JP2009022986A - Blanking apparatus provided with fracture measurement function - Google Patents

Blanking apparatus provided with fracture measurement function Download PDF

Info

Publication number
JP2009022986A
JP2009022986A JP2007189243A JP2007189243A JP2009022986A JP 2009022986 A JP2009022986 A JP 2009022986A JP 2007189243 A JP2007189243 A JP 2007189243A JP 2007189243 A JP2007189243 A JP 2007189243A JP 2009022986 A JP2009022986 A JP 2009022986A
Authority
JP
Japan
Prior art keywords
punch
displacement meter
punching
fracture surface
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007189243A
Other languages
Japanese (ja)
Inventor
Takashi Matsuno
崇 松野
Atsushi Nitta
淳 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007189243A priority Critical patent/JP2009022986A/en
Publication of JP2009022986A publication Critical patent/JP2009022986A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the yield of a formed product in which working is applied to a blanked fracture. <P>SOLUTION: The blanking apparatus comprises: a blanking punch; a die; and a stroke amount measuring means for the blanking punch. In the side face of the blanking punch, a displacement gauge measuring the distance with a workpiece is buried. The blanking device further comprises a calculation means calculating one or more kinds selected from the sagging ratio, sheared face ratio and fracture ratio on the basis of the measured value by the displacement gauge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント、ペンストック等で用いられる鉄、アルミニウム、チタン、マグネシウムおよびこれらの合金等からなる金属板の打ち抜き加工とその後の成形に関するものである。   The present invention is a stamping process of a metal plate made of iron, aluminum, titanium, magnesium and alloys thereof used in automobiles, home appliances, building structures, ships, bridges, construction machines, various plants, penstocks, etc. It relates to molding.

自動車、家電製品、建築構造物等の金属板1には、図1のような打ち抜きパンチ2と打ち抜きダイ3により打ち抜き加工が施される場合が多い。図1(a)は、丸穴などの閉断面に打ち抜く場合の側断面図(丸穴を有するダイ3の穴中心を通る垂直断面図)を示す。図1(b)は、例えばシャーで帯板を2つに切断して開断面に打ち抜く場合の側面図を示す。   A metal plate 1 such as an automobile, home appliance, or building structure is often punched by a punch 2 and a punch die 3 as shown in FIG. FIG. 1A shows a side cross-sectional view (vertical cross-sectional view passing through the hole center of the die 3 having a round hole) when punching into a closed cross-section such as a round hole. FIG.1 (b) shows the side view at the time of cut | disconnecting a strip | belt board into two with a shear | punching and punching into an open cross section, for example.

図2に示すように打ち抜き破面は、被加工材1がパンチ2により全体的に押し込まれて形成されるだれ4、パンチ2とダイ3のクリアランス内に被加工材1が引き込まれ局所的に引き伸ばされて形成されるせん断面5、パンチ2とダイ3のクリアランス内に引き込まれた被加工材1が破断して形成される破断面21、および被加工材1の裏面に生じるばり6によって構成される。   As shown in FIG. 2, the punched fracture surface is formed when the workpiece 1 is entirely pushed by the punch 2 4, and the workpiece 1 is drawn into the clearance between the punch 2 and the die 3 locally. Constructed by a stretched shear surface 5, a fracture surface 21 formed by breaking the workpiece 1 drawn into the clearance between the punch 2 and the die 3, and a flash 6 generated on the back surface of the workpiece 1. Is done.

図3のごとく、せん断面は2層(同図(a))、3層(同図(b))となる場合もあり、このような破面は2次せん断面7、3次せん断面8と呼ばれる。この場合には、2次せん断面7、3次せん断面8を含めて、せん断面と定義する。   As shown in FIG. 3, there are cases where the shear surface has two layers (FIG. 3 (a)) and three layers (FIG. 3 (b)). Called. In this case, the secondary shear surface 7 and the tertiary shear surface 8 are defined as a shear surface.

本発明において、図2に示すだれ4の板厚方向の長さをL1[mm]、せん断面5の板厚方向の長さをL2[mm]、破断面21の板厚方向の長さをL3[mm]、板厚をL[mm]としたとき、
だれ率=L1/L×100[%] ・・・・(1)
せん断面率=L2/L×100[%]
・・・・(2)
破断面率=L3/L×100[%] ・・・・(3)
と定義する。
In the present invention, the length in the plate thickness direction of the droop 4 shown in FIG. 2 is L1 [mm], the length in the plate thickness direction of the shear surface 5 is L2 [mm], and the length in the plate thickness direction of the fracture surface 21 is set. When L3 [mm] and the plate thickness are L [mm],
Drool rate = L1 / L × 100 [%] (1)
Shear area ratio = L2 / L × 100 [%]
(2)
Fracture surface ratio = L3 / L × 100 [%] (3)
It is defined as

同様に、図2、図3の2次せん断面7、3次せん断面8の板厚方向の長さを、それぞれL2s[mm]、L2t[mm]とすれば、せん断面率は、(4)式のようになる。
せん断面率(2次、3次せん断面を含む)=(L2+L2s+L2t)/L×100[%]・・・・(4)
Similarly, if the lengths of the secondary shear surface 7 and the tertiary shear surface 8 in FIGS. 2 and 3 are L2s [mm] and L2t [mm], respectively, the shear surface ratio is (4 )
Shear area ratio (including secondary and tertiary shear planes) = (L2 + L2s + L2t) / L × 100 [%] (4)

非特許文献1に記載されているように、これら打ち抜き破面の特徴は、材料特性、打ち抜き速度、打ち抜き荷重やクリアランス量、金型磨耗等の工具条件に影響されることが広く知られている。打ち抜き破面性状に起因する割れ発生が問題となる加工として、伸びフランジ加工が挙げられるが、伸びフランジ特性は非特許文献2に記載されるように、打ち抜き工具のクリアランス量に依存することが公知であり、すなわち、前述の打ち抜き破面の特徴が大きく影響する。   As described in Non-Patent Document 1, it is widely known that the characteristics of these punched fracture surfaces are affected by material characteristics, punching speed, punching load, clearance amount, tool conditions such as die wear, and the like. . Stretch flange processing is an example of a process in which cracking due to punched fracture surface properties becomes a problem, but it is known that stretch flange characteristics depend on the clearance amount of the punching tool as described in Non-Patent Document 2. In other words, the above-described features of the punched fracture surface are greatly affected.

