JP2008164362A - Ultrasonic sludge concentration measuring system - Google Patents

Ultrasonic sludge concentration measuring system Download PDF

Info

Publication number
JP2008164362A
JP2008164362A JP2006352450A JP2006352450A JP2008164362A JP 2008164362 A JP2008164362 A JP 2008164362A JP 2006352450 A JP2006352450 A JP 2006352450A JP 2006352450 A JP2006352450 A JP 2006352450A JP 2008164362 A JP2008164362 A JP 2008164362A
Authority
JP
Japan
Prior art keywords
sludge
ultrasonic
concentration measuring
measuring apparatus
sludge concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352450A
Other languages
Japanese (ja)
Other versions
JP4402107B2 (en
Inventor
Takashi Cho
孝 長
Masashi Okuhara
正志 奥原
Kunio Sato
邦夫 佐藤
Masahiko Nakayama
正彦 中山
Kazuo Yugawa
和夫 湯川
Hideo Yamaki
英雄 八巻
Shigeo Shimakage
茂夫 島影
Shinichiro Hasegawa
伸一郎 長谷川
Shinobu Tanaka
忍 田中
Eiji Sugiyama
英司 杉山
Kazuya Maeda
和哉 前田
Junichi Kawasaki
淳一 川崎
Takashi Uchida
崇 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA TECHNO SERVICE CO Ltd
Nishihara Environment Co Ltd
Original Assignee
NISHIHARA TECHNO SERVICE CO Ltd
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA TECHNO SERVICE CO Ltd, Nishihara Environmental Technology Co Ltd filed Critical NISHIHARA TECHNO SERVICE CO Ltd
Priority to JP2006352450A priority Critical patent/JP4402107B2/en
Publication of JP2008164362A publication Critical patent/JP2008164362A/en
Application granted granted Critical
Publication of JP4402107B2 publication Critical patent/JP4402107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic sludge concentration measuring device which prevents the strength reduction or breakage of an elastic member, considerably enhancing the service life of the elastic member. <P>SOLUTION: In the ultrasonic sludge concentration measuring device 1, a main pipe 2 for flowing sludge therethrough is provided with a communication port 10. A measuring chamber 4 is disposed to the communication port 10 through a control valve 3. After the control valve 3, sludge present in the measuring chamber 4 is pressed by a pressing means. A ultrasonic wave is sent to the sludge and received therefrom by an ultrasonic transmission/reception 5 provided for the measuring chamber 4 to determine the attenuation. The concentration of the sludge is calculated based on the attenuation. Characteristically, the ultrasonic sludge concentration measuring device 1 includes an elastic member 24 covering an opening 23 provided for the measuring chamber 4, an outer covering member 25 covering the outside of the elastic member 24 to define a pressure chamber 6, and a protection cover 7 covering the elastic member 24 on the pressure chamber 6 side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、汚泥中の汚泥濃度を測定する超音波式汚泥濃度測定装置に関するものである。   The present invention relates to an ultrasonic sludge concentration measuring apparatus for measuring a sludge concentration in sludge.

従来より、汚泥(以降、汚泥とは、有機物、無機物、微生物等の固体の懸濁物質と液体の水分との混合物のことをいう)中の懸濁物質の含有割合である汚泥濃度を計測する汚泥濃度計には、種々の測定方式のものが既に存在し、実用化されている。そして、リアルタイムに排水中の汚泥濃度を測定する測定方式には、光方式、超音波方式、マイクロ波方式等がある。光方式は、測定装置の照射部から対象汚泥中に可視光、赤外線光、レーザー光等の光を照射し、照射部と対向して配置された受光部で光量を測定してその光の減衰量から汚泥濃度を測定する方式である。   Conventionally, the sludge concentration, which is the content ratio of suspended solids in sludge (hereinafter, sludge is a mixture of solid suspended solids such as organic matter, inorganic matter and microorganisms and liquid moisture) is measured. Various types of sludge densitometers already exist and are in practical use. And there are an optical method, an ultrasonic method, a microwave method, etc. in the measuring method which measures the sludge density | concentration in waste_water | drain in real time. The light system irradiates the target sludge with light such as visible light, infrared light, laser light, etc. from the irradiation part of the measuring device, measures the amount of light with the light receiving part arranged opposite the irradiation part, and attenuates the light This method measures the sludge concentration from the amount.

超音波方式は、測定装置の送信部から対象汚泥中に超音波を送信し、送信部と対向して配置された受信部で超音波を受信してその超音波の減衰量から汚泥濃度を測定する方式である。マイクロ波方式は、測定装置の送信部から対象汚泥中にマイクロ波を送信し、送信部と対向して配置された受信部でマイクロ波を受信する。マイクロ波は、清水中で送受信したときよりも、浮遊物質を多く含む汚泥中で送受信したときの方が、波の位相差は大きくなる特性を有している。マイクロ波方式は、この特性を利用して、位相差の大きさから汚泥濃度を測定する方式である。光方式は、測定対象の汚泥の色度の影響を受けやすい欠点がある。光は、水を透過する際、その水の色度が高い程、多く吸収され、減衰してしまう特性があるため、サンプリングして分析すると同じ汚泥濃度である汚泥であっても、色度の高い汚泥の方が色度の低いそれよりも高い汚泥濃度で測定されてしまう。よって、時間毎あるいは日毎で色度変化の大きい汚泥を測定対象とする場合には、光方式の汚泥濃度測定装置は不向きであった。   The ultrasonic method transmits ultrasonic waves into the target sludge from the transmitter of the measuring device, receives the ultrasonic waves at the receiver arranged opposite the transmitter, and measures the sludge concentration from the attenuation of the ultrasonic waves. It is a method to do. In the microwave method, microwaves are transmitted from the transmitting unit of the measuring apparatus into the target sludge, and the microwaves are received by a receiving unit disposed opposite to the transmitting unit. The microwave has a characteristic that the phase difference of the wave becomes larger when transmitted / received in sludge containing a large amount of suspended solids than when transmitted / received in fresh water. The microwave method is a method for measuring the sludge concentration from the magnitude of the phase difference using this characteristic. The light method has a drawback that it is easily affected by the chromaticity of the sludge to be measured. When light passes through water, the higher the chromaticity of the water, the more it is absorbed and attenuated, so even if it is sludge that has the same sludge concentration as sampled and analyzed, Higher sludge is measured at a higher sludge concentration than that of lower chromaticity. Therefore, in the case where sludge having a large chromaticity change every hour or every day is to be measured, the optical sludge concentration measuring device is not suitable.

マイクロ波方式は、測定対象の汚泥の色度や気泡の影響を受けにくい利点がある反面、導電率の影響を受けやすく、測定誤差が発生してしまう欠点があった。また、マイクロ波方式の汚泥濃度測定装置は、他の方式のものよりも高価であるという問題もあった。
また、超音波方式は、測定対象の汚泥の色度の影響を受けにくく、しかもマイクロ波方式のものよりも安価であるという大きな利点がある反面、その汚泥中に気泡が多く含まれていると、その影響を受け、測定値が実際よりも大きな値を示したり、最悪、測定不能に陥る欠点があった。これは、超音波が、汚泥中の気泡に衝突するとそこで超音波が拡散してしまい、減衰してしまったり、受信部まで超音波が伝播しなかったりすることに起因している。
The microwave method has the advantage that it is less susceptible to the chromaticity of the sludge to be measured and air bubbles, but it is susceptible to electrical conductivity and causes measurement errors. In addition, the microwave-type sludge concentration measuring device is more expensive than the other types.
The ultrasonic method has the great advantage that it is less susceptible to the chromaticity of the sludge to be measured and is cheaper than that of the microwave method. On the other hand, the sludge contains many bubbles. However, due to the influence, the measured value shows a larger value than the actual value, or in the worst case, the measurement becomes impossible. This is because when the ultrasonic wave collides with bubbles in the sludge, the ultrasonic wave diffuses and attenuates there, or the ultrasonic wave does not propagate to the receiving unit.

そこで、本願発明の出願人は、超音波方式の汚泥濃度測定装置の欠点である汚泥中の気泡による汚泥濃度測定への影響の問題を解決すべく、特許文献1記載の汚泥濃度測定装置を発明した。   Therefore, the applicant of the present invention invented the sludge concentration measuring device described in Patent Document 1 in order to solve the problem of the influence of bubbles in the sludge on the sludge concentration measurement, which is a drawback of the ultrasonic sludge concentration measuring device. did.

この特許文献1記載の汚泥濃度測定装置は、被計測汚泥が流れる汚泥本管(本管部)から分岐して連通する濃度センサ(超音波送受信器)を備えた汚泥濃度測定室(測定室)が設けられ、汚泥本管(本管部)と汚泥濃度測定室(測定室)とを仕切る開閉弁(制御弁)を有しており、さらに汚泥濃度測定室(測定室)には、ダイヤフラム(弾性部材)と加圧室が設けられている。そして、汚泥の汚泥濃度を測定する際は、以下のプロセスで行われる。   The sludge concentration measuring device described in Patent Document 1 is a sludge concentration measuring chamber (measuring chamber) provided with a concentration sensor (ultrasonic transmitter / receiver) that branches from and communicates with a sludge main pipe (main pipe portion) through which measured sludge flows. And has an on-off valve (control valve) that separates the sludge main pipe (main pipe section) and the sludge concentration measurement chamber (measurement chamber), and the sludge concentration measurement chamber (measurement chamber) has a diaphragm ( An elastic member) and a pressurizing chamber. And when measuring the sludge density | concentration of sludge, it is performed with the following processes.

(1)汚泥本管から汚泥を汚泥濃度測定室に汚泥本管の流れで自然に、あるいは開閉弁を閉じるときの弁体の回転駆動によって強制的に導入する。
(2)開閉弁を閉じて、汚泥濃度測定室を汚泥本管から遮断し、汚泥を密閉状態にする。
(3)エアコンプレッサー等で加圧室に加圧空気を供給して加圧室を加圧する。
(4)加圧室が加圧されることより、ダイヤフラムが汚泥濃度測定室側へ押し込まれ、これによって汚泥濃度測定室内の汚泥を加圧する。
(5)加圧することにより、汚泥中に存在する気泡をその汚泥の水分中に溶存させて、消泡する。
(6)濃度センサによって、汚泥の汚泥濃度を計測する。
(1) Sludge is forcedly introduced from the sludge main into the sludge concentration measurement chamber by the flow of the sludge main or by the rotational drive of the valve body when the on-off valve is closed.
(2) Close the on-off valve to shut off the sludge concentration measurement chamber from the sludge main, and make the sludge sealed.
(3) Supply pressurized air to the pressurizing chamber with an air compressor or the like to pressurize the pressurizing chamber.
(4) Since the pressurizing chamber is pressurized, the diaphragm is pushed into the sludge concentration measuring chamber, thereby pressurizing the sludge in the sludge concentration measuring chamber.
(5) By pressurizing, bubbles present in the sludge are dissolved in the water of the sludge and defoamed.
(6) The sludge concentration of sludge is measured by the concentration sensor.

特許文献1記載の汚泥濃度測定装置では、汚泥を加圧して気泡を水分中に溶けこませ、気泡を消滅させることにより、気泡による影響を受けずに超音波による汚泥濃度を測定することができ、それなりの効果を得ることができていた。   In the sludge concentration measuring apparatus described in Patent Document 1, the sludge concentration by ultrasonic waves can be measured without being affected by the bubbles by pressurizing the sludge to dissolve the bubbles in the moisture and extinguishing the bubbles. I was able to get some effect.

実公平5−39491公報Japanese Utility Model Publication 5-39491

特許文献1に記載の汚泥濃度測定装置は、加圧空気によって加圧室を加圧してダイヤフラム(以下、「弾性部材」という)を押圧する構成となっている。加圧室の体積を大きくすると、加圧時に加圧空気を多く送らなければならなくなるので、加圧室の体積をできるだけ小さくしている。このため、弾性部材の加圧室側表面と加圧室の内壁とが接近している部分が多くなっている。また、弾性部材が破損すると、汚泥濃度測定室(以下、「測定室」という)内および汚泥本管(以下、「本管部」という)内の汚泥が加圧室に流出してきてしまい、最悪、加圧空気を供給する空気供給管を経て、コンプレッサー等の空気圧縮機の内部に汚泥が入り込み、故障させてしまう。この対策として、加圧室に汚泥が流入したことを感知するリークディテクター(以下、「漏洩検知器」という)が配設されている。   The sludge concentration measuring apparatus described in Patent Document 1 is configured to pressurize a pressurizing chamber with pressurized air and press a diaphragm (hereinafter referred to as “elastic member”). If the volume of the pressurizing chamber is increased, a large amount of pressurized air must be sent during pressurization, so that the volume of the pressurizing chamber is made as small as possible. For this reason, the part where the pressurization chamber side surface of an elastic member and the inner wall of a pressurization chamber have approached has increased. In addition, if the elastic member is damaged, sludge in the sludge concentration measurement chamber (hereinafter referred to as “measurement chamber”) and in the sludge main pipe (hereinafter referred to as “main pipe portion”) flows out into the pressurizing chamber. Then, sludge enters the inside of an air compressor such as a compressor through an air supply pipe for supplying pressurized air, resulting in failure. As a countermeasure, a leak detector (hereinafter referred to as “leakage detector”) that senses that sludge has flowed into the pressurizing chamber is provided.

ここで、汚泥濃度測定装置が設置されている汚泥配管内が所定圧力以上の正圧状態になった場合、汚泥によって弾性部材が加圧室側に押し出され、弾性部材が膨らんでしまう。この場合、弾性部材の加圧室側表面が加圧室の内壁に擦れたり、加圧室の鋭角部分や漏洩検知器に接触したりすることで、弾性部材の強度が低下し、これが繰り返されると、通常、弾性部材の素材から想定されている耐用年数よりも短期間で弾性部材が破損してしまうという問題があった。   Here, when the inside of the sludge pipe in which the sludge concentration measuring device is installed is in a positive pressure state equal to or higher than a predetermined pressure, the elastic member is pushed out to the pressurizing chamber side by the sludge, and the elastic member swells. In this case, the pressure of the elastic member on the pressure chamber side surface is rubbed against the inner wall of the pressure chamber, or comes into contact with an acute angle portion of the pressure chamber or a leak detector, so that the strength of the elastic member is reduced and this is repeated. In general, there has been a problem that the elastic member is damaged in a shorter period than the expected service life of the elastic member.

