JP2008170160A - Specimen for bending fatigue detection, and bending fatigue test method - Google Patents

Specimen for bending fatigue detection, and bending fatigue test method Download PDF

Info

Publication number
JP2008170160A
JP2008170160A JP2007000903A JP2007000903A JP2008170160A JP 2008170160 A JP2008170160 A JP 2008170160A JP 2007000903 A JP2007000903 A JP 2007000903A JP 2007000903 A JP2007000903 A JP 2007000903A JP 2008170160 A JP2008170160 A JP 2008170160A
Authority
JP
Japan
Prior art keywords
test piece
bending fatigue
test
specimen
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007000903A
Other languages
Japanese (ja)
Other versions
JP4501008B2 (en
Inventor
Kazuo Sato
佐藤  一雄
Taeko Ando
妙子 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2007000903A priority Critical patent/JP4501008B2/en
Publication of JP2008170160A publication Critical patent/JP2008170160A/en
Application granted granted Critical
Publication of JP4501008B2 publication Critical patent/JP4501008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specimen for bending fatigue detection that does not directly handle a minute test piece and accurately applies a load to a certain position of the test piece, in a bending fatigue test of a micro material. <P>SOLUTION: The specimen 6 for bending fatigue detection is used for testing a fatigue to the bending of the micro material. The specimen 6 for bending fatigue detection comprises the test piece 1 of a cantilever shape, an abutting section 5 that can abut on the tip of the test piece 1, a central member 2 for applying displacement to the test piece 1, and a frame member 4 for fixing test piece 1 and the micro material except the central member 2. A base end 7 of the test piece 1 displaces relatively in the vertical direction with respect to the abutting section 5, thereby putting the test piece 1 into the bent state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ材料の曲げ疲労検出用試験体、および、その曲げ疲労検出用試験体を用いた曲げ疲労試験方法に関する。   The present invention relates to a specimen for detecting bending fatigue of a micromaterial and a bending fatigue testing method using the specimen for detecting bending fatigue.

現在、半導体の微細加工技術を応用発展させたマイクロマシニングにより、マイクロマシンあるいはMEMSの開発・生産が進んでいる。マイクロマシンでは、マイクロ・ナノメートル寸法の片持ち梁、ブリッジ、メンブレン等の構造体が形成され、これら構造体の変形を積極的に利用するセンサやアクチュエータと、この変形を制御あるいは検出するための電気回路素子が同一デバイス上に集積されるマイクロマシンデバイスが多い。   At present, the development and production of micromachines or MEMS are progressing by micromachining, which is an application of semiconductor microfabrication technology. In micromachines, structures such as cantilever beams, bridges, and membranes with micro / nanometer dimensions are formed. Sensors and actuators that actively use deformations of these structures, and electrical devices for controlling or detecting these deformations There are many micromachine devices in which circuit elements are integrated on the same device.

これにより、シリコンやシリコン化合物、あるいは基板上に成膜された金属や有機膜など、これまで機械的要素として用いられた実績のない材料がマイクロマシンデバイスの構造部材として用いられ、その構造部材の変形や運動がデバイスの機能を決定づける。また、変形による破壊や繰り返し荷重による疲労などはデバイスの信頼性に影響を及ぼす。特にデバイスの商業化に当たっては高い信頼性が要求され、前記構造体の劣化に伴うデバイス機能の低下を回避するためにも、この構造体の疲労現象を明らかにする必要がある。   As a result, materials that have not been used as mechanical elements, such as silicon and silicon compounds, or metal or organic films deposited on substrates, have been used as structural members for micromachine devices. And exercise determine the function of the device. In addition, destruction due to deformation and fatigue due to repeated loads affect the reliability of the device. In particular, when a device is commercialized, high reliability is required, and it is necessary to clarify the fatigue phenomenon of the structure in order to avoid a decrease in device function due to the deterioration of the structure.

従来、機械的な疲労試験には、三点曲げや四点曲げなどの曲げ試験を利用したものが用いられてきた。これを応用したマイクロ材料の疲労試験方法として、片持ち梁形状の微小試験片を作製し、この試験片の自由端に繰り返し荷重を印加して疲労寿命を測定する方法がある。例えば、特許文献1では、マイクロスケールの片持ち梁が重力の影響で変形することを回避する目的で、縦置きにして固定する疲労試験装置が開示されている。また特許文献2の発明は、作製した片持ち梁に圧縮−引張の応力を交互に作用させることができる試験装置である。
特開2005―249590号公報 特開2005―37361号公報
Conventionally, a mechanical fatigue test using a bending test such as three-point bending or four-point bending has been used. As a fatigue test method for micromaterials to which this is applied, there is a method of measuring a fatigue life by producing a cantilever-shaped micro test piece and applying a load repeatedly to the free end of the test piece. For example, Patent Document 1 discloses a fatigue test apparatus in which a microscale cantilever is fixed in a vertical position for the purpose of avoiding deformation due to the influence of gravity. The invention of Patent Document 2 is a test apparatus that can alternately apply compression-tensile stress to the produced cantilever.
JP-A-2005-249590 Japanese Patent Laid-Open No. 2005-37361

ところで、試験装置に対して対象とするマイクロ材料は非常に小さく、試験片を試験装置に取り付けるときの誤差、あるいは繰り返し負荷における荷重点位置のずれなどは、試験片が小さくなるとともに相対的に大きくなる。生じた微小な変位や印加される曲げ応力を高精度に測定するためには、荷重を正確に同じ位置に印加し、この状態を維持し続けることが好ましい。一方、微小な試験片の固定方法には一般的に機械的に把持する手法が用いられるが、対象がマイクロ材料では適用が困難であり、また長時間に及ぶ疲労試験では同条件の把持状態を保証することは難しい。   By the way, the target micromaterial for the test apparatus is very small, and the error when attaching the test piece to the test apparatus or the deviation of the load point position under repeated load is relatively large as the test piece becomes smaller. Become. In order to measure the generated minute displacement and the applied bending stress with high accuracy, it is preferable to apply a load to the same position and keep this state. On the other hand, a mechanical gripping method is generally used as a method for fixing a small specimen, but it is difficult to apply it to micromaterials, and in a fatigue test over a long period of time, the gripping condition under the same conditions is used. It is difficult to guarantee.

