JP2008166487A - Semiconductor light-emitting device and manufacturing method therefor - Google Patents

Semiconductor light-emitting device and manufacturing method therefor Download PDF

Info

Publication number
JP2008166487A
JP2008166487A JP2006354291A JP2006354291A JP2008166487A JP 2008166487 A JP2008166487 A JP 2008166487A JP 2006354291 A JP2006354291 A JP 2006354291A JP 2006354291 A JP2006354291 A JP 2006354291A JP 2008166487 A JP2008166487 A JP 2008166487A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
emitting device
phosphor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354291A
Other languages
Japanese (ja)
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006354291A priority Critical patent/JP2008166487A/en
Publication of JP2008166487A publication Critical patent/JP2008166487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that hue adjustment needed for use of semiconductor light-emitting device as lighting application requires thickness adjustment by grinding a phosphor layer, that lessening unnecessary light emitted from a side face of the phosphor layer requires use of a reflecting unit having a reflective surface, and that grinding work may damage the semiconductor light-emitting device. <P>SOLUTION: The semiconductor light-emitting device is designed so that a top face is higher than the surface of the reflecting unit, and the top face is ground while a hue of light is checked to manufacture the semiconductor light-emitting device offering a desired hue. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反射部で囲んだ半導体発光素子の周囲に蛍光体層を配した半導体発光装置において、色合いを調製するために、蛍光体層を研削して調節した半導体発光装置及びその製造方法に関するものである。   The present invention relates to a semiconductor light-emitting device in which a phosphor layer is disposed around a semiconductor light-emitting element surrounded by a reflecting portion, and a semiconductor light-emitting device in which a phosphor layer is ground and adjusted in order to adjust the color, and a method for manufacturing the same. Is.

半導体発光装置は、特定の色で発光する半導体発光素子だけで利用されるだけでなく、半導体発光素子の周囲に蛍光体層を配して、発光色を変え利用される場合も多い。青色発光が可能な半導体発光素子が開発された後は、青色の光で黄色に発光する蛍光体を用いた白色の発光も可能になった。このような場合、蛍光体を含有させた蛍光体層の濃度や厚みによって、青色と黄色の混合率が変わり、同じ白色と言っても微妙に色合いが変わる。   Semiconductor light-emitting devices are not only used for semiconductor light-emitting elements that emit light of a specific color, but are often used by changing the emission color by arranging a phosphor layer around the semiconductor light-emitting elements. After the development of a semiconductor light emitting device capable of emitting blue light, it has become possible to emit white light using a phosphor that emits yellow light with blue light. In such a case, the mixing ratio of blue and yellow varies depending on the concentration and thickness of the phosphor layer containing the phosphor, and even if the white color is the same, the hue slightly changes.

従来は半導体発光装置には、発光のみを目的として求められていたが、長寿命で低消費電力という特徴を有する半導体発光装置を照明用として使いたいという要求は多い。半導体発光装置を照明用として使うためには、照らされた対象物をできるだけ自然な色に見せるために、白色光と言っても特定の範囲の色合いの光に調製する必要がある。   Conventionally, semiconductor light-emitting devices have been demanded only for light emission, but there are many demands for using semiconductor light-emitting devices having long life and low power consumption for illumination. In order to use the semiconductor light emitting device for illumination, it is necessary to prepare light of a specific range of shades, even if it is white light, in order to make the illuminated object appear as natural as possible.

発光色の調整には、半導体発光素子に蛍光体層を形成した後、研削する技術が提案されている(特許文献1参照)。   In order to adjust the emission color, a technique of grinding after forming a phosphor layer on a semiconductor light emitting element has been proposed (see Patent Document 1).

ところで、半導体発光素子の発光色をできるだけ効率的に利用しようという発明も多くされており、内面を鏡面仕上げした反射面を有する反射部で構成されたパッケージ(又はカップともいう)に半導体発光素子を固定する構成が知られている(特許文献2参照)。   By the way, there are many inventions that try to use the light emission color of the semiconductor light emitting element as efficiently as possible, and the semiconductor light emitting element is mounted on a package (or also called a cup) composed of a reflecting portion having a reflecting surface whose inner surface is mirror finished. The structure to fix is known (refer patent document 2).

しかし、半導体発光装置から横方向に射出された光は、反射面などで反射させたとしてもうまく利用するのは難しい。そこで、半導体発光装置の側面から射出される光はできるだけ小さくする方が効率的な利用という面からは望ましい。   However, it is difficult to use light emitted from the semiconductor light emitting device in the lateral direction even if it is reflected by a reflecting surface or the like. Therefore, it is desirable from the aspect of efficient use that the light emitted from the side surface of the semiconductor light emitting device is made as small as possible.

反射部で構成されたパッケージに固定され、蛍光体層を有した半導体発光装置において、発光色の色合いを調整するために蛍光体層を研削しようとすると、反射部の上面より高い位置に蛍光体層の表面がなければならない。このような構成は例えば特許文献3に開示されている。
特開2001−15817号公報 特開2005−93896号公報 特開2000−223752号公報
In a semiconductor light emitting device having a phosphor layer fixed to a package composed of a reflective portion, when the phosphor layer is ground to adjust the hue of the luminescent color, the phosphor is positioned higher than the upper surface of the reflective portion. There must be a layer surface. Such a configuration is disclosed in Patent Document 3, for example.
JP 2001-15817 A JP 2005-93896 A Japanese Patent Laid-Open No. 2000-223752

半導体発光装置が放出する光を効率よく利用しようとすると、反射部のように半導体発光素子から横方向に放出される光を制限する手段が必要である。一方で、発色の色合いを調整しようとすると、蛍光体層の天面を研削できるようにする必要がある。しかし、そのためには天面が反射部より上側にないと、反射部も一緒に研削しなければならず、半導体発光装置自体に損傷が発生するおそれがある。すると、天面と反射部表面との間の蛍光体層から光が漏れ、これが有効に活用できない光となる。   In order to efficiently use the light emitted from the semiconductor light emitting device, a means for limiting the light emitted from the semiconductor light emitting element in the lateral direction, such as a reflection portion, is necessary. On the other hand, when the color tone is adjusted, it is necessary to grind the top surface of the phosphor layer. However, for this purpose, if the top surface is not above the reflecting portion, the reflecting portion must be ground together, which may cause damage to the semiconductor light emitting device itself. Then, light leaks from the phosphor layer between the top surface and the reflecting portion surface, and this becomes light that cannot be used effectively.