一方、測定対象の汚泥が、濃縮槽で濃度が濃縮された濃縮汚泥や、消化槽から消化汚泥、脱水機で脱水する前の脱水機供給汚泥である場合、汚泥中に嫌気性反応に起因するメタン等のガスが発生しており、それが気泡の形で存在していることが多い。また、好気性処理時等に混入された空気がそのまま気泡の形で存在していることもある。そして、ガスの発生量が多い場合や、空気が多く残っている場合には、その汚泥が流れる汚泥配管やその流路に設置されている汚泥濃度測定装置の本管部内でその気泡同士が結合して大型化し、浮力で上方に浮上分離してしまい、本管部の断面上方側にガス溜まりとして滞留してしまう。   On the other hand, when the sludge to be measured is concentrated sludge concentrated in the concentration tank, digested sludge from the digestion tank, or dehydrator-supplied sludge before dehydration by the dehydrator, it is caused by an anaerobic reaction in the sludge. Gases such as methane are generated and often exist in the form of bubbles. In addition, air mixed during aerobic treatment or the like may exist in the form of bubbles as it is. If there is a large amount of gas generated or if a large amount of air remains, the bubbles are bound together in the main pipe of the sludge pipe through which the sludge flows and the sludge concentration measuring device installed in the flow path. As a result, it becomes larger and floats and separates upward due to buoyancy, and stays as a gas reservoir above the cross section of the main pipe.

このような汚泥を、特許文献1に記載の汚泥濃度測定装置で汚泥濃度を測定する場合、汚泥とともにガス溜まりも測定室に流入してしまうことがある。このとき、汚泥を加圧して気泡を消滅させるプロセスを実行すると、汚泥が圧縮性の非常に低い流体であるのに対し、ガス溜まりは、圧縮性の高い流体であるため、弾性部材によって汚泥を加圧しても、ガス溜まりの方が優先的に圧縮されてしまい、汚泥中の気泡が水分中に溶存せず、またガス溜まりも汚泥の水分中に溶存せず、その次のプロセスで汚泥濃度が正確に測定されない、あるいは測定不能になることがあり、問題となっていた。   When such a sludge is measured with a sludge concentration measuring device described in Patent Document 1, a gas reservoir may flow into the measurement chamber together with the sludge. At this time, if the process of pressurizing the sludge to eliminate the bubbles is performed, the sludge is a fluid having a very low compressibility, whereas the gas reservoir is a fluid having a high compressibility. Even if pressure is applied, the gas reservoir is preferentially compressed, bubbles in the sludge do not dissolve in the moisture, and the gas reservoir does not dissolve in the moisture of the sludge. May not be measured accurately or may become impossible to measure.

さらに、汚泥濃度測定室中のガス溜まりの容量が多い場合、通常、弾性部材は、加圧室側に凸面を有する形状であるが、その凸面が測定室側に押し込まれてしまい、測定室側に凸面を有する形状に変形してしまう、いわゆる反転現象が発生してしまい、汚泥濃度が正確に測定されないばかりか、開閉弁が開いた際に弾性部材の凸面と接触して、弾性部材を損傷してしまったり、流路を塞いでしまったりすることがあり、問題となっていた。   In addition, when the capacity of the gas pool in the sludge concentration measurement chamber is large, the elastic member is usually shaped to have a convex surface on the pressurization chamber side, but the convex surface is pushed into the measurement chamber side, and the measurement chamber side The so-called reversal phenomenon occurs, and the sludge concentration is not accurately measured, and when the on-off valve is opened, it contacts the convex surface of the elastic member and damages the elastic member. Or may block the flow path, which is a problem.

また、汚泥配管の移送ポンプ吸引側に汚泥濃度測定装置が設置されている等、汚泥配管内が負圧状態になりやすい環境の場合、弾性部材が測定室側に吸引されてしまい、弾性部材の反転現象が発生してしまうことがあり、問題となっていた。   In addition, if the sludge pipe is in an environment that tends to be in a negative pressure state, such as a sludge concentration measuring device installed on the suction side of the transfer pump of the sludge pipe, the elastic member will be sucked into the measurement chamber side, A reversal phenomenon may occur, which is a problem.

さらに、特許文献1に記載の汚泥濃度測定装置では、前記の通り、汚泥漏れ対策として、加圧室内に漏洩検知器が配設されている。この漏洩検知器は、汚泥濃度測定装置の必要設置スペースを小さくすることを考慮し、弾性部材に対して平行な方向に配設されている。よって、漏洩検知器の配線を接続する端子が加圧室の横側に突出しており、さらに、その端子を保護するためのカバーが取付けられている。加圧室を形成する外箱は、測定室に取付けられる端部がフランジ形状となっており、ボルトで測定室の外壁に取付けられている。   Furthermore, in the sludge concentration measuring apparatus described in Patent Document 1, as described above, a leak detector is disposed in the pressurizing chamber as a countermeasure for sludge leakage. This leak detector is arranged in a direction parallel to the elastic member in consideration of reducing the necessary installation space of the sludge concentration measuring device. Therefore, a terminal for connecting the wiring of the leak detector protrudes to the side of the pressurizing chamber, and a cover for protecting the terminal is attached. The outer box forming the pressurizing chamber has a flange-shaped end attached to the measurement chamber, and is attached to the outer wall of the measurement chamber with a bolt.

この汚泥濃度測定装置を工場で組み立てる時においては、先に外箱(以下、「外覆部材」という)を測定室に取付け、その後、漏洩検知器を外覆部材に取付け、配線を端子に接続し、最後に端子収納箱を取付けるようになっている。しかし、測定室内の清掃等のメンテナンスを行う場合、漏洩検知器自体の交換等のメンテナンスをしない限りは、通常取り外さない。よって、メンテナンス作業時に、漏洩検知器や端子収納箱が外覆部材に取付けられた状態で外覆部材を測定室から取り外すためにボルトをスパナ等で回そうすると、外覆部材から突出している漏洩検知器や端子収納箱が邪魔になり、メンテナンス等における作業性が非常に悪く、作業時間が掛かってしまうという問題があった。   When assembling this sludge concentration measuring device at the factory, first attach the outer box (hereinafter referred to as “exterior member”) to the measurement chamber, then attach the leak detector to the outer cover member, and connect the wiring to the terminal. Finally, the terminal storage box is attached. However, when performing maintenance such as cleaning the measurement chamber, it is not normally removed unless maintenance such as replacement of the leak detector itself is performed. Therefore, during maintenance work, if the bolt is turned with a spanner or the like to remove the outer cover member from the measurement chamber with the leak detector or terminal storage box attached to the outer cover member, the leak detection protruding from the outer cover member There is a problem that the container and the terminal storage box become obstructive, the workability in maintenance and the like is very poor, and it takes a long time.

この発明は、上記のような課題を解決するためになされたもので、汚泥配管内が正圧状態となった場合、弾性部材が加圧室側に押し出されて、漏洩検知器や加圧室内壁に弾性部材が接触することに起因する弾性部材の強度低下や破損を防止でき、弾性部材の耐用年数の大幅な向上が図れる超音波式汚泥濃度測定装置を提供することを目的とする。
この発明は、汚泥配管から本管部を経て測定室に汚泥とともにガス溜まりが流入してくることに起因して、弾性部材で測定室内を加圧しても汚泥中の気泡が溶存しない現象が発生することを防止でき、また、弾性部材の凸面が測定室側に反転してしまう反転現象を防止できる超音波式汚泥濃度測定装置を提供することを目的とする。
この発明は、汚泥配管内が負圧状態になりやすい環境の場合、弾性部材が測定室側に吸引されてしまい、弾性部材の反転現象が発生することを防止できる超音波式汚泥濃度測定装置を提供することを目的とする。
この発明は、測定室内の清掃等のメンテナンスを行うときの外覆部材を測定室から取り外す際、外覆部材から突出している漏洩検知器や端子収納箱が邪魔になり、作業時間が掛かってしまうということを防止することができる超音波式汚泥濃度測定装置を提供することを目的とする。
The present invention has been made to solve the above-described problems. When the sludge pipe is in a positive pressure state, the elastic member is pushed out to the pressurizing chamber side, and the leak detector or pressurizing chamber It is an object of the present invention to provide an ultrasonic sludge concentration measuring apparatus that can prevent a decrease in strength or damage of an elastic member due to the elastic member coming into contact with a wall and can greatly improve the service life of the elastic member.
This invention is caused by the fact that a gas reservoir flows in along with the sludge from the sludge pipe to the measurement chamber, and the phenomenon that bubbles in the sludge do not dissolve even if the measurement chamber is pressurized with an elastic member occurs. It is an object of the present invention to provide an ultrasonic sludge concentration measuring apparatus that can prevent the reversal phenomenon that the convex surface of the elastic member is reversed to the measurement chamber side.
The present invention provides an ultrasonic sludge concentration measuring apparatus capable of preventing an elastic member from being sucked into a measurement chamber and causing an inversion phenomenon of the elastic member in an environment where sludge piping is likely to be in a negative pressure state. The purpose is to provide.
In this invention, when removing the outer cover member from the measurement chamber when performing maintenance such as cleaning of the measurement chamber, the leakage detector and the terminal storage box protruding from the outer cover member become an obstacle, and it takes a long working time. An object of the present invention is to provide an ultrasonic sludge concentration measuring device that can prevent this.

上記課題を解決するために、本発明の超音波式汚泥濃度測定装置は、
汚泥が流通する本管部に連通口を設け、
該連通口に制御弁を介して測定室を配設し、
前記制御弁を閉弁して前記測定室内の汚泥を加圧手段で加圧し、
前記測定室に設けられた超音波送受信器によって汚泥に対して超音波を送受信して減衰量を測定し、該減衰量から汚泥濃度を算出する超音波式汚泥濃度測定装置において、
前記測定室に設けられた開口を覆う弾性部材と、
該弾性部材の外側を覆い、加圧室を形成する外覆部材と、
前記加圧室側の弾性部材を覆う保護カバーと
を備えたことを特徴とする。
本発明の請求項2の超音波式汚泥濃度測定装置は、前記保護カバーは空気流通孔を有することを特徴とする。
本発明の請求項3の超音波式汚泥濃度測定装置は、汚泥が流通する本管部に連通口を設け、該連通口に制御弁を介して測定室を配設し、前記制御弁を閉弁して前記測定室内の汚泥を加圧手段で加圧し、前記測定室に設けられた超音波送受信器によって汚泥に対して超音波を送受信して減衰量を測定し、該減衰量から汚泥濃度を算出する超音波式汚泥濃度測定装置において、前記測定室に設けられた開口を覆う弾性部材と、該弾性部材の外側を覆い、加圧室を形成する外覆部材と、本管部および/または測定室の上部に設けられた気体排出口および排出制御弁とを備えたことを特徴とする。
本発明の請求項4の超音波式汚泥濃度測定装置は、前記加圧手段は、空気供給源からの圧縮空気を加圧室へ供給する空気制御弁が設けられた空気供給管を有することを特徴とする。
本発明の請求項5の超音波式汚泥濃度測定装置は、前記外覆部材を分割可能としたことを特徴とする。
In order to solve the above problems, the ultrasonic sludge concentration measuring apparatus of the present invention is
A communication port is provided in the main section where sludge flows.
A measurement chamber is arranged at the communication port via a control valve,
Close the control valve and pressurize the sludge in the measurement chamber with pressurizing means,
In the ultrasonic sludge concentration measuring apparatus for measuring the amount of attenuation by transmitting and receiving ultrasonic waves to and from the sludge by the ultrasonic transmitter / receiver provided in the measurement chamber, and calculating the sludge concentration from the amount of attenuation,
An elastic member covering an opening provided in the measurement chamber;
An outer covering member that covers the outside of the elastic member and forms a pressurizing chamber;
And a protective cover that covers the elastic member on the pressurizing chamber side.
The ultrasonic sludge concentration measuring apparatus according to claim 2 of the present invention is characterized in that the protective cover has air circulation holes.
According to a third aspect of the present invention, there is provided an ultrasonic sludge concentration measuring apparatus, wherein a communication port is provided in a main pipe portion through which sludge flows, a measurement chamber is provided in the communication port via a control valve, and the control valve is closed. And pressurizing the sludge in the measurement chamber with a pressurizing means, and transmitting and receiving ultrasonic waves to and from the sludge by an ultrasonic transmitter / receiver provided in the measurement chamber, and measuring the attenuation amount. In the ultrasonic sludge concentration measuring apparatus that calculates the above, an elastic member that covers the opening provided in the measurement chamber, an outer covering member that covers the outside of the elastic member and forms a pressurizing chamber, a main pipe section, and / or Alternatively, a gas discharge port and a discharge control valve provided in the upper part of the measurement chamber are provided.
The ultrasonic sludge concentration measuring apparatus according to claim 4 of the present invention is characterized in that the pressurizing means has an air supply pipe provided with an air control valve for supplying compressed air from an air supply source to the pressurization chamber. Features.
The ultrasonic sludge concentration measuring apparatus according to claim 5 of the present invention is characterized in that the outer covering member can be divided.

この発明に係る超音波式汚泥濃度測定装置は、弾性部材の加圧室側表面を保護する保護カバーを設けたことにより、汚泥配管内が所定圧力以上の正圧状態になり、汚泥によって弾性部材が加圧室側に押し出された場合においても、保護カバーが弾性部材を支持することによって、弾性部材が加圧室側へ更に膨張することが抑制されることとなり、弾性部材の加圧室側表面が加圧室の内壁に擦れたり、加圧室内壁の鋭角部分や漏洩検知器の検知電極に接触して、弾性部材の強度が大幅に低下することを防止できる効果がある。また、強度が低下してしまうことによって、通常使用による弾性疲労等から想定される耐用年数よりも短期間で弾性部材が破損してしまうことを防止できる効果がある。   The ultrasonic sludge concentration measuring apparatus according to the present invention is provided with a protective cover that protects the pressure chamber side surface of the elastic member, so that the sludge pipe is in a positive pressure state equal to or higher than a predetermined pressure, and the elastic member is caused by the sludge. Even when the pressure member is pushed out to the pressurizing chamber side, the protective cover supports the elastic member, so that the elastic member is further prevented from expanding to the pressurizing chamber side. There is an effect that the surface can be prevented from rubbing against the inner wall of the pressurizing chamber, the sharp angle portion of the pressurizing chamber wall or the detection electrode of the leak detector, and the strength of the elastic member from greatly decreasing. Moreover, there exists an effect which can prevent that an elastic member breaks in a short period rather than the service life expected from the elastic fatigue etc. by normal use by strength reducing.

