の経時変化と得られた生石灰粒子の反応遅延性を第5表に示す。
Comparative Example 1
High speed mixer to charged the same quicklime 35kg and industrial 0.350kg stearate as in Example 1 at the same time, the main shaft 167Min -1, was mixed with stirring for 1 minute chopper 3,000min -1. At this time, the internal temperature of the mixing drum was 24 ° C. Next, 1.050 kg of water was added over 8 seconds while continuing the stirring and mixing, and the internal temperature of the mixing drum was recorded and the quick lime particles were sampled every time 1 minute had passed since the end of the water addition.
The internal temperature of the mixing drum was 99 ° C after 1 minute, 85 ° C after 2 minutes, 80 ° C after 3 minutes, 77 ° C after 4 minutes, and 75 ° C after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. It was confirmed that the samples of all five samples started to lose their shape after 1 minute had passed, and the surface of the quicklime particles was at least partially exposed after 10 minutes.
Comparative Example 2
The same operation as Comparative Example 1 was performed except that the amount of water added to a mixture of 35 kg of quicklime and 0.350 kg of industrial stearic acid was 0.700 kg and the time required for the addition of water was 5 seconds.
The internal temperature of the mixing drum was 78 ° C. 1 minute after completion of water addition, 69 ° C. after 2 minutes, 65 ° C. after 3 minutes, 63 ° C. after 4 minutes, and 62 ° C. after 5 minutes. 10 g of each lime particle coated with 5 points of sampled stearic acid was added to 200 mL of purified water at 25 ° C., and the state after 1 minute, 5 minutes, 10 minutes, and 30 minutes was observed. The sample 1 minute after the end of water addition and the sample after 2 minutes began to lose the shape of the particles after 1 minute, and remained almost unchanged after 10 minutes. In addition, the sample after 3 minutes, 4 minutes, and 5 minutes after the end of the water addition began to lose its shape after 5 minutes, and remained almost intact after 30 minutes. From this result, when water was added to the mixture of quicklime and stearic acid and stirred and mixed, it was confirmed that the obtained reaction-retarded quicklime has at least partially exposed surfaces of the quicklime particles.
Table 2 shows the mixing conditions of the raw materials of Examples 1 to 4, Table 3 shows the temporal change in the internal temperature of the mixing drum and the reaction delay of the obtained quicklime particles, and Table 3 shows the mixing conditions of the raw materials of Comparative Examples 1 and 2 Table 4 shows the time course of the internal temperature of the mixing drum and the reaction delay of the obtained quicklime particles.

Figure 2008174403
Figure 2008174403

Figure 2008174403
Figure 2008174403

Figure 2008174403
Figure 2008174403

Figure 2008174403
Figure 2008174403

第2〜5表に見られるように、実施例1〜4と比較例1〜2においては、高速混合機の混合ドラムの内温は、ほぼ同様な経時的変化をたどっている。しかし、実施例1〜4で得られた生石灰粒子は優れた反応遅延性を有するのに対して、比較例1〜2で得られた生石灰粒子は反応遅延性が不良である。この結果から、生石灰粒子と水とステアリン酸を混合するに際して、まず生石灰粒子と水を混合して反応熱によって昇温させ、次いでステアリン酸を添加することにより、生石灰粒子の全表面がステアリン酸によって被覆され、優れた反応遅延性が得られるのに対して、生石灰粒子とステアリン酸を混合したのち、水を添加して反応熱によって昇温させると、生石灰粒子の表面には少なくとも部分的に露出した部分が残り、十分な反応遅延性が得られないことが分かる。   As can be seen from Tables 2 to 5, in Examples 1 to 4 and Comparative Examples 1 to 2, the internal temperature of the mixing drum of the high-speed mixer follows substantially the same change with time. However, the quicklime particles obtained in Examples 1 to 4 have excellent reaction delay, whereas the quicklime particles obtained in Comparative Examples 1 to 2 have poor reaction delay. From this result, when mixing quicklime particles, water, and stearic acid, first, quicklime particles and water are mixed and heated by reaction heat, and then stearic acid is added so that the entire surface of the quicklime particles is stearic. It is coated and provides excellent reaction delay, but after mixing quicklime particles and stearic acid, adding water and raising the temperature by reaction heat will at least partially expose the surface of the quicklime particles. It can be seen that a sufficient reaction delay cannot be obtained.

