JP2008164573A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2008164573A
JP2008164573A JP2007000603A JP2007000603A JP2008164573A JP 2008164573 A JP2008164573 A JP 2008164573A JP 2007000603 A JP2007000603 A JP 2007000603A JP 2007000603 A JP2007000603 A JP 2007000603A JP 2008164573 A JP2008164573 A JP 2008164573A
Authority
JP
Japan
Prior art keywords
liquid
unit
measured
measuring
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007000603A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007000603A priority Critical patent/JP2008164573A/en
Publication of JP2008164573A publication Critical patent/JP2008164573A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the moire method in the conventional technique is necessary to complicated operation for obtaining the contour line from the moire pattern. <P>SOLUTION: The measurement device for measuring the shape of the object comprises: a liquid maintaining part for maintaining the prescribed amount of liquid for sinking the measurement object; a light source for irradiating the object and the liquid with the light; a detector for detecting the boundary line of the object and the liquid; and a shape measurement part for measuring the shape of the object based on the detection result of the detection part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体の三次元形状を測定する測定装置に関する。   The present invention relates to a measuring apparatus for measuring a three-dimensional shape of an object.

従来、等高線を利用して物体の三次元形状を測定する方法として、モアレ法が知られている。モアレ法は、照明装置から縞パターンを物体に投影し、さらに別の縞パターンを介して観測されるモアレパターンから、物体形状に沿った等高線を求め、物体の三次元形状を得る方法である(例えば、特許文献1参照)。
特開平10−206130号公報
Conventionally, a moire method is known as a method for measuring the three-dimensional shape of an object using contour lines. The moire method is a method of obtaining a three-dimensional shape of an object by projecting a fringe pattern from an illumination device onto an object and obtaining contour lines along the object shape from a moire pattern observed through another stripe pattern ( For example, see Patent Document 1).
JP-A-10-206130

従来技術によるモアレ法は、モアレパターンから等高線を求めるために複雑な演算を行う必要があった。また、専用の照明装置も必要で、構成が複雑となり、装置コストが高くなるという問題があった。
本発明の目的は、液体を用いた簡易な構成で物体の三次元形状を測定できる測定装置を提供することである。
The moire method according to the prior art has to perform a complicated calculation in order to obtain a contour line from a moire pattern. In addition, a dedicated illumination device is required, and the configuration is complicated, resulting in an increase in device cost.
An object of the present invention is to provide a measuring apparatus capable of measuring a three-dimensional shape of an object with a simple configuration using a liquid.

本発明に係る測定装置は、被測定物の形状を測定する測定装置であって、被測定物を沈める所定量の液体を保持する液体保持部と、前記被測定物と前記液体とに光を照射する光源と、前記被測定物と前記液体との境界線を検出する検出部と、前記検出部の検出結果に基づいて前記被測定物の形状を測定する形状測定部とを備えることを特徴とする。
さらに、前記被測定物と前記液体保持部とを前記検出部の方向に相対移動させる移動部をさらに備え、前記形状測定部は、前記被測定物と前記液体保持部との相対位置を変化させた時の前記検出部の検出結果に基づいて、前記被測定物の3次元形状を測定することを特徴とする。
A measuring apparatus according to the present invention is a measuring apparatus for measuring the shape of an object to be measured, and includes a liquid holding unit that holds a predetermined amount of liquid that sinks the object to be measured, and light to the object to be measured and the liquid. An illumination light source, a detection unit that detects a boundary line between the measurement object and the liquid, and a shape measurement unit that measures the shape of the measurement object based on a detection result of the detection unit. And
Furthermore, the moving part which moves the said to-be-measured object and the said liquid holding part relatively to the direction of the said detection part is further provided, The said shape measurement part changes the relative position of the said to-be-measured object and the said liquid holding part. The three-dimensional shape of the object to be measured is measured based on the detection result of the detection unit at that time.

また、前記液体保持部が保持する液体の液面位置を管理する液体管理部を設けたことを特徴とする。
特に、前記液体管理部は、前記液体保持部が保持する液体の液面位置を一定に保つことを特徴とする。
或いは、前記液体管理部は、前記液体保持部が保持する液体の液面位置を検知し、該液面位置を前記形状測定部に出力することを特徴とする。
Further, a liquid management unit that manages a liquid surface position of the liquid held by the liquid holding unit is provided.
In particular, the liquid management unit is characterized in that the liquid level position of the liquid held by the liquid holding unit is kept constant.
Alternatively, the liquid management unit detects a liquid level position of the liquid held by the liquid holding unit, and outputs the liquid level position to the shape measuring unit.