本発明は、上記のように光の利用効率を高めるために反射部を用い、なおかつ色合いの調整を可能にするという要求に鑑み想到された。   The present invention has been conceived in view of the requirement to use a reflecting portion in order to improve the light utilization efficiency as described above and to enable adjustment of the hue.

上記課題を解決するために本発明は、反射部で囲まれたパッケージ内に半導体発光素子を固定し、その発光面はもとより、引出電極との接続線も反射部表面より上に出ないようにする。そして反射部表面より上まで充填した蛍光体層を研削し、色合いの調整を行った半導体発光装置とその製造方法である。   In order to solve the above-mentioned problems, the present invention fixes a semiconductor light emitting device in a package surrounded by a reflective portion so that not only the light emitting surface but also a connection line with an extraction electrode does not come out above the reflective portion surface. To do. The phosphor layer filled up to the surface of the reflecting portion is ground to adjust the hue, and the semiconductor light emitting device and the manufacturing method thereof.

本発明の半導体発光装置は、半導体発光素子の発光面はもとより、引出電極との接続線も反射部表面より上にないので、反射部表面までは蛍光体層を研削することができる。すなわち、反射部を有する半導体発光素子で色合いの調整を行った半導体発光装置を提供することができる。   In the semiconductor light emitting device of the present invention, since the connecting line with the lead electrode as well as the light emitting surface of the semiconductor light emitting element is not above the reflecting portion surface, the phosphor layer can be ground up to the reflecting portion surface. That is, it is possible to provide a semiconductor light emitting device in which the color tone is adjusted with the semiconductor light emitting element having the reflective portion.

図1に本発明の半導体発光装置1を示す。半導体発光装置1は、サブマウント21上に、半導体発光素子10が固定され、半導体発光素子の周囲には反射部40が配置され、反射部とサブマウントで囲まれた部分に蛍光体層50が充填された構造である。   FIG. 1 shows a semiconductor light emitting device 1 of the present invention. In the semiconductor light emitting device 1, the semiconductor light emitting element 10 is fixed on the submount 21, the reflecting portion 40 is disposed around the semiconductor light emitting element, and the phosphor layer 50 is formed in a portion surrounded by the reflecting portion and the submount. It is a filled structure.

サブマウント21には、引出電極22,23が形成されている。引出電極は半導体発光素子10へ電流を印加するための電極である。半導体発光素子のn型層の側に接続するn側引出電極22とp型層の側に接続されるp側引出電極23がある。さらに図1では、引出電極は、スルーホール26,27を介して端子電極28,29へ接続されている。これによって端子電極28,29から半導体発光素子へ電流を流す事が出来る。引出電極にはバンプ24,25が形成されている。引出電極同様、バンプもn型層に接続されるn側バンプ24とp型層に接続されるp側バンプ25がある。図1ではp側バンプは複数あるが、まとめて符号25で表す。もちろんn側バンプが複数個あってもよい。このバンプによって引出電極と半導体発光素子は直接接続されている。従って、このバンプは接続線と言える。サブマウント21、引出電極22,23、バンプ24,25、スルーホール26,27、端子電極28,29を含めて支持体20と呼ぶ。なお、実施形態によっては、端子電極28,29やバンプ24,25、スルーホール26,27が支持体20から省略される場合もある。また、支持体20と反射部40をあわせてパッケージという。   Lead electrodes 22 and 23 are formed on the submount 21. The extraction electrode is an electrode for applying a current to the semiconductor light emitting element 10. There are an n-side extraction electrode 22 connected to the n-type layer side of the semiconductor light emitting device and a p-side extraction electrode 23 connected to the p-type layer side. Further, in FIG. 1, the extraction electrode is connected to the terminal electrodes 28 and 29 through the through holes 26 and 27. As a result, current can flow from the terminal electrodes 28 and 29 to the semiconductor light emitting device. Bumps 24 and 25 are formed on the extraction electrode. Similar to the lead electrode, the bump includes an n-side bump 24 connected to the n-type layer and a p-side bump 25 connected to the p-type layer. Although there are a plurality of p-side bumps in FIG. Of course, there may be a plurality of n-side bumps. The lead electrode and the semiconductor light emitting element are directly connected by this bump. Therefore, this bump can be said to be a connection line. The submount 21, the extraction electrodes 22 and 23, the bumps 24 and 25, the through holes 26 and 27, and the terminal electrodes 28 and 29 are collectively referred to as the support body 20. In some embodiments, the terminal electrodes 28 and 29, the bumps 24 and 25, and the through holes 26 and 27 may be omitted from the support 20. Further, the support 20 and the reflecting portion 40 are collectively referred to as a package.

サブマウント21は、シリコンツェナーダイオード、シリコンダイオード、シリコン、窒化アルミニウム、アルミナ、その他のセラミック等を用いることができる。   For the submount 21, a silicon Zener diode, a silicon diode, silicon, aluminum nitride, alumina, other ceramics, or the like can be used.