本発明の水和反応熱を利用した反応遅延性生石灰の製造方法によれば、生石灰粒子の全表面が飽和脂肪酸により被覆され、反応遅延性が大きい反応遅延性生石灰を、生石灰粒子の加熱装置を用いることなく、経済的に製造することができる。本発明方法により製造された反応遅延性生石灰は、優れた反応遅延性を有するので、有害物質を含む汚染土壌と混合し、有害物質が生石灰粒子に吸着されたのちに分解がはじまるような、長期の反応遅延性が要求される用途に好適に用いることができる。   According to the method for producing reaction-retarded quick lime using the heat of hydration reaction of the present invention, a reaction retarding quick lime having a large reaction retardance is prepared by coating the entire surface of the quick lime particles with saturated fatty acids. It can be manufactured economically without using it. The reaction-retarded quicklime produced by the method of the present invention has an excellent reaction-retardability, so it is mixed with contaminated soil containing harmful substances, and decomposition begins after the harmful substances are adsorbed on the quicklime particles. It can be suitably used for applications that require a reaction delay.

実施例で用いた高速混合機の説明図である。It is explanatory drawing of the high speed mixer used in the Example.

符号の説明Explanation of symbols

1 横型円筒混合ドラム
2 水平一軸駆動部
3 材料投入口
4 エア抜き口
5 排出ゲート
6 鋤型ショベル羽根
7 チョッパー羽根
DESCRIPTION OF SYMBOLS 1 Horizontal cylindrical mixing drum 2 Horizontal uniaxial drive part 3 Material inlet 4 Air vent 5 Discharge gate 6 Vertical shovel blade 7 Chopper blade

Claims (5)

平均粒径0.005〜5mmの生石灰粒子100重量部に対し、水0.5〜5.0重量部を添加して撹拌混合し、次いで炭素数12〜28の飽和脂肪酸0.1〜5.0重量部を添加して撹拌混合し、生石灰粒子の全表面を飽和脂肪酸によって被覆することを特徴とする水和反応熱を利用した反応遅延性生石灰の製造方法。   To 100 parts by weight of quicklime particles having an average particle diameter of 0.005 to 5 mm, 0.5 to 5.0 parts by weight of water is added and mixed by stirring, and then 0.1 to 5.5 saturated carbon fatty acid having 12 to 28 carbon atoms. A method for producing reaction-retarded quicklime using heat of hydration reaction, wherein 0 part by weight is added and mixed by stirring, and the entire surface of quicklime particles is covered with saturated fatty acids. 水を添加して撹拌混合する際に、生石灰粒子の温度が飽和脂肪酸の融点以上となるように、水の添加量及び添加速度を調節する請求項1記載の水和反応熱を利用した反応遅延性生石灰の製造方法。   The reaction delay using the heat of hydration reaction according to claim 1, wherein the amount and rate of addition of water are adjusted so that the temperature of the quicklime particles is equal to or higher than the melting point of the saturated fatty acid when adding water and stirring and mixing. A method for producing natural quicklime. 生石灰粒子100重量部に対し、水1.5〜3.5重量部を60秒以内で添加する請求項1又は請求項2記載の水和反応熱を利用した反応遅延性生石灰の製造方法。   The method for producing reaction-retarded quicklime according to claim 1 or 2, wherein 1.5 to 3.5 parts by weight of water are added within 60 seconds to 100 parts by weight of quicklime particles. 生石灰粒子100重量部に対し、炭素数14〜20の直鎖飽和脂肪酸0.3〜2.5重量部を添加する請求項1記載の水和反応熱を利用した反応遅延性生石灰の製造方法。   The method for producing reaction-retarded quicklime according to claim 1, wherein 0.3 to 2.5 parts by weight of a linear saturated fatty acid having 14 to 20 carbon atoms is added to 100 parts by weight of quicklime particles. 飽和脂肪酸が、ステアリン酸である請求項1又は請求項4記載の水和反応熱を利用した反応遅延性生石灰の製造方法。   The method for producing reaction-retarded quicklime according to claim 1 or 4, wherein the saturated fatty acid is stearic acid.
JP2007007018A 2007-01-16 2007-01-16 Method of producing slow reacting quicklime using heat of hydration reaction Pending JP2008174403A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007007018A JP2008174403A (en) 2007-01-16 2007-01-16 Method of producing slow reacting quicklime using heat of hydration reaction
KR1020070045940A KR100832225B1 (en) 2007-01-16 2007-05-11 Method for manufcturing a reaction-delayed calcined lime using hydration reaction heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007018A JP2008174403A (en) 2007-01-16 2007-01-16 Method of producing slow reacting quicklime using heat of hydration reaction