伸びフランジ加工のように、打ち抜きとその後の成形を含む成形品が量産される工場では、成形不良による歩留まり悪化を防止するために、打ち抜き工具のクリアランス量と刃の磨耗管理が行われることが多い。クリアランス量管理のためにはクリアランス量の測定が必要であるが、このような測定技術には、特許文献1記載の非接触式変位計で打ち抜きパンチの芯の位置を測定してクリアランス量を測定する方法や、特許文献2記載のパンチ側面部に変形しやすい素材よりなる試験層を付着させてパンチをダイと嵌め合わせ、その後にパンチ側面部に残された試験層の状態からクリアランス量を測定する方法等が提案されている。刃の磨耗管理については、経験的に決定された打ち抜き回数後に工具交換が行われる場合が多く、これ以外には、測定された打ち抜き工具のアコースティックエミッションより刃の磨耗を推定し、工具交換を決定する方法が非特許文献3および特許文献3に記載されている。
特開2000−301398号公報 特開平7−151536号公報 特開2005−219173号公報 第96回塑性加工学講座「板材成形の基礎と応用」 塑性と加工,第46巻(2005),pp.625 日本機械学会論文集 C Vol.71 No.712 Page.3614-3621 (2005.12.25)
In a factory where mass production of molded products including punching and subsequent molding is performed, such as stretch flange processing, the clearance amount of the punching tool and blade wear management are often performed in order to prevent yield deterioration due to molding defects. . In order to manage the clearance amount, it is necessary to measure the clearance amount. In such a measurement technique, the clearance amount is measured by measuring the position of the punch punch core with a non-contact displacement meter described in Patent Document 1. And a test layer made of an easily deformable material is attached to the side surface of the punch described in Patent Document 2, and the punch is fitted to the die, and then the clearance amount is measured from the state of the test layer left on the side surface of the punch A method to do this has been proposed. For blade wear management, tool change is often performed after the number of punches determined empirically. In addition to this, tool wear is determined by estimating blade wear from the measured acoustic emission of the punch tool. Non-Patent Document 3 and Patent Document 3 describe the method to do this.
JP 2000-301398 A JP-A-7-151536 JP 2005-219173 A The 96th Plastic Processing Course "Fundamentals and Applications of Plate Forming" Plasticity and processing, 46 (2005), pp.625 Transactions of the Japan Society of Mechanical Engineers C Vol.71 No.712 Page.3614-3621 (2005.12.25)

以上の提案技術には、量産工場への適用を考えた場合、いくつかの課題が存在する。打ち抜き破面の成形性に影響する因子はあくまでも被加工材の打ち抜き破面の加工硬化や、破面形状による応力集中の度合いであり、加工条件は間接的な因子であるため、伸びフランジ成形品の歩留まりを上げるためにはクリアランス量や打ち抜き刃の磨耗のみの測定では不十分である。例えば、材料特性のばらつきや気温のような環境因子も影響する場合がある。上記に説明した従来の提案技術は金型の状態をモニタリングする方法であり、被加工材の状態をモニタリングする方法ではない。また、金型や環境因子より被加工材の状態を推定しようとした場合、これらの因子を全て測定する装置を設けるならば、多大な手間とコストがかかってしまう。   The above proposed technology has several problems when applied to a mass production factory. The factors that affect the formability of the punched fracture surface are the work hardening of the punched fracture surface of the workpiece and the degree of stress concentration due to the fracture surface shape, and the processing conditions are an indirect factor. In order to increase the yield, it is not sufficient to measure only the clearance amount and the wear of the punching blade. For example, environmental factors such as variations in material properties and temperature may also affect. The conventional proposed technique described above is a method for monitoring the state of the mold, not the method for monitoring the state of the workpiece. Moreover, when it is going to estimate the state of a workpiece from a metal mold | die or an environmental factor, if an apparatus which measures all these factors is provided, it will take a great effort and cost.

本発明は、材料特性のばらつきや気温のような環境因子の変動によらず、打ち抜き工程の後に打ち抜き破面が加工される成形品の歩留まりを向上させることができる打ち抜き装置を提供することを目的とする。   An object of the present invention is to provide a punching device that can improve the yield of a molded product in which a punched fracture surface is processed after the punching process regardless of variations in material characteristics and environmental factors such as air temperature. And

上記課題を解決するために、本発明の要旨とするところは、以下のとおりである。
(1)打ち抜きパンチ、ダイ、及び前記打ち抜きパンチのストローク量測定手段を有し、前記打ち抜きパンチの側面には被加工材との距離を測定する変位計が埋め込まれており、更に前記ストローク量測定手段の測定値と、前記変位計の測定値に基づいて被加工材の打ち抜き破面のだれ率、せん断面率、破断面率のいずれか1種以上を算出する演算手段を備えることを特徴とする破面測定機能を備えた打ち抜き装置。
(2) 前記変位計が、非接触式のレーザー変位計又は非接触式の光ファイバー変位計であることを特徴とする(1)記載の破面測定機能を備えた打ち抜き装置。
(3) 前記変位計が、前記打ち抜きパンチの側面に埋設された弾性手段の弾性力により、被加工材と接触しながら被加工材の変位を測定するピンであることを特徴とする(1)記載の破面測定機能を備えた打ち抜き装置。
(4)前記演算手段が、前記変位計の測定値の変動が所定値以下であったときのパンチストローク量をせん断面長さとして、せん断面率を算出する機能を有することを特徴とする(1)〜(3)の何れか1項に記載の破面測定機能を備えた打ち抜き装置。
(5)前記演算手段が、前記打ち抜きパンチの底面と被加工材の表面が接触を開始する時点のパンチストローク量と、前記変位計の変動が所定値以下となる開始時点のパンチストローク量の差から、前記変位計の設置位置のパンチ底面からの距離を引いた長さをだれ長さとして、だれ率を算出する機能を有することを特徴とする(1)〜(3)の何れか1項に記載の破面測定機能を備えた打ち抜き装置。
In order to solve the above problems, the gist of the present invention is as follows.
(1) It has a punching punch, a die, and a stroke amount measuring means for the punching punch, a displacement meter for measuring the distance from the workpiece is embedded in the side surface of the punching punch, and the stroke amount measurement And a calculating means for calculating at least one of a dripping rate, a shearing surface rate, and a fracture surface ratio of the punched fracture surface of the workpiece based on the measured value of the means and the measured value of the displacement meter, A punching device with a fracture surface measurement function.
(2) The punching device having a fracture surface measuring function according to (1), wherein the displacement meter is a non-contact type laser displacement meter or a non-contact type optical fiber displacement meter.
(3) The displacement meter is a pin that measures the displacement of the workpiece while being in contact with the workpiece by the elastic force of the elastic means embedded in the side surface of the punching punch (1) A punching device having the described fracture surface measuring function.
(4) The arithmetic means has a function of calculating a shear surface ratio by setting a punch stroke amount when a variation of a measured value of the displacement meter is equal to or less than a predetermined value as a shear surface length ( A punching device having the fracture surface measuring function according to any one of 1) to (3).
(5) The difference between the punch stroke amount at the time when the calculation means starts the contact between the bottom surface of the punching punch and the surface of the workpiece, and the punch stroke amount at the time when the variation of the displacement meter becomes a predetermined value or less. From any one of (1) to (3), it has a function of calculating a drooping rate by taking a length obtained by subtracting a distance from the bottom surface of the punch at the installation position of the displacement meter as a drooping length. A punching device equipped with the fracture surface measuring function described in 1.