本発明は、マイクロ材料の曲げ疲労試験における不確かさの要因となる位置合わせ等を必要としない、高精度で信頼性の高い曲げ疲労検出用試験体を提供することを目的とし、さらに、この曲げ疲労検出用試験体を用いた、優れた試験方法を提供することを目的とする。   An object of the present invention is to provide a highly accurate and reliable test body for detecting bending fatigue that does not require alignment and the like that cause uncertainty in bending fatigue testing of micromaterials. An object of the present invention is to provide an excellent test method using a fatigue detection specimen.

本発明はかかる課題を解決するため、請求項1に記載の発明は、マイクロ材料の曲げに対する疲労を試験する曲げ疲労検出用試験体において、前記マイクロ材料からなる膜を備える基板と、前記マイクロ材料からなる膜が加工されることで、先端側が自由端となる片持ち梁形状の試験片と、前記マイクロ材料及び前記基板が加工されることで形成される、前記試験片の先端部に当接可能な当接部と、前記曲げに対する疲労を試験する際に、前記曲げ疲労検出用試験体を固定するための固定部と、前記疲労の試験を行うため、前記試験片の先端部及び前記当接部の間で相対的変位を付与するための変移付与部とを有することを特徴とする。
このような曲げ疲労検出用試験体の場合、曲げ疲労検出用試験体を固定部で固定した状態で、変移付与部に変移を付与させることで、片持ち梁形状の試験片の先端部を当接部に対し当接させ、試験片に曲げ変形を誘起させる。これにより、試験片が曲げ状態となる疲労試験が行われることになるが、この曲げ疲労検出用試験体では、従来のマイクロ材料の曲げ疲労試験における不確かさの要因となる位置合わせ等が不要になる。
In order to solve this problem, the present invention provides a bending fatigue detection test body for testing fatigue against bending of a micromaterial, a substrate including a film made of the micromaterial, and the micromaterial. By processing a film made of the above, a cantilever-shaped test piece having a free end on the tip side, and a contact with the tip of the test piece formed by processing the micromaterial and the substrate A possible contact portion, a fixing portion for fixing the bending fatigue detection specimen when testing fatigue against the bending, and a tip portion of the test piece and the contact portion for performing the fatigue test. And a transition imparting portion for imparting a relative displacement between the contact portions.
In the case of such a specimen for detecting bending fatigue, the tip of the cantilever-shaped specimen is applied by applying a transition to the transition applying section in a state where the specimen for detecting bending fatigue is fixed by the fixing section. The test piece is brought into contact with the contact portion to induce bending deformation. As a result, a fatigue test in which the test piece is in a bent state is performed. However, in this test specimen for detecting bending fatigue, alignment that causes uncertainty in the conventional bending fatigue test of micromaterials is unnecessary. Become.

請求項2に記載の発明は、請求項1に記載の曲げ疲労検出用試験体において、前記試験片は、シリコン基板上に成膜された膜から形成されている。これにより、シリコン基板上に成膜された膜の疲労試験が可能となる。   According to a second aspect of the present invention, in the test body for detecting bending fatigue according to the first aspect, the test piece is formed of a film formed on a silicon substrate. Thereby, the fatigue test of the film formed on the silicon substrate can be performed.

請求項3に記載の発明は、請求項1または2に記載の曲げ疲労検出用試験体において、前記試験片に生じる状態の変化を電気的に検出する測定部を備える。   According to a third aspect of the present invention, in the bending fatigue detection test body according to the first or second aspect, a measurement unit that electrically detects a change in a state generated in the test piece.

請求項4に記載の発明は、請求項1または2に記載の曲げ疲労検出用試験体を用いて試験する曲げ疲労試験方法において、
曲げ疲労検出用試験体を固定部で固定した状態で、変移付与部に変移を付与させることで、片持ち梁形状の試験片の先端部を当接部に対し当接させ、片持ち梁形状の試験片に曲げ変形を誘起することを特徴とする曲げ疲労試験方法。
According to a fourth aspect of the present invention, there is provided a bending fatigue test method for testing using the bending fatigue detection specimen according to the first or second aspect.
With the test piece for bending fatigue detection fixed at the fixed part, the tip of the cantilever-shaped test piece is brought into contact with the contact part by applying a transition to the transition imparting part. A bending fatigue test method characterized by inducing bending deformation in the test piece.

