JP2008173686A - Press forming apparatus for sheet - Google Patents

Press forming apparatus for sheet Download PDF

Info

Publication number
JP2008173686A
JP2008173686A JP2007244978A JP2007244978A JP2008173686A JP 2008173686 A JP2008173686 A JP 2008173686A JP 2007244978 A JP2007244978 A JP 2007244978A JP 2007244978 A JP2007244978 A JP 2007244978A JP 2008173686 A JP2008173686 A JP 2008173686A
Authority
JP
Japan
Prior art keywords
reaction force
punch
punch position
blanking
press forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244978A
Other languages
Japanese (ja)
Other versions
JP4943284B2 (en
Inventor
Noriyuki Suzuki
規之 鈴木
Takuya Kuwayama
卓也 桑山
Shunji Hiwatari
俊二 樋渡
Takashi Matsuno
崇 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007244978A priority Critical patent/JP4943284B2/en
Publication of JP2008173686A publication Critical patent/JP2008173686A/en
Application granted granted Critical
Publication of JP4943284B2 publication Critical patent/JP4943284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Punching Or Piercing (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform good press forming by easily evaluating variation in the characteristics of a base material, deterioration with time of a die in a blanking stage or the like. <P>SOLUTION: This press forming apparatus for sheets comprises a blanking means and a press forming means having a blank holding pressure adjusting part and/or a forming speed adjusting part. In this press forming apparatus for sheets, the blanking means includes a working reaction force measuring part for measuring working reaction force of the sheet in the blanking work and a punch position measuring part and the press forming means includes a press forming condition control part for controlling the blank holding pressure and/or a forming speed on the basis of the working reaction force measured with the reaction force measuring part, the punch position measured with the punch position measuring part, the tensile strength of a blank, a workhardening exponent (n-value), elongation, the circumference and the thickness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄系、非鉄系、及び積層材等の各種金属材料のプレス成形加工装置に係わり、特に、各種材料特性のバラツキに依らず良好な加工が可能なプレス成形加工装置に関する。   The present invention relates to a press forming apparatus for various metal materials such as ferrous, non-ferrous, and laminated materials, and more particularly to a press forming apparatus capable of good processing regardless of variations in various material characteristics.

従来、金属材料について、プレス成形装置を用いた深絞り加工、曲げ加工、切断加工等を行う場合には、材料毎に、適正な成形条件、すなわち金型形状、潤滑条件、成形速度、しわ押さえ力、金型及び被加工材の温度等を経験的、或いは実験による試作、或いは有限要素法によるシミュレーション等によって予め定めた上で、実生産を行うことが通常行われている。   Conventionally, when deep drawing processing, bending processing, cutting processing, etc. are performed on a metal material using a press forming apparatus, appropriate molding conditions for each material, that is, mold shape, lubrication conditions, molding speed, wrinkle suppression, etc. Usually, actual production is carried out after the force, mold and temperature of the workpiece are determined in advance by empirical or experimental trial production, simulation by a finite element method, or the like.

一方、素材となる各種金属材料は、原料やスクラップから、溶解-精錬-鋳造-圧延-熱処理-2次加工等、多工程を経て得られた、板材、管材、棒材、線材、粉粒体等であり、化学成分の変動、温度不均一等のプロセス条件変動により、成品の機械特性値にはある程度のバラツキ存在が不可避である。そのため、前述したように予め適正な成形条件を定めたとしても、素材の部位、製造ロット毎に成形性が異なり、成形不良が発生する場合がある。これを回避するために、素材製造プロセスでの品質管理をより厳格にすることももちろん行われているが、過度の厳格化は、素材コストの増大に繋がり、好ましく無い。   On the other hand, various metal materials used as raw materials are plate materials, pipe materials, bar materials, wire materials, and granular materials obtained from raw materials and scrap through multiple processes such as melting, refining, casting, rolling, heat treatment, and secondary processing. Due to variations in process conditions such as variations in chemical components and temperature non-uniformity, it is inevitable that there is some variation in the mechanical property values of the product. For this reason, even if appropriate molding conditions are determined in advance as described above, moldability may differ depending on the material part and production lot, and molding defects may occur. In order to avoid this, quality control in the material manufacturing process is of course made more stringent, but excessive tightening leads to an increase in material cost, which is not preferable.

また、素材の機械特性が同一であっても、加工中の環境変動、例えば連続加工による金型温度変化、金型の摩耗、雰囲気の温度や湿度の変動等により、成形不良が発生する場合がある。   Also, even if the mechanical properties of the material are the same, molding defects may occur due to environmental changes during processing, such as changes in mold temperature due to continuous processing, wear of the mold, changes in ambient temperature and humidity, etc. is there.

これらに対して、素材や金型の条件に応じて加工条件を制御する成形方法には種々の発明が開示されており、例えば特許文献1には、プレス素材の形状や機械的性質、化学的性質、メッキ等の積層特性、油量等の表面状況等の物理量と、所定のプレス品質が得られる適正しわ押さえ荷重との関係を予め求めておき、その関係から実際の物理量に応じて適正しわ押さえ荷重を求め、その適正しわ押さえ荷重でプレス加工が行われるようにエアシリンダのエア圧を調圧する装置が開示されている。   On the other hand, various inventions are disclosed in the molding method for controlling the processing conditions in accordance with the conditions of the material and the mold. For example, Patent Document 1 discloses the shape, mechanical properties, chemical properties of the press material. The relationship between physical properties such as properties, lamination characteristics such as plating, surface conditions such as oil amount, and appropriate wrinkle holding load to obtain a predetermined press quality is obtained in advance, and the appropriate wrinkle is determined according to the actual physical amount from the relationship. An apparatus has been disclosed that obtains a holding load and adjusts the air pressure of the air cylinder so that pressing is performed with the appropriate wrinkle holding load.

また、特許文献2には、素材毎に特定される素材条件、曲げ加工中の最大荷重等に基づいて、プレス条件を調整する装置が開示されている。   Patent Document 2 discloses an apparatus for adjusting press conditions based on material conditions specified for each material, maximum load during bending, and the like.

また、本発明者は、特許文献3〜5に示すように、加工中の環境変動、例えば連続加工による金型温度変化、金型の摩耗、雰囲気の温度や湿度の変動等により発生する成形バラツキを補償するため、素材特性に加え、加工中の金型歪みを用いて、しわ押さえ荷重や成形速度を制御する発明を既に開示している。
特開平7−266100号公報 特開昭58−103918号公報 特開2004-249365号公報 特開2005-161399号公報 特開2006-75884号公報
In addition, as shown in Patent Documents 3 to 5, the present inventor has molding variations caused by environmental fluctuations during machining, for example, mold temperature change due to continuous machining, mold wear, atmospheric temperature and humidity fluctuations, and the like. In order to compensate for this, an invention has already been disclosed in which the wrinkle holding load and the molding speed are controlled using the mold distortion during processing in addition to the material characteristics.
JP 7-266100 A JP 58-103918 A JP 2004-249365 A JP 2005-161399 A JP 2006-75884 A

特許文献1に、素材特性、加工装置固有の情報、金型情報に基づき、しわ押さえ荷重を制御する発明は開示されているが、素材特性の変動、加工装置、金型条件の変動の相乗効果により、特に金型との潤滑特性は、時々刻々変動し、これを事前に予測することは極めて困難である。   Patent Document 1 discloses an invention for controlling a wrinkle holding load based on material characteristics, information unique to a processing apparatus, and mold information. However, a synergistic effect of fluctuations in material characteristics, changes in processing apparatus, and mold conditions is disclosed. As a result, the lubrication characteristics of the mold, in particular, vary from moment to moment, and it is extremely difficult to predict this in advance.