スルーホールはサブマウントに穿たれた貫通孔で、内部に銅、アルミニウム、金等の導電材料を含む。端子電極29は、スルーホールと電気的に接合しており、銅、銀、金などの導電材料で作製される。引出電極は、銅、アルミニウム、金、銀といった導電性の材料を用いる。   The through hole is a through hole formed in the submount and includes a conductive material such as copper, aluminum, and gold inside. The terminal electrode 29 is electrically joined to the through hole and is made of a conductive material such as copper, silver, or gold. For the extraction electrode, a conductive material such as copper, aluminum, gold, or silver is used.

バンプは半導体発光素子10をサブマウント21上に固定し、また引出電極22、23との間を電気的に結合させる役割を有する。   The bumps serve to fix the semiconductor light emitting element 10 on the submount 21 and to electrically couple the lead electrodes 22 and 23 to each other.

バンプの材料としては、金、金−錫、半田、インジウム合金、導電性ポリマーなどを用いることができるが、特に金や金を主成分とする材料が好ましい。これらの材料を用いて、メッキ法、真空蒸着法、スクリーン印刷法、液滴射出法、ワイヤーバンプ法等を用いて形成することができる。   As the material for the bump, gold, gold-tin, solder, indium alloy, conductive polymer, or the like can be used, but a material mainly containing gold or gold is particularly preferable. Using these materials, it can be formed using a plating method, a vacuum deposition method, a screen printing method, a droplet injection method, a wire bump method, or the like.

例えば、ワイヤーバンプ法で金ワイヤーを作製し、その一端をボンダーにてサブマウント上の引出電極に接着した後、ワイヤーを切断することで金バンプを形成する。また、金などの高導電性材料の微粒ナノ粒子を揮発性溶剤に分散した液をインクジェット印刷と同様な手法で印刷し、溶剤を揮発除去してナノ粒子の集合体としてのバンプを形成する液滴射出法を用いることもできる。   For example, a gold wire is produced by the wire bump method, and one end of the gold wire is bonded to the extraction electrode on the submount with a bonder, and then the wire is cut to form a gold bump. In addition, a liquid in which fine nanoparticles of highly conductive material such as gold are dispersed in a volatile solvent is printed by a method similar to inkjet printing, and the solvent is removed by volatilization to form bumps as an aggregate of nanoparticles. A drop ejection method can also be used.

半導体発光素子10は、基板11、n型層12、活性層13、p型層14、n側電極16、p側電極17からなる。   The semiconductor light emitting device 10 includes a substrate 11, an n-type layer 12, an active layer 13, a p-type layer 14, an n-side electrode 16, and a p-side electrode 17.

基板11は、発光する部分を保持する役目を負う。材質としては、絶縁性のサファイアを用いることができる。しかし、発光効率や発光する部分が窒化ガリウム(GaN)を母材とすることから、発光層、より具体的にはn型層12と基板11との界面での光の反射を少なくするために発光層と同等の屈折率を有するGaNやSiC、AlGaN、AlNを用いるのが好適である。   The substrate 11 has a role of holding a portion that emits light. As a material, insulating sapphire can be used. However, since the luminous efficiency and the light emitting part are based on gallium nitride (GaN), in order to reduce the reflection of light at the light emitting layer, more specifically, at the interface between the n-type layer 12 and the substrate 11. It is preferable to use GaN, SiC, AlGaN, or AlN having a refractive index equivalent to that of the light emitting layer.

発光層となるn型層12と活性層13とp型層14は基板11上に順次積層される。材質は特に制限はないが、窒化ガリウム系化合物であれば好ましい。具体的には、それぞれ、GaNのn型層12、InGaNの活性層13、GaNのp型層14である。なお、n型層12やp型層14としては、AlGaNやInGaNを用いてもよいし、n型層12と、基板11との間に、GaNやInGaNで構成したバッファ層を用いることも可能である。また、例えば、活性層13は、InGaNとGaNが交互に積層した多層構造(量子井戸構造)としてもよい。   The n-type layer 12, the active layer 13, and the p-type layer 14 that are light emitting layers are sequentially stacked on the substrate 11. The material is not particularly limited but is preferably a gallium nitride compound. Specifically, the n-type layer 12 of GaN, the active layer 13 of InGaN, and the p-type layer 14 of GaN, respectively. As the n-type layer 12 and the p-type layer 14, AlGaN or InGaN may be used, or a buffer layer made of GaN or InGaN may be used between the n-type layer 12 and the substrate 11. It is. For example, the active layer 13 may have a multilayer structure (quantum well structure) in which InGaN and GaN are alternately stacked.

このように基板11上に積層したn型層12と活性層13とp型層14の一部から、活性層13とp型層14を除去し、n型層12を露出させる。この露出させたn型層12上に形成されたのが、n側電極16である。また、p型層14上に同じくp側電極17が形成される。つまり、活性層13とp型層14を除去し、n型層12を露出させることで、発光層とp側電極およびn側電極は基板に対して同じ側の面に形成することができる。   Thus, the active layer 13 and the p-type layer 14 are removed from a part of the n-type layer 12, the active layer 13 and the p-type layer 14 laminated on the substrate 11, and the n-type layer 12 is exposed. An n-side electrode 16 is formed on the exposed n-type layer 12. Similarly, a p-side electrode 17 is formed on the p-type layer 14. That is, by removing the active layer 13 and the p-type layer 14 and exposing the n-type layer 12, the light emitting layer, the p-side electrode, and the n-side electrode can be formed on the same side of the substrate.