または、前記液体管理部は、前記液体保持部の液面上方にあって、かつ前記液面と平行に配置されたオートフォーカス部を有し、前記オートフォーカス部は、前記移動部の動作に応じて変化する液面位置を検知し、該液面位置を前記形状測定部に出力することを特徴とする。
特に、前記液体を有色の液体とすることを特徴とする。
Alternatively, the liquid management unit includes an autofocus unit disposed above and parallel to the liquid level of the liquid holding unit, and the autofocus unit corresponds to the operation of the moving unit. In this case, the liquid level position is detected and the liquid level position is output to the shape measuring unit.
In particular, the liquid is a colored liquid.

本発明に係る測定装置は、液体を用いて簡易な構成で物体の外側形状を得ることができ、複雑な演算を行うことなく、被測定物の三次元形状を測定することができる。   The measuring apparatus according to the present invention can obtain the outer shape of an object with a simple configuration using a liquid, and can measure the three-dimensional shape of the object to be measured without performing complicated calculations.

以下、図面を参照して本発明の各実施形態について詳しく説明する。
(第1の実施形態)
図1は第1の実施形態に係る三次元形状測定装置101のブロック図である。三次元形状測定装置101は、立体状の被測定物の所定の高さ毎に外側形状を測定して等高線を求め、求めた等高線を合成することによって物体の三次元形状を構築する装置で、光源102と、水槽103と、液体104と、Z軸ステージ本体105および移動ステージ106と、移動ステージ106の上に固定された被測定物107と、撮像部108と、画像処理部109と、液面計110と、パソコン111とで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a block diagram of a three-dimensional shape measuring apparatus 101 according to the first embodiment. The three-dimensional shape measuring apparatus 101 is an apparatus for constructing a three-dimensional shape of an object by measuring the outer shape at every predetermined height of a three-dimensional object to be measured to obtain contour lines and synthesizing the obtained contour lines. Light source 102, water tank 103, liquid 104, Z-axis stage main body 105 and moving stage 106, measured object 107 fixed on moving stage 106, imaging unit 108, image processing unit 109, liquid It is composed of a face meter 110 and a personal computer 111.

図1(a)および(b)は、Z軸ステージ本体105と移動ステージ106を動作させた時の様子を示した図で、同図(b)は移動ステージ106を上げて被測定物107の低い位置の外側形状を測定する場合、同図(a)は移動ステージ106を下げて被測定物107の高い位置の外側形状を測定する場合をそれぞれ示している。
水槽103の上面にある光源102から照射された光は、水槽103の液体104の液面および液面から突出した被測定物107を照射する。液体104の液面および液面から突出した被測定物107で反射した光は、点線151で示すように、撮像部108の受光面(不図示)に結像される。
FIGS. 1A and 1B are views showing a state when the Z-axis stage main body 105 and the moving stage 106 are operated. FIG. 1B is a view showing the state of the object 107 to be measured by raising the moving stage 106. When measuring the outer shape of the lower position, FIG. 4A shows the case of measuring the outer shape of the measured object 107 at a higher position by lowering the moving stage 106.
The light emitted from the light source 102 on the upper surface of the water tank 103 irradiates the liquid surface of the liquid 104 in the water tank 103 and the measurement object 107 protruding from the liquid surface. The liquid surface of the liquid 104 and the light reflected by the measurement object 107 protruding from the liquid surface are imaged on a light receiving surface (not shown) of the imaging unit 108 as indicated by a dotted line 151.

尚、図1の光学系は図2のように構成される。図2において、例えば、液体104の液面と被測定物107の境界部分で反射された光は、点線で示したように、対物レンズ116,結像絞り117および結像レンズ118を通って、撮像部108の受光面に境界線として結像される。図1と同じ符号は同じものを示す。
図1の撮像部108の受光面に結像された光は画像信号に変換され、ケーブル112を介して画像処理部109に出力される。
The optical system shown in FIG. 1 is configured as shown in FIG. In FIG. 2, for example, the light reflected by the boundary between the liquid surface of the liquid 104 and the object 107 to be measured passes through the objective lens 116, the imaging diaphragm 117, and the imaging lens 118 as indicated by the dotted line. An image is formed as a boundary line on the light receiving surface of the imaging unit 108. The same reference numerals as those in FIG.
The light imaged on the light receiving surface of the imaging unit 108 in FIG. 1 is converted into an image signal and output to the image processing unit 109 via the cable 112.