本発明の曲げ疲労検出用試験体を用いる場合、マイクロ材料の曲げ疲労試験において、微小な試験片を直接取り扱うことがなく、試験片の一定位置に正確に荷重を負荷させることでき、従来のマイクロ材料の曲げ疲労試験における不確かさの要因となる位置合わせ等が不要になる。
そして本発明の曲げ疲労検出用試験体を用いる曲げ疲労試験において、微小な試験片の位置合わせ作業が省略されるため、煩雑な手順が減り、作業能率を上げることができる。また、従来の試験と異なり、微小な試験片を直接取り扱うことがないので、試験前における試験片の損傷を回避できる効果がある。
さらに、試験片の当接部が、曲げ疲労検出用試験体の内部に備えられているため、試験片に対し繰り返し負荷を与える場合において、常に試験片の正確な位置に荷重を負荷させることができる。
請求項3は発明では、試験片の表面に被試験材料が成膜され、電気的に検査する配線が形成されているので、外力の作用による配線の異常を容易に検出することができる。
When using the test specimen for detecting bending fatigue of the present invention, in a bending fatigue test of a micromaterial, a minute test piece is not directly handled, and a load can be accurately applied to a predetermined position of the test piece. Positioning that causes uncertainty in the bending fatigue test of materials becomes unnecessary.
And in the bending fatigue test using the test body for detecting bending fatigue according to the present invention, the alignment work of the minute test piece is omitted, so that complicated procedures are reduced and the work efficiency can be increased. Further, unlike a conventional test, since a minute test piece is not directly handled, there is an effect that damage to the test piece before the test can be avoided.
Furthermore, since the contact part of the test piece is provided inside the test body for detecting bending fatigue, when a load is repeatedly applied to the test piece, the load can always be applied to the correct position of the test piece. it can.
According to the third aspect of the invention, since the material to be tested is formed on the surface of the test piece and the wiring to be electrically inspected is formed, it is possible to easily detect an abnormality in the wiring due to the action of an external force.

図1は、本発明に係るマイクロ材料の曲げ疲労検出用試験体の構成を示す斜視図であり、図2は、図1中の線分A−A’における断面図で、図2(a)は変形前、図2(b)は変形後の様子を表した図である。
曲げ疲労検出用試験体6は、片持ち梁形状の試験片1と、試験片1を保持する中央部材2と、中央部材2に連結される梁部材3と、梁部材3に連結される枠部材4と、試験片1の先端側に位置する当接部5とを備えている。
この実施の形態の場合、試験片1は、曲げ疲労検出用試験体6の中央にあるブロック形状の中央部材2から左右に突き出るように最上層に配置されている。中央部材2は、4本の梁部材3によって、中央部材2の外周に位置する枠部材4に連結されている。枠部材4は、左右の試験片1に対向する位置に当接部5を一対備えており、当接部5は初期段階で試験片1に曲げ荷重を与えないよう段差になっている。
図2に示すように試験片1は、基端部7において中央部材2に固定されている。当接部5は試験片1のやや下方に位置するように段差状になっており、試験片1と初期状態では接触していない。中央部材2が、試験片1に対し変位を付与するための変移付与部として機能し、また、枠部材4は、試験片1および中央部材2以外のマイクロ材料を固定するための固定部の一部として機能する。
そして、図2(b)に示すように、中央部材2が、矢印8の方向、枠部材4が矢印9の方向に相対的に変位すると、試験片1の先端部が、当接部5に対し相対的に上下方向に移動して当接する。この場合、対象に配置された4本の梁部材3がガイド部の役割を果たし、相対的な移動は精度の良いものとなる。
図1と図2に示すように2本の試験片1を中央部材2の対称な2箇所に配置して対称形状とすることにより、一方が壊れるまで中央部材2は平衡が保たれた状態で移動する。そして、片持ち梁形状の試験片1の先端部を当接部5に対し当接させ、試験片1に曲げ変形を誘起させ、試験片1が曲げ状態となることで、疲労試験が行われる。
FIG. 1 is a perspective view showing a configuration of a test specimen for detecting bending fatigue of a micromaterial according to the present invention. FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. FIG. 2B is a diagram showing a state after the deformation, and FIG.
The test body 6 for detecting bending fatigue includes a cantilever-shaped test piece 1, a central member 2 that holds the test piece 1, a beam member 3 that is connected to the central member 2, and a frame that is connected to the beam member 3. A member 4 and a contact portion 5 located on the tip side of the test piece 1 are provided.
In the case of this embodiment, the test piece 1 is arranged in the uppermost layer so as to protrude from the block-shaped central member 2 at the center of the bending fatigue detection test body 6 to the left and right. The central member 2 is connected to a frame member 4 located on the outer periphery of the central member 2 by four beam members 3. The frame member 4 includes a pair of contact portions 5 at positions facing the left and right test pieces 1, and the contact portions 5 are stepped so as not to apply a bending load to the test piece 1 in the initial stage.
As shown in FIG. 2, the test piece 1 is fixed to the central member 2 at the base end portion 7. The contact portion 5 is stepped so as to be located slightly below the test piece 1 and is not in contact with the test piece 1 in the initial state. The central member 2 functions as a transition imparting portion for imparting a displacement to the test piece 1, and the frame member 4 is one of fixing portions for fixing the micromaterial other than the test piece 1 and the central member 2. It functions as a part.
2B, when the central member 2 is relatively displaced in the direction of the arrow 8 and the frame member 4 is relatively displaced in the direction of the arrow 9, the tip of the test piece 1 is brought into contact with the contact portion 5. On the other hand, it moves relatively up and down and comes into contact. In this case, the four beam members 3 arranged on the object serve as a guide portion, and the relative movement becomes accurate.
As shown in FIG. 1 and FIG. 2, by arranging two test pieces 1 at two symmetrical positions of the central member 2 to form a symmetrical shape, the central member 2 is kept in a balanced state until one of them is broken. Moving. Then, the fatigue test is performed by bringing the tip of the cantilever-shaped test piece 1 into contact with the contact portion 5 and inducing bending deformation in the test piece 1 so that the test piece 1 is in a bent state. .