p側電極17は発光層で発した光を基板11の側に反射するために反射率の高いAgやAl、Rh等の第1の電極を用いる。すなわち、図1の場合は基板11が発光面となる。p型層14とp側電極17のオーミック接触抵抗を小さくするためにp型層14と第1の電極の間にPtやNi、Co、ITO等の第2の電極を用いることが望ましい。また、n側電極16はAlやTi等を用いることができる。p側電極17およびn側電極16の表面にはバンプとの接着強度を高めるためにAuやAlを用いることが望ましい。これらの電極は真空蒸着法、スパッタリング法などによって、形成することができる。   The p-side electrode 17 uses a first electrode made of Ag, Al, Rh or the like having high reflectivity in order to reflect the light emitted from the light emitting layer to the substrate 11 side. That is, in the case of FIG. 1, the substrate 11 is a light emitting surface. In order to reduce the ohmic contact resistance between the p-type layer 14 and the p-side electrode 17, it is desirable to use a second electrode such as Pt, Ni, Co, or ITO between the p-type layer 14 and the first electrode. The n-side electrode 16 can use Al, Ti, or the like. It is desirable to use Au or Al on the surface of the p-side electrode 17 and the n-side electrode 16 in order to increase the adhesive strength with the bump. These electrodes can be formed by vacuum deposition, sputtering, or the like.

半導体発光素子10のサイズは、特に限定はないが、光量が大きく面発光に近い光源とするには、全面積が広い方がよく、好ましくは一辺が600μm以上であることが望ましい。   The size of the semiconductor light emitting element 10 is not particularly limited, but in order to obtain a light source with a large amount of light and near surface emission, it is preferable that the entire area is wide, and it is desirable that one side is 600 μm or more.

反射部は、半導体発光素子の周囲に配置されて、横方向に放射される発光を天面55側に反射させるためのものである。材質は、樹脂、金属、セラミックそれらの複合体等が用いられる。特に半導体発光素子の側に向いている面42は、光を天面側に反射させるために傾斜若しくは凹面を有し、鏡面処理が施されているのが望ましい。具体的には反射部をアルミニウムで形成し、鏡面に研削されたものや、樹脂で形成した反射部にアルミニウムや銀を蒸着若しくはメッキするどの処理を用いることができる。   The reflecting portion is disposed around the semiconductor light emitting element and reflects light emitted in the lateral direction to the top surface 55 side. As the material, resin, metal, ceramic or a composite thereof is used. In particular, the surface 42 facing the semiconductor light emitting element side preferably has an inclined or concave surface to reflect light to the top surface side, and is preferably mirror-finished. Specifically, any treatment in which the reflecting portion is formed of aluminum and polished to a mirror surface, or aluminum or silver is deposited or plated on the reflecting portion formed of resin can be used.

反射部は半導体発光素子から天面方向に対して斜めに放射される光を天面方向に反射するために設けられるので、反射部表面45は、半導体発光素子の発光面より高く設定される。ここで高いとは、サブマウントからの距離が長いという意味である。   Since the reflecting portion is provided to reflect light emitted from the semiconductor light emitting element obliquely with respect to the top surface direction, the reflecting surface 45 is set higher than the light emitting surface of the semiconductor light emitting device. Here, “high” means that the distance from the submount is long.

蛍光体層50は、無機若しくは有機の蛍光体材料の粒子を樹脂もしくはガラスといった透明媒体中に分散したものである。   The phosphor layer 50 is obtained by dispersing particles of an inorganic or organic phosphor material in a transparent medium such as a resin or glass.

例えば、半導体発光素子10が青色を発光し、半導体発光装置1自体の発光色を白色にする場合は、半導体発光素子10からの青色の光を受けて、黄色に波長を変換し放出する蛍光体である。このような蛍光体材料としては、希土類ドープ窒化物系、または、希土類ドープ酸化物系の蛍光体が好ましい。より具体的には、希土類ドープアルカリ土類金属硫化物希土類ドープガーネットの(Y・Sm)3(Al・Ga)512:Ceや(Y0.39Gd0.57Ce0.03Sm0.013Al512、希土類ドープアルカリ土類金属オルソ珪酸塩、希土類ドープチオガレート、希土類ドープアルミン酸塩等を好適に用いることができる。また、珪酸塩蛍光体(Sr1-a1-b2-xBaa1Cab2Eux)2SiO4やアルファサイアロン(α−sialon:Eu)Mx(Si,Al)12(O,N)16を黄色発光の蛍光体材料として用いても良い。 For example, when the semiconductor light emitting element 10 emits blue light and the emission color of the semiconductor light emitting device 1 itself is white, the phosphor that receives blue light from the semiconductor light emitting element 10 and converts the wavelength to yellow and emits it. It is. As such a phosphor material, a rare earth-doped nitride-based or rare earth-doped oxide-based phosphor is preferable. More specifically, (Y · Sm) 3 (Al · Ga) 5 O 12 : Ce or (Y 0.39 Gd 0.57 Ce 0.03 Sm 0.01 ) 3 Al 5 O 12 of the rare earth doped alkaline earth metal sulfide rare earth doped garnet. Rare earth doped alkaline earth metal orthosilicate, rare earth doped thiogallate, rare earth doped aluminate and the like can be suitably used. Further, silicate phosphor (Sr 1-a1-b2- x Ba a1 Ca b2 Eu x) 2SiO 4 or alpha sialon (α-sialon: Eu) Mx (Si, Al) 12 (O, N) 16 yellow emission It may be used as a phosphor material.