本発明により、量産ラインの停止を行うことなく、打抜き後のプレス成形等成形加工の際に生じる伸びフランジ割れの発生の有無を、打抜き時に判別できるので、打ち抜き破面が加工される際の成形品の歩留まりを向上させることができる。   According to the present invention, it is possible to determine at the time of punching whether or not the occurrence of stretch flange cracks that occur during molding such as press molding after punching without stopping the mass production line. The yield of goods can be improved.

本発明は、金属材料の打ち抜きから成形加工に至る量産ライン上で、成形加工時に伸びフランジ変形を受ける前の、打ち抜き後の段階での打ち抜き破面のだれ率、せん断面率、破断面率を測定することを特徴とする。   In the present invention, on the mass production line from the punching of metal material to the forming process, before the stretch flange deformation at the time of forming process, the punched fracture surface shear rate, shear surface ratio, fracture surface ratio at the stage after punching It is characterized by measuring.

本発明において、伸びフランジ変形とは、成形加工により打ち抜き破面に引張応力が加わり変形することをいう。例えば、図4(a)に示す鋼板を同図(b)のように成形加工する際に、伸びフランジ部22が形成されるような変形を言う。また、本発明において、成形不良とは、成形加工に伴う伸びフランジ割れを言う。   In the present invention, stretch flange deformation refers to deformation by applying tensile stress to a punched fracture surface by molding. For example, when the steel plate shown in FIG. 4A is formed as shown in FIG. Further, in the present invention, defective molding refers to stretch flange cracks associated with molding.

本発明者らは、打ち抜き破面の成形性に打ち抜き破面の特徴が影響するという従来知見から、打ち抜き中に打ち抜き破面のだれ率、せん断面率、破断面率のいずれかを測定することができるならば、より高精度にブランクの成形前に成形加工後の部材の不良判定(予測)を行うことができ、量産ラインの歩留まり向上の効果が得られることを見出した。   From the conventional knowledge that the characteristics of the punched fracture surface influences the formability of the punched fracture surface, the present inventors measure any of the dripping rate, shear surface ratio, and fracture surface ratio of the punched fracture surface during the punching. Therefore, it was found that the defect determination (prediction) of the member after the forming process can be performed with higher accuracy before the blank forming, and the effect of improving the yield of the mass production line can be obtained.

このような観点から、当初、量産ライン上で、目視による打ち抜き破面の観測を試みたが、板厚1〜3[mm]に対して1[mm]以下の精度でせん断面、破断面等の破面形状の違いを見極めなければならず、目視による打ち抜き破面の不良判定は不可能であるとの結論に至った。
実験レベルでのだれ率、せん断面率、破断面率の測定は、主に打ち抜き破面周辺のみを切り出した試験片に対して顕微鏡による破面観察が行われるが、試験片を作成するコストと時間の観点から量産ライン上でこのような観察を行うことは不可能である。
From this point of view, we initially tried to observe the punched fracture surface on the mass production line, but with a thickness of 1 to 3 mm, the shear surface, fracture surface, etc. with an accuracy of 1 mm or less. It was necessary to determine the difference in the shape of the fracture surface, and it was concluded that it was impossible to visually determine the defect of the punched fracture surface.
The measurement of the drooling rate, shear surface rate, and fracture surface ratio at the experimental level is mainly performed by observing the fracture surface with a microscope on the test piece cut out only around the punched fracture surface. It is impossible to make such an observation on the mass production line from the viewpoint of time.

そこで、本発明者等は試行錯誤し、パンチのストローク量を測定できる打ち抜き装置において、図5のごとく被加工材1と打ち抜き中に接しているパンチ2側面に変位計9を埋設し、その出力値とパンチストローク量に基づいて、打抜き破面のだれ率、せん断面率、破断面率を演算することによって、後工程の成形加工により発生する伸びフランジ割れの発生を判別できる打ち抜き装置を発明した(前記(1)に係る発明)。   Therefore, the present inventors made trial and error and embedded a displacement meter 9 on the side surface of the punch 2 that is in contact with the workpiece 1 during punching as shown in FIG. 5 in a punching device that can measure the stroke amount of the punch. Invented a punching device that can determine the occurrence of stretch flange cracks caused by the molding process in the subsequent process by calculating the dripping rate, shear surface rate, and fracture surface rate of the punched fracture surface based on the value and the punch stroke amount (Invention according to (1)).

つまり、初期状態からのストローク量をX(mm)、被加工材との距離をY(mm)とすれば、二次元座標(X、Y)により、図2、図3に示す打抜き破面の形状を把握でき、この測定値に基づいて、前記(1)〜(4)式に基づいて、打抜き破面のだれ率、せん断面率、破断面率を演算する。   That is, if the stroke amount from the initial state is X (mm) and the distance to the workpiece is Y (mm), the punched fracture surface shown in FIGS. 2 and 3 is represented by two-dimensional coordinates (X, Y). The shape can be grasped, and on the basis of these measured values, the dripping rate, the shearing surface rate, and the fracture surface rate of the punched fracture surface are calculated based on the equations (1) to (4).