次に、試験材料として単結晶シリコンを用いる場合の、曲げ疲労検出用試験体6の製作工程例を、図3を用いて説明する。
曲げ疲労検出用試験体6のスタート材料として厚さが350μmの単結晶シリコン基板10を用意する。さらに、試験材料となるマイクロ材料として、厚さが10μmの単結晶シリコンの活性層11がシリコン酸化膜12によって結合された、SOIウェハを用意する。活性層11にレジスト13を塗布し、フォトリソグラフィによりパターニングを行う(図3(a)参照)。このレジスト13をマスク材料として、六フッ化硫黄ガスによる反応性イオンエッチングを活性層11に施し、試験片1や梁部材4の形状を決定する。その後マスク材料として利用したレジスト13をアセトンにより除去する(図3(b)参照)。
次にSOIウェハを1100℃で熱酸化し、全面にシリコン酸化膜14を形成し、フォトリソグラフィにより裏面をパターニングする(図3(c)参照)。水酸化カリウム水溶液によりシリコン基板をエッチングし、残り100μm程度になったところで薬液を所定の水溶液に変更し、エッチングを続ける(図3(d)参照)。薬液を変更することにより、シリコン基板10と活性層11の間のシリコン酸化膜12までのエッチングを過不足なく、再現性の良い状態で行うことができる。最後にウェハの表面と試験片の下側にあるシリコン酸化膜12、14を、フッ酸とフッ化アンモニウムの混合液によるエッチングで除去することで、曲げ疲労検出用試験体6が完成する(図3(e)参照)。
このような方法で、マイクロ材料が加工されることで、先端側が自由端となる片持ち梁形状の試験片1が形成され、また、マイクロ材料及びシリコン基板10が加工されることで、試験片1の先端部に当接可能な当接部5が形成されることになる。
Next, an example of a manufacturing process of the bending fatigue detection test body 6 when single crystal silicon is used as a test material will be described with reference to FIG.
A single crystal silicon substrate 10 having a thickness of 350 μm is prepared as a starting material for the test body 6 for detecting bending fatigue. Further, an SOI wafer in which an active layer 11 of single crystal silicon having a thickness of 10 μm is bonded by a silicon oxide film 12 is prepared as a micromaterial to be a test material. A resist 13 is applied to the active layer 11 and patterned by photolithography (see FIG. 3A). Using this resist 13 as a mask material, reactive ion etching with sulfur hexafluoride gas is performed on the active layer 11 to determine the shapes of the test piece 1 and the beam member 4. Thereafter, the resist 13 used as a mask material is removed with acetone (see FIG. 3B).
Next, the SOI wafer is thermally oxidized at 1100 ° C. to form a silicon oxide film 14 on the entire surface, and the back surface is patterned by photolithography (see FIG. 3C). The silicon substrate is etched with an aqueous potassium hydroxide solution, and when the remaining amount becomes about 100 μm, the chemical solution is changed to a predetermined aqueous solution and etching is continued (see FIG. 3D). By changing the chemical solution, etching up to the silicon oxide film 12 between the silicon substrate 10 and the active layer 11 can be performed in a reproducible state without excess or deficiency. Finally, the silicon oxide films 12 and 14 on the wafer surface and the lower side of the test piece are removed by etching with a mixed solution of hydrofluoric acid and ammonium fluoride, thereby completing the test body 6 for detecting bending fatigue (see FIG. 3 (e)).
By processing the micro material by such a method, the cantilever-shaped test piece 1 having a free end at the tip side is formed, and the micro material and the silicon substrate 10 are processed, thereby the test piece. The abutting portion 5 that can abut on the tip portion of 1 is formed.

シリコン以外の材料を試験片とする場合には、シリコン基板を予め熱酸化して表面にシリコン酸化膜を形成した後、上面に試験材料となる膜を蒸着・スパッタ法などを施して形成する。形成した試験材料の加工は図3(a)〜(b)と同じ工程、シリコン基板の加工は図3(c)〜(d)と同じ工程で行うことができる。ただし図3(c)で全面に形成したシリコン酸化膜14は、シリコン窒化膜、金属膜、有機膜などで代用する。
このような試験体を使用することで、シリコン酸化膜、シリコン窒化膜、金属膜、有機膜などからなる試験片1の疲労試験が可能となる。
次に曲げ疲労試験装置について説明する。図4は正面図であり、図5は曲げ疲労試験装置全体の斜視図である。図4は図5中の矢印15から見た図を示す。ただし説明しやすいように、図4では変位を検出するためのレーザ29や光センサ26等一式が、図5では同じくレーザ29や支持材一式等を適宜省略している。
図4、図5において、曲げ疲労試験装置50は、曲げ疲労検出用試験体6を固定するためのホルダ16を備える。ホルダ16は、垂直方向に駆動するアクチュエータ(図示略)に取り付けられており、該アクチュエータはアクチュエータホルダ17に取り付けられる。アクチュエータホルダ17はXYZステージ18に4個のボルトを介して取り付けられる。XYZステージ18はベース19上に固定されており、ベース19は除振台20上に設置される。ベース19上には平板から構成される2本の側部支持材21が取り付けられ、側部支持材21の上部に平板からなる上部支持材22が取り付けられている。
When a material other than silicon is used as a test piece, a silicon substrate is previously thermally oxidized to form a silicon oxide film on the surface, and then a film to be a test material is formed on the upper surface by vapor deposition / sputtering or the like. Processing of the formed test material can be performed in the same process as FIGS. 3A to 3B, and processing of the silicon substrate can be performed in the same process as FIGS. 3C to 3D. However, the silicon oxide film 14 formed on the entire surface in FIG. 3C is substituted with a silicon nitride film, a metal film, an organic film, or the like.
By using such a test body, a fatigue test of the test piece 1 made of a silicon oxide film, a silicon nitride film, a metal film, an organic film or the like can be performed.
Next, a bending fatigue test apparatus will be described. 4 is a front view, and FIG. 5 is a perspective view of the entire bending fatigue test apparatus. FIG. 4 shows a view as seen from the arrow 15 in FIG. However, for ease of explanation, in FIG. 4, a set of lasers 29 and optical sensors 26 for detecting displacement is omitted, and in FIG.
4 and 5, the bending fatigue test apparatus 50 includes a holder 16 for fixing the test body 6 for detecting bending fatigue. The holder 16 is attached to an actuator (not shown) that is driven in the vertical direction, and the actuator is attached to the actuator holder 17. The actuator holder 17 is attached to the XYZ stage 18 via four bolts. The XYZ stage 18 is fixed on a base 19, and the base 19 is installed on a vibration isolation table 20. Two side support members 21 made of a flat plate are attached on the base 19, and an upper support member 22 made of a flat plate is attached to the upper portion of the side support member 21.