なお、本明細書を通じてAlはアルミニウム、Nは窒素、Oは酸素、Agは銀、Rhはロジウム、Ptは白金、Niはニッケル、Coはコバルト、Tiはチタン、Auは金、Yはイットリウム、Smはサマリウム、Ceはセリウム、Srはストロンチウム、Baはバリウム、Caはカルシウム、Euはユウロピウム、Mgはマグネシウムを表す。   Throughout this specification, Al is aluminum, N is nitrogen, O is oxygen, Ag is silver, Rh is rhodium, Pt is platinum, Ni is nickel, Co is cobalt, Ti is titanium, Au is gold, Y is yttrium, Sm represents samarium, Ce represents cerium, Sr represents strontium, Ba represents barium, Ca represents calcium, Eu represents europium, and Mg represents magnesium.

媒体としては、シリコーン樹脂、エポキシ樹脂及びフッ素樹脂を主成分とする樹脂を用いることができる。特に非シリコーン樹脂としては、シロキサン系の樹脂やポリオレフィン、シリコーン・エポキシハイブリッド樹脂などが好適である。   As the medium, a resin mainly composed of a silicone resin, an epoxy resin, and a fluororesin can be used. In particular, as the non-silicone resin, a siloxane-based resin, a polyolefin, a silicone / epoxy hybrid resin, or the like is preferable.

なお、樹脂の代わりにゾルゲル法で作製されるガラス材料を用いることもできる。具体的には、一般式Si(X)n(R)4-n(n=1〜3)で表される化合物である。ここで、Rはアルキル基であり、Xはハロゲン(Cl、F、Br、I)、ヒドロキシ基(−OH)、アルコキシ基(−OR)から選ばれる。このガラス材の中にも蛍光体や一般式がM(OR)nで表されるアルコキシドを添加することもできる。アルコキシドを添加することによって凹凸構造の屈折率を変えることができる。 Note that a glass material manufactured by a sol-gel method can be used instead of the resin. Specifically, it is a compound represented by the general formula Si (X) n (R) 4-n (n = 1 to 3). Here, R is an alkyl group, and X is selected from halogen (Cl, F, Br, I), a hydroxy group (—OH), and an alkoxy group (—OR). A phosphor or an alkoxide represented by the general formula M (OR) n can also be added to this glass material. The refractive index of the concavo-convex structure can be changed by adding an alkoxide.

また、これらのガラス材料は硬化反応温度が摂氏200度程度のものもあり、バンプや電極各部に用いる材料の耐熱性を考慮しても好適な材料と言える。蛍光体材料と媒体を混ぜ合わせた状態を蛍光体塗料と呼ぶ。   Some of these glass materials have a curing reaction temperature of about 200 degrees Celsius, and can be said to be suitable materials considering the heat resistance of materials used for bumps and electrode portions. A state in which the phosphor material and the medium are mixed is called a phosphor paint.

蛍光体層50の天面55は、半導体発光装置1の発光射出面となる。半導体発光素子10の基板11と天面55との間h1の蛍光体によって半導体発光装置1の色合いは決まる。従って、後述するように天面の部分を研削する事で半導体発光装置1の最終的な色合いを決定する。すなわち、本発明の半導体発光装置1の天面は研削によって仕上げられている。   The top surface 55 of the phosphor layer 50 serves as a light emission exit surface of the semiconductor light emitting device 1. The color of the semiconductor light emitting device 1 is determined by the phosphor h1 between the substrate 11 and the top surface 55 of the semiconductor light emitting element 10. Therefore, the final color of the semiconductor light emitting device 1 is determined by grinding the top surface as will be described later. That is, the top surface of the semiconductor light emitting device 1 of the present invention is finished by grinding.

一方、天面の研削によって色合いを決めるため、研削の際に反射部まで研削処理されてしまうと、半導体発光装置1自体が損傷する場合もある。そこで、蛍光体層50の天面55と反射部40の表面45には一定のマージンh2が設けられる。   On the other hand, since the hue is determined by grinding the top surface, the semiconductor light-emitting device 1 itself may be damaged if the reflective portion is ground during grinding. Therefore, a certain margin h <b> 2 is provided on the top surface 55 of the phosphor layer 50 and the surface 45 of the reflecting portion 40.

マージンh2は、高すぎるとここからの放射光が不要な光となるので、できるだけ低いことが望ましい。   If the margin h2 is too high, the emitted light from this becomes unnecessary light, so it is desirable that the margin h2 be as low as possible.

半導体発光装置1の色合いは天面と基板の間の距離h1と蛍光体層50の蛍光体材料の濃度、半導体発光素子10の発光色によって決まると考えられる。蛍光体層の蛍光体材料濃度は、特に制限は無いが、濃度が高いとh1を低くできる反面、わずかな研削で色合いが大きく変化する。濃度が低すぎると研削による色合いの調整は容易になるが、所望の色合いにするために蛍光体層を厚くしなければならず、h2が高くなるおそれがある。すでに述べたようにh2が高くなると不要な放射光が増える。蛍光体材料の濃度は媒体に対して10〜60質量%程度が好ましい。   The color of the semiconductor light emitting device 1 is considered to be determined by the distance h1 between the top surface and the substrate, the concentration of the phosphor material of the phosphor layer 50, and the emission color of the semiconductor light emitting element 10. The concentration of the phosphor material in the phosphor layer is not particularly limited, but if the concentration is high, h1 can be lowered, but the hue changes greatly by slight grinding. If the concentration is too low, it is easy to adjust the hue by grinding, but the phosphor layer must be thickened to obtain the desired hue, and h2 may increase. As already described, unnecessary radiation increases as h2 increases. The concentration of the phosphor material is preferably about 10 to 60% by mass with respect to the medium.

h1やh2に関しては特に規定することはできず、必要な半導体発光装置の仕様によって随時設計されるものである。しかし、半導体発光装置の発光角度を小さくしよとすると、斜め方向へ放射される光は不要光となるので、開口経Lに対してできるだけ小さい方がよい。従ってh2は反射部で囲われた開口経Lの1/10以下であることが望ましい。   h1 and h2 cannot be defined in particular, and are designed as needed according to the specifications of the required semiconductor light emitting device. However, if the light emission angle of the semiconductor light emitting device is reduced, the light emitted in the oblique direction becomes unnecessary light, and therefore it is preferable that the light emission angle be as small as possible with respect to the aperture length L. Accordingly, h2 is desirably 1/10 or less of the opening length L surrounded by the reflection portion.