だれ率が所定値より大きいとき、せん断面率が所定値より大きいとき、破断面率が所定値より小さいとき、後工程の成形加工により、伸びフランジ割れが発生する可能性が高いと判別する。   When the droop rate is larger than a predetermined value, when the shearing surface ratio is larger than a predetermined value, or when the fracture surface ratio is smaller than a predetermined value, it is determined that there is a high possibility that stretch flange cracks will occur due to the subsequent forming process.

伸びフランジ割れは、打抜き破面のだれ率とせん断面率が大きいほど発生しやすいからである。また、破断面率が所定値より小さくなると、必然的にせん断面率とだれ率のいずれかが大きくなるからである。   This is because stretch flange cracks are more likely to occur as the dripping rate and shearing rate of the punched fracture surface increase. In addition, if the fracture surface ratio is smaller than a predetermined value, either the shearing surface ratio or the drooping rate inevitably increases.

変位計9の設置位置は、図4(a)に示す伸びフランジ部21の半円部のように、最も伸びフランジ割れの危険性が高いと考えられる打ち抜き端面を測定でき位置とすることが好ましい。   As for the installation position of the displacement meter 9, it is preferable that the punched end face considered to have the highest risk of stretch flange cracking can be measured, such as the semicircular part of the stretch flange part 21 shown in FIG. .

また、変位計9の測定中心のパンチ2底面からの高さは、予測されるだれ長さL1、せん断面長さ(L2+L2s+L2t)及びダイ底面からのパンチ下死点の距離Ld(図5参照)の合計以下であることが望ましい。変位計9付近の刃が剛性不足で欠けることなく、かつ、せん断面までの打ち抜き端面履歴を測定できる高さとしなければならないためである。   Further, the height of the measurement center of the displacement meter 9 from the bottom surface of the punch 2 is the expected droop length L1, the shear surface length (L2 + L2s + L2t), and the distance Ld of the punch bottom dead center from the die bottom surface (see FIG. 5). Or less than the sum of This is because the blade in the vicinity of the displacement meter 9 must be high enough to measure the punched end face history up to the shear plane without lacking rigidity and lacking.

前記パンチ2側面に埋設する変位計9を非接触式のものとする場合、レーザー変位計や光ファイバー変位計等が考えられる(前記(2)に係る発明)。   When the displacement meter 9 embedded in the side surface of the punch 2 is a non-contact type, a laser displacement meter, an optical fiber displacement meter, or the like can be considered (the invention according to (2) above).

打ち抜き加工のパンチ速度は通常、秒速30〜200[mm]と速いため、これらの変位計は高分解能かつ高応答速度のものでなければならない。被加工材1の板厚にもよるが、レーザー変位計や光ファイバー変位計の分解能は10〜50[μm]程度、応答周波数は1[kHz]以上を達成できるから、これらの何れかが望ましい。設置の方法としては例えば図6(a)ように、パンチ2側面に穴加工してネジ式のセンサープローブ10を埋設することや、センサーヘッド11自体をパンチ内部に組み込み、ネジ12により固定することが挙げられる。   Since the punching speed of punching is usually as high as 30 to 200 [mm] per second, these displacement meters must have high resolution and high response speed. Depending on the plate thickness of the workpiece 1, the resolution of the laser displacement meter or the optical fiber displacement meter can be about 10 to 50 [μm], and the response frequency can be 1 [kHz] or more, so any one of these is desirable. As an installation method, for example, as shown in FIG. 6A, a hole is formed in the side surface of the punch 2 to embed the screw type sensor probe 10, or the sensor head 11 itself is incorporated into the punch and fixed with the screw 12. Is mentioned.

前記パンチ2側面に設置する変位計9として、図7のように打ち抜きパンチ2側面にバネのような弾性体14で支持されたピン15を埋設して、被加工材と接触させながら被加工材の変位を測定してもよい(前記(3)に係る発明)。この場合、弾性体14の弾性力をロードセル13で測定し、変位に変換する。被加工材と接触するピン15の形状は、図8のように、テーパや丸みを付けて被加工材1に引っかからないような形状とすることが好ましい。また、接触式の変位計も非接触式の変位計と同じように、高分解能、高応答周波数が望ましい。   As the displacement meter 9 installed on the side surface of the punch 2, as shown in FIG. 7, a pin 15 supported by an elastic body 14 such as a spring is embedded in the side surface of the punching punch 2, and the workpiece is in contact with the workpiece. May be measured (the invention according to (3) above). In this case, the elastic force of the elastic body 14 is measured by the load cell 13 and converted into a displacement. The shape of the pin 15 in contact with the workpiece is preferably such that the pin 15 is tapered and rounded so as not to be caught on the workpiece 1 as shown in FIG. In addition, the contact displacement meter preferably has a high resolution and a high response frequency in the same manner as the non-contact displacement meter.

前記パンチ2側面に設置された変位計9により打ち抜き破面のだれ率、せん断面率、破断面率を演算する方法であるが、平坦な形状が特徴であるせん断面を求める場合は、パンチ2側面変位計9の出力の変動が所定値(分解能程度)以下であったときのパンチストローク量をせん断面の長さとして、(2)式又は(4)式により計算すればよいし(前記(4)に係る発明)、パンチ2の底面が被加工材1の表面と接触を開始するストローク量を事前に測定しておけば、そのストローク量と、変位計9の測定値の変動が所定値以下となる開始時点のストローク量の差から、変位計9の設置位置のパンチ2底面からの高さを引いた長さをだれ量として、(1)式により算出することができる(前記(5)に係る発明)。   In this method, the displacement rate of the punched fracture surface, the shear surface rate, and the fracture surface area ratio are calculated by the displacement meter 9 installed on the side surface of the punch 2. When a shear surface characterized by a flat shape is obtained, the punch 2 The punch stroke amount when the fluctuation of the output of the lateral displacement meter 9 is a predetermined value (about resolution) or less may be calculated by the formula (2) or (4) as the length of the shear plane (the above ( 4), if the stroke amount at which the bottom surface of the punch 2 starts to contact the surface of the workpiece 1 is measured in advance, the variation in the stroke amount and the measured value of the displacement meter 9 is a predetermined value. The length obtained by subtracting the height from the bottom surface of the punch 2 at the installation position of the displacement meter 9 from the difference in the stroke amount at the start time as follows can be calculated by the equation (1) ((5 ).