ここで、撮像部108の受光面と、液体104は光学的に共役であり、液面の一部である被測定物107との境界も共役になっており、これら2ヶ所で焦点が合う状態になっている。尚、被測定物107の高さによって焦点のずれが予測されるが、図2の開口絞り117のNA(Numerical Aperture:開口数)を小さくして焦点深度を深くすることで、被測定物107の高さの変動範囲内で焦点のずれをなくすことができる。   Here, the light receiving surface of the imaging unit 108 and the liquid 104 are optically conjugate, and the boundary between the object 107 to be measured, which is a part of the liquid surface, is also conjugate, and these two places are in focus. It has become. Although the focus shift is predicted depending on the height of the object 107 to be measured, the object 107 is measured by reducing the NA (Numerical Aperture) of the aperture stop 117 in FIG. The focus shift can be eliminated within the fluctuation range of the height.

一方、開口絞り117の開口(NA)を大きくすることにより測定精度を向上することができる。
水槽103の液体104は、移動ステージ106に固定された被測定物107が十分水没する所定量があり、移動ステージ106を上げると、被測定物107が液体104の水面上に突出する。尚、移動ステージ106の位置によって、被測定物107の水面下にある部分の体積が変化するので、液体104の水面位置も上下する。
On the other hand, the measurement accuracy can be improved by increasing the aperture (NA) of the aperture stop 117.
The liquid 104 in the water tank 103 has a predetermined amount in which the measured object 107 fixed to the moving stage 106 is sufficiently submerged, and when the moving stage 106 is raised, the measured object 107 protrudes on the water surface of the liquid 104. In addition, since the volume of the part under the water surface of the object 107 to be measured changes depending on the position of the moving stage 106, the water surface position of the liquid 104 also moves up and down.

液面計110は、この水面位置を検知し、画像処理部109に出力する。尚、液面計は、例えば、水槽103の内側に2つ導電体を平行かつ垂直に塗布しておき、液体104に浸かっている部分の位置と2つの導電体間の抵抗を予め計測しておくことで、抵抗の変化から液面の位置を検知することができる。また、静電容量方式の液面センサーを水槽103の外壁または液体104内に用いることができる。   The liquid level meter 110 detects the water surface position and outputs it to the image processing unit 109. The liquid level gauge, for example, applies two conductors in parallel and perpendicularly to the inside of the water tank 103, and measures the position of the portion immersed in the liquid 104 and the resistance between the two conductors in advance. Thus, the position of the liquid level can be detected from the change in resistance. In addition, a capacitive liquid level sensor can be used in the outer wall of the water tank 103 or in the liquid 104.

画像処理部109は、撮像部108の受光面に結像された画像データを受け取ると共に、ケーブル113を介して接続されているZ軸ステージ本体105に指令を送り、被測定物107を載せた移動ステージ106を撮像部108方向に所定ピッチで上下させる。つまり、被測定物107と液体104の液面との相対位置を変化させる。そして、移動ステージ106の所定位置毎に撮像部108から画像データを入力し、同時に液面計110から液面位置も入力する。さらに、入力した画像データを処理して、所定位置における被測定物107と液体104の液面との境界部分の外側形状(等高線に相当)を抽出する。例えば、計測時の移動ステージ106の上面位置がZ軸ステージ本体105の底面(水槽103の底)からの高さがZ1で、液面計110が検知した水槽103の底からの高さがL1だったとすると、計測時の被測定物107の高さは、(L1−Z1)で求められる。このようにして、被測定物107の高さ毎の等高線を求め、これらの等高線を合成することによって、被測定物107の三次元形状データを計測することができる。画像処理部109が計測した三次元形状データは、ケーブル115を介してパソコン111に出力され、パソコン111の画面に三次元形状が表示される。   The image processing unit 109 receives the image data imaged on the light receiving surface of the imaging unit 108 and sends a command to the Z-axis stage main body 105 connected via the cable 113 to move the object 107 to be measured. The stage 106 is moved up and down at a predetermined pitch in the direction of the imaging unit 108. That is, the relative position between the DUT 107 and the liquid surface of the liquid 104 is changed. Then, image data is input from the imaging unit 108 for each predetermined position of the moving stage 106, and at the same time, the liquid level position is also input from the liquid level meter 110. Furthermore, the input image data is processed to extract an outer shape (corresponding to a contour line) of the boundary portion between the DUT 107 and the liquid surface of the liquid 104 at a predetermined position. For example, the upper surface position of the moving stage 106 at the time of measurement is Z1 from the bottom surface of the Z-axis stage main body 105 (bottom of the water tank 103), and the height from the bottom of the water tank 103 detected by the liquid level gauge 110 is L1. If so, the height of the DUT 107 at the time of measurement can be obtained by (L1-Z1). In this way, the contour line for each height of the object 107 to be measured is obtained, and the three-dimensional shape data of the object 107 to be measured can be measured by combining these contour lines. The three-dimensional shape data measured by the image processing unit 109 is output to the personal computer 111 via the cable 115, and the three-dimensional shape is displayed on the screen of the personal computer 111.