この発明の請求項2に係る超音波式汚泥濃度測定装置は、保護カバーに空気流通孔を設けたことにより、加圧室内の圧縮空気が保護カバーの空気流通孔を通過して弾性部材を押圧することが可能となるため、外覆部材の内壁面に空気が通過するための切欠部を設ける必要がない。外覆部材を鋳鉄等の鋳物で製作する場合においては、切欠部の加工精度が低く、また保護カバーと外覆部材の切欠部と弾性部材とが互いに接近していることから、取付状況によっては、切欠部が塞がれてしまったりして空気を流通させる機能が発揮されず、弾性部材に圧縮空気の圧力が伝わらないことがあった。保護カバーに空気流通孔を設けることにより、外覆部材等によって空気流通孔が閉塞することがないので、圧縮空気が確実に弾性部材に伝わるという効果がある。   In the ultrasonic sludge concentration measuring apparatus according to claim 2 of the present invention, the air flow hole is provided in the protective cover, so that the compressed air in the pressurized chamber passes through the air flow hole of the protective cover and presses the elastic member. Therefore, it is not necessary to provide a notch for allowing air to pass through the inner wall surface of the outer covering member. When the outer cover member is made of cast iron or the like, the processing accuracy of the notch is low, and the protective cover, the notch of the outer cover member, and the elastic member are close to each other. In some cases, the notch is blocked and the function of circulating air is not exhibited, and the pressure of compressed air is not transmitted to the elastic member. By providing the air circulation hole in the protective cover, the air circulation hole is not blocked by the outer cover member or the like, so that there is an effect that the compressed air is reliably transmitted to the elastic member.

この発明の請求項3に係る超音波式汚泥濃度測定装置は、本管部や測定室の上部に気体排出口と気体の排出を制御する排出制御弁を設けたことにより、本管部や測定室内にガス溜まりができた場合においても、適宜外部に排出することができる。これにより、ガス溜まりに起因して発生する測定室内を加圧しても汚泥中の気泡が溶存されない現象を防止することができる効果がある。またガス溜まりを外部に排出することが可能であることから、これに起因する弾性部材の反転現象を防止することができる。よって,反転現象によって生じる弾性部材の損傷や、流路を塞いでしまう弊害を防止できる効果がある。   The ultrasonic sludge concentration measuring apparatus according to claim 3 of the present invention is provided with a gas discharge port and a discharge control valve for controlling the discharge of gas at the upper part of the main pipe and the measurement chamber, so that the main pipe and the measurement are performed. Even when a gas pool is formed in the room, it can be appropriately discharged to the outside. Accordingly, there is an effect that it is possible to prevent a phenomenon in which bubbles in the sludge are not dissolved even when the measurement chamber generated due to the gas accumulation is pressurized. In addition, since the gas reservoir can be discharged to the outside, the inversion phenomenon of the elastic member due to this can be prevented. Therefore, there is an effect of preventing the damage of the elastic member caused by the reversal phenomenon and the harmful effect of blocking the flow path.

この発明の請求項4に係る超音波式汚泥濃度測定装置は、加圧室へ圧縮空気を供給する空気供給管に空気制御弁を設けたことにより、以下の効果がある。すなわち、例えば汚泥配管の移送ポンプ吸引側のような汚泥配管内が負圧状態になりやすい環境にこの発明の超音波式汚泥濃度測定装置を設置する場合においても、加圧室への圧縮空気供給時、および加圧室からの圧縮空気排出時以外は空気制御弁を閉弁することで加圧室内からの空気の流入出を防止することができる。そして、空気制御弁が閉弁時は、測定室内が負圧状態となっても加圧室内に空気が流入することがないので、弾性部材が測定室側に引っ張られて反転することがない、つまり弾性部材の反転現象を防止することができる効果がある。   The ultrasonic sludge concentration measuring apparatus according to claim 4 of the present invention has the following effects by providing the air control valve in the air supply pipe that supplies the compressed air to the pressurizing chamber. That is, even when the ultrasonic sludge concentration measuring device of the present invention is installed in an environment where the sludge piping is likely to be in a negative pressure state, such as the suction side of the transfer pump of the sludge piping, the compressed air supply to the pressurizing chamber The air control valve can be closed at times other than when the compressed air is discharged from the pressurizing chamber, and the inflow and outflow of air from the pressurizing chamber can be prevented. And when the air control valve is closed, air does not flow into the pressurizing chamber even if the measurement chamber is in a negative pressure state, so that the elastic member is not pulled and reversed to the measurement chamber side. In other words, there is an effect that the inversion phenomenon of the elastic member can be prevented.

この発明の請求項5に係る超音波式汚泥濃度測定装置は、外覆部材の加圧部と電極収納部とを分割可能に構成し、加圧部と電極収納部とをハウジング、コネクタ、クリップ等によって、回動自在あるいは着脱自在としたことにより、以下の効果がある。すなわち、測定室内の清掃等のメンテナンスを行う際に外覆部材を測定室から取り外すために固定ボルトをスパナ等で廻すときに、外覆部材から電極収納部や端子収納箱が突出していても、電極収納部を加圧部から取り外したり、電極収納部を回転させたりして、スパナ等を使用する作業スペースを確保できるので、外覆部材の取り外し作業がしやすくなり、作業時間の短縮が図れる効果がある。   The ultrasonic sludge concentration measuring apparatus according to claim 5 of the present invention is configured so that the pressurization part and the electrode storage part of the outer cover member can be divided, and the pressurization part and the electrode storage part are provided with a housing, a connector, and a clip. The following effects can be obtained by making it rotatable or detachable. That is, when the fixing bolt is turned with a spanner or the like to remove the outer cover member from the measurement chamber when performing maintenance such as cleaning in the measurement chamber, even if the electrode storage portion or the terminal storage box protrudes from the outer cover member, The work space for using a spanner etc. can be secured by removing the electrode housing part from the pressurizing part or rotating the electrode housing part, making it easier to remove the outer cover member and shortening the work time. effective.

実施の形態1.
図1は、実施の形態1における超音波式汚泥濃度測定装置の正面図であり、図2は、図1の超音波式汚泥濃度測定装置のA−A線断面図である。この実施の形態1における超音波汚泥濃度測定装置1は、本管部2と、制御弁3と、測定室4と、超音波送受信器5と、加圧室6と、保護カバー7と、制御器8で主に構成されている。
Embodiment 1 FIG.
FIG. 1 is a front view of the ultrasonic sludge concentration measuring apparatus according to Embodiment 1, and FIG. 2 is a cross-sectional view taken along line AA of the ultrasonic sludge concentration measuring apparatus of FIG. The ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 1 includes a main pipe section 2, a control valve 3, a measurement chamber 4, an ultrasonic transmitter / receiver 5, a pressurizing chamber 6, a protective cover 7, and a control. It is mainly composed of the device 8.

本管部2は、汚泥を搬送する汚泥配管の間に配設され、上流の汚泥配管から導入して、測定室4内で汚泥の濃度を測定し、濃度測定後に測定室4から汚泥を排出して下流の汚泥配管に送り出すものである。制御弁3は後述する弁体28を回動させて本管部2と測定室4との流路を開閉するものであり、汚泥の測定室4への導入時と排出時に弁体28を開いて本管部2と測定室4とを連通させ、汚泥濃度測定時に弁体28を閉じて本管部2と測定室4とを区画する。超音波送受信器5は測定室4中に導入された汚泥に超音波を伝播させてその減衰量から汚泥濃度を測定するものである。加圧室6は、汚泥濃度測定時に圧縮空気が供給される部屋であり、その圧縮空気が弾性部材24を測定室4側へ押すことで測定室4内の汚泥が加圧され、汚泥中の気泡をその汚泥中の水分に溶かし込むことができる。保護カバー7は弾性部材24の加圧室側への膨出を抑制するものであり、制御器8は超音波式汚泥濃度測定装置1を制御するものである。   The main pipe section 2 is disposed between the sludge pipes that convey the sludge, introduced from the upstream sludge pipe, measures the sludge concentration in the measurement chamber 4, and discharges the sludge from the measurement chamber 4 after the concentration measurement. Then, it is sent out to the downstream sludge piping. The control valve 3 rotates a valve body 28, which will be described later, to open and close the flow path between the main pipe section 2 and the measurement chamber 4, and opens the valve body 28 when sludge is introduced into and discharged from the measurement chamber 4. Thus, the main pipe part 2 and the measurement chamber 4 are communicated, and the valve body 28 is closed at the time of sludge concentration measurement to separate the main pipe part 2 and the measurement chamber 4. The ultrasonic transmitter / receiver 5 transmits ultrasonic waves to the sludge introduced into the measurement chamber 4 and measures the sludge concentration from the attenuation amount. The pressurizing chamber 6 is a chamber to which compressed air is supplied at the time of measuring the sludge concentration, and the compressed air pushes the elastic member 24 toward the measuring chamber 4 to pressurize the sludge in the measuring chamber 4, and thus in the sludge. Air bubbles can be dissolved in the water in the sludge. The protective cover 7 suppresses the swelling of the elastic member 24 toward the pressurizing chamber, and the controller 8 controls the ultrasonic sludge concentration measuring apparatus 1.

本管部2の両端には、ボルト穴9aを複数個有するフランジ9が設けられており、汚泥が流通する図示しない汚泥配管の間にフランジ接続で設置されるようになっている。本管部2の水平方向の周面には、測定室4に通じる連通口10(図2参照)が設けられており、その連通口10の本管部2の外周面には、リペアゲート11、制御弁3の弁箱3a、筒状の周壁部材13が、順番に互いに流路が連通するように、積み重なって配設されている。周壁部材13の制御弁3の反対側の端部には、ボルト穴を複数有するフランジ部14が形成されている。そして、通しボルト15によってフランジ部14とリペアゲート11あるいは本管部2とが接続されており、これによって、制御弁3の弁箱3aは、周壁部材13とリペアゲート11とによって挟持されている。本管部2の連通口10に対向する内周壁であって上流側の汚泥流入口16a側には、突出部17が設けられている。この突出部17は、汚泥流入口16aから流入する汚泥が突出部17に当接することで汚泥流出口16bへの汚泥の流れを連通口10に向かうように促す効果を有している。   A flange 9 having a plurality of bolt holes 9a is provided at both ends of the main pipe portion 2, and is installed with a flange connection between sludge pipes (not shown) through which sludge flows. A communication port 10 (see FIG. 2) communicating with the measurement chamber 4 is provided on the circumferential surface of the main pipe part 2 in the horizontal direction, and a repair gate 11 is provided on the outer peripheral surface of the main pipe part 2 of the communication port 10. The valve box 3a of the control valve 3 and the cylindrical peripheral wall member 13 are stacked and arranged so that the flow paths communicate with each other in order. A flange portion 14 having a plurality of bolt holes is formed at the end of the peripheral wall member 13 opposite to the control valve 3. And the flange part 14 and the repair gate 11 or the main pipe part 2 are connected by the through-bolt 15, whereby the valve box 3 a of the control valve 3 is sandwiched between the peripheral wall member 13 and the repair gate 11. . A projecting portion 17 is provided on the inner peripheral wall of the main pipe portion 2 facing the communication port 10 and on the upstream side of the sludge inlet 16a. The protrusion 17 has an effect of urging the sludge flowing into the sludge outlet 16b toward the communication port 10 when the sludge flowing in from the sludge inlet 16a contacts the protrusion 17.

リペアゲート11は、制御弁3が劣化等によって止水機能が低下してしまい、交換する必要が発生し、更に超音波式汚泥濃度測定装置1を設置した汚泥配管内の汚泥の流れを一時的に停止出来ないような場合において、使用する緊急用のゲート弁である。リペアゲート11は、内側に雌ネジが切ってあるスライドナット18が溶接等で取付けられた板状の弁体19と、その弁体19がスライドして連通口10を塞ぐことが可能なように溝が切ってある弁箱20と、ボルト21がスライドナット18と嵌合してスパナ等で回動させることで弁体19をスライドさせる操作ハンドル22とによって、構成されている。なお、この実施の形態1では、操作ハンドル22を四角柱形状としたが、六角柱形状であってもよいし、その他の多角形柱形状であってもよい。   The repair gate 11 has its water stop function lowered due to deterioration of the control valve 3 and the like, and needs to be replaced. Further, the flow of the sludge in the sludge pipe in which the ultrasonic sludge concentration measuring device 1 is installed is temporarily changed. This is an emergency gate valve to be used when it cannot be stopped immediately. The repair gate 11 has a plate-like valve body 19 to which a slide nut 18 with an internal thread cut inside is attached by welding or the like, and the valve body 19 can slide to block the communication port 10. The valve box 20 has a groove and the operation handle 22 that slides the valve element 19 by fitting the bolt 21 with the slide nut 18 and rotating it with a spanner or the like. In Embodiment 1, the operation handle 22 has a quadrangular prism shape, but may have a hexagonal column shape or other polygonal column shape.

周壁部材13のフランジ部14が形成されている側には、開口23が設けられている。この開口23は、測定室4の外側に向かって半球面状に突出する凸面を有する弾性部材24で覆われている。弾性部材24は、膨張収縮可能な樹脂製ゴムあるいはプラスチック樹脂等の弾性を有する素材で構成される。この実施の形態1では、弾性部材24は、繊維を樹脂製ゴムで挟み込んだ素材で構成されている。弾性部材24の加圧室6側の凸面には、弾性部材24を保護するための半球面状の保護カバー7が配設されている。保護カバー7のさらに外側にはこれらを覆うように外覆部材25が配設されている。測定室4は、制御弁3が閉弁されたとき、制御弁3の弁体28、周壁部材13、弾性部材24に囲まれた空間で区画形成される。   An opening 23 is provided on the side of the peripheral wall member 13 where the flange portion 14 is formed. The opening 23 is covered with an elastic member 24 having a convex surface protruding in a hemispherical shape toward the outside of the measurement chamber 4. The elastic member 24 is made of an elastic material such as resin rubber or plastic resin that can expand and contract. In this Embodiment 1, the elastic member 24 is comprised with the raw material which pinched | interposed the fiber with resin rubber. A hemispherical protective cover 7 for protecting the elastic member 24 is disposed on the convex surface of the elastic member 24 on the pressure chamber 6 side. An outer cover member 25 is disposed on the outer side of the protective cover 7 so as to cover them. The measurement chamber 4 is partitioned and formed in a space surrounded by the valve body 28, the peripheral wall member 13, and the elastic member 24 of the control valve 3 when the control valve 3 is closed.

外覆部材25の弾性部材24との接する側の外周縁部には、ボルト穴を複数有するフランジ部26が形成されており、そのボルト穴と連通するように、弾性部材24のフランジ部24aにはボルト穴が形成されている。周壁部材13の外覆部材25側の端面には、内部に雌ネジが切られたネジ穴が形成されており、ボルト27がこのネジ穴に締結可能とされている。このボルト27をフランジ部26および24aを通してネジ穴に締結することによって、外覆部材25のフランジ部26、弾性部材24のフランジ部24a及び周壁部材13が密着して接続されている。   A flange portion 26 having a plurality of bolt holes is formed on the outer peripheral edge portion of the outer cover member 25 on the side in contact with the elastic member 24, and the flange portion 24 a of the elastic member 24 is connected to the bolt hole. Has a bolt hole. A screw hole in which a female screw is cut is formed in the end surface of the peripheral wall member 13 on the outer covering member 25 side, and a bolt 27 can be fastened to the screw hole. By fastening the bolt 27 to the screw hole through the flange portions 26 and 24a, the flange portion 26 of the outer cover member 25, the flange portion 24a of the elastic member 24, and the peripheral wall member 13 are in close contact with each other.