図2は、図1の半導体発光装置を天面側から見た図である。   FIG. 2 is a view of the semiconductor light emitting device of FIG. 1 as viewed from the top side.

図3は、本発明の半導体発光装置の製造方法を示す図である。サブマウントにスルーホールを設け、裏側に端子電極、表側に引出電極を形成した後、引出電極にバンプを形成する。その後、バンプに半導体発光素子を溶着する。溶着は、超音波振動によって行う。具体的には、支持体20若しくは半導体発光素子10側を固定しておき、他方を超音波溶着装置のチャックで固定し、超音波振動を与えることによって行う。この時、支持体20若しくは半導体発光素子10側から加熱することにより、加熱しない場合に比べて低い超音波出力でバンプと半導体発光素子のn側電極16およびp側電極17の溶着を行うことができる。加熱温度は100〜400℃が好ましい。半導体発光素子が溶着された状態が図3(A)である。   FIG. 3 is a diagram showing a method for manufacturing a semiconductor light emitting device of the present invention. A through hole is provided in the submount, a terminal electrode is formed on the back side, an extraction electrode is formed on the front side, and then a bump is formed on the extraction electrode. Thereafter, a semiconductor light emitting element is welded to the bump. Welding is performed by ultrasonic vibration. Specifically, the support 20 or the semiconductor light emitting element 10 side is fixed, the other is fixed by a chuck of an ultrasonic welding apparatus, and ultrasonic vibration is applied. At this time, by heating from the support 20 or the semiconductor light-emitting element 10 side, the bumps and the n-side electrode 16 and the p-side electrode 17 of the semiconductor light-emitting element can be welded with a lower ultrasonic output than when not heated. it can. The heating temperature is preferably 100 to 400 ° C. FIG. 3A shows a state where the semiconductor light emitting element is welded.

量産性を高めるために、サブマウント上に複数個の半導体発光装置を一度に作製する。   In order to improve mass productivity, a plurality of semiconductor light emitting devices are manufactured on the submount at a time.

次にパッケージ材料を接着する(図3(B))。反射部材料は後の工程で個々の半導体発光装置に切り分けられるので、両側に傾斜面を有した部材となっている。接着剤は特に限定はないが、半導体発光装置自体がプリント基板などと接着される際にはんだフロー処理などを受けることが考えられるので、ガラス転位温度が250℃以上の樹脂接着剤やゾルゲル法で形成されたガラス接着などが好ましい。   Next, the package material is bonded (FIG. 3B). Since the reflecting portion material is cut into individual semiconductor light emitting devices in a later step, the reflecting portion material is a member having inclined surfaces on both sides. The adhesive is not particularly limited, but it is considered that the semiconductor light emitting device itself is subjected to a solder flow treatment or the like when it is bonded to a printed circuit board, etc. Therefore, a resin adhesive having a glass transition temperature of 250 ° C. or higher or a sol-gel method. A formed glass bond or the like is preferable.

反射部材料を接着した後、蛍光体層を形成する(図3(C))。これは上記で説明した蛍光体塗料をディップ若しくは印刷法などで形成する。この時は天面と基板の距離h1は十分厚く形成しておく。   After the reflecting portion material is adhered, a phosphor layer is formed (FIG. 3C). In this case, the phosphor coating described above is formed by dipping or printing. At this time, the distance h1 between the top surface and the substrate is formed sufficiently thick.

蛍光体層を硬化した後、蛍光体層を研削していく。研削はラップマスターや表面研削機などを用いる。また設計厚みh1近くまで一気に研削し、その後色合いを見ながら微小研削を行うなど、複数段階の研削工程を用いてもよい。   After the phosphor layer is cured, the phosphor layer is ground. For grinding, a lap master or a surface grinder is used. Further, a plurality of stages of grinding may be used, such as grinding at a stroke to near the design thickness h1, and then performing fine grinding while watching the hue.

研削の工程は、具体的には研削で天面を研削し天面と基板間距離h1を短くしては、実際に発光させて色合いを確認し、所定の色合いになっていなければさらに研削を行うという工程を繰り返す(図3(D))。   Specifically, in the grinding process, the top surface is ground by grinding and the distance h1 between the top surface and the substrate is shortened. Then, the light is actually emitted to check the color, and if it does not reach the predetermined color, further grinding is performed. The process of performing is repeated (FIG. 3D).

所定の色合いになるように天面と基板間距離h1を調整したら、反射部の間を切断し、個々のチップに切り分ける(図3(E))。これで本発明の半導体発光装置を得る事ができる。   After adjusting the distance h1 between the top surface and the substrate so as to obtain a predetermined color, the space between the reflective portions is cut and divided into individual chips (FIG. 3E). Thus, the semiconductor light emitting device of the present invention can be obtained.

本実施の形態では、バンプを用いて引出電極と半導体発光装置が接続される場合を説明したが、本発明の趣旨を逸脱しない範囲で他の形態で実施されても良い。   In the present embodiment, the case where the extraction electrode and the semiconductor light emitting device are connected using bumps has been described. However, the present invention may be implemented in other forms without departing from the spirit of the present invention.