また、加工硬化指数(n値)、r値、TS(引張強さ)、YS(降伏強さ)、E(ヤング率)等の物理量を測定して入力してもいいことが記載されているが、例えば、端面割れが発生し易い伸びフランジ変形を伴う部品においては、ブランキング後の切断端面性状の影響が非常に大きく、上記素材特性だけでは不十分で、ブランキング工程における金型の経時劣化等を考慮する必要がある。   It is also described that physical quantities such as work hardening index (n value), r value, TS (tensile strength), YS (yield strength), E (Young's modulus) may be measured and input. However, for example, in parts with stretch flange deformation that is liable to crack at the end face, the effect of the cut end face properties after blanking is very large. It is necessary to consider degradation.

また特許文献2には、素材毎の板厚と、曲げ加工中の最大荷重を測定し、素材の引張強さを求めて曲げ加工を制御する方法が開示されているが、プレス成形性、特に成形加工中の割れを防止するためには、素材の延性(伸び)を考慮する必要があり、引張強さで、これを予測することは困難である。   Patent Document 2 discloses a method of controlling the bending process by measuring the plate thickness for each material and the maximum load during the bending process to obtain the tensile strength of the material. In order to prevent cracking during the forming process, it is necessary to consider the ductility (elongation) of the material, and it is difficult to predict this with the tensile strength.

また、特許文献3〜5等に、素材特性を用いて、プレス成形条件を調節する発明が開示されているが、一般的に素材特性は製造ロット、例えば金属薄板であればコイルの代表値としてコイル内一点の機械試験結果、すなわち降伏応力、引張強度、伸び等のデータが提供されているのに対して、実際には、コイル長手方向、幅方向で必ずしも材質は一定ではなく、多少の変動は不可避である。従って、素材特性を正確に考慮するためには、少なくともブランク1枚毎の素材特性を得ることが望ましいが、全てのブランクに対して、機械試験を行うことは非現実的である。   In addition, Patent Documents 3 to 5 disclose inventions for adjusting press molding conditions using material properties. Generally, if material properties are a production lot, for example, a thin metal plate, the representative value of a coil is disclosed. While mechanical test results at one point in the coil, that is, data such as yield stress, tensile strength, and elongation, are provided, in reality, the material is not necessarily constant in the coil longitudinal direction and width direction, and there are some fluctuations Is inevitable. Therefore, in order to accurately consider the material characteristics, it is desirable to obtain at least the material characteristics for each blank, but it is impractical to perform a mechanical test on all blanks.

これに対して、引張試験のような厳密な機械試験でなく、例えば硬さ測定などの簡易的な方法も考案しているが、硬さは引張強度とは対応するものの、例えばプレス成形性に影響が大きい伸びなどは、簡易的に得ることが難しい。また、伸びフランジ割れの原因となり得る、ブランキング工程における金型の経時劣化等を考慮することができない。   On the other hand, not a rigorous mechanical test such as a tensile test, but also a simple method such as hardness measurement has been devised, but the hardness corresponds to the tensile strength, but for example press formability It is difficult to easily obtain elongation that has a large effect. Further, it is not possible to take into account the deterioration of the mold over time in the blanking process, which can cause stretch flange cracks.

本発明は前記の点に鑑みてなされたものであり、素材特性のバラツキやブランキング工程における金型の経時劣化等を、簡易的に評価し、良好なプレス成形加工を可能とすることを目的とする。   The present invention has been made in view of the above points, and it is an object of the present invention to easily evaluate variations in material characteristics and aging deterioration of a mold in a blanking process, and to enable favorable press molding processing. And

係る課題を解決するため、本発明の手段は、以下のとおりである。
(1)ブランキング手段と、しわ押さえ圧調整部及び/又は成形速度調整部を有するプレス成形手段からなる薄板のプレス成形加工装置であって、前記ブランキング手段は、ブランキング加工における薄板の加工反力を測定する加工反力測定部とポンチ位置測定部を有し、前記プレス成形手段は、前記加工反力測定部が測定した加工反力と前記ポンチ位置測定部が測定したポンチ位置と、ブランクの引張強さ、加工硬化指数(n値)、伸び、周長及び板厚に基づき、しわ押さえ圧及び/又は成形速度を制御するプレス成形条件制御部を有することを特徴とする薄板のプレス成形加工装置。
(2)前記加工反力測定部によって測定された加工反力と前記ポンチ位置測定部によって測定されたポンチ位置が、ブランキング加工におけるポンチ位置(Xi(i=1〜N))毎の加工反力の履歴データ(Ri(i=1〜N))であることを特徴とする(1)記載の薄板のプレス成形加工装置。但し、Nはデータ数。
(3)前記加工反力測定部が測定した加工反力が、ブランキング加工における加工反力の最大値(A)であり、前記ポンチ位置測定部が測定したポンチ位置が、前記加工反力測定部によって測定された加工中における加工反力が最大となるポンチ位置(B)及び前記加工反力が最大値の50%〜70%に減少するときのポンチ位置(C)であり、前記プレス成形条件制御部は、前記最大値(A)、前記ポンチ位置(B)及び前記ポンチ位置(C)に加え、更に、金型更新直後の磨耗がないときの加工反力の履歴データ(R0i(i=1〜N))と前記ブランキング加工における加工反力の履歴データ(Ri(i=1〜N))の標準偏差(D)に基づいてしわ押さえ圧及び/又は成形速度を制御する機能を有することを特徴とする(2)記載の薄板のプレス成形加工装置。
(4)前記プレス成形条件制御部は、回帰式によりしわ押さえ圧及び/又は成形速度を制御する機能を有することを特徴とする(3)記載の薄板のプレス成形加工装置。
(5)加工反力測定部が、ポンチ又はダイス金型に埋め込まれた圧電素子であることを特徴とする(1)〜(4)の何れか1項に記載の薄板のプレス成形加工装置。
(6)加工反力測定部が、ブランク形状に沿って、ポンチ又はダイス金型に複数埋め込まれた圧電素子であることを特徴とする(1)〜(5)の何れか1項に記載の薄板のプレス成形加工装置。
(7)前記ポンチ位置測定部は、ポンチ側面に設けた突出部の変位を測定する非接触式の変位計からなることを特徴とする(1)〜(6)の何れか1項に記載の薄板のプレス成形加工装置。
(8)前記ポンチ位置測定部は、ポンチの剛性k[kN/mm]を予め計算により算出しておき、前記ポンチ突出部の変位測定値をxt[mm]、xt測定時の加工反力をF[kN]とした場合にポンチ位置xp[mm]を
xp = xt − F/k
として算出する機能を有することを特徴とする(7)記載の薄板のプレス成形加工装置。
In order to solve the problem, means of the present invention are as follows.
(1) A thin plate press forming apparatus comprising a blanking means and a press forming means having a wrinkle holding pressure adjusting portion and / or a forming speed adjusting portion, wherein the blanking means is a processing of the thin plate in the blanking processing. It has a processing reaction force measuring unit and a punch position measuring unit for measuring a reaction force, and the press molding means includes a processing reaction force measured by the processing reaction force measuring unit and a punch position measured by the punch position measuring unit, A thin plate press characterized by having a press forming condition control unit for controlling the crease pressing pressure and / or forming speed based on the tensile strength, work hardening index (n value), elongation, circumference and plate thickness of the blank. Molding equipment.
(2) The machining reaction force measured by the machining reaction force measurement unit and the punch position measured by the punch position measurement unit are the machining reaction for each punch position (Xi (i = 1 to N)) in blanking. It is force history data (Ri (i = 1 to N)), the thin plate press forming apparatus according to (1). N is the number of data.
(3) The machining reaction force measured by the machining reaction force measurement unit is the maximum value (A) of the machining reaction force in blanking, and the punch position measured by the punch position measurement unit is the machining reaction force measurement. Punch position (B) where the processing reaction force during processing measured by the part is maximum, and punch position (C) when the processing reaction force is reduced to 50% to 70% of the maximum value, and the press molding In addition to the maximum value (A), the punch position (B), and the punch position (C), the condition control unit further records processing reaction force history data (R0i (i) when there is no wear immediately after the die update. = 1 to N)) and the function of controlling the wrinkle pressing pressure and / or the forming speed based on the standard deviation (D) of the history data (Ri (i = 1 to N)) of the processing reaction force in the blanking process. (2) characterized by having Press-forming device of the plate.
(4) The thin plate press forming apparatus according to (3), wherein the press forming condition control unit has a function of controlling wrinkle holding pressure and / or forming speed by a regression equation.
(5) The thin plate press forming apparatus according to any one of (1) to (4), wherein the processing reaction force measuring unit is a piezoelectric element embedded in a punch or a die.
(6) The processing reaction force measurement unit is a piezoelectric element embedded in a punch or a die mold along a blank shape, and is described in any one of (1) to (5) Thin plate press forming equipment.
(7) The punch position measurement unit includes a non-contact displacement meter that measures the displacement of the protrusion provided on the side surface of the punch. (1) to (6), Thin plate press forming equipment.
(8) The punch position measuring unit calculates the punch stiffness k [kN / mm] in advance, the displacement measurement value of the punch projecting portion is xt [mm], and the machining reaction force during xt measurement is calculated. When F [kN] is set, punch position xp [mm]
xp = xt − F / k
(7) The thin plate press forming apparatus according to (7).