次に、三次元形状測定装置101の測定の流れについて、図3のフローチャートを用いて説明する。
(ステップS201)先ず、被測定物107を移動ステージ106にセットする。
(ステップS202)次に、移動ステージ106の測定レンジ(移動範囲)や測定ピッチ(移動ピッチ)などの測定仕様をパソコン111から入力する。パソコン111で入力された測定仕様は、ケーブル115を介して画像処理部109に出力され、画像処理部109はケーブル113を介してZ軸ステージ本体105に対して、移動ステージ106を初期位置に移動するよう指令する。例えば、図1(a)に示すような最下点に移動ステージ106を移動する。
(ステップS203)移動ステージ106の現在位置で光源102から光を照射し、撮像部108で画像を撮影する。
(ステップS204)画像処理部109は、撮像部108の受光面で受光した画像をケーブル112を介して入力し、被測定物107と液体104の液面との境界線を抽出する。同時に、液面計110から液体104の液面位置を入力し、先に説明したように被測定物107の高さを求め、抽出した境界線の画像と対応づけて記憶する。
(ステップS205)測定仕様に従って、測定が完了したか否かを判断する。例えば、移動ステージ106が移動範囲の終了位置に達していない場合はステップS206に進み、終了位置に達している場合はステップS207に進む。
(ステップS206)移動ステージ106を設定された測定ピッチに従って、次の測定位置まで移動してステップS203に戻り、当該位置での測定を行う。
(ステップS207)移動ステージ106が移動範囲の終了位置に達して測定を終了した場合は、ステップS204で記憶しておいた境界線の画像と被測定物107の高さデータから、被測定物107の高さ毎の等高線を求め、これらの等高線を合成して三次元形状データを作成する。
Next, the measurement flow of the three-dimensional shape measuring apparatus 101 will be described with reference to the flowchart of FIG.
(Step S201) First, the DUT 107 is set on the moving stage 106.
(Step S202) Next, measurement specifications such as a measurement range (movement range) and a measurement pitch (movement pitch) of the moving stage 106 are input from the personal computer 111. The measurement specification input by the personal computer 111 is output to the image processing unit 109 via the cable 115, and the image processing unit 109 moves the moving stage 106 to the initial position with respect to the Z-axis stage main body 105 via the cable 113. To do. For example, the moving stage 106 is moved to the lowest point as shown in FIG.
(Step S203) Light is emitted from the light source 102 at the current position of the moving stage 106, and an image is captured by the imaging unit 108.
(Step S <b> 204) The image processing unit 109 inputs an image received by the light receiving surface of the imaging unit 108 via the cable 112, and extracts a boundary line between the DUT 107 and the liquid surface of the liquid 104. At the same time, the liquid level position of the liquid 104 is input from the liquid level meter 110, the height of the object 107 to be measured is obtained as described above, and stored in association with the extracted boundary line image.
(Step S205) It is determined whether the measurement is completed according to the measurement specification. For example, if the moving stage 106 has not reached the end position of the moving range, the process proceeds to step S206, and if it has reached the end position, the process proceeds to step S207.
(Step S206) The moving stage 106 is moved to the next measurement position according to the set measurement pitch, and the process returns to Step S203 to perform measurement at the position.
(Step S207) When the moving stage 106 reaches the end position of the moving range and ends the measurement, the measured object 107 is obtained from the boundary line image and the height data of the measured object 107 stored in Step S204. The contour lines for each height are obtained, and these contour lines are synthesized to create three-dimensional shape data.