曲げ疲労試験装置50は、積層型圧電体により構成された力センサ23と、力センサ23の先端に四角柱状のブロック24を有している。力センサ23は上部支持材22に接着剤により固定されている。ブロック24の下面は前記中央部材2の上面よりも小さくなるよう設定され、ブロック24を中央部材2の真上に配置するように、XYZステージ18を用いて位置合わせを行う。なお、力センサ23は積層型圧電体の他、ロードセルやこれに準じるひずみゲージ式のセンサ等でもよい。   The bending fatigue test apparatus 50 includes a force sensor 23 composed of a laminated piezoelectric body, and a square columnar block 24 at the tip of the force sensor 23. The force sensor 23 is fixed to the upper support member 22 with an adhesive. The lower surface of the block 24 is set to be smaller than the upper surface of the central member 2, and alignment is performed using the XYZ stage 18 so that the block 24 is arranged directly above the central member 2. Note that the force sensor 23 may be a load cell, a strain gauge type sensor according to the load cell, or the like in addition to the laminated piezoelectric body.

45度の斜面がミラーコーティングされた直角二等辺三角柱の形状のプリズムミラー25(図5、図6では25a、25bとして記載)は、上部支持材22に、力センサ23を対称軸とする位置に接着剤により固定されている。2分割フォトダイオードと回路からなる光センサ26は、平板からなる固定部材27を介してXYステージ28に取り付けられており、XYステージ28はベース19に固定されている。   A prism mirror 25 (shown as 25a and 25b in FIGS. 5 and 6) having a right-angled isosceles triangular prism with a 45-degree slope mirror coating is placed on the upper support material 22 and at a position with the force sensor 23 as an axis of symmetry. It is fixed with an adhesive. An optical sensor 26 composed of a two-divided photodiode and a circuit is attached to an XY stage 28 via a fixed member 27 made of a flat plate, and the XY stage 28 is fixed to the base 19.

次に、この曲げ疲労試験装置50を用いた、曲げ疲労検出用試験体6の曲げ疲労試験方法について詳細に説明する。
ホルダ16の中央には円形または四角形状の孔または凹部が設けられており、曲げ疲労検出用試験体6を固定したとき、枠部材4のみがホルダ16に接触し、孔や凹部上に配置された中央部材2は上下方向に自由に移動できる。枠部材4のうちホルダ16に接触する部分が、曲げ疲労検出用試験体6を固定するための固定部として機能する。
ホルダ16に曲げ疲労検出用試験体6を固定した後、XYZステージ18を用いて中央部材2とブロック24を対向させ、XYZステージ18を上方向に移動させて中央部材2とブロック24を接触させる。接触点は、力センサ23からの検出値が急激に増加した点で特定する。
Next, a bending fatigue test method for the bending fatigue detection test body 6 using the bending fatigue test apparatus 50 will be described in detail.
A circular or square hole or recess is provided in the center of the holder 16, and when the bending fatigue detection test body 6 is fixed, only the frame member 4 contacts the holder 16 and is disposed on the hole or recess. The central member 2 can move freely in the vertical direction. A portion of the frame member 4 that contacts the holder 16 functions as a fixing portion for fixing the bending fatigue detection test body 6.
After fixing the test body 6 for detecting bending fatigue to the holder 16, the central member 2 and the block 24 are opposed to each other using the XYZ stage 18, and the central member 2 and the block 24 are brought into contact by moving the XYZ stage 18 upward. . The contact point is specified by the point at which the detection value from the force sensor 23 increases rapidly.

アクチュエータホルダ17は、上下方向に駆動するアクチュエータを前記XYZステージ18に固定するために用いるが、アクチュエータの形態によっては省略できる。この実施例では該アクチュエータにボイスコイルモータが用いられている。なお、アクチュエータは電気信号によって変位を発生する圧電素子などでもよい。
アクチュエータは上下方向に往復運動することができ、図示省略の信号発生器などに接続され、信号発生器からの制御信号によって駆動する。アクチュエータの駆動はホルダ16を介して曲げ疲労検出用試験体6に伝達され、枠部材4が上下方向に駆動する。中央部材2は力センサ23によって上方向の変位が拘束され、枠部材4が接触点より上方で駆動するときは、中央部材2と枠部材4の間、もしくは試験片の当接部5と基端部7の間で相対的な変位が生じる。
The actuator holder 17 is used to fix an actuator that is driven in the vertical direction to the XYZ stage 18, but may be omitted depending on the form of the actuator. In this embodiment, a voice coil motor is used for the actuator. The actuator may be a piezoelectric element that generates displacement by an electric signal.
The actuator can reciprocate in the vertical direction, is connected to a signal generator (not shown), and is driven by a control signal from the signal generator. The drive of the actuator is transmitted to the bending fatigue detection test body 6 through the holder 16, and the frame member 4 is driven in the vertical direction. When the center member 2 is restrained from being displaced upward by the force sensor 23 and the frame member 4 is driven above the contact point, the center member 2 is positioned between the center member 2 and the frame member 4 or between the contact portion 5 of the test piece and the base member 2. A relative displacement occurs between the ends 7.