Publications (1)

Publication Number Publication Date
JP2008174403A true JP2008174403A (en) 2008-07-31

Family

ID=39665173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007018A Pending JP2008174403A (en) 2007-01-16 2007-01-16 Method of producing slow reacting quicklime using heat of hydration reaction

Country Status (2)

Country Link
JP (1) JP2008174403A (en)
KR (1) KR100832225B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200043667A (en) 2018-10-18 2020-04-28 권윤회 Solidification method for pollution soil, sludge, leachate or industrial wastewater
CN113877468A (en) * 2021-09-22 2022-01-04 李积彪 Special ceramic processing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234684A (en) * 1989-03-08 1990-09-17 Morinaga Milk Ind Co Ltd Production of fatty acid calcium salt
KR100613230B1 (en) * 2004-01-13 2006-08-18 (주)라임테크 Special-lime for steel-making and preparation method thereof
KR100571861B1 (en) * 2004-03-30 2006-04-17 이대생 Method for producing calcium oxide with high degree of purity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200043667A (en) 2018-10-18 2020-04-28 권윤회 Solidification method for pollution soil, sludge, leachate or industrial wastewater
CN113877468A (en) * 2021-09-22 2022-01-04 李积彪 Special ceramic processing device

Also Published As

Publication number Publication date
KR100832225B1 (en) 2008-05-23

Similar Documents

Publication Publication Date Title
CA2506614C (en) A method for disinfecting and stabilizing organic wastes with mineral by-products
CA2456978C (en) A method for disinfecting and stabilizing organic wastes with mineral by-products
JP2015509901A (en) Process for producing lime slurry
JPH05295347A (en) Process, system and composition for rendering waste substance harmless
JP4363657B2 (en) Method and apparatus for stabilizing incineration fly ash
JP2008174403A (en) Method of producing slow reacting quicklime using heat of hydration reaction
JP2004167374A (en) Method and apparatus for stabilizing contaminated soil/waste
KR100613113B1 (en) Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
US7658780B2 (en) Method of treatment of wood ash residue
KR20160075018A (en) Dehydration material manufacturing method of sludge with high water containing rate and dehydration material of the same
KR20160080912A (en) Solidifying agent composition for sludge and manufacturing method thereof
JP2008188497A (en) Industrial waste treatment method using lime cycle
JP4706258B2 (en) Dioxin decomposing agent for fly ash treatment and dioxin decomposing method
JPH0824900A (en) Waste water and sludge treatment agent, and treatment of waste water and sludge using the agent
JP2010013491A (en) Method for treating carbonized product to inhibit heat generation
JP2006061751A (en) Production method of solidified matter containing combustion ash
JPS63195208A (en) Production of granular desulfurizing agent for molten iron and molten steel
WO2001014605A1 (en) Briquette for lowering the viscosity of metallurgical slag and process for its production
JP3385992B2 (en) Dioxin decomposition treatment agent and decomposition treatment method
CN114229945B (en) Phosphorus-containing wastewater purification functional material prepared from solid waste and application thereof
CA2079508C (en) Method and apparatus for rendering waste substances harmless
WO2017090303A1 (en) Acidic-gas treatment agent and acidic-gas treatment method
JP4015223B2 (en) Oxygen scavenger
JPH05202350A (en) Water content-regulating material
JP2003020468A (en) Fluorinated gas-decomposing agent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090327