ここで、三次元形状データの作成方法について、図4を用いて説明する。同図(a)は移動ステージ106上に置かれた被測定物107の等高線g1,g2およびg3を示しており、移動ステージ106の上面から高さh1,h2およびh3の位置にある。尚、高さh1,h2およびh3は、先に説明したように、液面計110が検知した液体104の液面位置と、移動ステージ106の上面位置から算出した被測定物107の高さを意味する。   Here, a method of creating three-dimensional shape data will be described with reference to FIG. FIG. 2A shows contour lines g1, g2 and g3 of the object 107 to be measured placed on the moving stage 106, which are located at heights h1, h2 and h3 from the upper surface of the moving stage 106. FIG. The heights h1, h2, and h3 are the heights of the measured object 107 calculated from the liquid surface position of the liquid 104 detected by the liquid level gauge 110 and the upper surface position of the moving stage 106, as described above. means.

例えば、移動ステージ106を上下させて、被測定物107の高さh1の部分に液体104の液面がきた時に撮像部108で撮影した画像は、図4(b)のような等高線g1になる。尚、実際には、撮像部108の受光部はマトリクス状に配置された画素で構成されるので、同図のように多数の点として得られる。同様に、高さh2の部分に液体104の液面がきた時に撮像部108で撮影した場合は、図4(c)のような等高線g2が得られる。さらに、高さh3の部分に液体104の液面がきた時に撮像部108で撮影した場合は、図4(d)のような等高線g3が得られる。これらの等高線g1,g2およびg3を合成すると図4(e)のようになり、さらに、高さh1,h2およびh3の高さ情報と合わせて三次元表示すると、図4(f)のような被測定物107の三次元形状データが得られる。尚、ここでは3つの等高線を用いて説明したが、実際には同図の点線のように測定ピッチの狭い多数の等高線を合成することによって、高精度な被測定物107の三次元形状107aを構築することができる。   For example, when the moving stage 106 is moved up and down and the liquid level of the liquid 104 comes to the height h1 portion of the object 107 to be measured, an image photographed by the imaging unit 108 becomes a contour line g1 as shown in FIG. . Actually, since the light receiving unit of the imaging unit 108 is composed of pixels arranged in a matrix, it is obtained as a number of points as shown in FIG. Similarly, when an image is taken by the imaging unit 108 when the liquid level of the liquid 104 comes to the height h2, a contour line g2 as shown in FIG. 4C is obtained. Further, when the imaging unit 108 takes an image when the liquid level of the liquid 104 comes to the height h3, a contour line g3 as shown in FIG. 4D is obtained. When these contour lines g1, g2, and g3 are synthesized, the result is as shown in FIG. 4 (e). Further, when the three-dimensional display is performed together with the height information of the heights h1, h2, and h3, as shown in FIG. 4 (f). Three-dimensional shape data of the DUT 107 is obtained. Although the description has been made using three contour lines here, in practice, the three-dimensional shape 107a of the object 107 to be measured with high accuracy can be obtained by synthesizing a large number of contour lines having a narrow measurement pitch as shown by dotted lines in FIG. Can be built.

さて、図3のフローチャートに戻って説明を続ける。
(ステップS208)画像処理部109で作成された三次元形状データは、ケーブル115を介してパソコン111に出力され、パソコン111の画面に表示される。
(ステップS209)必要に応じて、パソコン111では、キーボードやマウスを操作して、画面に表示されている被測定物107の任意の位置を指定して、画像処理部109から受け取った被測定物107の三次元形状データから大きさや長さを求めて表示する。
(ステップS210)全ての計測を終了する。
Returning to the flowchart of FIG.
(Step S208) The three-dimensional shape data created by the image processing unit 109 is output to the personal computer 111 through the cable 115 and displayed on the screen of the personal computer 111.
(Step S209) If necessary, the personal computer 111 operates the keyboard or mouse to specify an arbitrary position of the device 107 displayed on the screen, and the device under test received from the image processing unit 109. The size and length are obtained from the three-dimensional shape data 107 and displayed.
(Step S210) All measurements are finished.