保護カバー7は金属板からなり、保護カバー7の外周縁部は外覆部材25の内壁面と接着剤、粘着テープ等で固定されている。これにより、弾性部材24の凸面が変形しても、保護カバー7の位置はずれないようになっている。これにより、保護カバー7が固定されていない場合で位置が移動してしまったとき、保護カバー7の外周縁部が弾性部材24に刺さってしまうことで表面を傷つけてしまうことを防止できる。なお、保護カバー7の外周縁部の全周に接着剤等を塗布して外覆部材25の内面に接着固定してもよいが、加圧室6内をメンテナンスする時に保護カバー7を剥がす必要が生じる場合があることを考慮すると、保護カバー7の外周縁部の内の数点(例えば4点、6点、8点等)に接着剤等を塗布して外覆部材25の内面に接着固定するようにした方がより好ましい。   The protective cover 7 is made of a metal plate, and the outer peripheral edge of the protective cover 7 is fixed to the inner wall surface of the outer cover member 25 with an adhesive, an adhesive tape, or the like. Thereby, even if the convex surface of the elastic member 24 deform | transforms, the position of the protective cover 7 is prevented from deviating. Thereby, when the position is moved when the protective cover 7 is not fixed, it is possible to prevent the outer peripheral edge of the protective cover 7 from being pierced by the elastic member 24 and damaging the surface. Note that an adhesive or the like may be applied to the entire periphery of the outer peripheral edge of the protective cover 7 and adhered and fixed to the inner surface of the outer cover member 25. However, it is necessary to remove the protective cover 7 when maintaining the inside of the pressurizing chamber 6 In consideration of the fact that there is a case where an adhesive occurs, an adhesive or the like is applied to several points (for example, 4, 6, 8, etc.) of the outer peripheral edge of the protective cover 7 to adhere to the inner surface of the outer cover member 25. It is more preferable to fix.

また、保護カバー7の外周縁部にボルト穴を有するフランジを設け、そのフランジをフランジ部26と弾性部材24のフランジ部24aとの間に挟みこみ、ボルト27を各フランジのボルト穴に挿通して周壁部材25に取付けることによって、保護カバー7を着脱自在に固定してもよい。ただし、この場合の保護カバーのフランジは、フランジ部24aに接する表面が滑らかであると、ボルト27による締め付け時、フランジ部24aが弾性を有するがために保護カバー7のフランジの表面を滑り、ボルト27を締め付け続けても弾性部材24の凸面の中心側に向かって伸び続けてしまって十分に固定できず、測定室4の水密状態が不十分になってしまう恐れがある。この場合には、保護カバー7のフランジの表面を粗面加工して、フランジ部24aが摩擦で固定されるようにするとよい。   Further, a flange having a bolt hole is provided on the outer peripheral edge portion of the protective cover 7, the flange is sandwiched between the flange portion 26 and the flange portion 24a of the elastic member 24, and the bolt 27 is inserted into the bolt hole of each flange. The protective cover 7 may be detachably fixed by attaching to the peripheral wall member 25. However, the flange of the protective cover in this case has a smooth surface in contact with the flange portion 24a. When the bolt 27 is tightened with the bolt 27, the flange portion 24a has elasticity, so the surface of the flange of the protective cover 7 slides, and the bolt Even if tightening 27 is continued, the elastic member 24 continues to extend toward the center of the convex surface and cannot be fixed sufficiently, and the watertight state of the measurement chamber 4 may be insufficient. In this case, the flange surface of the protective cover 7 may be roughened so that the flange portion 24a is fixed by friction.

ここで保護カバー7は、高い剛性と耐食性を有する素材の中でも比較的安価なステンレス製であるのが望ましいが、より耐食性が必要であれば、チタン等の素材であってもよいし、耐食性が多少劣っても構わない環境であるなら、鋼等の素材でもよく、さらには、肉厚を厚くはなるが鋼よりも耐食性の高いアルミニウムや銅や銅系合金であってもよい。また、高い剛性を有するエンジニアリングプラスチックでも良い。保護カバー7の半円球の頂点部には空気流通孔33が開口されている。加圧室6に供給された圧縮空気は、保護カバー7の空気流通孔33から加圧室6の圧縮空気が流入出することで、弾性部材24を確実に押圧して、測定室4内の汚泥を加圧するようになっている。   Here, it is desirable that the protective cover 7 is made of stainless steel, which is relatively inexpensive among materials having high rigidity and corrosion resistance. However, if more corrosion resistance is required, the protective cover 7 may be made of a material such as titanium, and has a corrosion resistance. If the environment may be somewhat inferior, a material such as steel may be used, and further, aluminum, copper, or a copper-based alloy that is thicker but has higher corrosion resistance than steel may be used. Further, engineering plastic having high rigidity may be used. An air circulation hole 33 is opened at the apex of the semicircular sphere of the protective cover 7. The compressed air supplied to the pressurizing chamber 6 surely presses the elastic member 24 when the compressed air in the pressurizing chamber 6 flows in and out of the air circulation hole 33 of the protective cover 7, and the inside of the measuring chamber 4 The sludge is pressurized.

超音波送受信器5は、超音波送受信子5aと変換器30で構成されている。筒状の周壁部材13の水平方向の周面には、互いに対向するように超音波送受信子5aが配設されている。超音波送受信子5aと変換器30とは電気配線で接続されており、汚泥濃度測定時は、変換器30から一方の超音波送受信子5aに所定の大きさの電流を流して内部の発振子を作動させて測定室4内に所定強度の超音波を送信し、他方の超音波送受信子5aで超音波を受信して内部の発振子が受信した超音波の強度に応じた電流値に変換し、変換器30に電流を流す。そして、変換器30では超音波送受信子5aから受け取った電流値から汚泥濃度値を計算する。超音波送受信子5aが超音波を受信して発生する電流の大きさは、受信した超音波の強度が強いほど大きくなる。つまり、測定室4内の汚泥中の浮遊物質濃度が高く(汚泥濃度が高く)超音波の減衰量が大きいほど受信側の超音波送受信子5aから発生する電流値は小さくなる。以上の理論に基づき、超音波送受信器5は、超音波の減衰量から測定室4内の汚泥濃度を計測するものである。   The ultrasonic transmitter / receiver 5 includes an ultrasonic transmitter / receiver 5 a and a converter 30. On the circumferential surface of the cylindrical peripheral wall member 13 in the horizontal direction, ultrasonic transducers 5a are arranged so as to face each other. The ultrasonic transmitter / receiver 5a and the transducer 30 are connected by electric wiring, and when measuring the sludge concentration, a current of a predetermined magnitude is supplied from the transducer 30 to one of the ultrasonic transmitter / receivers 5a. Is activated to transmit an ultrasonic wave of a predetermined intensity into the measurement chamber 4, receive the ultrasonic wave by the other ultrasonic transmitter / receiver 5 a, and convert it into a current value corresponding to the intensity of the ultrasonic wave received by the internal oscillator. Then, a current is passed through the converter 30. Then, the converter 30 calculates the sludge concentration value from the current value received from the ultrasonic transceiver 5a. The magnitude of current generated when the ultrasonic transceiver 5a receives ultrasonic waves increases as the intensity of the received ultrasonic waves increases. That is, as the suspended matter concentration in the sludge in the measurement chamber 4 is higher (sludge concentration is higher) and the attenuation amount of the ultrasonic wave is larger, the current value generated from the ultrasonic transducer 5a on the receiving side is smaller. Based on the above theory, the ultrasonic transmitter / receiver 5 measures the sludge concentration in the measurement chamber 4 from the attenuation amount of ultrasonic waves.

なお、超音波送受信子5aは、1つで超音波を送信する役割と超音波を受信して電流値に変換する役割の2つの役割を実行することができる。2つの超音波送受信子5aで送信側と受信側の役割を交代して交互に超音波の送受信し合い、測定した各汚泥濃度値の平均値を測定値とすることで測定精度の向上を図ることができる。また、超音波送受信子5aを1つだけ設置し、対向する位置、つまり、もう1つの超音波送受信子5aが設置されている位置には、それに代えて反射板を設置して、超音波送受信子5aで送信した超音波を反射板で反射させて同じ超音波送受信子5aで受信してもよい。これにより、超音波式汚泥濃度測定装置1の製造コストを低減することができる。ただし、超音波の伝播距離が2倍になるので、変換器30で制御して超音波送受信子5aから送信する超音波の強度を上げてやる必要がある。   Note that the ultrasonic transmitter / receiver 5a can perform two roles: one for transmitting ultrasonic waves and one for receiving ultrasonic waves and converting them into current values. The two ultrasonic transmitters / receivers 5a alternate the roles of the transmitting side and the receiving side to alternately transmit / receive ultrasonic waves, and the average value of each measured sludge concentration value is used as a measured value to improve measurement accuracy. be able to. In addition, only one ultrasonic transmitter / receiver 5a is installed, and a reflecting plate is installed instead of the ultrasonic wave transmission / reception at the opposite position, that is, the position where another ultrasonic transmitter / receiver 5a is installed. The ultrasonic wave transmitted by the child 5a may be reflected by the reflecting plate and received by the same ultrasonic transceiver 5a. Thereby, the manufacturing cost of the ultrasonic sludge concentration measuring apparatus 1 can be reduced. However, since the propagation distance of the ultrasonic wave is doubled, it is necessary to increase the intensity of the ultrasonic wave that is controlled by the converter 30 and transmitted from the ultrasonic transceiver 5a.

外覆部材25は、半球面形状の加圧部31と筒状の電極収納部32とで構成されている。電極収納部32には、筒断面方向に挿入穴が、筒周面方向に圧縮空気が流入する空気流入口32aがそれぞれ設けられている。電極収納部32の側部の挿入穴には、漏洩検知器34が配設された端子収納箱35が設置されており、漏洩検知器34の電極36が電極収納部32内の空間に挿入されている。弾性部材24と外覆部材25と端子収納箱35に囲まれた空間で加圧室6が形成されている。加圧部31と電極収納部32との境界部には、連通口29が形成されている。連通口29は電極収納部32に入った圧縮空気を加圧部31内に導入したり、加圧部31内の圧縮空気を電極収納部32を介して大気に排気したりするために開口されている。端子収納箱35は本管部2から側方への突出量を少なくするために本管部2の長手方向に延びるように形成されており、漏洩検知器34も電極36が本管部2の長手方向に延びるように配設されている。   The outer cover member 25 includes a hemispherical pressure portion 31 and a cylindrical electrode storage portion 32. The electrode housing portion 32 is provided with an insertion hole in the cylinder cross-sectional direction and an air inlet 32a through which compressed air flows in the cylinder circumferential surface direction. A terminal storage box 35 in which a leakage detector 34 is disposed is installed in the insertion hole on the side of the electrode storage portion 32, and the electrode 36 of the leakage detector 34 is inserted into the space in the electrode storage portion 32. ing. The pressurizing chamber 6 is formed in a space surrounded by the elastic member 24, the outer covering member 25, and the terminal storage box 35. A communication port 29 is formed at the boundary between the pressure unit 31 and the electrode storage unit 32. The communication port 29 is opened in order to introduce the compressed air that has entered the electrode housing portion 32 into the pressurizing portion 31 or to exhaust the compressed air in the pressurizing portion 31 to the atmosphere via the electrode housing portion 32. ing. The terminal storage box 35 is formed so as to extend in the longitudinal direction of the main pipe part 2 in order to reduce the amount of protrusion from the main pipe part 2 to the side, and the leak detector 34 also has an electrode 36 of the main pipe part 2. It arrange | positions so that it may extend in a longitudinal direction.

電極収納部32の空気流入口32aには、圧縮空気を供給する空気供給管37が接続されている。空気供給管37には、加圧室6に供給するための圧縮空気を生成する空気供給源である空気圧縮機38、圧縮空気を貯留するエアタンク39、エアタンク39から圧縮空気を加圧室6へ供給する流路と加圧室6内の空気を外部に排出する流路とを切り替える三方弁である流路切換弁40が設けられており、加圧室6内の空気圧を調整可能としている。   An air supply pipe 37 that supplies compressed air is connected to the air inlet 32 a of the electrode storage portion 32. The air supply pipe 37 includes an air compressor 38 that is an air supply source that generates compressed air to be supplied to the pressurizing chamber 6, an air tank 39 that stores the compressed air, and compressed air from the air tank 39 to the pressurizing chamber 6. A flow path switching valve 40 that is a three-way valve that switches between a flow path to be supplied and a flow path for discharging the air in the pressurizing chamber 6 to the outside is provided, and the air pressure in the pressurizing chamber 6 can be adjusted.

汚泥を加圧する加圧手段は、空気供給源である空気圧縮機38と、エアタンク39と、加圧室6に圧縮空気を供給する空気供給管37と、空気供給管37に配設された流路切換弁40とにより構成されている。なお、この実施の形態1では、空気圧縮機38とエアタンク39で空気供給管37へ圧縮空気を供給しているが、設置場所の施設に圧縮空気供給設備が存在し、圧縮空気を供給する図示しない圧縮空気供給管が配管されている場合には、その圧縮空気供給管から分岐して空気供給管37に接続して、圧縮空気を供給する空気供給源としてもよい。   The pressurizing means for pressurizing the sludge includes an air compressor 38 as an air supply source, an air tank 39, an air supply pipe 37 for supplying compressed air to the pressurizing chamber 6, and a flow disposed in the air supply pipe 37. And a path switching valve 40. In the first embodiment, compressed air is supplied to the air supply pipe 37 by the air compressor 38 and the air tank 39. However, there is a compressed air supply facility in the installation site, and the compressed air is supplied. In the case where a compressed air supply pipe is not provided, it may be branched from the compressed air supply pipe and connected to the air supply pipe 37 as an air supply source for supplying compressed air.

周壁部材13の下方には、測定室4内の汚泥を排出可能なドレン排水口41が設けられている。ドレン排水口41には、ドレン弁42を備えたドレン管43が接続しており、測定室4内をメンテナンスする際には、制御弁3を閉弁して、ドレン弁42を開弁することにより、測定室4内の汚泥を外部に排出することができる。また、周壁部材13の上方には、常時は閉塞蓋44で塞がれている気体排出口45が設けられている。汚泥をドレン排水口41から排出させる際に、閉塞蓋44を取り外して測定室4内に空気を流入させ、汚泥をスムーズに排出させるために使用してもよい。測定室4内にガス溜まりが発生した際、ガスの排出に使用してもよい。   Below the peripheral wall member 13, there is provided a drain drain port 41 capable of discharging sludge in the measurement chamber 4. A drain pipe 43 having a drain valve 42 is connected to the drain outlet 41, and when maintaining the inside of the measurement chamber 4, the control valve 3 is closed and the drain valve 42 is opened. Thus, the sludge in the measurement chamber 4 can be discharged to the outside. Further, a gas discharge port 45 that is normally closed with a closing lid 44 is provided above the peripheral wall member 13. When the sludge is discharged from the drain outlet 41, it may be used to remove the closing lid 44 and allow the air to flow into the measurement chamber 4 to smoothly discharge the sludge. When a gas pool is generated in the measurement chamber 4, it may be used for gas discharge.