本発明により、素材特性のばらつきによらず、適正な加工条件を得ることができ、常に良好な成形品を得ることができる。   According to the present invention, appropriate processing conditions can be obtained regardless of variations in material characteristics, and a good molded product can always be obtained.

以下に図面を用いて詳細を説明する。   Details will be described below with reference to the drawings.

本発明の実施の一形態を図1に示す。本発明に係わる薄板のプレス成形加工装置は、加工反力測定部(図示しない)及びポンチ位置を測定するポンチ位置測定部5を備えたブランキング手段2と、しわ押さえ圧調整部13及び/又は成形速度調整部14を有し、しわ押さえ圧及び/又は成形速度を制御するプレス成形条件制御部(図示しない)を備えたプレス成形手段7から構成される。   One embodiment of the present invention is shown in FIG. The thin plate press forming apparatus according to the present invention includes a blanking means 2 having a processing reaction force measuring unit (not shown) and a punch position measuring unit 5 for measuring a punch position, a wrinkle holding pressure adjusting unit 13 and / or The press forming means 7 includes a forming speed adjusting unit 14 and includes a press forming condition control unit (not shown) that controls the wrinkle pressure and / or forming speed.

一般にプレス成形加工用の薄板素材は、製造メーカーあるいは1次加工メーカーから、コイルや矩形の切板として提供され、所定の部品形状にプレス成形するためには、まず適切な外形状にブランキング(切断)加工され、その後、切断されたブランクが、次工程でプレス成形加工される。   In general, a thin plate material for press forming is provided as a coil or a rectangular cut plate from a manufacturer or a primary processing manufacturer. In order to press-mold into a predetermined part shape, blanking ( The blank that has been cut and then cut is press-formed in the next step.

ブランキング加工は、適切なクリアランスを設定した上下一対の金型(ポンチ(上型)3、ダイ(下型)4)で、所定形状のブランク6に打ち抜くが、この際に、加工反力およびポンチの位置(変位)を同時に測定する。   Blanking is performed by punching a blank 6 having a predetermined shape with a pair of upper and lower molds (punch (upper mold) 3 and die (lower mold) 4) with appropriate clearances. Simultaneously measure the position (displacement) of the punch.

ブランキング加工中の加工反力は、センサーとしてダイまたはポンチの切刃に沿って複数箇所に埋め込んだ圧電素子により、場所ごとにダイまたはポンチの弾性歪みとして高精度に測定することができる。また、全てのセンサー出力の総和として、トータルの加工反力を得ることもできる。トータルの加工反力は、加工力伝達経路に挟み込んだロードセルや、加工装置フレームに設置された歪みゲージなどを使っても測定することができるが、ブランキング加工は1秒以下の高速な加工のため、応答性や、装置全体のガタや弾性変形などから、正確な測定は困難であり、図3、図4に示すように、例えばポンチ3の内部に圧電素子を直接埋め込むことにより、高速かつ高精度に測定することが好ましい。   The processing reaction force during the blanking process can be measured with high accuracy as an elastic strain of the die or punch for each location by using piezoelectric elements embedded in a plurality of locations along the cutting edge of the die or punch as a sensor. Also, the total processing reaction force can be obtained as the sum of all sensor outputs. The total machining reaction force can be measured using a load cell sandwiched in the machining force transmission path or a strain gauge installed in the machine frame, but blanking is a fast machining process of less than 1 second. Therefore, accurate measurement is difficult due to responsiveness, looseness of the entire device, elastic deformation, and the like. As shown in FIGS. 3 and 4, for example, by directly embedding a piezoelectric element in the punch 3, It is preferable to measure with high accuracy.

ポンチの位置は、ブランキング装置のスライド変位やクランク角として測定することも可能であるが、金型の変形や装置のガタにより、誤差が大きく、ポンチ3に取り付けた変位計で直接測定する事が望ましい。   The punch position can be measured as the slide displacement or crank angle of the blanking device, but there is a large error due to the deformation of the mold or the backlash of the device, and it can be measured directly with the displacement meter attached to the punch 3. Is desirable.

図2に、ブランキング加工中の、ポンチ位置に対する加工反力の変化の一例を示す。種々の材料に対して、加工反力を同様の方法で測定した結果、加工反力の最大値(A)は、材料の引張強さと、また加工反力が最大となるポンチ位置(B)は、材料の加工硬化指数(n値)と、また加工反力が最大値の50%〜70%に急減するポンチ位置(C)は、材料の伸びと、それぞれ略対応していることが明らかとなった。以下、指標A,B,Cと称す。   FIG. 2 shows an example of a change in machining reaction force with respect to the punch position during blanking. As a result of measuring the reaction force for various materials in the same manner, the maximum value (A) of the reaction force is the tensile strength of the material and the punch position (B) where the reaction force is maximum. It is clear that the work hardening index (n value) of the material and the punch position (C) where the work reaction force rapidly decreases to 50% to 70% of the maximum value substantially correspond to the elongation of the material. became. Hereinafter, they are referred to as indexes A, B, and C.

また、繰り返しブランキング加工を行うと、金型の切刃が次第に損耗し、切れ味が低下して切断端面が粗くなってくるが、ポンチ位置に対する加工反力の履歴(波形)に変化が現れることから、これを検出して、損耗状態の監視、次工程の調整に用いる。波形の変化を示す方法としては、例えば、図2の実線で示す損耗後のブランキング加工におけるポンチ位置(X(i=1〜N))毎の加工反力の履歴データ(R(i=1〜N))および、図2の点線で示す金型更新直後の磨耗が無い標準状態の加工反力の履歴データ(R0(i=1〜N)) (但し、Nはデータ点数)から、加工反力の標準偏差(加工反力波形標準偏差ともいう)(D)として、
D=√{Σ(R−R02/(N−1)} (i=1〜N) (1)
を金型磨耗を示す指標として用いる。
In addition, when blanking is repeatedly performed, the cutting edge of the die gradually wears out, the sharpness decreases and the cutting end surface becomes rough, but a change appears in the history (waveform) of the processing reaction force against the punch position. Therefore, this is detected and used for monitoring the worn state and adjusting the next process. As a method for indicating the change in the waveform, for example, history data (R i (i) of machining reaction force for each punch position (X i (i = 1 to N)) in blanking after wear shown by a solid line in FIG. = 1 to N)) and the history data of machining reaction force in the standard state without wear immediately after the mold update shown by the dotted line in FIG. 2 (R0 i (i = 1 to N)) (where N is the number of data points) From the machining reaction force standard deviation (also called machining reaction force waveform standard deviation) (D),
D = √ {Σ (R i −R0 i ) 2 / (N−1)} (i = 1 to N) (1)
Is used as an indicator of mold wear.

また、複数のセンサーを用いて、ブランク形状に沿った加工反力の分布を得ることができることから、次工程のプレス成形工程で問題となることがある伸びフランジ割れに該当する箇所、例えば図1に示す伸びフランジ部20の加工反力を測定することにより、適切なプレス成形加工条件を予め調整し、割れを未然に防止することが可能となる。   Moreover, since the distribution of the processing reaction force along the blank shape can be obtained by using a plurality of sensors, a portion corresponding to a stretch flange crack that may cause a problem in the next press forming step, for example, FIG. By measuring the processing reaction force of the stretch flange portion 20 shown in Fig. 5, it is possible to adjust appropriate press molding processing conditions in advance and prevent cracking.