また、パンチ2側面変位計9の出力の変動が所定値(分解能程度)以下となる終了時点のパンチストローク量と、変位計9の出力が不連続に変化するときのパンチストローク量の差を元に、(3)式により破断面率を算出することもできる。   Further, the difference between the punch stroke amount at the end when the fluctuation of the output of the punch 2 side surface displacement meter 9 becomes a predetermined value (about resolution) or less and the punch stroke amount when the output of the displacement meter 9 changes discontinuously is obtained. In addition, the fracture surface ratio can also be calculated by equation (3).

本発明の効果を確かめるため、図9に示す装置による実験を行った。図9に示す装置は、パンチホルダー17に設けられたローラー式の変位計16(ストローク量測定手段)によりパンチストローク量が測定可能であり、図6(b)に示すようにパンチ2の内部に組み込まれたレーザー変位計11によりパンチ2の側面(レーザー変位計11)から打ち抜き破面までの距離を測定できる。これらの変位計はパソコン19(演算手段)に接続されており、2つの変位計11、16の測定値を処理して、レーザー変位計11の測定値の変動が0.04mm以下であるときのパンチストローク量がせん断面長さとして算出される。また、パンチ2の底面と被加工材1の表面が接触するときのストローク量でのローラー式変位計16の出力が0[mm]となるように較正をしており、パンチ2の底面と被加工材1の表面が接触を開始する時点からレーザー変位計11の測定値の変動が0.04[mm]以下となるまでのローラー式変位計16の出力[mm]の差から、レーザ変位計11の設置位置のパンチ底面からの距離を引いた長さがだれ量として算出される。   In order to confirm the effect of the present invention, an experiment using the apparatus shown in FIG. 9 was conducted. The apparatus shown in FIG. 9 is capable of measuring the punch stroke amount with a roller-type displacement meter 16 (stroke amount measuring means) provided in the punch holder 17, and inside the punch 2 as shown in FIG. 6 (b). The distance from the side surface (laser displacement meter 11) of the punch 2 to the punched fracture surface can be measured by the incorporated laser displacement meter 11. These displacement meters are connected to a personal computer 19 (calculation means), and when the measured values of the two displacement meters 11 and 16 are processed, the variation of the measured values of the laser displacement meter 11 is 0.04 mm or less. The punch stroke amount is calculated as the shear plane length. In addition, calibration is performed so that the output of the roller displacement meter 16 at the stroke amount when the bottom surface of the punch 2 and the surface of the workpiece 1 are in contact with each other is 0 [mm]. From the difference of the output [mm] of the roller-type displacement meter 16 from the time when the surface of the workpiece 1 starts to contact until the fluctuation of the measured value of the laser displacement meter 11 becomes 0.04 [mm] or less, the laser displacement meter The length obtained by subtracting the distance from the bottom surface of the punch at the installation position 11 is calculated as the amount of droop.

この装置により、平面図が図10に示す打ち抜き切断形状で打ち抜きをそれぞれの水準で10回ずつ行った。前記レーザー変位計11は図10に示す伸びフランジ割れ危険部を測定する。打ち抜きクリアランスは、板厚の5%と10%の2パターンとした。また、被加工材には引張強度590MPa級、板厚1.2[mm]の高張力鋼板を使用した。この材料は最終形状が図11のようになるように伸びフランジ成形を行う実験において、せん断面比率が30%以上となった際に伸びフランジ成形工程で割れが起こる危険性が高いと判断されたものである。なお、本実施例において、2次せん断面、3次せん断面が生じることはなかった。   With this apparatus, the plan view was punched in the punched cut shape shown in FIG. The laser displacement meter 11 measures the stretch flange crack risk part shown in FIG. The punching clearance was 2 patterns of 5% and 10% of the plate thickness. A high-tensile steel plate having a tensile strength of 590 MPa and a plate thickness of 1.2 [mm] was used as the workpiece. In an experiment in which stretch flange molding is performed so that the final shape is as shown in FIG. 11, this material is judged to have a high risk of cracking in the stretch flange molding process when the shear surface ratio is 30% or more. Is. In this example, a secondary shear surface and a tertiary shear surface were not generated.

だれ長さとせん断面長さについて、本装置により測定されたものと、打ち抜き材を切り出して撮影した断面写真より導出したものを図12(クリアランス5%の場合のだれ長さ(a)およびせん断長さ(b))と図13(クリアランス10%の場合のだれ長さ(a)およびせん断長さ(b))に示す(板厚で除した値がそれぞれの割合となる)。本装置による測定結果は断面写真より導出したものと5%以内の誤差に収まっており、測定が正しく行えた事を示している。   As for the droop length and the shear surface length, those measured by this apparatus and those derived from a cross-sectional photograph taken by cutting out the punched material are shown in FIG. 12 (the droop length (a) and the shear length when the clearance is 5%). (B)) and FIG. 13 (sag length (a) and shear length (b) when the clearance is 10%) (the values divided by the plate thickness are the respective ratios). The measurement results with this device are within 5% of the error derived from the cross-sectional photograph, indicating that the measurement was performed correctly.

前述の伸びフランジ試験を行ったところ、クリアランス5%の打ち抜き材は伸びフランジ割れが生じ、10%のものでは生じなかった。本装置による測定結果では、クリアランス5%の打ち抜き材はせん断面率が30%(=1.2×0.3=0.36)を超えており、被加工材のせん断面比率が30%以上となった際に伸びフランジ成形工程で割れが起こる危険性が高いという知見と一致する。したがって、本装置により伸びフランジ割れが起こる部材の判別が行え、打ち抜き破面が加工される部材の歩留まりを向上させることができることを示せたといえる。   When the above-mentioned stretch flange test was performed, a punched material with a clearance of 5% caused cracks in the stretch flange and did not occur with a punch of 10%. According to the measurement results of this device, the punched material with a clearance of 5% has a shear surface ratio exceeding 30% (= 1.2 × 0.3 = 0.36), and the shear surface ratio of the workpiece is 30% or more. This is consistent with the finding that there is a high risk of cracking in the stretch flange forming process. Therefore, it can be said that this apparatus can identify a member in which stretched flange cracking occurs and can improve the yield of a member whose punched fracture surface is processed.