弁体28を開閉動作する制御弁3は、弁構造はいわゆるバタフライ弁を使用しているが、駆動方式としてはエアタンク39からの圧縮空気の供給で動作する空気圧駆動を採用している。制御弁3の駆動部3bは、シリンダと、ピストンと、シリンダ内でのピストンの往復動を回転運動に変換する変換部により構成されている。シリンダは、ピストン可動域よりも上方と下方に空気流出入口を備えている。上方の空気流出入口には空気管39aが、下方の空気流出入口には空気管39bの一端がそれぞれ接続されており、各空気管39a,39bの他端はエアタンクに接続されている。そして、空気管39aには三方弁である流路制御弁48が配設されており、空気管39aの流路を、エアタンク39から圧縮空気をシリンダの上方の空気流出入口に送る流路と、シリンダの上方の空気を空気流出入口から外部に排出する流路に切り換えることが可能となっている。同様に、各空気管39bには三方弁である流路制御弁49が配設されており、空気管39bの流路を、エアタンク39から圧縮空気をシリンダの下方の空気流出入口に送る流路と、シリンダの下方の空気を空気流出入口から外部に排出する流路に切り換えることが可能となっている。   The control valve 3 that opens and closes the valve body 28 uses a so-called butterfly valve as the valve structure, but adopts a pneumatic drive that operates by supplying compressed air from the air tank 39 as a drive system. The drive unit 3b of the control valve 3 includes a cylinder, a piston, and a conversion unit that converts the reciprocating motion of the piston in the cylinder into a rotational motion. The cylinder is provided with an air outflow inlet above and below the piston movable range. An air pipe 39a is connected to the upper air outflow inlet, one end of the air pipe 39b is connected to the lower air outflow inlet, and the other end of each air pipe 39a, 39b is connected to the air tank. The air pipe 39a is provided with a flow control valve 48 that is a three-way valve, and the flow path of the air pipe 39a is a flow path for sending compressed air from the air tank 39 to the air outflow inlet above the cylinder; It is possible to switch to a flow path for discharging the air above the cylinder from the air outflow inlet to the outside. Similarly, each air pipe 39b is provided with a flow control valve 49 which is a three-way valve. The flow path of the air pipe 39b is a flow path for sending compressed air from the air tank 39 to the air outflow inlet below the cylinder. Then, it is possible to switch to a flow path for discharging the air below the cylinder from the air outflow inlet to the outside.

変換部は、例えば、ピストンの可動方向断面に円形穴を開けて雌ネジを切り、その円形穴に雄ネジが切られているシャフトを螺合し、シャフト下端に円形ギアをギアの中心とシャフト芯とを同軸に接続した構成とするとよい。そして、弁体28の弁棒47の弁体28が接続された側とは反対側の端部を別の円形ギアを接続し、シャフト側の円形ギアと螺合させることで、駆動部3b内のピストンの往復動に応じて弁体28が回転する。シャフト側の円形ギアと弁棒側の円形ギアとのギア比をピストンの可動領域長から換算して、ピストンの1回の移動で弁体28が1/4回転するように設定することにより、例えば、ピストンの可動域上端までの1回の移動で制御弁3が開き、可動領域下端までの1回の移動で制御弁3が閉じるように構成できる。   For example, the conversion part is formed by making a circular hole in the cross section of the piston in the moving direction, cutting a female screw, screwing a shaft in which the male screw is cut into the circular hole, and connecting the circular gear to the center of the gear and the shaft at the lower end of the shaft. It is good to set it as the structure which connected the core coaxially. Then, the end of the valve body 28 opposite to the side to which the valve body 28 is connected is connected to another circular gear and screwed into the circular gear on the shaft side, so that the inside of the drive unit 3b The valve element 28 rotates in accordance with the reciprocating motion of the piston. By converting the gear ratio between the circular gear on the shaft side and the circular gear on the valve stem side from the length of the movable region of the piston, and setting so that the valve body 28 rotates 1/4 by one movement of the piston, For example, the control valve 3 can be opened by one movement to the upper end of the movable range of the piston, and the control valve 3 can be closed by one movement to the lower end of the movable area.

ピストンを上方に移動させるには、流路制御弁48をピストンの上方のシリンダ内の空気を外部に排出する流路に切り換え、流路制御弁49をエアタンク39から圧縮空気をピストンの下方のシリンダ内に送る流路に切り換えるとよい。反対にピストンを下方に移動させるには、流路制御弁48をエアタンク39から圧縮空気をピストンの上方のシリンダ内に送る流路に切り換え、流路制御弁49をピストンの下方のシリンダ内の空気を外部に排出する流路に切り換えるとよい。なお、制御弁3の駆動部3bの構成については、この構成に限定される訳ではなく、空気管で空気を供給・排出することにより、弁体29が回転可能であればどのような構成であってもよい。また、制御器8からの制御信号によって、弁体29が開閉動作可能であればどのような構成であってもよい。例えば、油圧駆動による油圧弁、水圧駆動による水圧弁、電動モーターによる駆動である電動弁、電磁力による駆動である電磁弁であってもよい。この実施の形態1で空気圧駆動を適用した理由は、加圧手段として空気圧縮機38やエアタンク39があり、これを利用することが最も効率的であったからである。さらに、弁構造についても、バタフライ弁に限定される訳ではなく、ボール弁、ゲート弁等の弁構造であってもよい。   In order to move the piston upward, the flow path control valve 48 is switched to a flow path for discharging the air in the cylinder above the piston to the outside, and the flow path control valve 49 is moved from the air tank 39 to the compressed air. It is good to switch to the flow path to send in. Conversely, to move the piston downward, the flow control valve 48 is switched to a flow path for sending compressed air from the air tank 39 into the cylinder above the piston, and the flow control valve 49 is switched to the air in the cylinder below the piston. May be switched to a flow path for discharging the gas to the outside. The configuration of the drive unit 3b of the control valve 3 is not limited to this configuration, and any configuration is possible as long as the valve body 29 can be rotated by supplying and discharging air through an air pipe. There may be. Further, any configuration may be used as long as the valve body 29 can be opened and closed by a control signal from the controller 8. For example, a hydraulic valve driven by hydraulic pressure, a water pressure valve driven by hydraulic pressure, an electric valve driven by an electric motor, or an electromagnetic valve driven by electromagnetic force may be used. The reason why the pneumatic drive is applied in the first embodiment is that there are an air compressor 38 and an air tank 39 as pressurizing means, and it is most efficient to use them. Furthermore, the valve structure is not limited to the butterfly valve, and may be a valve structure such as a ball valve or a gate valve.

制御器8は、電気配線で変換器30、漏洩検知器34、空気圧縮機38、制御弁3、各流路切換弁40,48,49とそれぞれ接続されており、それぞれを制御している。なお、制御弁3に接続されている電気配線は、制御弁3内に内蔵されている弁体28の位置を検知するためのリミットスイッチと接続しており、リミットスイッチで弁体28の開弁および閉弁を検知することで、エアタンク39から駆動部3bへの圧縮空気の供給を制御している。   The controller 8 is connected to the converter 30, the leakage detector 34, the air compressor 38, the control valve 3, and the flow path switching valves 40, 48, and 49 by electrical wiring, and controls each of them. The electrical wiring connected to the control valve 3 is connected to a limit switch for detecting the position of the valve body 28 built in the control valve 3, and the valve body 28 is opened by the limit switch. The supply of compressed air from the air tank 39 to the drive unit 3b is controlled by detecting the valve closing.

漏洩検知器34は、外覆部材25の電極収納部32に配設されている。制御盤8から電圧がかけられている2本の電線が引かれており、そのうちの1本が漏洩検知器34の電極36に接続され、もう1本の電線が加圧室6の外覆部材25に接続されている。そして、弾性部材24が何等かの理由により破損し、汚泥が加圧室6に流入したとき、導電体である汚泥によって電極36と外覆部材25が電気的に導通し、制御盤8の検知回路内に電流が流れて、汚泥が加圧室6に漏洩したことを、制御盤8が検知するようになっている。   The leak detector 34 is disposed in the electrode storage portion 32 of the outer cover member 25. Two electric wires to which voltage is applied are drawn from the control panel 8, one of which is connected to the electrode 36 of the leak detector 34, and the other electric wire is an outer covering member of the pressurizing chamber 6. 25. When the elastic member 24 is damaged for some reason and the sludge flows into the pressurizing chamber 6, the electrode 36 and the outer covering member 25 are electrically connected by the sludge as a conductor, and the control panel 8 detects the sludge. The control panel 8 detects that a current flows in the circuit and that sludge has leaked into the pressurizing chamber 6.

上述のように、超音波送受信器5は、汚泥濃度測定時は、変換器30から一方の超音波送受信子5aに所定量の電流を流すことで超音波を送信し、他方の超音波送受信子5aで受信して電流に変換して変換器30でその電流値から汚泥濃度を計算して汚泥濃度値を得る。しかし、測定対象の汚泥中に気泡が多く存在すると、超音波が大幅に減衰したり、拡散したりして汚泥濃度を正確に計測できなかったり、最悪測定不能に陥る。超音波汚泥濃度測定装置1は、そのような汚泥であっても正確に汚泥濃度を計測できる。この超音波式汚泥濃度測定装置1の汚泥濃度計測は、以下のプロセスで行われる。
(1)制御器8で、流路切換弁48,49を制御して制御弁3を開いて本管部2から汚泥を測定室4に導入する。
(2)制御器8で、流路切換弁48,49を制御して制御弁3を閉じて測定室4を本管部2から遮断し、測定室4内で汚泥を密閉状態にする。
(3)制御器8で、流路切換弁40を制御してエアタンク39から加圧室6に圧縮空気を供給して加圧室6内を加圧する。
(4)加圧室6内が加圧されることより、弾性部材24が測定室4側へ押し込まれ、これによって測定室4内の汚泥が加圧される。
(5)所定時間、汚泥を加圧することにより、汚泥中に存在する気泡が水分中に溶存し、気泡が消滅する。
(6)制御器8から、変換器30に汚泥濃度を計測する命令を送信する。変換器30では、一方の超音波送受信子5aに所定量の電流を流して超音波を送信し、他方の超音波送受信子5aで減衰した超音波を受信して電流に変換されて変換器30がそれを受け取ってその電流値から汚泥濃度の測定値に変換する。
(7)汚泥濃度の測定値は、変換器30に搭載された図示しない表示パネルから表示する。あるいは、変換器30から制御器8に測定値を電気信号で送信し、制御器8で電気信号を受信し、制御器8が備える表示パネルで測定値を表示したり、内蔵されたデータロガーに記憶させたり、プリンタで印字する構成としても良い。
As described above, when measuring the sludge concentration, the ultrasonic transmitter / receiver 5 transmits ultrasonic waves by passing a predetermined amount of current from the transducer 30 to one ultrasonic transmitter / receiver 5a, and the other ultrasonic transmitter / receiver. Received at 5a and converted into current, and the converter 30 calculates the sludge concentration from the current value to obtain the sludge concentration value. However, if there are many bubbles in the sludge to be measured, the ultrasonic wave is greatly attenuated or diffused, and the sludge concentration cannot be measured accurately, or the worst measurement is impossible. The ultrasonic sludge concentration measuring apparatus 1 can accurately measure the sludge concentration even for such sludge. The sludge concentration measurement of the ultrasonic sludge concentration measuring apparatus 1 is performed by the following process.
(1) The controller 8 controls the flow path switching valves 48 and 49 to open the control valve 3 and introduce sludge from the main pipe section 2 into the measurement chamber 4.
(2) The controller 8 controls the flow path switching valves 48 and 49 to close the control valve 3 to shut off the measurement chamber 4 from the main pipe section 2, and to make sludge in a sealed state in the measurement chamber 4.
(3) The controller 8 controls the flow path switching valve 40 to supply compressed air from the air tank 39 to the pressurizing chamber 6 to pressurize the pressurizing chamber 6.
(4) Since the inside of the pressurizing chamber 6 is pressurized, the elastic member 24 is pushed into the measuring chamber 4 side, and thereby the sludge in the measuring chamber 4 is pressurized.
(5) By pressurizing the sludge for a predetermined time, the bubbles present in the sludge are dissolved in the moisture, and the bubbles disappear.
(6) A command for measuring the sludge concentration is transmitted from the controller 8 to the converter 30. In the converter 30, an ultrasonic wave is transmitted by flowing a predetermined amount of current through one ultrasonic transceiver 5a, and the ultrasonic wave attenuated by the other ultrasonic transceiver 5a is received and converted into an electric current. Receives it and converts it from the current value to a measured value of sludge concentration.
(7) The measured value of the sludge concentration is displayed from a display panel (not shown) mounted on the converter 30. Alternatively, the measurement value is transmitted as an electrical signal from the converter 30 to the controller 8, the electrical signal is received by the controller 8, and the measurement value is displayed on the display panel provided in the controller 8, or the built-in data logger A configuration may be used in which the data is stored or printed by a printer.

上述のように、実施の形態1の超音波式汚泥濃度測定装置1は、汚泥が流通する本管部2の側壁部に連通口10を設け、この連通口10に制御弁3を介して測定室4を配設し、制御弁3を閉弁して測定室4内の汚泥を、空気供給源である空気圧縮機38と、エアタンク39および空気供給管37で主として構成される加圧手段で加圧室6内を加圧状態にすることで弾性部材24を押圧して加圧し、測定室4の側壁部に対向して設けられた一対の超音波送受信子5aと変換器30とからなる超音波送受信器5によって汚泥に対して超音波を送受信してその超音波の減衰量から汚泥濃度を算出する超音波式汚泥濃度測定装置1であり、測定室4に設けられた開口23を覆う弾性部材24と、該弾性部材24の外側を覆い、加圧室6を形成する外覆部材25と、加圧室6側の弾性部材24を覆う保護カバー7とを備えるものである。   As described above, the ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 1 is provided with the communication port 10 in the side wall portion of the main pipe portion 2 through which the sludge flows, and the communication port 10 is measured via the control valve 3. The chamber 4 is disposed, the control valve 3 is closed, and the sludge in the measurement chamber 4 is pressurized by an air compressor 38 as an air supply source, an air tank 39 and an air supply pipe 37. The inside of the pressurizing chamber 6 is pressed to press and pressurize the elastic member 24, and is composed of a pair of ultrasonic transducers 5 a and a transducer 30 provided to face the side wall of the measuring chamber 4. An ultrasonic sludge concentration measuring apparatus 1 that transmits and receives ultrasonic waves to and from sludge by an ultrasonic transmitter / receiver 5 and calculates a sludge concentration from the attenuation amount of the ultrasonic waves, and covers an opening 23 provided in the measurement chamber 4. An elastic member 24 and an outer cover that covers the outside of the elastic member 24 and forms the pressurizing chamber 6 With product 25, but with a protective cover 7 which covers the elastic member 24 of the pressure chamber 6 side.