次に、これらブランキング工程で測定された指標A,B,C,Dを用いて、ブランク一枚ごとに、次工程の最適なプレス成形加工条件を設定する方法を示す。   Next, a method for setting optimum press forming conditions for the next process for each blank using the indexes A, B, C, and D measured in the blanking process will be described.

まず、各指標A,B,C,Dを次のように、正規化する。
A’=A/(L×t)/A0 (2)
B’=(B/t)/{b−(B/t)}/B0 (bは係数で1≦b≦2)(3)
C’=C/t/C0 (4)
D’=D/(ΣR0/N)(i=1〜N) (5)
ここで、A:加工反力の最大値[N]
B:加工反力が最大となるポンチ位置[mm]
C:加工反力が最大値の50%〜70%に急減するポンチ位置[mm]
D:加工反力波形標準偏差[N]
A’:正規化されたA値[−]
B’:正規化されたB値[−]
C’:正規化されたC値[−]
D’:正規化されたD値[−]
L:ブランク周長[mm]
t:ブランク板厚[mm]
A0:ブランクの引張強さ[MPa]
B0:ブランクのn値[−]
C0:ブランクの伸び[−]
R0i:金型更新直後の磨耗が無い標準状態の加工反力履歴[N](i=1〜N)
N:反力履歴データ数[−]
なお、ブランク周長Lとは、図1に示すブランク6の外周長さである。また、ブランクの引張強さ(A0)、n値(B0)、伸び(C0)は、それぞれ、ブランクの素材と同一の試料をJISG0202(1.1)引張試験記載の方法で試験を行ったときの引張強さ、n値、伸びと定義する。
First, each index A, B, C, D is normalized as follows.
A ′ = A / (L × t) / A0 (2)
B ′ = (B / t) / {b− (B / t)} / B0 (b is a coefficient, 1 ≦ b ≦ 2) (3)
C ′ = C / t / C0 (4)
D ′ = D / (ΣR0 i / N) (i = 1 to N) (5)
Here, A: Maximum value of processing reaction force [N]
B: Punch position where processing reaction force is maximum [mm]
C: Punch position where the processing reaction force suddenly decreases to 50% to 70% of the maximum value [mm]
D: Machining reaction force waveform standard deviation [N]
A ′: normalized A value [−]
B ′: normalized B value [−]
C ′: normalized C value [−]
D ′: normalized D value [−]
L: Blank circumference [mm]
t: Blank plate thickness [mm]
A0: Blank tensile strength [MPa]
B0: Blank n value [-]
C0: Blank elongation [-]
R0 i : Processing reaction force history [N] (i = 1 to N) in the standard state without wear immediately after the mold update
N: Number of reaction force history data [-]
The blank circumferential length L is the outer circumferential length of the blank 6 shown in FIG. In addition, the tensile strength (A0), n value (B0), and elongation (C0) of the blank were each tested by the method described in JISG0202 (1.1) tensile test for the same sample as the blank material. Are defined as tensile strength, n value, and elongation.

次に、それぞれ予め設定した、しわ押さえ圧の標準設定値P0[N]及び成形速度の標準設定値V0[mm/sec]に対して、上記、正規化指標(A’、B’、C’、D’)に応じて、例えば1次のモデル式を用いて、しわ押さえ圧P[N]及び成形速度V[mm/sec]を調整する。すなわち、
P=P0×(p0+p1×A’+p2×B’+p3×C’+p4×D’) (6)
ここで、p0〜p4は係数で、それぞれ、−1.0≦p0、p1、p2、p3≦+1.0、−50≦p4≦+50の範囲とすることが好ましい。
V=V0×(v0+v1×A’+v2×B’+v3×C’+v4×D’) (7)
ここで、v0〜v4は係数で、それぞれ、−1.0≦v0、v1、v2、v3≦+1.0、−50≦v4≦+50の範囲とすることが好ましい。
Next, with respect to the preset standard setting value P0 [N] of the wrinkle pressing pressure and the standard setting value V0 [mm / sec] of the molding speed, respectively, the normalization index (A ′, B ′, C ′) is set. , D ′), for example, the wrinkle holding pressure P [N] and the forming speed V [mm / sec] are adjusted using a first-order model formula. That is,
P = P0 × (p0 + p1 × A ′ + p2 × B ′ + p3 × C ′ + p4 × D ′) (6)
Here, p0 to p4 are coefficients, and are preferably in the ranges of −1.0 ≦ p0, p1, p2, p3 ≦ + 1.0, and −50 ≦ p4 ≦ + 50, respectively.
V = V0 × (v0 + v1 × A ′ + v2 × B ′ + v3 × C ′ + v4 × D ′) (7)
Here, v0 to v4 are coefficients, and are preferably in the ranges of −1.0 ≦ v0, v1, v2, v3 ≦ + 1.0, and −50 ≦ v4 ≦ + 50, respectively.

また、各係数は、予め、素材特性を引張試験により直接測定した各種サンプルを用い、成形加工条件を人為的に変動させた実験結果から、回帰式を作成して求めることができる。また、量産時の品質検査結果から、自動的に学習し、係数を調節する機能を付加することで、さらに精度を向上させることも可能である。   Each coefficient can be obtained by creating a regression equation from experimental results obtained by artificially changing molding processing conditions using various samples whose material properties were directly measured by a tensile test in advance. In addition, it is possible to further improve accuracy by adding a function of automatically learning and adjusting a coefficient from a quality inspection result at the time of mass production.

通常、接触式変位計の方が非接触式変位計よりも安価で高分解能が期待できるが、ポンチの形状に起因して接触式変位計を設置するスペースがとれない場合や、金型の振動が高速で大きい場合等、直接ポンチに変位計を取り付けられず、非接触式の変位計でポンチ変位を測定せねばならないことがある。このような場合、加工反力によるプレス装置の撓みの影響を極力避けるべく、ポンチ位置測定部としてポンチの側面に突出部を設け、該突出部の変位を非接触式変位計で測定する(前記(7)に係る発明)。この際、非接触式のセンサーは、光ファイバー式変位計やレーザードップラー式変位計等のような、30kHz以上の高応答周波数であることが望ましい。   Usually, the contact displacement meter is cheaper and can be expected to have higher resolution than the non-contact displacement meter. However, if the space for installing the contact displacement meter is not available due to the shape of the punch, or the vibration of the mold When the displacement is high speed and large, the displacement meter may not be directly attached to the punch, and the punch displacement may have to be measured with a non-contact displacement meter. In such a case, in order to avoid the influence of the bending of the press device due to the reaction force as much as possible, a protrusion is provided on the side surface of the punch as the punch position measurement unit, and the displacement of the protrusion is measured with a non-contact displacement meter (see above). Invention according to (7)). At this time, it is desirable that the non-contact sensor has a high response frequency of 30 kHz or higher, such as an optical fiber displacement meter or a laser Doppler displacement meter.

プレス装置全体の撓みに比べると微小であるが、上記のごとく非接触式変位計で測定されたポンチ突出部の変位量は、加工反力によるポンチの撓みに影響を受ける。加工反力のばらつきが大きい場合は、この加工反力の影響が正確なポンチ変位量の測定に対して問題となり、このような場合は、前記(7)に係る発明において、ポンチ位置測定部は、ポンチの剛性k[kN/mm]を予め計算により算出しておき、ポンチ位置xp[mm]を
xp = xt − F/k (13)
xt:ポンチ突出部の変位測定値[mm]
F :xt測定時の加工反力 [kN]
とする機能を有していればより正確なポンチ変位力を測定することが可能である(前記(8)に係る発明)。
The amount of displacement of the punch protrusion measured by the non-contact displacement meter as described above is affected by the punch deflection due to the processing reaction force, although it is very small compared to the deflection of the entire press device. When the variation in the machining reaction force is large, the influence of the machining reaction force becomes a problem for accurate punch displacement measurement. In such a case, in the invention according to (7), the punch position measurement unit The punch stiffness k [kN / mm] is calculated in advance, and the punch position xp [mm]
xp = xt − F / k (13)
xt: measured displacement of punch protrusion [mm]
F: Machining reaction force during xt measurement [kN]
It is possible to measure the punch displacement force more accurately (the invention according to the above (8)).