本発明の効果を確かめるため、図14に示す装置による実験を行った。図14に示す装置は、パンチホルダー17に設けられたローラー式の変位計16(ストローク量測定手段)によりパンチストローク量が測定可能であり、パンチ2内部に組み込まれた接触式変位計20によりパンチ2側面(接触式変位計)と打ち抜き破面までの距離を測定できる。接触式変位計20は図8(b)のような構成となっている。パンチ2側面に空けられた孔の底面にロードセル13が埋め込まれており、ロードセル13と打ち抜き破面に接触するピン15がコイルバネ14で連結されている。ロードセル13による測定荷重値よりバネ14のたわみ量が得られ、変位に変換される。これらの変位計はパソコン19(演算手段)に接続されており、2つの変位計16、20の測定値を処理して、接触式変位計20の測定値の変動が0.04mm以下であるときのパンチストローク量がせん断面長さとして算出される。また、パンチ2の底面と被加工材1の表面が接触を開始するときのストローク量でのローラー式変位計16の出力が0[mm]となるように較正をしており、パンチ2の底面と被加工材1の表面が接触を開始する時点から接触式変位計20の測定値の変動が0.04[mm]以下となるまでのローラー式変位計16の出力[mm]の差から、レーザ変位計20の設置位置のパンチ底面からの距離を引いた長さがだれ量として算出される。   In order to confirm the effect of the present invention, an experiment using the apparatus shown in FIG. 14 was conducted. The apparatus shown in FIG. 14 can measure the punch stroke amount with a roller-type displacement meter 16 (stroke amount measuring means) provided in the punch holder 17, and can punch with a contact-type displacement meter 20 incorporated in the punch 2. The distance between the two side surfaces (contact displacement meter) and the punched fracture surface can be measured. The contact displacement meter 20 has a configuration as shown in FIG. A load cell 13 is embedded in the bottom surface of the hole formed in the side surface of the punch 2, and a pin 15 that is in contact with the load cell 13 and the punched fracture surface is connected by a coil spring 14. The amount of deflection of the spring 14 is obtained from the load value measured by the load cell 13 and converted into displacement. These displacement meters are connected to a personal computer 19 (calculation means), and when the measured values of the two displacement meters 16 and 20 are processed and the variation of the measured values of the contact displacement meter 20 is 0.04 mm or less. The punch stroke amount is calculated as the shear plane length. The bottom surface of the punch 2 is calibrated so that the output of the roller-type displacement meter 16 is 0 [mm] at the stroke amount when the bottom surface of the punch 2 and the surface of the workpiece 1 start to contact. From the difference in the output [mm] of the roller-type displacement meter 16 from the time when the surface of the workpiece 1 starts to contact and the fluctuation of the measured value of the contact-type displacement meter 20 becomes 0.04 [mm] or less, The length obtained by subtracting the distance from the bottom surface of the punch at the installation position of the laser displacement meter 20 is calculated as the amount of droop.

この装置により、実施例1と同様の試験片形状、打ち抜き条件で打ち抜きを行った。だれ長さとせん断面長さについて、本装置により測定されたものと、打ち抜き材を切り出して撮影した断面写真より導出したものを図15(クリアランス5%の場合のだれ長さ(a)およびせん断長さ(b))と図16(クリアランス10%の場合のだれ長さ(a)およびせん断長さ(b))に示す(板厚で除した値がそれぞれの割合となる)。本装置による測定結果は断面写真より導出したものと5%以内の誤差に収まっており、測定が正しく行えた事を示している。   With this apparatus, punching was performed with the same test piece shape and punching conditions as in Example 1. Figure 15 (sag length (a) and shear length in the case of 5% clearance) are measured with this apparatus and derived from a cross-sectional photograph taken by cutting a punched material. (B)) and FIG. 16 (sag length (a) and shear length (b) when clearance is 10%) (values divided by plate thickness are the respective ratios). The measurement results with this device are within 5% of the error derived from the cross-sectional photograph, indicating that the measurement was performed correctly.

前述の伸びフランジ試験を行ったところ、クリアランス5%の打ち抜き材は伸びフランジ割れが生じ、10%のものでは生じなかった。本装置による測定結果では、クリアランス5%の打ち抜き材はせん断面率が30%(=1.2×0.3=0.36mm)を超えており、被加工材のせん断面比率が30%以上となった際に伸びフランジ成形工程で割れが起こる危険性が高いという知見と一致する。したがって、本装置により伸びフランジ割れが起こる部材の判別が行え、打ち抜き破面が加工される部材の歩留まりを向上させることができることを示せたといえる。   When the above-mentioned stretch flange test was performed, a punched material with a clearance of 5% caused cracks in the stretch flange and did not occur with a punch of 10%. As a result of measurement by this apparatus, the punched material with a clearance of 5% has a shear surface ratio exceeding 30% (= 1.2 × 0.3 = 0.36 mm), and the workpiece has a shear surface ratio of 30% or more. This is consistent with the finding that there is a high risk of cracking in the stretch flange forming process. Therefore, it can be said that this apparatus can identify a member in which stretched flange cracking occurs and can improve the yield of a member whose punched fracture surface is processed.