以上のように、実施の形態1における超音波式汚泥濃度測定装置1によれば、汚泥配管内が弾性部材24が加圧室側に押されて膨張してしまう圧力以上の正圧状態になった場合であっても、弾性部材24の加圧室側表面が保護カバー7で支えられるので、弾性部材24の加圧室6側への過度の膨張が抑制される。よって、弾性部材24の加圧室6側表面が加圧室6の内壁に接触して擦れたり、加圧室6内壁の鋭角部分や漏洩検知器34の電極36に接触して、弾性部材24の強度が低下あるいは破損したり、電極36が故障したりすることがなく、弾性部材24の劣化を防止することができる。これによって、従来の超音波式汚泥濃度測定装置で発生していた、弾性部材24で使用されている素材から想定される耐用年数よりもはるかに短期間で弾性部材24が破損してしまうという問題を解消できる。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 in the first embodiment, the sludge pipe is in a positive pressure state equal to or higher than the pressure at which the elastic member 24 is pushed toward the pressurizing chamber and expands. Even in such a case, since the surface of the elastic member 24 on the pressure chamber side is supported by the protective cover 7, excessive expansion of the elastic member 24 toward the pressure chamber 6 is suppressed. Therefore, the surface of the elastic member 24 on the side of the pressurizing chamber 6 contacts and rubs against the inner wall of the pressurizing chamber 6 or comes into contact with the acute angle portion of the inner wall of the pressurizing chamber 6 and the electrode 36 of the leak detector 34. Therefore, the elastic member 24 can be prevented from deteriorating without lowering or breaking the strength or causing the electrode 36 to fail. As a result, the problem that the elastic member 24 is damaged in a much shorter period of time than that expected from the material used in the elastic member 24, which has occurred in the conventional ultrasonic sludge concentration measuring apparatus. Can be eliminated.

また、保護カバー7は、その球面部の頂点に加圧室6への空気の出入を行う空気流通孔33を有するので、加圧室6から弾性部材24へ確実に圧縮空気を流入させることができる。   Further, since the protective cover 7 has an air circulation hole 33 that allows air to enter and exit from the pressurizing chamber 6 at the apex of the spherical surface portion, the compressed air can surely flow into the elastic member 24 from the pressurizing chamber 6. it can.

実施の形態2.
図3は、実施の形態2の超音波式汚泥濃度測定装置1のA−A線断面図である。正面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1の正面図である図1と同一である。この実施の形態2では、実施の形態1の保護カバー7に空気流通孔33を設けることに代えて、外覆部材25の加圧部31の内壁に切欠部50を設けて、加圧室6と弾性部材24との間の圧縮空気の流通路としている点が相違している。実施の形態1では、保護カバー7の外周面は、外覆部材25の内周面と接着剤等で固定されており、加圧室6内に流入する圧縮空気が流通する隙間がほとんどなく、圧縮空気の圧力が弾性部材24に伝わりにくい、特に保護カバー7の外周面全周を接着固定した場合は、圧縮空気が弾性部材24にまで到達できないことから、空気流通孔33を設けて圧縮空気を通過させて弾性部材24に到達するようにしている。この実施の形態2では、外覆部材25の内壁面に曲面に沿った方向(連通口29側からフランジ部26側に向かって)に溝状の切欠部50を1箇所あるいは複数箇所設け、切欠部50に接着剤等が入らないように保護カバー7を接着固定した構成としている。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the second embodiment taken along line AA. The front view is the same as FIG. 1 which is a front view of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment. In the second embodiment, instead of providing the air circulation hole 33 in the protective cover 7 of the first embodiment, a notch 50 is provided on the inner wall of the pressurizing portion 31 of the outer covering member 25, and the pressurizing chamber 6 is provided. The point which is made into the flow path of the compressed air between the elastic member 24 and the elastic member 24 is different. In Embodiment 1, the outer peripheral surface of the protective cover 7 is fixed to the inner peripheral surface of the outer cover member 25 with an adhesive or the like, and there is almost no gap through which the compressed air flowing into the pressurizing chamber 6 flows. When the pressure of the compressed air is difficult to be transmitted to the elastic member 24, especially when the entire outer peripheral surface of the protective cover 7 is bonded and fixed, the compressed air cannot reach the elastic member 24. So that the elastic member 24 is reached. In the second embodiment, one or a plurality of groove-like notches 50 are provided on the inner wall surface of the outer cover member 25 in the direction along the curved surface (from the communication port 29 side toward the flange portion 26 side). The protective cover 7 is bonded and fixed so that no adhesive or the like enters the portion 50.

これにより、汚泥加圧時においては、加圧室6に入り込んだ圧縮空気が切欠部50から入り込み、保護カバー7の外周縁部と切欠部50との間の空間を通過して、弾性部材24を押圧出来るようになっている。また、汚泥濃度計測を終了し、汚泥を加圧状態から開放するときにおいては、流路切換弁40が開いて加圧室6の圧縮空気が大気に解放され、弾性部材24と保護カバー7の間の圧縮空気は、切欠部50を通って加圧室6の内壁面と保護カバー7の外側に抜け出すようになっている。その他の構成は、実施の形態1の超音波式汚泥濃度測定装置1の構成と同様であるので、その説明を援用して詳細な説明を省略する。   Thereby, at the time of sludge pressurization, the compressed air that has entered the pressurizing chamber 6 enters from the cutout portion 50, passes through the space between the outer peripheral edge portion of the protective cover 7 and the cutout portion 50, and the elastic member 24. Can be pressed. When the sludge concentration measurement is finished and the sludge is released from the pressurized state, the flow path switching valve 40 is opened, the compressed air in the pressurizing chamber 6 is released to the atmosphere, and the elastic member 24 and the protective cover 7 The compressed air in between passes through the notch 50 and escapes to the inner wall surface of the pressurizing chamber 6 and the outside of the protective cover 7. Other configurations are the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, and thus the description thereof is incorporated and detailed description is omitted.

なお、実施の形態2の加圧室6の内壁の開口縁部に切欠部50を形成して切欠部50から弾性部材24と保護カバー7との間に圧縮空気を送り込む構成は、後述する実施の形態3乃至19の超音波式汚泥濃度測定装置に組み合わせて適用することができる。   In addition, the structure which forms the notch part 50 in the opening edge part of the inner wall of the pressurization chamber 6 of Embodiment 2, and sends compressed air between the elastic member 24 and the protective cover 7 from the notch part 50 is mentioned later. It can be applied in combination with the ultrasonic sludge concentration measuring apparatus according to any of Embodiments 3 to 19.

以上のように、実施の形態2における超音波式汚泥濃度測定装置1によれば、実施の形態1に示した効果のほかに、加圧室6内のメンテナンス時に保護カバー7を外覆部材25から剥がす際においては、切欠部50にこじ開け治具を挿入して引き剥がすことで容易に取り外すことができる効果もある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 in the second embodiment, in addition to the effects shown in the first embodiment, the protective cover 7 is covered with the outer covering member 25 during maintenance in the pressurizing chamber 6. At the time of peeling off, there is also an effect that it can be easily removed by inserting a pry opening jig into the notch 50 and peeling off.

実施の形態3.
図4は、実施の形態3における超音波式汚泥濃度測定装置1の正面図であり、図5は実施の形態3の超音波式汚泥濃度測定装置1のA−A線断面図である。この実施の形態3の超音波式汚泥濃度測定装置1は、実施の形態1の超音波式汚泥濃度測定装置1とは、リペアゲート11を設けていない点と、流路制御弁48,49および空気管39a,39bに代えて、流路制御弁48bおよび空気管39c,39d,39eを設けた点が相違する。すなわち、実施の形態3の超音波式汚泥濃度測定装置1は、本管部2の側壁部の連通口10の外部に図1のようなリペアゲート11が設置されておらず、連通口10の外側縁部に制御弁3の弁箱3aが取り付けられている。また、5つの接続口481,482,483,484,485が配置されている弁箱と磁力によって弁箱内を直動する弁体とからなる直動型電磁弁である流路制御弁48bが設けられている。
Embodiment 3 FIG.
FIG. 4 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the third embodiment, and FIG. 5 is a cross-sectional view taken along line AA of the ultrasonic sludge concentration measuring apparatus 1 according to the third embodiment. The ultrasonic sludge concentration measuring apparatus 1 according to the third embodiment is different from the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment in that the repair gate 11 is not provided, and the flow path control valves 48 and 49 and A difference is that a flow path control valve 48b and air pipes 39c, 39d, and 39e are provided in place of the air pipes 39a and 39b. That is, in the ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 3, the repair gate 11 as shown in FIG. 1 is not installed outside the communication port 10 on the side wall of the main pipe unit 2, and the communication port 10 A valve box 3a of the control valve 3 is attached to the outer edge. In addition, a flow path control valve 48b, which is a direct acting solenoid valve composed of a valve box in which five connection ports 481, 482, 483, 484, and 485 are arranged and a valve body that moves directly in the valve box by magnetic force, is provided. Is provided.

流路制御弁48bの接続口483は、圧縮空気流入専用の接続口であり空気管39cによってエアタンク39と接続されている。接続口482は、駆動部3bのシリンダの下方の空気流出入口と空気管39dによって接続され、接続口484は、駆動部3bのシリンダの上方の空気流出入口と空気管39eによって接続されている。接続口481,485は未接続の開放状態となっている。流路制御弁48bは、内部の弁体が電磁石等の磁力とバネ等による付勢力によって、弁箱内で2箇所のうちのいずれかに必ず位置している。弁箱と弁体の隙間の空間によって、弁体の位置に係わらず内部に2つの流路が必ず同時に形成される。弁体位置によって、内部の流路が2つのパターンに切り替わる。   A connection port 483 of the flow path control valve 48b is a connection port dedicated to inflow of compressed air, and is connected to the air tank 39 by an air pipe 39c. The connection port 482 is connected to an air outflow inlet below the cylinder of the drive unit 3b by an air pipe 39d, and the connection port 484 is connected to an air outflow inlet above the cylinder of the drive unit 3b and an air pipe 39e. The connection ports 481 and 485 are in an unconnected open state. The flow path control valve 48b is always located at one of two locations in the valve box by the internal valve body by the magnetic force of an electromagnet or the like and the biasing force of a spring or the like. Due to the space between the valve box and the valve body, two flow paths are always formed at the same time regardless of the position of the valve body. The internal flow path is switched to two patterns depending on the valve body position.

1つ目のパターンでは、接続口483および接続口482が連通する流路と、接続口484および接続口485が連通する流路が同時に形成される。これにより、エアタンク39の圧縮空気が空気管39c,接続口483,接続口482,空気管39dを経由して駆動部3bのシリンダ下方の空気流出入口に送られる流路が形成され、同時に駆動部3bのシリンダ上方の空気流出入口からピストンの上方の空気が空気管39e,接続口484,接続口485を経由して外部に排出される流路が形成される。   In the first pattern, a flow path connecting the connection port 483 and the connection port 482 and a flow path connecting the connection port 484 and the connection port 485 are formed simultaneously. As a result, a flow path is formed in which the compressed air in the air tank 39 is sent to the air outflow inlet below the cylinder of the drive unit 3b via the air pipe 39c, the connection port 483, the connection port 482, and the air pipe 39d. A flow path is formed in which air above the piston is discharged to the outside through the air pipe 39e, the connection port 484, and the connection port 485 from the air outflow inlet above the cylinder 3b.

2つ目のパターンでは、接続口483および接続口484が連通する流路と、接続口482および接続口481が連通する流路が同時に形成される。これにより、エアタンク39の圧縮空気が空気管39c,接続口483,接続口484,空気管39eを経由して駆動部3bのシリンダ上方の空気流出入口に送られる流路が形成され、同時に駆動部3bのシリンダ下方の空気流出入口からピストンの下方の空気が空気管39d,接続口482,接続口481を経由して外部に排出される流路が形成される。   In the second pattern, a flow path connecting the connection port 483 and the connection port 484 and a flow path connecting the connection port 482 and the connection port 481 are formed simultaneously. As a result, a flow path is formed in which the compressed air in the air tank 39 is sent to the air outflow inlet above the cylinder of the drive unit 3b via the air pipe 39c, the connection port 483, the connection port 484, and the air pipe 39e. A flow path is formed through which air below the piston is discharged to the outside through the air pipe 39d, the connection port 482, and the connection port 481 from the air outflow inlet below the cylinder 3b.

以上の構造の流路制御弁48bを適用したことによって、制御弁3は、実施の形態1の場合と同様の動作をすることができる。その他の構成は、実施の形態1のものと同様であるので、その説明を援用して詳細な説明を省略する。実施の形態3の構成は、実施の形態1および2にも適用でき、また後述する実施の形態4乃至19にも適用できるものである。   By applying the flow path control valve 48b having the above structure, the control valve 3 can operate in the same manner as in the first embodiment. Since other configurations are the same as those of the first embodiment, the description thereof is incorporated and detailed description is omitted. The configuration of the third embodiment can be applied to the first and second embodiments, and can also be applied to the later-described fourth to nineteenth embodiments.

以上のように、この実施の形態3における超音波式汚泥濃度測定装置1によれば、制御弁3の修理や交換を行う必要が生じたときに、作業中にその本管部2が設置されている汚泥配管の流れを停止することができる場合においては、リペアゲート11を有していなくても問題が生じないので、リペアゲート11を不要としたことによる製造コストの低減、リペアゲート11の厚み分の平面上の設置面積の低減を図ることができる効果がある。また、流路制御弁48bを用いたことにより、制御器8は1つの流路制御弁を制御するだけで制御弁3の開閉を制御することができるので、流路制御弁の設置個数を削減すること、制御器8と流路制御弁との間の電気配線の本数を削減すること、制御器8内の回路を削減することができ、製造コストの低減を図ることができる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 according to the third embodiment, when the control valve 3 needs to be repaired or replaced, the main pipe section 2 is installed during the operation. In the case where the flow of the sludge pipe can be stopped, there is no problem even if the repair gate 11 is not provided. Therefore, the manufacturing cost is reduced by eliminating the repair gate 11, and the repair gate 11 There exists an effect which can aim at reduction of the installation area on the plane for thickness. In addition, by using the flow path control valve 48b, the controller 8 can control the opening and closing of the control valve 3 only by controlling one flow path control valve, so the number of flow path control valves installed can be reduced. It is possible to reduce the number of electrical wirings between the controller 8 and the flow path control valve, to reduce the circuit in the controller 8, and to reduce the manufacturing cost.