図6は、曲げ試験において枠部材4に発生した変位の検出方法について示す図で、図6(a)は上方から見た図、図5(b)は正面図である。
レーザ29から発振したレーザ光は光路30を通りプリズムミラー25aに入射し、光路31に曲げられ曲げ疲労検出用試験体6に照射する。曲げ疲労検出用試験体6からの反射された光は光路32を通ってプリズムミラー25bに入射し、光路33を通って光センサ26に入射する。図6に示すように、プリズムミラー25a、25bはともに上面から見て45、正面から見て45傾いた状態で設置する。曲げ疲労検出用試験体6の上下方向の変位に伴って生じる光路差を、光センサ26によって電気信号に変換して検出する。
6A and 6B are diagrams showing a method of detecting the displacement generated in the frame member 4 in the bending test, FIG. 6A is a view seen from above, and FIG. 5B is a front view.
The laser light oscillated from the laser 29 passes through the optical path 30 and is incident on the prism mirror 25a, bent to the optical path 31, and applied to the bending fatigue detection test body 6. The reflected light from the bending fatigue detection specimen 6 enters the prism mirror 25 b through the optical path 32 and enters the optical sensor 26 through the optical path 33. As shown in FIG. 6, a prism mirror 25a, 25b are placed together as viewed from the top 45 o, with tilted 45 o when viewed from the front. The optical path difference caused by the vertical displacement of the bending fatigue detection specimen 6 is converted into an electrical signal by the optical sensor 26 and detected.

なお、変位の測定は半導体のプロセスにより、梁部材3の根元にひずみゲージを作製することによって測定することもできる。   The displacement can also be measured by manufacturing a strain gauge at the base of the beam member 3 by a semiconductor process.

次に、曲げ疲労検出用試験体の第2実施形態を説明する。図7は第2実施形態の曲げ疲労検出用試験体34を示す。すなわち、2本の試験片35を枠部材36に固定し、当接部37は対向する中央部材38に設けることとなり、基端部39は試験片35と枠部材36の連結部となる。中央部材38が、当接部37に対し変位を付与するための変移付与部として機能し、また、枠部材36は、曲げ疲労検出用試験体34を固定するための固定部の一部として機能する。   Next, a second embodiment of the test body for detecting bending fatigue will be described. FIG. 7 shows a specimen 34 for detecting bending fatigue according to the second embodiment. That is, the two test pieces 35 are fixed to the frame member 36, the abutting portion 37 is provided on the opposing central member 38, and the base end portion 39 is a connecting portion between the test piece 35 and the frame member 36. The central member 38 functions as a transition imparting portion for imparting displacement to the contact portion 37, and the frame member 36 functions as a part of a fixing portion for fixing the bending fatigue detection test body 34. To do.

曲げ疲労検出用試験体6あるいは曲げ疲労検出用試験体34では、シリコンなどの試験片1上に試験材料となる金属材料を成膜し、曲げ疲労による電気信号の変化を測定することによって、材料に生じる異常を検出することもできる。   In the bending fatigue detection test body 6 or the bending fatigue detection test body 34, a metal material as a test material is formed on the test piece 1 such as silicon, and a change in an electric signal due to bending fatigue is measured, whereby a material is obtained. It is also possible to detect abnormalities that occur in

図8は異常検出用の金属配線を形成した試験片の図で、図8(a)は試験片上に配線パターンを形成、図8(b)は試験片がコの字形状で突き出しておりその上に配線パターンを形成したものである。この場合、曲げ疲労検出用試験体は、試験片に生じる状態の変化を電気的に検出する測定部を備えることになる。
具体的には、試験片1あるいは試験片35上に、金属膜でコの字形状の配線パターン40と、電気信号を外部に取り出すための電極パッド41が作製されている。電極パッド41は中央部材2(中央部材2に試験片1が支持されている場合)または枠部材4(枠部材4に試験片1が支持されている場合)上に形成される。電極パッド41を介して配線パターン40の電気抵抗を測定することにより、曲げ疲労試験による配線材料の電気的な劣化を測定することができる。
この発明は、上記発明の実施の形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
FIG. 8 is a diagram of a test piece on which a metal wiring for detecting an abnormality is formed. FIG. 8A shows a wiring pattern formed on the test piece, and FIG. 8B shows a test piece protruding in a U-shape. A wiring pattern is formed thereon. In this case, the test body for detecting bending fatigue includes a measuring unit that electrically detects a change in the state generated in the test piece.
Specifically, a U-shaped wiring pattern 40 made of a metal film and an electrode pad 41 for taking out an electric signal to the outside are formed on the test piece 1 or the test piece 35. The electrode pad 41 is formed on the central member 2 (when the test piece 1 is supported by the central member 2) or the frame member 4 (when the test piece 1 is supported by the frame member 4). By measuring the electrical resistance of the wiring pattern 40 through the electrode pad 41, the electrical deterioration of the wiring material due to the bending fatigue test can be measured.
The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

図1は本発明の実施形態における片持ち梁の曲げ疲労検出用試験体の斜視図を示す。FIG. 1 is a perspective view of a test body for detecting bending fatigue of a cantilever in an embodiment of the present invention. 図2は図1中試験体のA−A’断面図を示す。FIG. 2 is a cross-sectional view of the specimen in FIG. 図3は曲げ疲労検出用試験体のプロセス工程図である。FIG. 3 is a process diagram of a bending fatigue detection specimen. 図4は曲げ疲労試験装置の一部を正面から見た図である。FIG. 4 is a front view of a part of the bending fatigue test apparatus. 図5は曲げ疲労試験装置全体の斜視図である。FIG. 5 is a perspective view of the entire bending fatigue test apparatus. 図6は試験体の変位量を測定するレーザ光の照射を示す概念図である。FIG. 6 is a conceptual diagram showing irradiation of a laser beam for measuring the displacement amount of the specimen. 図7は本発明に係る曲げ疲労検出用試験体の第2実施形態を示す斜視図である。FIG. 7 is a perspective view showing a second embodiment of a test body for detecting bending fatigue according to the present invention. 図8は配線パターンを形成した片持ち梁試験片である。FIG. 8 shows a cantilever test piece on which a wiring pattern is formed.