このようにして、所定ピッチで移動ステージ106を上下させながら被測定物に光が当たっている部分の外側形状を抽出し、同時に液面計110によって液面位置を検知して、被測定物107の高さを求め、これらを高さ毎に合成することによって、被測定物107の三次元形状を測定することができる。
尚、本実施形態では、画像処理を行う画像処理部109と、三次元形状測定装置101全体の操作や測定結果の表示を行うパソコン111とを別々に設けたが、パソコン111に画像処理部109のハードウェアおよびソフトウェアを内蔵するようにしても構わない。或いは、逆に画像処理部109に操作部や表示部を設けて、三次元形状測定装置101専用の制御部としても構わない。
In this way, the outer shape of the portion where the light hits the object to be measured is extracted while moving the moving stage 106 up and down at a predetermined pitch, and at the same time, the liquid level position is detected by the liquid level gauge 110 to measure the object 107 to be measured. The three-dimensional shape of the object to be measured 107 can be measured by obtaining the heights of these and combining them for each height.
In this embodiment, the image processing unit 109 that performs image processing and the personal computer 111 that displays the operation of the entire three-dimensional shape measuring apparatus 101 and the display of measurement results are provided separately. The hardware and software may be built in. Alternatively, conversely, an operation unit and a display unit may be provided in the image processing unit 109 so as to be a dedicated control unit for the three-dimensional shape measuring apparatus 101.

また、本実施形態では、液面計110を設けて、液体104の液面位置を検知するようにしたが、例えば、赤外線のオートフォーカス(AF)部を設置して液面までの距離を計測し、水槽103の底からAF部までの距離から計測した液面までの距離を引き算することによって、被測定物107の液面までの高さを求めることができる。或いは、水槽103の大きさを被測定物107の大きさに比べて無視できるほど大きくすることで、液面計110を省略しても構わない。   In this embodiment, the liquid level meter 110 is provided to detect the liquid level position of the liquid 104. For example, an infrared autofocus (AF) unit is installed to measure the distance to the liquid level. And the height to the liquid level of the to-be-measured object 107 can be calculated | required by subtracting the distance to the liquid level measured from the distance from the bottom of the water tank 103 to AF part. Alternatively, the liquid level gauge 110 may be omitted by increasing the size of the water tank 103 to be negligible compared to the size of the object 107 to be measured.

または、液体104の液面位置が一定になるように、入排水ポンプを設けて、被測定物107が液体104内に水没している部分の体積に依らず、液体104の液面位置が一定になるようにしても構わない。逆に、移動ステージ106を固定ステージにして、入排水ポンプで液体104の量を可変して液面位置を制御し、所定のピッチで液面位置を上下させて同様の測定を行うことも可能である。   Alternatively, an inlet / outlet pump is provided so that the liquid surface position of the liquid 104 is constant, and the liquid surface position of the liquid 104 is constant regardless of the volume of the portion in which the object 107 is submerged in the liquid 104. It does not matter if it becomes. Conversely, the movable stage 106 can be a fixed stage, the liquid level can be controlled by varying the amount of the liquid 104 with an inlet / outlet pump, and the same level can be measured by moving the liquid level up and down at a predetermined pitch. It is.

また、本実施形態では移動ステージ106を最下点に下げた場合でも被測定物107が液体104から突出している場合を示したが、移動ステージ106を最下点に下げた場合に被測定物107が液体104に沈んでいても構わない。その場合は、移動ステージ106を最下点から徐々に上昇させ、被測定物107の一部が液体104から突出したことを検出して、その部分を被測定物107の上端とすればよい。   Further, in the present embodiment, the case is shown in which the object to be measured 107 protrudes from the liquid 104 even when the moving stage 106 is lowered to the lowest point. However, the object to be measured is shown when the moving stage 106 is lowered to the lowest point. 107 may sink in the liquid 104. In that case, the moving stage 106 may be gradually raised from the lowest point to detect that a part of the object 107 to be measured protrudes from the liquid 104, and that part may be the upper end of the object 107 to be measured.