実施の形態4.
図6は、実施の形態4における超音波式汚泥濃度測定装置1の正面図であり、図7は超音波式汚泥濃度測定装置1のA−A線断面図である。この実施の形態4の超音波式汚泥濃度測定装置1は、測定室4の周壁部材13の上部に気体排出管51を立ち上げ、上端を大気開放してガス溜まり排出用の気体排出口52とし、気体排出管51にガス溜まりの排出を制御する排出制御弁53を設けた点と、保護カバー7を設けない点が、実施の形態1の超音波式汚泥濃度測定装置1と相違する。排出制御弁53は制御器8によって開閉が制御される。その他の構成は実施の形態1の超音波式汚泥濃度測定装置1の構成と同様であるのでその説明を援用して詳細な説明を省略する。
Embodiment 4 FIG.
FIG. 6 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 4, and FIG. 7 is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 taken along the line AA. In the ultrasonic sludge concentration measuring apparatus 1 according to the fourth embodiment, a gas discharge pipe 51 is raised above the peripheral wall member 13 of the measurement chamber 4 and the upper end is opened to the atmosphere to form a gas discharge port 52 for discharging a gas reservoir. The point that the discharge control valve 53 that controls the discharge of the gas reservoir is provided in the gas discharge pipe 51 and the point that the protective cover 7 is not provided are different from the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment. The discharge control valve 53 is controlled to be opened and closed by the controller 8. The other configuration is the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, and thus the description thereof is incorporated and detailed description is omitted.

ガス溜まりの排出は、制御器8で排出制御弁53を開閉制御して行われるが、排出制御弁53を開閉するタイミングは、例えば、一定時間間隔に所定時間だけ開弁するようにしてもよいし、ガス溜まりに起因して汚泥が十分に加圧できず超音波送受信器による超音波送受信の不良が検出されたときに開弁するようにしてもよい。ガス溜まりに起因する汚泥の加圧不良による汚泥濃度の計測不良が長時間続かないのであれば、どのようなタイミングでもよいが、制御弁3を閉弁しているときに排出制御弁53を開弁しても、制御弁3の開弁時は、本管部2の汚泥の圧力でガスを排出できるのに比べ、測定室4内にある汚泥の内圧分しかガスの排出に使用できないので、このタイミング以外に排出制御弁53を開弁するように制御器8で制御することが好ましい。   The discharge of the gas reservoir is performed by controlling the opening / closing of the discharge control valve 53 by the controller 8, but the timing of opening / closing the discharge control valve 53 may be opened at a predetermined time interval for a predetermined time, for example. However, the valve may be opened when the sludge cannot be sufficiently pressurized due to the gas pool and the ultrasonic transmission / reception failure by the ultrasonic transmitter / receiver is detected. As long as the sludge concentration measurement failure due to sludge pressurization due to gas accumulation does not continue for a long time, any timing may be used, but the discharge control valve 53 is opened when the control valve 3 is closed. Even when the control valve 3 is opened, since the gas can be discharged by the sludge pressure in the main pipe section 2, only the internal pressure of the sludge in the measurement chamber 4 can be used for gas discharge. In addition to this timing, it is preferable to control the controller 8 so that the discharge control valve 53 is opened.

また、汚泥加圧時に排出制御弁53を開弁してしまうと、測定室4内のガスだけでなく汚泥まで飛び出してしまうので、このタイミングで排出制御弁53を開弁しないように制御器8で制御する必要がある。さらに、排出制御弁53を開弁する時間も測定室4内の汚泥が気体排出口52から極力飛び出さないように本管部2を設置する環境によって適宜調整する必要がある。また、環境によっては、気体排出管51の立ち上げ高さを高くして気体排出口52の高さを高くすることで、汚泥の飛び出しを防止してもよい。   Further, if the discharge control valve 53 is opened at the time of sludge pressurization, not only the gas in the measurement chamber 4 but also the sludge will be ejected. Therefore, the controller 8 does not open the discharge control valve 53 at this timing. It is necessary to control with. Further, the time for opening the discharge control valve 53 needs to be appropriately adjusted according to the environment in which the main pipe section 2 is installed so that the sludge in the measurement chamber 4 does not jump out from the gas discharge port 52 as much as possible. Further, depending on the environment, the rising height of the gas discharge pipe 51 and the height of the gas discharge port 52 may be increased to prevent sludge from jumping out.

本管部2が接続している汚泥配管がポンプ等によって汚泥を加圧して移送している場合においては、汚泥は常時多少の加圧状態にあるので、一定時間ごとに制御弁3を閉弁して排出制御弁53をごく短時間開弁することで、汚泥の圧力で測定室4内の滞留ガスを全量とまではいかなくても強制的に気体排出口から排出でき、かつ測定室4内の汚泥が気体排出口52から飛び出す恐れがない。排出制御弁53には、電磁弁、電動弁、空気圧弁、油圧弁、水圧弁等が適用可能であり、制御器8によって制御可能な構造であればどのような弁でもよい。また、この実施の形態4においては、気体排出管51の端部を気体排出口52として開放としたが、気体排出管51を延長して、本管部2よりも下流側の汚泥配管に接続して、測定室4内のガスを一部の汚泥とともに汚泥配管に移送してもよく、また、最寄りの汚泥貯留槽や側溝等に移送してもよい。要は、測定室4内のガスをその外に排出できればよい。   When the sludge piping connected to the main pipe section 2 pressurizes and transfers the sludge with a pump or the like, the sludge is always in a slightly pressurized state, so the control valve 3 is closed at regular intervals. By opening the discharge control valve 53 for a very short time, the accumulated gas in the measurement chamber 4 can be forcibly discharged from the gas discharge port by the sludge pressure even if it does not reach the total amount, and the measurement chamber 4 There is no risk that the sludge inside will jump out of the gas outlet 52. As the discharge control valve 53, an electromagnetic valve, an electric valve, a pneumatic valve, a hydraulic valve, a water pressure valve or the like can be applied, and any valve can be used as long as it can be controlled by the controller 8. Moreover, in this Embodiment 4, although the edge part of the gas exhaust pipe 51 was made open as the gas exhaust port 52, the gas exhaust pipe 51 was extended and connected to the sludge piping downstream from the main pipe part 2. Then, the gas in the measurement chamber 4 may be transferred to a sludge pipe together with a part of the sludge, or may be transferred to the nearest sludge storage tank, a side groove, or the like. In short, it is sufficient that the gas in the measurement chamber 4 can be discharged to the outside.

この実施の形態4の超音波式汚泥濃度測定装置1に示した、測定室4の上部外周部に気体排出管51を取り付け、気体排出管51の上端部にガスを排出する気体排出口52を開口し、気体排出管51の中間部に排出制御弁53を設け、排出制御弁53の開閉制御を制御器8で行う構成は、この実施の形態4のみならず、上記実施の形態1から実施の形態3、後述する実施の形態5から実施の形態19までの超音波式汚泥濃度測定装置にも適用することができる。   A gas discharge pipe 51 is attached to the upper outer periphery of the measurement chamber 4 shown in the ultrasonic sludge concentration measuring apparatus 1 of the fourth embodiment, and a gas discharge port 52 for discharging gas is provided at the upper end of the gas discharge pipe 51. The configuration in which the discharge control valve 53 is opened and the discharge control valve 53 is provided in the middle portion of the gas discharge pipe 51 and the opening / closing control of the discharge control valve 53 is performed by the controller 8 is not limited to the fourth embodiment. The present invention can also be applied to the ultrasonic sludge concentration measuring apparatuses of Embodiment 3 and Embodiments 5 to 19 described later.

以上のように、実施の形態4における超音波式汚泥濃度測定装置1によれば、特に汚泥ガスが発生し易くガス溜まりが生じ易い性状の汚泥が流れる汚泥配管に、この超音波式汚泥濃度測定装置1を設置する場合において、測定室4内の上部に滞留したガス溜まりを排出制御弁53を開弁することにより、気体排出口52から外部に排出可能となるので、ガス溜まりに起因する汚泥加圧時気泡の溶存不良による汚泥濃度が正確に測定されない問題や汚泥濃度が測定できない問題を解決できる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the fourth embodiment, this ultrasonic sludge concentration measurement is particularly performed in a sludge pipe through which sludge having a property that sludge gas is easily generated and a gas pool is likely to occur. When the apparatus 1 is installed, the gas pool retained in the upper part of the measurement chamber 4 can be discharged to the outside from the gas discharge port 52 by opening the discharge control valve 53. Therefore, the sludge caused by the gas pool There is an effect of solving the problem that the sludge concentration due to the poor dissolution of bubbles during pressurization and the sludge concentration cannot be measured accurately.

さらに、測定室4内に滞留するガス溜まりの容量が大きい場合において、圧縮空気を加圧室6に供給したときに、液体に比べて圧縮率の大幅に高い気体であるガス溜まりが収縮して弾性部材24が測定室4側に押し込まれて変形してしまう、いわゆる反転現象が起こることを防止できる効果もある。   Furthermore, when the volume of the gas reservoir staying in the measurement chamber 4 is large, when the compressed air is supplied to the pressurizing chamber 6, the gas reservoir, which is a gas having a significantly higher compressibility than the liquid, contracts. There is also an effect that it is possible to prevent the so-called reversal phenomenon in which the elastic member 24 is pushed into the measuring chamber 4 and is deformed.

実施の形態5.
図8は実施の形態5にかかる超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態4の超音波式汚泥濃度測定装置1のA−A線断面図である図7と同一である。この実施の形態5の超音波式汚泥濃度測定装置1は、実施の形態4の超音波式汚泥濃度測定装置1と異なっており、本管部2の管壁上部に気体排出管54を立ち上げ、気体排出管54の上端を大気開放してガス溜まり排出用の気体排出口55とし、気体排出管54にガス溜まりの排出を制御する排出制御弁56を設け、排出制御弁56を電気配線で制御器8に接続した点が相違する。その他の構成は、実施の形態4と同様であるのでその説明を援用して詳細な説明を省略する。また、排出制御弁56の構造や開閉制御については、実施の形態4の排出制御弁53の開閉制御と同様であり、気体排出管54については、実施の形態4の気体排出管51と同様である。
Embodiment 5. FIG.
FIG. 8 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment. The AA line sectional view is the same as FIG. 7 which is the AA line sectional view of the ultrasonic sludge concentration measuring apparatus 1 of the fourth embodiment. The ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment is different from the ultrasonic sludge concentration measuring apparatus 1 according to the fourth embodiment, and a gas discharge pipe 54 is set up at the upper part of the pipe wall of the main pipe section 2. The upper end of the gas discharge pipe 54 is opened to the atmosphere to form a gas discharge port 55 for discharging the gas reservoir, and the gas discharge pipe 54 is provided with a discharge control valve 56 for controlling the discharge of the gas reservoir, and the discharge control valve 56 is electrically connected. The difference is that it is connected to the controller 8. Since the other configuration is the same as that of the fourth embodiment, the detailed description is omitted by using the description. The structure and open / close control of the discharge control valve 56 are the same as the open / close control of the discharge control valve 53 of the fourth embodiment, and the gas discharge pipe 54 is the same as the gas discharge pipe 51 of the fourth embodiment. is there.

実施の形態5の超音波式汚泥濃度測定装置1は、本管部2の管壁上部に気体排出管54を取り付ける構成であるが、この構成は実施の形態1乃至3あるいは実施の形態6乃至19のいずれかの超音波式汚泥濃度測定装置1に適用しても良い。また、実施の形態4の気体排出管51等とこの実施の形態5の気体排出管53等を併設してもよい。   The ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment has a configuration in which the gas discharge pipe 54 is attached to the upper part of the pipe wall of the main pipe section 2, and this configuration is the first to third embodiments or the sixth to sixth embodiments. The ultrasonic sludge concentration measuring apparatus 1 according to any one of 19 may be applied. Further, the gas exhaust pipe 51 of the fourth embodiment and the gas exhaust pipe 53 of the fifth embodiment may be provided side by side.

以上のように、実施の形態5における超音波式汚泥濃度測定装置1によれば、実施の形態4に示した効果に加え、以下の効果がある。すなわち、本管部2の内径は、この超音波流汚泥濃度測定装置1を設置する汚泥配管を流れる汚泥流量によって選定されるものであるのに対し、測定室4の内径は、経済性の観点から同じ内径とするのが好ましい。この理由としては、本管部2の内径に応じて測定室4の内径を変えてしまうと、2つの超音波送受信子5a間の距離が変わるので、その内径毎の変換器30の調整が必要となってしまうことや、リペアゲート11,制御弁3,周壁部材13,弾性部材24,外覆部材25等を測定室4の内径毎に用意しなければならなくなり、製造コストの大幅増に繋がってしまうこと等があげられる。   As described above, the ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment has the following effects in addition to the effects shown in the fourth embodiment. That is, the inner diameter of the main pipe section 2 is selected according to the sludge flow rate flowing through the sludge pipe in which the ultrasonic flow sludge concentration measuring apparatus 1 is installed, whereas the inner diameter of the measurement chamber 4 is the economical viewpoint. Therefore, it is preferable to have the same inner diameter. The reason for this is that if the inner diameter of the measurement chamber 4 is changed according to the inner diameter of the main pipe section 2, the distance between the two ultrasonic transmitter / receivers 5 a changes, so that adjustment of the converter 30 for each inner diameter is necessary. In other words, the repair gate 11, the control valve 3, the peripheral wall member 13, the elastic member 24, the outer cover member 25, etc. must be prepared for each inner diameter of the measurement chamber 4, leading to a significant increase in manufacturing cost. And so on.

ここで、測定室4の内径が常に同じ内径であり、本管部2の内径の方が大きい場合、測定室4の管軸と本管部2の管軸を同一高さとなるように構成されるので、本管部2の内壁上端は、測定室4の内壁上端よりも高い位置になる。このため、測定室4の内壁上端から気体排出管51を経て、気体排出口52からガス溜まりを排出しても、本管部2内に滞留するガス溜まりの内、測定室4の内壁上端の高さ位置から本管部2の内壁上端までに滞留している部分については排出できずに残ってしまう。しかし、この実施の形態5における超音波式汚泥濃度測定装置1では、本管部2の上部に設けられた気体排出口55からガス溜まりを排出するので、本管部2に滞留したガス溜まりも確実に外部に排出できる。   Here, when the inner diameter of the measurement chamber 4 is always the same inner diameter and the inner diameter of the main pipe portion 2 is larger, the tube axis of the measurement chamber 4 and the pipe axis of the main pipe portion 2 are configured to have the same height. Therefore, the upper end of the inner wall of the main pipe part 2 is higher than the upper end of the inner wall of the measurement chamber 4. For this reason, even if the gas reservoir is discharged from the gas discharge port 52 through the gas discharge pipe 51 from the upper end of the inner wall of the measurement chamber 4, the gas reservoir staying in the main pipe portion 2 is the upper end of the inner wall of the measurement chamber 4. A portion staying from the height position to the upper end of the inner wall of the main pipe portion 2 cannot be discharged and remains. However, in the ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment, since the gas pool is discharged from the gas discharge port 55 provided at the upper part of the main pipe section 2, the gas pool retained in the main pipe section 2 is also present. It can be reliably discharged outside.