符号の説明Explanation of symbols

1、試験片
2、中央部材
3、梁部材
4、枠部材
5、当接部
6、曲げ疲労検出用試験体
7、基端部
16、ホルダ
17、アクチュエータホルダ
18、XYZステージ
23、力センサ
24、ブロック
25、プリズムミラー
26、光センサ
29、レーザ
30、31、32、33、光路
34、曲げ疲労検出用試験体
50、曲げ疲労試験装置
1, test piece 2, central member 3, beam member 4, frame member 5, contact portion 6, bending fatigue detection test body 7, proximal end portion 16, holder 17, actuator holder 18, XYZ stage 23, force sensor 24 , Block 25, prism mirror 26, optical sensor 29, lasers 30, 31, 32, 33, optical path 34, test body 50 for detecting bending fatigue, bending fatigue test apparatus

Claims (4)

マイクロ材料の曲げに対する疲労を試験する曲げ疲労検出用試験体において、
前記マイクロ材料からなる膜を備える基板と、
前記マイクロ材料からなる膜が加工されることで、先端側が自由端となる片持ち梁形状の試験片と、
前記マイクロ材料及び前記基板が加工されることで形成される、前記試験片の先端部に当接可能な当接部と、
前記曲げに対する疲労を試験する際に、前記曲げ疲労検出用試験体を固定するための固定部と、
前記疲労の試験を行うため、前記試験片の先端部及び前記当接部の間で相対的変位を付与するための変移付与部とを有することを特徴とする曲げ疲労検出用試験体。
In a test specimen for detecting bending fatigue, which tests fatigue for bending of micromaterials,
A substrate comprising a film made of the micromaterial;
By processing the film made of the micromaterial, a cantilever-shaped test piece having a free end on the tip side, and
An abutting portion formed by processing the micromaterial and the substrate, the abutting portion being able to abut on a tip portion of the test piece;
When testing fatigue against the bending, a fixing portion for fixing the bending fatigue detection specimen,
In order to perform the fatigue test, a bending fatigue detection test body having a displacement imparting portion for imparting a relative displacement between a tip portion of the test piece and the contact portion.
請求項1に記載の曲げ疲労検出用試験体において、
前記試験片は、シリコン基板上に成膜された膜から形成されていることを特徴とする曲げ疲労検出用試験体。
In the specimen for bending fatigue detection according to claim 1,
The test piece for detecting bending fatigue, wherein the test piece is formed of a film formed on a silicon substrate.
請求項1または2に記載の曲げ疲労検出用試験体において、
前記試験片に生じる状態の変化を電気的に検出する測定部を備えることを特徴とする曲げ疲労検出用試験体。
In the specimen for bending fatigue detection according to claim 1 or 2,
A test body for detecting bending fatigue, comprising a measuring section for electrically detecting a change in a state generated in the test piece.
請求項1または2に記載の曲げ疲労検出用試験体を用いて試験する曲げ疲労試験方法において、
固定部で固定した状態で、変移付与部に変移を付与させることで、片持ち梁形状の試験片の先端部を当接部に対し当接させ、片持ち梁形状の試験片に曲げ変形を誘起することを特徴とする曲げ疲労試験方法。
In a bending fatigue test method for testing using the bending fatigue detection specimen according to claim 1 or 2,
In the state where it is fixed by the fixed part, the tip of the cantilever-shaped test piece is brought into contact with the abutting part by imparting a transition to the transition-giving part, and the cantilever-shaped test piece is bent and deformed. A bending fatigue test method characterized by inducing.
JP2007000903A 2007-01-09 2007-01-09 Bending fatigue test specimen and bending fatigue test method Active JP4501008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000903A JP4501008B2 (en) 2007-01-09 2007-01-09 Bending fatigue test specimen and bending fatigue test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000903A JP4501008B2 (en) 2007-01-09 2007-01-09 Bending fatigue test specimen and bending fatigue test method

Publications (2)

Publication Number Publication Date
JP2008170160A true JP2008170160A (en) 2008-07-24
JP4501008B2 JP4501008B2 (en) 2010-07-14

Family

ID=39698414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000903A Active JP4501008B2 (en) 2007-01-09 2007-01-09 Bending fatigue test specimen and bending fatigue test method

Country Status (1)