図4は、引出電極の形状が異なる場合を示す。サブマウント21にはスルーホールが施されていない。一方引出電極22,23は、反射部の下を通り、サブマウントの側面を回ってサブマウント下側まで引き回されている。すなわち、引出電極と端子電極が共通となっている。   FIG. 4 shows a case where the shape of the extraction electrode is different. The submount 21 has no through hole. On the other hand, the extraction electrodes 22 and 23 pass under the reflecting portion, and are routed around the side surface of the submount to the lower side of the submount. That is, the extraction electrode and the terminal electrode are common.

図5は、さらに、半導体発光装置が上向に固定されている場合を示す。この例の場合は射出面がp型層側となり、n側電極とp側電極は上向きに形成される。従って、引出電極22,23との間は接続線18,19によって接続される。この接続線はワイヤーボンディングによって形成する。p側電極は、p型層の表面のほぼ全面を被う透光性電極と、この一部に設けられたパッド電極からなる。製造方法としては、図3で示した方法と同じで、反射部を接着する前にワイヤーボンディングを済ませてしまうことが必要である。本発明は、色合い調整のために天面55を研削する。従って、接続線の頂点31が反射部の表面45より低くなければならない。すなわち、反射部を接着してからでは、半導体発光素子の電極と、引出電極をワイヤーボンディングするのは困難になるからである。なお、「低い」とは、サブマウントからの距離が短いという意味である。   FIG. 5 further shows the case where the semiconductor light emitting device is fixed upward. In this example, the emission surface is on the p-type layer side, and the n-side electrode and the p-side electrode are formed upward. Therefore, the connection lines 18 and 19 are connected to the extraction electrodes 22 and 23. This connection line is formed by wire bonding. The p-side electrode is composed of a translucent electrode that covers almost the entire surface of the p-type layer and a pad electrode provided on a part thereof. As a manufacturing method, it is the same as the method shown in FIG. 3, and it is necessary to finish wire bonding before bonding the reflective portion. In the present invention, the top surface 55 is ground for color adjustment. Therefore, the apex 31 of the connection line must be lower than the surface 45 of the reflection part. In other words, it is difficult to wire-bond the electrode of the semiconductor light emitting element and the extraction electrode after bonding the reflection portion. “Low” means that the distance from the submount is short.

図6は、n側電極を基板11の裏側に形成した場合の例を示す。この場合も接続線18の製造方法については、図5の場合とおなじである。また、引出電極と端子電極が共通に形成されている点も同じである。   FIG. 6 shows an example where the n-side electrode is formed on the back side of the substrate 11. Also in this case, the manufacturing method of the connection line 18 is the same as in the case of FIG. In addition, the extraction electrode and the terminal electrode are formed in common.

図7は、引出電極がサブマウントの表面だけに形成されている場合の例である。引出電極と電力供給線33の接続は、通常のはんだ付けでよい。図7の場合の製造方法としては、図3(B)において、隣の半導体発光装置と共通の反射部を接着するのではなく、個々の反射部を接着する。従って図3(E)の工程においても反射部を切断はせず、サブマウントだけを切断する。   FIG. 7 shows an example in which the extraction electrode is formed only on the surface of the submount. The connection between the extraction electrode and the power supply line 33 may be normal soldering. As a manufacturing method in the case of FIG. 7, in FIG. 3B, instead of adhering a reflection part common to the adjacent semiconductor light emitting device, individual reflection parts are adhered. Therefore, in the step of FIG. 3E, the reflecting portion is not cut, but only the submount is cut.

図8は図2および3で説明した本発明の半導体発光装置の他の実施の形態を例示するものである。図2と比較すると図8には反射部の斜線部分43がない。これは、蛍光体層を塗布する際に、図2は、個々の半導体発光装置毎に蛍光体塗料を塗って作製されたのに対して、図8の場合は縦方向(図8の70方向)に並んだ半導体発光装置についてまとめて蛍光体塗料を塗布し、個々に切り分ける際にサブマウント、反射部に加えて蛍光体層も一緒に切断し作製した。   FIG. 8 illustrates another embodiment of the semiconductor light emitting device of the present invention described in FIGS. Compared with FIG. 2, FIG. 8 does not have the hatched portion 43 of the reflecting portion. This is because, when the phosphor layer is applied, FIG. 2 is prepared by applying a phosphor paint to each semiconductor light emitting device, whereas in the case of FIG. The semiconductor light-emitting devices lined up in (1) were collectively applied with a phosphor coating material, and the individual phosphor layers were cut together with the submount and the reflective portion when cutting them individually.

図9は、反射部の傾斜面を円形44にし、蛍光体層も円形に形成した場合を示す。このように本発明の半導体発光装置では、蛍光体層の形状は四角に限定されるものではなく、丸、三角といった形状でもよい。   FIG. 9 shows the case where the inclined surface of the reflecting portion is circular 44 and the phosphor layer is also circular. Thus, in the semiconductor light emitting device of the present invention, the shape of the phosphor layer is not limited to a square, and may be a circle or a triangle.

本発明は、色合いを調整する半導体発光装置に利用する事が出来る。   The present invention can be used for a semiconductor light-emitting device that adjusts the hue.