打ち抜きによる切断加工を模式的に示した図である。(a)閉断面打抜きの場合を示す側断面図である。(b)開断面打抜きの場合を示す側面図である。It is the figure which showed typically the cutting process by punching. (A) It is a sectional side view which shows the case of closed cross-section punching. (B) It is a side view which shows the case of an open section punching. 打ち抜きによる切断加工の被加工材端面を模式的に示す図である。It is a figure which shows typically the to-be-processed material end surface of the cutting process by punching. 2次、3次せん断面をもつ打ち抜き破面を模式的に示す図である。(a)2次せん断面を持つ断面の模式図である。(b)3次せん断面を持つ断面の模式図である。It is a figure which shows typically the punching fracture surface which has a secondary and a tertiary shear surface. (A) It is a schematic diagram of the cross section which has a secondary shear surface. (B) It is a schematic diagram of the cross section which has a tertiary shear surface. 伸びフランジ変形を模式的に示す図である。(a)成形加工前のブランクを示す。(b)成形加工後の部材を示す。It is a figure which shows a stretch flange deformation | transformation typically. (A) The blank before a shaping | molding process is shown. (B) The member after forming is shown. 本発明の装置例を示す側断面図である。It is a sectional side view which shows the example of an apparatus of this invention. 非接触式変位計のパンチへの組み込み例を模式的に示す図である。(a)プローブを埋設する場合オを示す。(b)プローブをパンチヘッドに埋設する場合を示す。It is a figure which shows typically the example of the incorporation to the punch of a non-contact-type displacement meter. (A) In the case of embedding a probe, o is indicated. (B) The case where the probe is embedded in the punch head is shown. 接触式変位計のパンチへの組み込み例を模式的に示す図である。(a)テーパ角付きのピンを示す。(b)丸み付きのピンを示す。It is a figure which shows typically the example of the incorporation to the punch of a contact-type displacement meter. (A) A pin with a taper angle is shown. (B) A rounded pin is shown. 接触式変位計の構成例と構成部材であるピン形状例を模式的に示す図である。It is a figure which shows typically the example of a pin shape which is a structural example of a contact-type displacement meter, and a structural member. 実施例1で使用した装置を模式的に示す図である。It is a figure which shows typically the apparatus used in Example 1. FIG. 実施例1、2における打ち抜き部の形状を模式的に示す図である。It is a figure which shows typically the shape of the punching part in Example 1,2. 実施例1,2における、伸びフランジ試験後の被加工材形状を模式的に示す図である。It is a figure which shows typically the workpiece shape after the stretch flange test in Example 1,2. 実施例1における、本装置による破面形状測定結果と断面写真より得られた破面形状の測定結果の比較を示す図である。(a)だれ長さを示す(クリアランス=板厚の5%)。(b)せん断面長さを示す(クリアランス=板厚の5%)。In Example 1, it is a figure which shows the comparison of the measurement result of the fracture surface shape obtained from the fracture surface shape measurement result by this apparatus, and a cross-sectional photograph. (A) Shows the droop length (clearance = 5% of plate thickness). (B) Shows the shear plane length (clearance = 5% of plate thickness). 実施例1における、本装置による破面形状測定結果と断面写真より得られた破面形状の測定結果の比較を示す図である。(a)だれ長さを示す(クリアランス=板厚の10%)。(b)せん断面長さを示す(クリアランス=板厚の10%)。In Example 1, it is a figure which shows the comparison of the measurement result of the fracture surface shape obtained from the fracture surface shape measurement result by this apparatus, and a cross-sectional photograph. (A) Shows the length of the droop (clearance = 10% of the plate thickness). (B) Shows the shear plane length (clearance = 10% of plate thickness). 実施例2で使用した装置を模式的に示す図である。It is a figure which shows typically the apparatus used in Example 2. FIG. 実施例2における、本装置による破面形状測定結果と断面写真より得られた破面形状の測定結果の比較を示す図である。(a)だれ長さを示す(クリアランス=板厚の5%)。(b)せん断面長さを示す(クリアランス=板厚の5%)。In Example 2, it is a figure which shows the comparison of the measurement result of the fracture surface shape obtained from the fracture surface shape measurement result by this apparatus, and a cross-sectional photograph. (A) Shows the droop length (clearance = 5% of plate thickness). (B) Shows the shear plane length (clearance = 5% of plate thickness). 実施例2における、本装置による破面形状測定結果と断面写真より得られた破面形状の測定結果の比較を示す図である。(a)だれ長さを示す(クリアランス=板厚の10%)。(b)せん断面長さを示す(クリアランス=板厚の10%)。In Example 2, it is a figure which shows the comparison of the measurement result of the fracture surface shape obtained from the fracture surface shape measurement result by this apparatus, and a cross-sectional photograph. (A) Shows the length of the droop (clearance = 10% of the plate thickness). (B) Shows the shear plane length (clearance = 10% of plate thickness).

符号の説明Explanation of symbols

1 被加工材
2 打ち抜きパンチ
3 打ち抜きダイ
4 打ち抜き破面におけるだれ
5 打ち抜き破面におけるせん断面
6 打ち抜き破面におけるばり
7 打ち抜き破面における2次せん断面
8 打ち抜き破面における3次せん断面
9 打ち抜きパンチ側面に埋め込まれた変位計
10 非接触式変位計のネジ式プローブ
11 非接触式変位計のセンサーヘッド
12 非接触式ヘッドを固定するためのネジ
13 ロードセル
14 バネのような弾性体(実施例ではコイルバネとして引用)
15 接触式変位計を構成するピン
16 ローラー式の変位計
17 パンチホルダー
18 板逆押さえ
19 パソコン
20 接触式変位計
21 打ち抜き破面における破断面
22 伸びフランジ部
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Punching punch 3 Punching die 4 Drooping at punching fracture surface 5 Shearing surface at punching fracture surface 6 Burr at punching fracture surface 7 Secondary shearing surface at punching fracture surface 8 Tertiary shearing surface at punching fracture surface 9 Punching punch Displacement meter 10 embedded in a side surface Non-contact displacement meter screw type probe 11 Non-contact displacement meter sensor head 12 Screw for fixing the non-contact type head 13 Load cell 14 Spring-like elastic body (in the embodiment, (Quoted as coil spring)
15 Pin 16 constituting contact displacement meter Roller displacement meter 17 Punch holder 18 Reverse plate holder 19 Personal computer 20 Contact displacement meter 21 Fracture surface 22 on punched fracture surface Stretch flange

Claims (5)