Country Link
JP (1) JP4501008B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335892A (en) * 2013-06-13 2013-10-02 中国人民解放军国防科学技术大学 Off-chip bending test microstructure for multiple testing beams
KR20180105068A (en) * 2017-03-14 2018-09-27 한국과학기술원 Mems-based apparatus for characterization of fracture behavior at nano-scale and method thereof
KR20180129942A (en) * 2016-04-13 2018-12-05 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Electromechanical components, electromechanical component assemblies, methods for detecting potential differences with electromechanical components, and methods for functional checking of electromechanical components
CN113970436A (en) * 2021-11-12 2022-01-25 北京亿华通科技股份有限公司 Fatigue performance testing method for fuel cell cantilever support
CN114136775A (en) * 2021-11-18 2022-03-04 安徽科技学院 Performance testing device for low-dimensional photoelectric material
CN114755115A (en) * 2022-02-11 2022-07-15 广东新稳建筑检测鉴定有限公司 Method and system for detecting bending fatigue damage of reinforced concrete beam
KR20230034710A (en) * 2021-09-03 2023-03-10 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037361A (en) * 2003-06-30 2005-02-10 Kansai Tlo Kk Fatigue testing machine for micro/nano material
JP2008175725A (en) * 2007-01-19 2008-07-31 Hyogo Prefecture Poisson's ratio measuring method of thin-film-like material, and measuring device for it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037361A (en) * 2003-06-30 2005-02-10 Kansai Tlo Kk Fatigue testing machine for micro/nano material
JP2008175725A (en) * 2007-01-19 2008-07-31 Hyogo Prefecture Poisson's ratio measuring method of thin-film-like material, and measuring device for it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010001406, 安藤妙子,室屋伸吾,佐藤一雄, "薄膜の曲げ試験用デバイスの開発", 日本機械学会2007年度年次大会講演論文集, 20070907, No.07−1, pp.717−718, JP, 社団法人日本機械学会 *
JPN6010001408, 田中完弘,生津資大,井上尚三, "薄膜材料のポアソン比測定に向けたオンチップ純曲げ試験", 第50回日本学術会議材料工学連合講演会論文集, 20061213, pp.116−117, JP, 社団法人日本材料学会 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335892A (en) * 2013-06-13 2013-10-02 中国人民解放军国防科学技术大学 Off-chip bending test microstructure for multiple testing beams
KR20180129942A (en) * 2016-04-13 2018-12-05 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Electromechanical components, electromechanical component assemblies, methods for detecting potential differences with electromechanical components, and methods for functional checking of electromechanical components
KR102168206B1 (en) * 2016-04-13 2020-10-20 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Electromechanical component, electromechanical component assembly, method for detecting potential difference with electromechanical component, and method for functional check of electromechanical component
US11079411B2 (en) 2016-04-13 2021-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electromechanical component, electromechanical component arrangement, method of detecting a potential difference by using an electromechanical component, and method for performing a functional test on the electromechanical component
KR20180105068A (en) * 2017-03-14 2018-09-27 한국과학기술원 Mems-based apparatus for characterization of fracture behavior at nano-scale and method thereof
KR102087131B1 (en) 2017-03-14 2020-03-10 한국과학기술원 Mems-based apparatus for characterization of fracture behavior at nano-scale and method thereof
KR20230034710A (en) * 2021-09-03 2023-03-10 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus
KR102557214B1 (en) * 2021-09-03 2023-07-19 선문대학교 산학협력단 Ultrasonic fatigue testing apparatus
CN113970436A (en) * 2021-11-12 2022-01-25 北京亿华通科技股份有限公司 Fatigue performance testing method for fuel cell cantilever support
CN113970436B (en) * 2021-11-12 2023-11-14 北京亿华通科技股份有限公司 Fatigue performance testing method for fuel cell cantilever bracket
CN114136775A (en) * 2021-11-18 2022-03-04 安徽科技学院 Performance testing device for low-dimensional photoelectric material
CN114136775B (en) * 2021-11-18 2023-12-12 安徽科技学院 Performance test device for low-dimensional photoelectric material
CN114755115A (en) * 2022-02-11 2022-07-15 广东新稳建筑检测鉴定有限公司 Method and system for detecting bending fatigue damage of reinforced concrete beam

Also Published As

Publication number Publication date
JP4501008B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4501008B2 (en) Bending fatigue test specimen and bending fatigue test method
Kim et al. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation
US20060186874A1 (en) System and method for mechanical testing of freestanding microscale to nanoscale thin films
JP4942113B2 (en) Thin film test piece structure, manufacturing method thereof, tensile test method thereof, and tensile test apparatus
CN101133320A (en) Minute structure inspection device, minute structure inspection method, and minute structure inspection program
WO2006106876A1 (en) Microstructure probe card, and microstructure inspecting device, method, and computer program
JP4749790B2 (en) Micromirror device and manufacturing method thereof, angle measurement method of micromirror device, and micromirror device application apparatus
US6424165B1 (en) Electrostatic apparatus for measurement of microfracture strength
JP4264107B2 (en) Mechanical vibrator and manufacturing method thereof
JP2010085139A (en) Thin-film testing device
Weigel et al. Ultralow expansion glass as material for advanced micromechanical systems
KR100672060B1 (en) Thin film specimen for mechanical test and Fabrication method thereof
US10707405B2 (en) Electromechanical actuator
JP2006010503A (en) Mechanical characteristic measuring instrument and mechanical characteristic measuring method for piezoelectric element
JPH1038916A (en) Probe device and electrically connecting method for minute region
JP2005331446A (en) Micro material tester
Muntwyler et al. Three-axis micro-force sensor with tunable force range and sub-micronewton measurement uncertainty
JP2007225471A (en) Bonding state evaluation method and device, test piece for bonding state evaluation, manufacturing method of test piece for bonding state evaluation, and semiconductor element having test piece for bonding state evaluation
JP2003194851A (en) Contact probe structure and its method of manufacture
CN103728074B (en) A kind of micro-nano material mechanics properties testing structure
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
JP2012030333A (en) Structure including holder unit and device unit and fixing method for the same
Marini et al. Acoustic micro-opto-mechanical transducers for crack width measurement on concrete structures from aerial robots
JP4500156B2 (en) Material property evaluation system
JP4785537B2 (en) Probe, scanning probe microscope, and probe manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4501008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350