上述の発明を元に、本発明例として、図1に示す、加工反力測定部(図示しない)とポンチ位置測定部5を備えたブランキング手段2、及び、しわ押さえ圧調整部13及び成形速度調整部14を備えたプレス成形手段7から構成される、薄板のプレス成形加工装置を試作した。ブランキング用ポンチ3には、図3、図4に示すように、ブランク形状に沿って、計5箇所の圧電素子を用いた歪みセンサーが埋め込まれ、加工反力測定部12を形成している。圧電素子は、それぞれブランキング用ポンチ3の表面から20mm、側面から20mmの位置に設置した。またポンチ位置測定部5は、図1に示すようにブランキング用ポンチ3とブランキング用ダイ4の相対変位を、接触式変位センサーを用いて、歪みセンサーの出力と同期させて、記録した。接触式変位センサーはブランキング用ポンチ3及びブランキング用ダイ4の側面に鍔を設けて固定した。   Based on the above-described invention, as an example of the present invention, as shown in FIG. 1, the blanking means 2 including the machining reaction force measuring unit (not shown) and the punch position measuring unit 5, the wrinkle holding pressure adjusting unit 13, and the molding A prototype of a thin plate press forming apparatus constituted by the press forming means 7 provided with the speed adjusting unit 14 was produced. As shown in FIGS. 3 and 4, strain sensors using a total of five piezoelectric elements are embedded in the blanking punch 3 along the blank shape to form a processing reaction force measurement unit 12. . The piezoelectric elements were respectively installed at positions 20 mm from the surface of the blanking punch 3 and 20 mm from the side surface. Further, as shown in FIG. 1, the punch position measuring unit 5 recorded the relative displacement between the blanking punch 3 and the blanking die 4 in synchronism with the output of the strain sensor using a contact displacement sensor. The contact-type displacement sensor was fixed by providing scissors on the side surfaces of the blanking punch 3 and the blanking die 4.

素材となる薄鋼板は、素材メーカーから、コイルとして提供され、板厚(t)1.4mm、引張り強度590MPa級の冷延鋼板である。機械特性の代表値は、
引張強さ(A0):620[MPa]
n値(B0):0.18[−]
伸び(C0):0.30[−]
であった。本実施例では、図1に示すT型形状の部品(6)を試作した。納入されたコイルは、順次、ブランキング手段2により、図1に示した外形状に打ち抜かれ、次いで、プレス成形手段7により、図1に示す形状の成形品11にプレス加工される。ブランクの周長Lは図3に示すポンチ3の平面図の周長に相当し約1357mmである(=400+150×2+200+2×(50+25π+100))。
The thin steel plate used as a raw material is a cold rolled steel plate provided as a coil from a raw material manufacturer and having a plate thickness (t) of 1.4 mm and a tensile strength of 590 MPa. Typical values for mechanical properties are
Tensile strength (A0): 620 [MPa]
n value (B0): 0.18 [-]
Elongation (C0): 0.30 [-]
Met. In this example, a T-shaped part (6) shown in FIG. The delivered coils are sequentially punched into the outer shape shown in FIG. 1 by the blanking means 2, and then pressed into the molded product 11 having the shape shown in FIG. 1 by the press molding means 7. The peripheral length L of the blank corresponds to the peripheral length of the plan view of the punch 3 shown in FIG. 3 and is about 1357 mm (= 400 + 150 × 2 + 200 + 2 × (50 + 25π + 100)).

機械特性の変動、及びブランキング金型の磨耗の影響を調べるために、表1及び表2に示すように、計40枚のブランキング加工を行い、その内、20枚は新品の金型を用い、また残り20枚は約10,000回使用した金型を用いて打ち抜き、それぞれについて、加工反力の履歴を、上述したセンサーを用いて測定した。   In order to investigate the influence of mechanical property fluctuations and blanking mold wear, as shown in Table 1 and Table 2, a total of 40 blanking processes were performed, of which 20 were new molds. The remaining 20 sheets were punched out using a mold that was used about 10,000 times, and the history of processing reaction force was measured for each using the above-described sensor.

次いで、測定したポンチ位置毎の加工反力の履歴から、加工反力の最大値(A)、反力が最大となるポンチ位置(B)、加工反力が最大値の60%に急減するポンチ位置(C)、加工反力の標準偏差(D)を、それぞれ求めた結果を、合わせて表1及び表2に示す。   Next, from the measured machining reaction force history at each punch position, the maximum value (A) of the machining reaction force, the punch position (B) where the reaction force is maximized, and the punch where the machining reaction force rapidly decreases to 60% of the maximum value. The results obtained for the position (C) and the standard deviation (D) of the processing reaction force are shown in Tables 1 and 2 together.

ここで、加工反力の最大値(A)は、計5箇所の圧電素子で測定された、それぞれの加工反力の和の最大値として表される。すなわち、


Figure 2008173686
Here, the maximum value (A) of the processing reaction force is expressed as the maximum value of the sum of the respective processing reaction forces measured by a total of five piezoelectric elements. That is,


Figure 2008173686

(i=1〜N、N:サンプリング点数=1000) (8)
また、加工反力が最大となるポンチ位置(B)、加工反力が最大値の60%に急減するポンチ位置(C)は、5箇所のセンサー出力を平均した。
(I = 1 to N, N: number of sampling points = 1000) (8)
In addition, the punch position (B) where the machining reaction force becomes maximum and the punch position (C) where the machining reaction force rapidly decreases to 60% of the maximum value averaged sensor outputs at five locations.

また、加工反力波形標準偏差(D)は、プレス成形時に、伸びフランジ変形を伴う、図3における2箇所のセンサー12’の反力履歴R(1)、R(2)のそれぞれ標準状態R0(1)、R0(2)との標準偏差を平均化した。すなわち、
D=[ √{Σ(R(1) i−R0(1) i2/(N−1)}+ √{Σ(R(2) i−R0(2) i2/(N−1)} ]/2 (i=1〜N、N:サンプリング点数=1000) (9)
次いで、計測されたブランク1枚ごとに、指標A,B,C,Dを正規化したA’,B’,C’,D’を用いて、次工程のプレス成形加工条件、しわ押さえ圧P、成形速度Vを次のように設定した。
Further, the machining reaction force waveform standard deviation (D) is the standard state R0 of the reaction force histories R (1) and R (2) of the two sensors 12 'in FIG. (1) The standard deviation with R0 (2) was averaged. That is,
D = [√ {Σ {R (1) i −R 0 (1) i ) 2 / (N−1)} + √ {Σ (R (2) i −R 0 (2) i ) 2 / (N−1 )}] / 2 (i = 1 to N, N: number of sampling points = 1000) (9)
Next, using A ′, B ′, C ′, and D ′ obtained by normalizing the indicators A, B, C, and D for each measured blank, press forming processing conditions and wrinkle holding pressure P for the next step are used. The molding speed V was set as follows.

P/P0=(0.59×A’+0.50×B’+0.29×C’−25×D’) (10)
V=V0 (P/P0≧0.85) (11)
V0×0.9 (P/P0<0.85) (12)
ここで、P0及びV0は、しわ押さえ圧及び成形速度の標準条件で、それぞれ、200[kN]及び200[mm/sec]とした。
P / P0 = (0.59 × A ′ + 0.50 × B ′ + 0.29 × C′−25 × D ′) (10)
V = V0 (P / P0 ≧ 0.85) (11)
V0 × 0.9 (P / P0 <0.85) (12)
Here, P0 and V0 were 200 [kN] and 200 [mm / sec], respectively, under the standard conditions of wrinkle pressing pressure and molding speed.