さらに、本実施形態では、液体104の色に関しては特に説明しなかったが、液体104に色を付けるようにすれば、被測定物107との境界を抽出し易くなる。例えば、図4(b),(c)および(d)において、被測定物107の色が赤色を含まない色の場合、液体104の色を赤色にすることで、赤い色とそれ以外の色の境界部分を抽出するだけでよい。   Furthermore, in the present embodiment, the color of the liquid 104 has not been specifically described. However, if the liquid 104 is colored, it is easy to extract the boundary with the object 107 to be measured. For example, in FIGS. 4B, 4 </ b> C, and 4 </ b> D, when the color of the object 107 to be measured is a color that does not include red, the color of the liquid 104 is changed to red so that the red color and the other colors are obtained. It is only necessary to extract the boundary part.

このように、本実施形態に係る三次元形状測定装置101は、立体状の被測定物107の所定の高さ毎に外側形状を測定して等高線を求め、高さを可変しながら測定した高さ毎の等高線を合成することによって物体の三次元形状を構築することができるので、簡易な構成で複雑な演算を行うことなく、高精度な三次元形状測定装置およびその方法を提供することができる。   As described above, the three-dimensional shape measuring apparatus 101 according to the present embodiment measures the outer shape at every predetermined height of the three-dimensional object 107 to obtain contour lines, and measures the height while changing the height. Since the three-dimensional shape of the object can be constructed by synthesizing the contour lines of each length, it is possible to provide a highly accurate three-dimensional shape measuring apparatus and method thereof without performing complicated calculations with a simple configuration. it can.

第1の実施形態に係る三次元形状測定装置101の構成図である。It is a lineblock diagram of three-dimensional shape measuring device 101 concerning a 1st embodiment. 三次元形状測定装置101の光学系を示す補助図である。3 is an auxiliary diagram showing an optical system of the three-dimensional shape measuring apparatus 101. FIG. 三次元形状測定装置101の測定手順を示すフローチャートである。3 is a flowchart showing a measurement procedure of the three-dimensional shape measuring apparatus 101. 三次元形状の構築を説明するための補助図である。It is an auxiliary figure for explaining construction of a three-dimensional shape.

符号の説明Explanation of symbols

101・・・三次元形状測定装置;102・・・光源;103・・・水槽;104・・・液体;105・・・Z軸ステージ本体;106・・・移動ステージ;107・・・被測定物;108・・・撮像部;109・・・画像処理部;110・・・液面計;111・・・パソコン
DESCRIPTION OF SYMBOLS 101 ... Three-dimensional shape measuring apparatus; 102 ... Light source; 103 ... Water tank; 104 ... Liquid; 105 ... Z-axis stage main body; 106 ... Moving stage; 108; imaging unit; 109 ... image processing unit; 110 ... liquid level gauge; 111 ... personal computer

Claims (7)

被測定物の形状を測定する測定装置であって、
被測定物を沈める所定量の液体を保持する液体保持部と、
前記被測定物と前記液体とに光を照射する光源と、
前記被測定物と前記液体との境界線を検出する検出部と、
前記検出部の検出結果に基づいて前記被測定物の形状を測定する形状測定部と
を備えることを特徴とする測定装置。
A measuring device for measuring the shape of an object to be measured,
A liquid holding unit for holding a predetermined amount of liquid that sinks the object to be measured;
A light source for irradiating light to the object to be measured and the liquid;
A detection unit for detecting a boundary line between the object to be measured and the liquid;
A shape measuring unit that measures the shape of the object to be measured based on a detection result of the detecting unit.
請求項1に記載の測定装置において、
前記被測定物と前記液体保持部とを前記検出部の方向に相対移動させる移動部をさらに備え、
前記形状測定部は、前記被測定物と前記液体保持部との相対位置を変化させた時の前記検出部の検出結果に基づいて、前記被測定物の3次元形状を測定すること
を特徴とする測定装置。
The measuring apparatus according to claim 1,
A moving unit that relatively moves the object to be measured and the liquid holding unit in the direction of the detection unit;
The shape measuring unit measures a three-dimensional shape of the measured object based on a detection result of the detecting unit when a relative position between the measured object and the liquid holding unit is changed. Measuring device.
請求項1または2に記載の測定装置において、
前記液体保持部が保持する液体の液面位置を管理する液体管理部を設けたこと
を特徴とする測定装置。
The measuring apparatus according to claim 1 or 2,
A measuring apparatus comprising: a liquid management unit that manages a liquid surface position of the liquid held by the liquid holding unit.
請求項3に記載の測定装置において、
前記液体管理部は、前記液体保持部が保持する液体の液面位置を一定に保つこと
を特徴とする測定装置。
The measuring device according to claim 3,
The liquid management unit keeps a liquid surface position of the liquid held by the liquid holding unit constant.
請求項3に記載の測定装置において、
前記液体管理部は、前記液体保持部が保持する液体の液面位置を検知し、該液面位置を前記形状測定部に出力すること
を特徴とする測定装置。
The measuring device according to claim 3,
The liquid management unit detects a liquid level position of the liquid held by the liquid holding unit, and outputs the liquid level position to the shape measuring unit.
請求項3に記載の測定装置において、
前記液体管理部は、前記液体保持部の液面上方にあって、かつ前記液面と平行に配置されたオートフォーカス部を有し、
前記オートフォーカス部は、前記移動部の動作に応じて変化する液面位置を検知し、該液面位置を前記形状測定部に出力すること
を特徴とする測定装置。
The measuring device according to claim 3,
The liquid management unit has an autofocus unit that is located above the liquid level of the liquid holding unit and is arranged in parallel with the liquid level,
The autofocus unit detects a liquid level position that changes according to the operation of the moving unit, and outputs the liquid level position to the shape measuring unit.
請求項1から6のいずれか一項に記載の測定装置において、
前記液体を有色の液体とすること
を特徴とする測定装置。
In the measuring device according to any one of claims 1 to 6,
A measuring apparatus, wherein the liquid is a colored liquid.
JP2007000603A 2007-01-05 2007-01-05 Measurement device Withdrawn JP2008164573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000603A JP2008164573A (en) 2007-01-05 2007-01-05 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000603A JP2008164573A (en) 2007-01-05 2007-01-05 Measurement device