本発明の半導体発光装置の構成を表す図The figure showing the structure of the semiconductor light-emitting device of this invention 本発明の半導体発光装置を天面側から見た図The figure which looked at the semiconductor light-emitting device of this invention from the top | upper surface side 本発明の半導体発光装置の製造方法を示す図The figure which shows the manufacturing method of the semiconductor light-emitting device of this invention 本発明の半導体発光装置の他の構成を示す図The figure which shows the other structure of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の他の構成を示す図The figure which shows the other structure of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の他の構成を示す図The figure which shows the other structure of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の他の構成を示す図The figure which shows the other structure of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の他の構成を天面側から見た図The figure which looked at other composition of the semiconductor light-emitting device of the present invention from the top side 本発明の半導体発光装置の他の構成を天面側から見た図The figure which looked at other composition of the semiconductor light-emitting device of the present invention from the top side

符号の説明Explanation of symbols

1 半導体発光装置
10 半導体発光素子
11 基板
12 n型層
13 活性層
14 p型層
16 n側電極
17 p側電極
20 支持体
21 サブマウント
22 n側引出電極
23 p側引出電極
24 n極バンプ
25 p極バンプ
26、27 スルーホール
31 接続線の頂点
40 反射部
45 反射部表面
50 蛍光体層
55 天面
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 10 Semiconductor light-emitting device 11 Substrate 12 N-type layer 13 Active layer 14 P-type layer 16 n-side electrode 17 p-side electrode 20 Support 21 Submount 22 n-side extraction electrode 23 p-side extraction electrode 24 n-pole bump 25 P-pole bumps 26, 27 Through-hole 31 Top of connection line 40 Reflecting portion 45 Reflecting portion surface 50 Phosphor layer 55 Top surface

Claims (3)

基板に設けられた引出電極と、
反射面を備え前記基板上に配された反射部と、
前記引出電極と接続線で結合され、前記反射部表面より発光面が低い位置に固定された半導体発光素子と、
天面が研削された平面で、かつ前記反射部表面より高く、前記基板と前記反射部で囲まれた部分に充填された蛍光体層とからなる半導体発光装置。
An extraction electrode provided on the substrate;
A reflective portion provided on the substrate with a reflective surface;
A semiconductor light emitting element coupled with the extraction electrode by a connection line, and fixed at a position where the light emitting surface is lower than the surface of the reflecting portion;
A semiconductor light emitting device comprising a phosphor layer filled with a portion of a flat surface with a top surface ground and higher than the surface of the reflecting portion and surrounded by the substrate and the reflecting portion.
ベース基板に引出電極を設ける工程と、
前記引出電極に接続線を設ける工程と、
前記接続線に発光素子を接続する工程と、
前記ベース基板上に反射部を接着する工程と、
前記反射部で囲まれた基板上に蛍光体を充填する工程と、
前記蛍光体を研削する工程と、
前記反射部を前記ベース基板ごと切断する工程とを含む半導体発光装置の製造方法。
Providing an extraction electrode on the base substrate;
Providing a connection line on the extraction electrode;
Connecting a light emitting element to the connection line;
Adhering a reflective portion on the base substrate;
Filling a phosphor on a substrate surrounded by the reflective portion;
Grinding the phosphor;
And a step of cutting the reflecting portion together with the base substrate.
ベース基板に引出電極を設ける工程と、
前記ベース基板上に発光素子を固定する工程と、
前記半導体発光素子と引出電極を接続線で接続する工程と、
前記ベース基板上に反射部を接着する工程と、
前記反射部で囲まれた基板上に蛍光体を充填する工程と、
前記蛍光体を研削する工程と、
前記反射部を前記ベース基板ごと切断する工程とを含む半導体発光装置の製造方法。
Providing an extraction electrode on the base substrate;
Fixing the light emitting element on the base substrate;
Connecting the semiconductor light emitting element and the extraction electrode with a connection line;
Adhering a reflective portion on the base substrate;
Filling a phosphor on a substrate surrounded by the reflective portion;
Grinding the phosphor;
And a step of cutting the reflecting portion together with the base substrate.
JP2006354291A 2006-12-28 2006-12-28 Semiconductor light-emitting device and manufacturing method therefor Pending JP2008166487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354291A JP2008166487A (en) 2006-12-28 2006-12-28 Semiconductor light-emitting device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354291A JP2008166487A (en) 2006-12-28 2006-12-28 Semiconductor light-emitting device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008166487A true JP2008166487A (en) 2008-07-17

Family

ID=39695569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354291A Pending JP2008166487A (en) 2006-12-28 2006-12-28 Semiconductor light-emitting device and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008166487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660148B2 (en) 2013-03-25 2017-05-23 Nichia Corporation Method for manufacturing light emitting device, and light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, manufacturing method thereof, and chromaticity adjusting method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660148B2 (en) 2013-03-25 2017-05-23 Nichia Corporation Method for manufacturing light emitting device, and light emitting device
US10461227B2 (en) 2013-03-25 2019-10-29 Nichia Corporation Method for manufacturing light emitting device, and light emitting device

Similar Documents

Publication Publication Date Title
US8552444B2 (en) Semiconductor light-emitting device and manufacturing method of the same
JP6056920B2 (en) Light emitting device and method for manufacturing light emitting device
JP4447806B2 (en) Light emitting device
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP5747527B2 (en) Method for manufacturing light emitting device
JP5582048B2 (en) Light emitting device
JP4527197B2 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting device
JP5874233B2 (en) Light emitting element and light emitting device
JP5644352B2 (en) Light emitting device and manufacturing method thereof
JP2005209852A (en) Light emitting device
JP2004253651A (en) Light emitting device
JP2008277409A (en) Manufacturing method of semiconductor light-emitting device
JP2006202962A (en) Light emitting apparatus
JP2006269778A (en) Optical device
JP2018082027A (en) Light-emitting device and method for manufacturing the same
JP2008108952A (en) Semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP2007194525A (en) Semiconductor light emitting device
JP2009070869A (en) Semiconductor light emitting device
JP5077282B2 (en) Light emitting element mounting package and light emitting device
US10002996B2 (en) Light emitting device and method of manufacturing the same
JP6349953B2 (en) Method for manufacturing light emitting device
JP5949875B2 (en) Light emitting device and manufacturing method thereof
JP2008166487A (en) Semiconductor light-emitting device and manufacturing method therefor
JP4882472B2 (en) Light emitting device for illumination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129