また、(10)式の各係数は、本実施例とは別に、同一鋼種で製造ロットの異なる2種類の素材と、クリアランスの異なる2種類の金型を用意し、上述した手順でブランキング加工した後、しわ押さえ圧及び成形速度をそれぞれ2水準づつ変更した実験計画法(素材2水準×金型2水準×しわ押さえ圧2水準×成形速度2水準=16水準)に基づく、プレス成形を行い、成形品の形状、割れ有無(伸びフランジ部の板厚減少率で評価)を測定し、この実験結果に基づく実験回帰式から求めた。   In addition, each coefficient of the equation (10) is prepared by preparing two types of materials with the same steel type and different production lots, and two types of dies with different clearances, and blanking according to the above-described procedure. After that, press molding is performed based on the experimental design method (material 2 level x mold 2 level x wrinkle pressing pressure 2 level x molding speed 2 level = 16 levels) in which wrinkle pressing pressure and molding speed are changed by 2 levels each. The shape of the molded product and the presence / absence of cracks (evaluated by the plate thickness reduction rate of the stretch flange portion) were measured and obtained from an experimental regression equation based on the experimental results.

表1に、上述した方法で成形加工した結果を示す。ここで、成形品について、目視にて割れの有無及び検具を用いたT字部の捩れ角のチェックを行い、双方が許容範囲に入っているものを良品とした。   Table 1 shows the result of molding by the method described above. Here, with respect to the molded product, the presence or absence of cracks and the torsion angle of the T-shaped portion using a check tool were checked visually, and those in which both were within the allowable range were determined as non-defective products.

本発明に基づく方法を用いた場合には、素材特性の変動や、ブランキング金型の磨耗に有無に因らず、不良無く成形することができた。   When the method according to the present invention was used, it was possible to mold without defects regardless of whether the material characteristics fluctuated or the blanking mold was worn.

一方、比較例として、全てのブランクに対して、同一の条件で、プレス成形加工した結果を表2に示す。この場合には、スプリングバックによる捩れや、エッジ部の割れにより40%の成形不良品が発生した。特に、10,000回使用した金型でブランキング加工した場合には、プレス成形時に割れが多発した。   On the other hand, as a comparative example, Table 2 shows the results of press molding processing under the same conditions for all blanks. In this case, 40% of defective molding occurred due to twisting due to the spring back and cracking of the edge portion. In particular, when blanking was performed with a mold used 10,000 times, cracks frequently occurred during press molding.

本発明の効果を確かめるため、図5に示す装置を試作し、実施例1で使用した板材を使用して図5の装置によるブランキング後にフランジアップ成形を行う実験を行った。図5に示す装置は、ブランキング用のポンチ17とダイ20、油圧により圧力が発生するしわ押さえ16により構成される。ダイ20は、ポンチ17に対応するように中央部に凹部を形成し、ポンチ17の方向(紙面左方向)に若干移動自在となるような矩形の開口部を有するフレームの開口部に、後述のネジ23によりフレームに固定されている。ポンチ位置測定部15には光ファイバー式の非接触式変位計を用い、図5に示すようにブランキング金型を設置するフレーム19にポール22を立てて固定し、ポンチ17の側面に設けた突出部24の変位を測定した。この突出部24の測定変位は、式(13)により算出されるポンチ17の撓み分だけ補正される。ポンチ剛性は事前に弾性有限要素法により、k=11.3[kN/mm]と算出した。本発明の効果を分かり易くするため、上記の装置は、ブランキング金型のダイ固定形式をネジ式とし、故意にネジ23の締め付けトルクを緩くすることで500回のブランキングを通してクリアランスが広がり易い条件とした(初期クリアランス量は0.12[mm])。   In order to confirm the effect of the present invention, an apparatus shown in FIG. 5 was made as an experiment, and an experiment was conducted in which flange-up forming was performed after blanking by the apparatus of FIG. 5 using the plate material used in Example 1. The apparatus shown in FIG. 5 includes a blanking punch 17, a die 20, and a crease presser 16 that generates pressure by hydraulic pressure. The die 20 is formed with a concave portion at the center so as to correspond to the punch 17, and has a rectangular opening that is slightly movable in the direction of the punch 17 (leftward in the drawing). It is fixed to the frame by screws 23. An optical fiber type non-contact displacement meter is used for the punch position measurement unit 15, and as shown in FIG. 5, a pole 22 is raised and fixed to a frame 19 on which a blanking mold is installed, The displacement of the part 24 was measured. The measured displacement of the protrusion 24 is corrected by the deflection of the punch 17 calculated by the equation (13). The punch stiffness was calculated in advance as k = 11.3 [kN / mm] by the elastic finite element method. In order to make the effects of the present invention easy to understand, the above-described apparatus is configured such that the die fixing type of the blanking mold is a screw type, and the clearance is easily spread through blanking 500 times by intentionally loosening the tightening torque of the screw 23. The conditions were set (the initial clearance was 0.12 [mm]).

ブランキング後の切断面21の形状は図6に示す形状であり、本実施例においてはブランキング後にフランジ部21を最終製品形状が図7に示す形状となるようにフランジアップ成形を行う試験を500回繰り返し、ブランキング時にしわ押さえ力制御を行う場合と行わない場合について、最終製品の成形不良率を比較した。   The shape of the cut surface 21 after blanking is the shape shown in FIG. 6, and in this embodiment, the flange portion 21 is subjected to a test for flange-up molding so that the final product shape becomes the shape shown in FIG. Repeated 500 times, the molding defect rate of the final product was compared for the case where wrinkle holding force control was performed during blanking and the case where it was not performed.

加工反力測定部25には圧電素子による埋め込み式ロードセル1つを使用し、図8に示すような構成でポンチ17へ設置した。   For the processing reaction force measuring unit 25, one embedded load cell using a piezoelectric element was used, and it was installed in the punch 17 in the configuration as shown in FIG.

成形速度は、実施例1の標準条件と同様とした。   The molding speed was the same as the standard conditions in Example 1.

続いて、しわ押さえ圧の制御について述べる。   Next, wrinkle pressure control will be described.

成形不良率としわ押さえ圧との関係を把握するため、事前実験として、ネジ23の締め付けトルクが適正であってクリアランスの狂いがほとんど生じない装置を使用してブランキングとフランジアップの試行を行ったところ、ブランキング時の最大加工反力A[kN]、最高加工反力となるポンチ位置B[mm]としわ押さえ圧P[kN]の関係式が、

P>600A−0.6+520(0.12−B)[KN]

であれば90%以上の確率でフランジアップ成形時に割れが起こらなかった。なお、上記の実験式は0.06、0.12、0.18、0.24、0.36、0.6[mm]の6通りのクリアランス量ので上記の試行を行って見積もったものである(クリアランスに応じて、AとBが変化することを利用した)。
In order to grasp the relationship between the molding defect rate and the wrinkle holding pressure, as a preliminary experiment, trials of blanking and flange-up were carried out using a device in which the tightening torque of the screw 23 is appropriate and the clearance is hardly changed. As a result, the relational expression of the maximum machining reaction force A [kN] during blanking, the punch position B [mm] that gives the maximum machining reaction force, and the wrinkle holding pressure P [kN] is

P> 600A -0.6 +520 (0.12-B) [KN]

Then, cracks did not occur during flange-up molding with a probability of 90% or more. In addition, the above empirical formula is estimated by performing the above trial with six kinds of clearance amounts of 0.06, 0.12, 0.18, 0.24, 0.36, and 0.6 [mm] (A and B change depending on the clearance). Used to do).

この結果を鑑みて、本実施例においてはしわ押さえ圧Pに対して、


Figure 2008173686
In view of this result, the wrinkle holding pressure P in this embodiment,


Figure 2008173686

という制御を行った。初期のしわ押さえ圧は、クリアランスが0.12[mm]の事前実験の際測定されたAの平均値160[kN]とBの平均値0.1[mm]を式(14)に代入した32.1[kN]である。 Control was performed. The initial wrinkle pressure is 32.1 [kN] obtained by substituting the average value 160 [kN] of A and the average value 0.1 [mm] of B measured during the preliminary experiment with a clearance of 0.12 [mm] into equation (14). It is.