Publications (1)

Publication Number Publication Date
JP2008164573A true JP2008164573A (en) 2008-07-17

Family

ID=39694264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000603A Withdrawn JP2008164573A (en) 2007-01-05 2007-01-05 Measurement device

Country Status (1)

Country Link
JP (1) JP2008164573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095469A (en) * 2010-12-04 2011-06-15 沈阳航空航天大学 Device and method for measuring liquid level in storage tank by utilizing camera
CN116124083A (en) * 2023-04-12 2023-05-16 中铁二十三局集团有限公司 High-fill roadbed settlement observation device and observation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095469A (en) * 2010-12-04 2011-06-15 沈阳航空航天大学 Device and method for measuring liquid level in storage tank by utilizing camera
CN116124083A (en) * 2023-04-12 2023-05-16 中铁二十三局集团有限公司 High-fill roadbed settlement observation device and observation method

Similar Documents

Publication Publication Date Title
CN103163075B (en) A kind of water regime monitoring system
KR101543693B1 (en) Apparatus and method for inspecting the interior of the manhole
US20120194673A1 (en) Dimension Measuring Apparatus, Dimension Measuring Method, And Program For Dimension Measuring Apparatus
US10120163B2 (en) Auto-focus method for a coordinate-measuring apparatus
JP2018205025A (en) Image inspection device, image inspection method, image inspection program, and computer readable recording medium and recorded apparatus
WO2013061976A1 (en) Shape inspection method and device
CN104776977A (en) Coastal engineering silt physical model test bottom bed dynamic and comprehensive observation method
JP2012058076A (en) Three-dimensional measurement device and three-dimensional measurement method
JP5270971B2 (en) Image measuring apparatus, image measuring method, and computer program
JP2012083350A (en) Precision solder resist registration inspection method
CN104833342B (en) Mobile terminal and method of establishing stereoscopic model through multipoint distance measurement
KR20060052699A (en) 3d and 2d measurement system and method with increased sensitivity and dynamic range
CN201007646Y (en) Liquid auxiliary dislocation scanning three-dimensional shape measuring apparatus
CN107544135A (en) Endoscope with distance measuring function and distance measuring method
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
JP2009053001A (en) Structure inspection device
JP6996469B2 (en) Imaging system and setting device
JP2008164573A (en) Measurement device
Percoco et al. Image analysis for 3D micro-features: A new hybrid measurement method
WO2014163509A1 (en) System and method for determining fluid levels interfaces
JP2017053671A (en) Shape measurement method
JP6884077B2 (en) Surface inspection equipment and surface inspection method
JP2006519990A (en) A method to measure three-dimensional objects by back-light shadowgraphy
KR101385592B1 (en) Vision recognition method and system thereof
CN105008903A (en) Method and device for analyzing the surface of a substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406