打ち抜きパンチ、ダイ、及び前記打ち抜きパンチのストローク量測定手段を有し、前記打ち抜きパンチの側面には被加工材との距離を測定する変位計が埋め込まれており、更に前記ストローク量測定手段の測定値と、前記変位計の測定値に基づいて被加工材の打ち抜き破面のだれ率、せん断面率、破断面率のいずれか1種以上を算出する演算手段を備えることを特徴とする破面測定機能を備えた打ち抜き装置。   It has a punching punch, a die, and a stroke amount measuring means for the punching punch, a displacement meter for measuring a distance from the workpiece is embedded in a side surface of the punching punch, and further measuring by the stroke amount measuring means And a calculation means for calculating one or more of a dripping rate, a shear surface rate, and a fracture surface ratio of a punched fracture surface of a workpiece based on a value and a measurement value of the displacement meter Punching device with measuring function. 前記変位計が、非接触式のレーザー変位計又は非接触式の光ファイバー変位計であることを特徴とする請求項1記載の破面測定機能を備えた打ち抜き装置。   2. The punching device having a fracture surface measuring function according to claim 1, wherein the displacement meter is a non-contact type laser displacement meter or a non-contact type optical fiber displacement meter. 前記変位計が、前記打ち抜きパンチの側面に埋設された弾性手段の弾性力により、被加工材と接触しながら被加工材の変位を測定するピンであることを特徴とする請求項1記載の破面測定機能を備えた打ち抜き装置。   2. The break according to claim 1, wherein the displacement meter is a pin that measures the displacement of the workpiece while being in contact with the workpiece by the elastic force of the elastic means embedded in the side surface of the punching punch. Punching device with surface measurement function. 前記演算手段が、前記変位計の測定値の変動が所定値以下であったときのパンチストローク量をせん断面長さとして、せん断面率を算出する機能を有することを特徴とする請求項1〜3の何れか1項に記載の破面測定機能を備えた打ち抜き装置。   The said calculating means has a function which calculates a shear surface rate by making the amount of punch strokes when the change of the measured value of the displacement meter is below a predetermined value into a shear surface length. A punching device having the fracture surface measuring function according to any one of 3 above. 前記演算手段が、前記打ち抜きパンチの底面と被加工材の表面が接触を開始する時点のパンチストローク量と、前記変位計の変動が所定値以下となる開始時点のパンチストローク量の差から、前記変位計の設置位置のパンチ底面からの距離を引いた長さをだれ長さとして、だれ率を算出する機能を有することを特徴とする請求項1〜3の何れか1項に記載の破面測定機能を備えた打ち抜き装置。   From the difference between the punch stroke amount at the time when the bottom surface of the punching punch and the surface of the workpiece start to contact and the punch stroke amount at the start point when the displacement of the displacement meter becomes a predetermined value or less, The fracture surface according to any one of claims 1 to 3, wherein the fracture surface has a function of calculating a drooping rate, with a length obtained by subtracting a distance from the bottom surface of the punch at the installation position of the displacement meter as a drooping length. Punching device with measuring function.
JP2007189243A 2007-07-20 2007-07-20 Blanking apparatus provided with fracture measurement function Withdrawn JP2009022986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189243A JP2009022986A (en) 2007-07-20 2007-07-20 Blanking apparatus provided with fracture measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189243A JP2009022986A (en) 2007-07-20 2007-07-20 Blanking apparatus provided with fracture measurement function

Publications (1)

Publication Number Publication Date
JP2009022986A true JP2009022986A (en) 2009-02-05

Family

ID=40395311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189243A Withdrawn JP2009022986A (en) 2007-07-20 2007-07-20 Blanking apparatus provided with fracture measurement function

Country Status (1)

Country Link
JP (1) JP2009022986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088152A (en) * 2009-10-20 2011-05-06 Nippon Steel Corp Method of setting shearing condition
JP2014188553A (en) * 2013-03-27 2014-10-06 Daihatsu Motor Co Ltd Method of determining quality of cut surface by die-cutting process
WO2021010352A1 (en) * 2019-07-12 2021-01-21 日本製鉄株式会社 Blank material production method, press-formed article production method, shape determination method, shape determination program, blank material production apparatus, and blank material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088152A (en) * 2009-10-20 2011-05-06 Nippon Steel Corp Method of setting shearing condition
JP2014188553A (en) * 2013-03-27 2014-10-06 Daihatsu Motor Co Ltd Method of determining quality of cut surface by die-cutting process
WO2021010352A1 (en) * 2019-07-12 2021-01-21 日本製鉄株式会社 Blank material production method, press-formed article production method, shape determination method, shape determination program, blank material production apparatus, and blank material
JPWO2021010352A1 (en) * 2019-07-12 2021-01-21
CN114080280A (en) * 2019-07-12 2022-02-22 日本制铁株式会社 Method and apparatus for manufacturing blank, method for manufacturing press-molded article, method and program for determining shape of press-molded article, and blank
JP7288212B2 (en) 2019-07-12 2023-06-07 日本製鉄株式会社 Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
CN114080280B (en) * 2019-07-12 2024-01-12 日本制铁株式会社 Method and device for manufacturing blank, method for manufacturing press-molded product, shape determination method and program, and blank

Similar Documents

Publication Publication Date Title
JP5472518B1 (en) Method for determining limit strain of stretch flange and method for determining press forming possibility
WO2010041662A1 (en) Metallic press-formed piece crack determining method, apparatus, program and recording medium
JP4814851B2 (en) Estimation method of stretch flange crack in thin plate press forming simulation
JP4935713B2 (en) Method for determining whether molding is possible at the shear edge of a pressed product
JP5170089B2 (en) Thin plate press forming apparatus and press forming method
KR101999459B1 (en) Blank, molded article, mold and method for producing blank
KR102334109B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
KR20200044903A (en) Evaluation method of deformation limit, crack prediction method and design method of press mold
KR102271009B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
JP2010069533A (en) Estimation method for stretch-flange crack in consideration of strain gradient and judging system of stretch-flange crack in press forming simulation
JP2011147949A (en) Method and device for deciding breakage in press forming simulation of sheet
JP5236205B2 (en) High-strength steel sheet forming equipment line
JP4943284B2 (en) Thin plate press forming equipment
JP2009022986A (en) Blanking apparatus provided with fracture measurement function
JP4987362B2 (en) Hat-type metal parts and manufacturing method thereof
JP2009095877A (en) Apparatus and method for press-forming sheet metal
KR101220725B1 (en) Method and apparatus for evaluating galling and continous formability of steel sheet
JP2011173136A (en) Method of determining bending limitation of plate material and method of determining crack of pressed component by bending using the same
JP4823886B2 (en) Thin plate blanking press mold and blank processing method
JP5145689B2 (en) Blank for press molding of hat-shaped metal parts
JP7288212B2 (en) Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
Ding et al. The effect of crack propagation on the quality of fineblanking surface of cold-rolled steel sheet detected by PVDF film stress sensors
RU2621324C2 (en) Procedure for assessment of ability of flats to stamping
JP2022011080A (en) Method for evaluating bending end crack of plate
CN115427166A (en) Method for determining necking limit strain of metal sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005