フランジアップ成形時に割れを起こした成形不良率は図9のようになり、しわ押さえ圧を制御した場合は、クリアランスのずれが生じているにも関わらず不良率は10%以下であった。一方で、しわ押さえ圧を制御しない場合は15%程度の不良率であり、この結果より本発明による装置が有効であることが証明された。   The molding defect rate causing cracks during flange-up molding is as shown in FIG. 9, and when the wrinkle holding pressure was controlled, the defect rate was 10% or less despite a gap in clearance. On the other hand, when the wrinkle holding pressure is not controlled, the defect rate is about 15%, and this result proves that the device according to the present invention is effective.

Figure 2008173686
Figure 2008173686

Figure 2008173686
Figure 2008173686

本発明の薄板のプレス成形加工装置の実施の一形態を示す概念図である。It is a conceptual diagram which shows one Embodiment of the press molding processing apparatus of the thin plate of this invention. ブランキング加工中の加工反力とポンチ変位の関係を示す。The relationship between the machining reaction force during blanking and the punch displacement is shown. 加工反力測定手段を有するポンチ金型の一例である。It is an example of the punch metal mold | die which has a process reaction force measuring means. 加工反力測定手段を有するポンチ金型の(図3のA−A)断面図である。It is sectional drawing (AA of FIG. 3) of the punch metal mold | die which has a process reaction force measurement means. 本発明の薄板のプレス成形加工装置の別の形態を示す概念図である。It is a conceptual diagram which shows another form of the press molding processing apparatus of the thin plate of this invention.

(a)側面図を示す。(b)上面図を示す。
ブランキング後の鋼板の平面図を示す。 最終製品形状を示す斜視図である。 ポンチ位置測定部の実施の一形態を示す断面図である。 フランジアップ成形時に割れを起こした成形不良率を示す。
(A) A side view is shown. (B) A top view is shown.
The top view of the steel plate after blanking is shown. It is a perspective view which shows a final product shape. It is sectional drawing which shows one Embodiment of a punch position measurement part. Shows the molding defect rate that caused cracks during flange-up molding.

符号の説明Explanation of symbols

1 コイル
2 ブランキング手段
3、17 ブランキング用ポンチ
4、20 ブランキング用ダイ
5 変位センサー(ポンチ位置測定部)
6、18 ブランク
7 プレス成形手段
8 プレス成形用ダイ(上型)
9 プレス成形用ポンチ(下型)
10、16 しわ押さえ
11 成形品
12 圧電素子
12’ 伸びフランジ部圧電素子
13 しわ押さえ圧調整部
14 成形速度調整部
15 ポンチ位置測定部(非接触式変位計)
19 フレーム
21 成形加工後、伸びフランジ部となる部位
22 ポール
23 ネジ
24 突出部
25 加工反力測定部(圧電素子)
1 Coil 2 Blanking means 3, 17 Blanking punch 4, 20 Blanking die 5 Displacement sensor (punch position measuring unit)
6, 18 Blank 7 Press molding means 8 Die for press molding (upper mold)
9 Punch for press molding (lower mold)
10, 16 Wrinkle presser 11 Molded product 12 Piezoelectric element 12 'Stretch flange part piezoelectric element 13 Wrinkle presser pressure adjusting part 14 Molding speed adjusting part 15 Punch position measuring part (non-contact displacement meter)
19 Frame 21 After forming, a portion 22 that becomes an elongated flange portion 22 Pole 23 Screw 24 Projection portion 25 Processing reaction force measurement portion (piezoelectric element)

Claims (8)

ブランキング手段と、しわ押さえ圧調整部及び/又は成形速度調整部を有するプレス成形手段からなる薄板のプレス成形加工装置であって、前記ブランキング手段は、ブランキング加工における薄板の加工反力を測定する加工反力測定部とポンチ位置測定部を有し、前記プレス成形手段は、前記加工反力測定部が測定した加工反力と前記ポンチ位置測定部が測定したポンチ位置と、ブランクの引張強さ、加工硬化指数(n値)、伸び、周長及び板厚に基づき、しわ押さえ圧及び/又は成形速度を制御するプレス成形条件制御部を有することを特徴とする薄板のプレス成形加工装置。   A thin plate press forming apparatus comprising a blanking means, and a press forming means having a wrinkle holding pressure adjusting portion and / or a forming speed adjusting portion, wherein the blanking means generates a processing reaction force of the thin plate in blanking processing. The press forming means includes a machining reaction force measured by the machining reaction force measurement unit, a punch position measured by the punch position measurement unit, and a blank tension. A thin plate press forming apparatus characterized by having a press forming condition control unit that controls wrinkle holding pressure and / or forming speed based on strength, work hardening index (n value), elongation, circumference and plate thickness . 前記加工反力測定部によって測定された加工反力と前記ポンチ位置測定部によって測定されたポンチ位置が、ブランキング加工におけるポンチ位置(Xi(i=1〜N))毎の加工反力の履歴データ(Ri(i=1〜N))であることを特徴とする請求項1記載の薄板のプレス成形加工装置。
但し、Nはデータ数。
The machining reaction force measured by the machining reaction force measurement unit and the punch position measured by the punch position measurement unit are history of machining reaction force for each punch position (Xi (i = 1 to N)) in blanking. It is data (Ri (i = 1-N)), The press molding processing apparatus of the thin plate of Claim 1 characterized by the above-mentioned.
N is the number of data.
前記加工反力測定部が測定した加工反力が、ブランキング加工における加工反力の最大値(A)であり、前記ポンチ位置測定部が測定したポンチ位置が、前記加工反力測定部によって測定された加工中における加工反力が最大となるポンチ位置(B)及び前記加工反力が最大値の50%〜70%に減少するときのポンチ位置(C)であり、前記プレス成形条件制御部は、前記最大値(A)、前記ポンチ位置(B)及び前記ポンチ位置(C)に加え、更に、金型更新直後の磨耗がないときの加工反力の履歴データ(R0i(i=1〜N))と前記ブランキング加工における加工反力の履歴データ(Ri(i=1〜N))の標準偏差(D)に基づいてしわ押さえ圧及び/又は成形速度を制御する機能を有することを特徴とする請求項2記載の薄板のプレス成形加工装置。   The machining reaction force measured by the machining reaction force measurement unit is the maximum value (A) of the machining reaction force in blanking, and the punch position measured by the punch position measurement unit is measured by the machining reaction force measurement unit. The punch position (B) where the reaction force during machining is maximized and the punch position (C) when the machining reaction force is reduced to 50% to 70% of the maximum value, and the press molding condition control unit In addition to the maximum value (A), the punch position (B), and the punch position (C), the history data (R0i (i = 1 to 1) of machining reaction force when there is no wear immediately after the die update) N)) and a function of controlling the wrinkle pressing pressure and / or the forming speed based on the standard deviation (D) of the history data (Ri (i = 1 to N)) of the processing reaction force in the blanking process. The thin plate according to claim 2 Press-forming apparatus. 前記プレス成形条件制御部は、回帰式によりしわ押さえ圧及び/又は成形速度を制御する機能を有することを特徴とする請求項3記載の薄板のプレス成形加工装置。   4. The thin plate press forming apparatus according to claim 3, wherein the press forming condition control unit has a function of controlling a wrinkle holding pressure and / or a forming speed by a regression equation. 前記加工反力測定部が、ポンチ又はダイス金型に埋め込まれた圧電素子であることを特徴とする請求項1〜4の何れか1項に記載の薄板のプレス成形加工装置。   The thin plate press forming apparatus according to any one of claims 1 to 4, wherein the processing reaction force measuring unit is a piezoelectric element embedded in a punch or a die. 前記加工反力測定部が、ブランク形状に沿って、ポンチ又はダイス金型に複数埋め込まれた圧電素子であることを特徴とする請求項1〜5の何れか1項に記載の薄板のプレス成形加工装置。   The thin plate press molding according to any one of claims 1 to 5, wherein the processing reaction force measurement unit is a piezoelectric element embedded in a punch or a die mold along a blank shape. Processing equipment. 前記ポンチ位置測定部は、ポンチの側面に設けた突出部の変位を測定する非接触式の変位計からなることを特徴とする請求項1〜6の何れか1項に記載の薄板のプレス成形加工装置。   The thin plate press molding according to any one of claims 1 to 6, wherein the punch position measuring unit is composed of a non-contact displacement meter for measuring a displacement of a protrusion provided on a side surface of the punch. Processing equipment. 前記ポンチ位置測定部は、ポンチの剛性k[kN/mm]を予め計算により算出しておき、前記ポンチ突出部の変位測定値をxt[mm]、xt測定時の加工反力をF[kN]とした場合にポンチ位置xp[mm]を
xp = xt − F/k
として算出する機能を有することを特徴とする請求項7記載の薄板のプレス成形加工装置。
The punch position measuring unit calculates the punch stiffness k [kN / mm] in advance, the displacement measurement value of the punch protrusion is xt [mm], and the machining reaction force during xt measurement is F [kN]. ], Punch position xp [mm]
xp = xt − F / k
The thin plate press forming apparatus according to claim 7, having a function of calculating as follows.
JP2007244978A 2006-12-18 2007-09-21 Thin plate press forming equipment Active JP4943284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244978A JP4943284B2 (en) 2006-12-18 2007-09-21 Thin plate press forming equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006339923 2006-12-18
JP2006339923 2006-12-18
JP2007244978A JP4943284B2 (en) 2006-12-18 2007-09-21 Thin plate press forming equipment

Publications (2)

Publication Number Publication Date
JP2008173686A true JP2008173686A (en) 2008-07-31
JP4943284B2 JP4943284B2 (en) 2012-05-30

Family

ID=39701097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244978A Active JP4943284B2 (en) 2006-12-18 2007-09-21 Thin plate press forming equipment

Country Status (1)

Country Link
JP (1) JP4943284B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143811A (en) 2014-05-19 2016-12-14 신닛테츠스미킨 카부시키카이샤 Press molding method and metal mold for press molding
CN112207204A (en) * 2020-09-16 2021-01-12 东风柳州汽车有限公司 Stamping processing method for oil filler seat of side outer plate
CN112517728A (en) * 2019-09-18 2021-03-19 松下知识产权经营株式会社 Blanking device
WO2022186337A1 (en) * 2021-03-04 2022-09-09 Jfeスチール株式会社 Press line, press forming condition calculation method, and press forming condition calculation program
CN115338301A (en) * 2022-08-22 2022-11-15 东莞市京优精密机械有限公司 High-speed punch press and using method thereof
CN116765233A (en) * 2023-08-16 2023-09-19 昆明市明利丰通信铁塔制造有限公司 Iron tower installation position plate punching device with automatic positioning function
US11878334B2 (en) * 2019-01-17 2024-01-23 Nippon Steel Corporation Method of manufacturing press-formed product and press line
JP7508009B2 (en) 2021-03-04 2024-07-01 Jfeスチール株式会社 Press line, press molding condition calculation method, and press molding condition calculation program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207411A (en) * 1987-02-23 1988-08-26 Sumitomo Metal Ind Ltd Method for controlling rolling mill
JP2001198622A (en) * 2000-01-17 2001-07-24 Amada Co Ltd Calculating method for material attribute, method and apparatus for working plate
JP2003154497A (en) * 2001-11-21 2003-05-27 Nidec Tosok Corp Press apparatus
JP2006075884A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Press formation system, press formation method and computer program
JP2006224144A (en) * 2005-02-17 2006-08-31 Amada Co Ltd Method and machine for bending metal plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207411A (en) * 1987-02-23 1988-08-26 Sumitomo Metal Ind Ltd Method for controlling rolling mill
JP2001198622A (en) * 2000-01-17 2001-07-24 Amada Co Ltd Calculating method for material attribute, method and apparatus for working plate
JP2003154497A (en) * 2001-11-21 2003-05-27 Nidec Tosok Corp Press apparatus
JP2006075884A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Press formation system, press formation method and computer program
JP2006224144A (en) * 2005-02-17 2006-08-31 Amada Co Ltd Method and machine for bending metal plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143811A (en) 2014-05-19 2016-12-14 신닛테츠스미킨 카부시키카이샤 Press molding method and metal mold for press molding
US10376941B2 (en) 2014-05-19 2019-08-13 Nippon Steel Corporation Press forming method and tool for press forming
US11407019B2 (en) 2014-05-19 2022-08-09 Nippon Steel Corporation Press forming method and tool for press forming
US11878334B2 (en) * 2019-01-17 2024-01-23 Nippon Steel Corporation Method of manufacturing press-formed product and press line
CN112517728A (en) * 2019-09-18 2021-03-19 松下知识产权经营株式会社 Blanking device
CN112207204B (en) * 2020-09-16 2022-09-20 东风柳州汽车有限公司 Stamping processing method for oil filler seat of side outer plate
CN112207204A (en) * 2020-09-16 2021-01-12 东风柳州汽车有限公司 Stamping processing method for oil filler seat of side outer plate
WO2022186337A1 (en) * 2021-03-04 2022-09-09 Jfeスチール株式会社 Press line, press forming condition calculation method, and press forming condition calculation program
JP7508009B2 (en) 2021-03-04 2024-07-01 Jfeスチール株式会社 Press line, press molding condition calculation method, and press molding condition calculation program
CN115338301A (en) * 2022-08-22 2022-11-15 东莞市京优精密机械有限公司 High-speed punch press and using method thereof
CN115338301B (en) * 2022-08-22 2023-06-06 东莞市京优精密机械有限公司 High-speed punch press and use method thereof
CN116765233A (en) * 2023-08-16 2023-09-19 昆明市明利丰通信铁塔制造有限公司 Iron tower installation position plate punching device with automatic positioning function
CN116765233B (en) * 2023-08-16 2023-11-24 昆明市明利丰通信铁塔制造有限公司 Iron tower installation position plate punching device with automatic positioning function

Also Published As

Publication number Publication date
JP4943284B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4833531B2 (en) Press molding processing apparatus, press molding processing method, computer program, and recording medium
JP4943284B2 (en) Thin plate press forming equipment
RU2395360C2 (en) Punching procedure (versions) and installation for punching (versions)
JP2006075884A (en) Press formation system, press formation method and computer program
KR102271009B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
JP5236205B2 (en) High-strength steel sheet forming equipment line
JP3572950B2 (en) Press forming method and apparatus
JP4870200B2 (en) Press molding processing system, press molding processing method, and computer program
JP2009095877A (en) Apparatus and method for press-forming sheet metal
JP4823886B2 (en) Thin plate blanking press mold and blank processing method
JP2009022986A (en) Blanking apparatus provided with fracture measurement function
JP6200274B2 (en) Final depth detection device and final depth detection method of punch in processing machine
WO2022186337A1 (en) Press line, press forming condition calculation method, and press forming condition calculation program
JP2010115702A (en) Press machine for adjusting press forming mold and method for adjusting mold
JP7508009B2 (en) Press line, press molding condition calculation method, and press molding condition calculation program
KR20090070144A (en) Method for evaluating friction property of steel material using cup drawing experiment
Akinlabi et al. Characterising the effect of springback on mechanically formed steel plates
CN117015448A (en) Press line, press forming condition calculation method, and press forming condition calculation program
CN115427166A (en) Method for determining necking limit strain of metal sheet
Van Den Boogaard et al. Experimental validation of numerical sensitivities in a deep drawing simulation
JP2005219113A (en) Method and apparatus for press forming
MXPA06005001A (en) Press forming device, press forming method, computer program, and recording medium
JPH05115921A (en) Method for determining material dimension in bending of thin sheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R151 Written notification of patent or utility model registration

Ref document number: 4943284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350