実施の形態6.
図9は実施の形態6にかかる超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態4の超音波式汚泥濃度測定装置のA−A線断面図である図7と同一である。この実施の形態6の超音波式汚泥濃度測定装置1では、測定室4上部の気体排出管51に圧力測定器57を設けた点において、実施の形態4の超音波式汚泥濃度測定装置1とは相違している。すなわち、実施の形態6の超音波式汚泥濃度測定装置1では、気体排出管51に圧力測定器57を設け、この圧力測定器57の検出値を制御器8に送信する構成とされている。
Embodiment 6 FIG.
FIG. 9 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the sixth embodiment. The sectional view taken along the line AA is the same as FIG. 7 which is a sectional view taken along the line AA of the ultrasonic sludge concentration measuring apparatus according to the fourth embodiment. The ultrasonic sludge concentration measuring apparatus 1 according to the sixth embodiment is different from the ultrasonic sludge concentration measuring apparatus 1 according to the fourth embodiment in that a pressure measuring device 57 is provided in the gas discharge pipe 51 above the measurement chamber 4. Is different. That is, in the ultrasonic sludge concentration measuring apparatus 1 according to the sixth embodiment, the pressure measuring device 57 is provided in the gas discharge pipe 51 and the detected value of the pressure measuring device 57 is transmitted to the controller 8.

この実施の形態6におけるガス溜まり排出のための排出制御弁53の制御については、実施の形態4に示した制御とほぼ同様であるが、排出制御弁53を開弁する前に圧力測定器57で測定室4内の圧力を測定し、負圧状態である限り排出制御弁53を開弁しないように制御することが新たに付加されている。その他の構成は実施の形態4の超音波式汚泥濃度測定装置1の構成と同様であるので、その説明を用いて詳細な説明を省略する。この実施の形態6の構成は実施の形態1乃至3,実施の形態5あるいは実施の形態7乃至19のいずれかの超音波式汚泥濃度測定装置1に適用しても良い。   The control of the discharge control valve 53 for discharging the gas reservoir in the sixth embodiment is almost the same as the control shown in the fourth embodiment, but before the discharge control valve 53 is opened, the pressure measuring device 57 is used. Thus, it is newly added that the pressure in the measurement chamber 4 is measured and the discharge control valve 53 is controlled not to be opened as long as it is in a negative pressure state. Other configurations are the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the fourth embodiment, and thus detailed description thereof is omitted using the description. The configuration of the sixth embodiment may be applied to the ultrasonic sludge concentration measuring apparatus 1 of any of the first to third embodiments, the fifth embodiment, or the seventh to nineteenth embodiments.

以上のように、この実施の形態6における超音波式汚泥濃度測定装置1によれば、実施の形態4に示した効果に加え、排出制御弁53を開弁して測定室4内のガスを排出する制御を実行する前に、圧力測定器57で測定室4内の圧力を測定し、負圧状態のときは排出制御弁53を開弁しないように制御するようにしたことにより、何等かの原因によって汚泥配管が負圧状態になったことに起因して、測定室4内も負圧になっているときに排出制御弁53を開弁してしまい、ガスを排出できないばかりか、逆に外気を測定室4内に吸い込んでしまう現象が発生することを防止できる効果がある。この実施の形態6における超音波式汚泥濃度測定装置1は、設置する汚泥配管内が負圧状態になることがある場合、例えば、移送ポンプの吸引側の汚泥配管に設置する場合等に、特に効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 according to the sixth embodiment, in addition to the effects shown in the fourth embodiment, the discharge control valve 53 is opened so that the gas in the measurement chamber 4 is discharged. Before the discharge control is executed, the pressure in the measurement chamber 4 is measured by the pressure measuring device 57, and the discharge control valve 53 is controlled not to open in the negative pressure state. Due to the negative pressure of the sludge piping due to the cause of this, the discharge control valve 53 is opened when the pressure in the measurement chamber 4 is also negative, and not only the gas cannot be discharged, but also In addition, there is an effect that it is possible to prevent the phenomenon that the outside air is sucked into the measurement chamber 4. The ultrasonic sludge concentration measuring apparatus 1 according to the sixth embodiment is particularly useful when the inside of the installed sludge pipe is in a negative pressure state, for example, when installed in the sludge pipe on the suction side of the transfer pump. effective.

実施の形態7.
図10は、実施の形態7の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態4の超音波式汚泥濃度測定装置のA−A線断面図である図7と同一である。図10の超音波式汚泥濃度測定装置1では、本管部2から立ち上げられた気体排出管54に圧力測定器58を設けた点が、実施の形態5(図8参照)の超音波式汚泥濃度測定装置1と相違する。その他の構成は実施の形態5の超音波式汚泥濃度測定装置1の構成と同様であるので、その説明を用いて詳細な説明を省略する。
Embodiment 7 FIG.
FIG. 10 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the seventh embodiment. The sectional view taken along the line AA is the same as FIG. 7 which is a sectional view taken along the line AA of the ultrasonic sludge concentration measuring apparatus according to the fourth embodiment. In the ultrasonic sludge concentration measuring apparatus 1 of FIG. 10, the ultrasonic type of the fifth embodiment (see FIG. 8) is that a pressure measuring device 58 is provided in the gas discharge pipe 54 raised from the main pipe section 2. It differs from the sludge concentration measuring apparatus 1. Other configurations are the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the fifth embodiment, and thus detailed description thereof is omitted using the description.

この実施の形態7におけるガス溜まり排出のための排出制御弁56の制御については、実施の形態5に示した制御とほぼ同様であるが、実施の形態6と同様、排出制御弁56を開弁する前に圧力測定器58で本管部2内の圧力を測定し、負圧状態である限り排出制御弁56を開弁しないように制御することが新たに付加されている。この実施の形態7の構成は実施の形態1乃至4、実施の形態6あるいは実施の形態8乃至19のいずれかの超音波式汚泥濃度測定装置1に適用しても良い。   The control of the discharge control valve 56 for discharging the gas reservoir in the seventh embodiment is almost the same as the control shown in the fifth embodiment, but the discharge control valve 56 is opened as in the sixth embodiment. Before the operation, the pressure measuring device 58 measures the pressure in the main pipe section 2 and controls so that the discharge control valve 56 is not opened as long as it is in a negative pressure state. The configuration of the seventh embodiment may be applied to the ultrasonic sludge concentration measuring apparatus 1 according to any of the first to fourth, sixth, or eighth to nineteenth embodiments.

以上のように、実施の形態7における超音波式汚泥濃度測定装置1によれば、実施の形態5に示した効果に加え、排出制御弁56を開弁して本管部2内のガスを排出する制御を実行する前に、圧力測定器58で本管部2内の圧力を測定し、負圧状態のときは排出制御弁56を開弁しないように制御するようにしたことにより、何等かの原因によって汚泥配管が負圧状態になったことに起因して、本管部2内も負圧になっているときに排出制御弁56を開弁してしまい、ガスを排出できないばかりか、逆に外気を本管部2内に吸い込んでしまう現象が発生することを防止できる効果がある。この実施の形態7における超音波式汚泥濃度測定装置1は、設置する汚泥配管内が負圧状態になることがある場合、例えば、移送ポンプの吸引側の汚泥配管に設置する場合等に、特に効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 in the seventh embodiment, in addition to the effects shown in the fifth embodiment, the discharge control valve 56 is opened to allow the gas in the main pipe section 2 to flow. Before executing the discharge control, the pressure measuring device 58 measures the pressure in the main pipe section 2 and controls so that the discharge control valve 56 is not opened in the negative pressure state. Due to the sludge piping being in a negative pressure state due to this cause, the exhaust control valve 56 is opened when the main pipe portion 2 is also in a negative pressure, and not only gas cannot be discharged. On the contrary, there is an effect of preventing the occurrence of a phenomenon in which outside air is sucked into the main pipe section 2. The ultrasonic sludge concentration measuring apparatus 1 according to the seventh embodiment is particularly useful when the inside of the installed sludge pipe may be in a negative pressure state, for example, when installed in the sludge pipe on the suction side of the transfer pump. effective.

実施の形態8.
図11は、実施の形態8における超音波式汚泥濃度測定装置1の正面図であり、図12はそのA−A線断面図である。この実施の形態8の超音波式汚泥濃度測定装置1は、エアタンク39から加圧室6へ圧縮空気を供給する空気供給管37に流路の開閉を行う空気制御弁59を新たに設けた点が、実施の形態1の超音波式汚泥濃度測定装置1と相違する。実施の形態8の超音波式汚泥濃度測定装置1では、流路切換弁40と加圧室6との間の空気供給管37に空気制御弁59を設け、制御器8が、流路切換弁40と空気制御弁59の開閉を制御する構成とされている。
Embodiment 8 FIG.
FIG. 11 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 8, and FIG. 12 is a cross-sectional view taken along the line AA. In the ultrasonic sludge concentration measuring apparatus 1 according to the eighth embodiment, an air control valve 59 for opening and closing a flow path is newly provided in an air supply pipe 37 that supplies compressed air from the air tank 39 to the pressurizing chamber 6. However, it is different from the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment. In the ultrasonic sludge concentration measuring apparatus 1 according to the eighth embodiment, an air control valve 59 is provided in the air supply pipe 37 between the flow path switching valve 40 and the pressurizing chamber 6, and the controller 8 is provided with the flow path switching valve. 40 and the air control valve 59 are controlled to be opened and closed.

つまり、実施の形態1の超音波式汚泥濃度測定装置1では、エアタンク39と加圧室6との間の空気供給管37には、流路切換弁40のみ配設されているが、流路切換弁40は、エアタンク39からの圧縮空気を加圧室6へ供給する流路と、加圧室6内の空気を大気開放にする流路のいずれかしか構成できない。このため、測定室4の汚泥を加圧する行程時以外は、加圧室6内を大気に開放している。しかし、加圧室6が大気に開放されているときに測定室4内が大気圧以下である負圧状態となると、加圧室6側から大気圧との気圧差によって弾性部材24が測定室4側に押し込まれてしまい、弾性部材24の反転現象が生じてしまう。   That is, in the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, only the flow path switching valve 40 is disposed in the air supply pipe 37 between the air tank 39 and the pressurizing chamber 6. The switching valve 40 can constitute only one of a flow path for supplying compressed air from the air tank 39 to the pressurizing chamber 6 and a flow path for releasing the air in the pressurizing chamber 6 to the atmosphere. For this reason, the inside of the pressurization chamber 6 is open | released to air | atmosphere other than the time of the process which pressurizes the sludge of the measurement chamber 4. FIG. However, when the pressure chamber 6 is open to the atmosphere and the inside of the measurement chamber 4 is in a negative pressure state that is equal to or lower than atmospheric pressure, the elastic member 24 is moved from the pressure chamber 6 side to the measurement chamber due to the atmospheric pressure difference from the atmospheric pressure. 4 will be pushed in, and the inversion phenomenon of the elastic member 24 will arise.

そこで、この実施の形態8の超音波式汚泥濃度測定装置1の制御器8は、測定室4の汚泥の加圧行程時は、エアタンク39から圧縮空気を加圧室6へ供給する流路に流路切換弁40を切り換え、空気制御弁59を開弁状態にする。そして、汚泥の加圧行程終了後は、加圧室6を大気開放にする流路に流路切換弁40を切り換え、空気制御弁59を開弁状態のままとして加圧室6内の圧縮空気を外部に排出させ、加圧室6内が大気圧に戻った後は、流路切換弁40の流路はそのままとして空気制御弁59を閉弁状態とし、加圧室6内を概ね大気圧で密閉状態とするように、制御する。   Therefore, the controller 8 of the ultrasonic sludge concentration measuring apparatus 1 according to the eighth embodiment provides a flow path for supplying compressed air from the air tank 39 to the pressurizing chamber 6 during the sludge pressurizing process of the measuring chamber 4. The flow path switching valve 40 is switched and the air control valve 59 is opened. Then, after the pressurization process of the sludge is completed, the flow path switching valve 40 is switched to a flow path that opens the pressurization chamber 6 to the atmosphere, and the compressed air in the pressurization chamber 6 is left with the air control valve 59 kept open. After the pressure chamber 6 is discharged to the atmospheric pressure, the air control valve 59 is closed while the flow path of the flow path switching valve 40 remains unchanged, and the pressure chamber 6 is almost at atmospheric pressure. Control to make it sealed.

実施の形態8の構成は、実施の形態2乃至7および実施の形態8乃至19の超音波式汚泥濃度測定装置1に適用することができる。また、この実施の形態8の超音波式汚泥濃度測定装置1では、汚泥加圧行程時以外は空気制御弁59が閉弁されており、加圧室6が圧縮性流体ではあるが大気圧の空気で密閉状態となる。測定室4内が小さな正圧状態となった程度では、弾性部材24が膨張しすぎて外覆部材内壁等に擦れる等の状況にはなりくい。移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   The configuration of the eighth embodiment can be applied to the ultrasonic sludge concentration measuring apparatus 1 of the second to seventh embodiments and the eighth to nineteenth embodiments. Further, in the ultrasonic sludge concentration measuring apparatus 1 according to the eighth embodiment, the air control valve 59 is closed except during the sludge pressurization process, and the pressurizing chamber 6 is a compressive fluid but has an atmospheric pressure. Sealed with air. As long as the inside of the measurement chamber 4 becomes a small positive pressure state, the elastic member 24 is not easily expanded and rubbed against the inner wall of the outer cover member. In the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 for protecting 24 may be unnecessary.

以上のように、実施の形態8の超音波式汚泥濃度測定装置1によれば、測定室4内が負圧状態となった場合においても、加圧室6内は密閉状態で空気の流入・流出のない状態となるので、弾性部材24が大気圧との気圧差によって測定室4側に押し込まれて、反転現象が生じることが防止される。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the eighth embodiment, even when the inside of the measurement chamber 4 is in a negative pressure state, the inside of the pressurization chamber 6 is in a sealed state so that the inflow / Since there is no outflow, the elastic member 24 is prevented from being pushed into the measurement chamber 4 due to a difference in atmospheric pressure from the atmospheric pressure and causing a reversal phenomenon.

また、前述の通り、弾性部材24が破損してしまい、加圧室6に汚泥が流入してきた場合において、すぐに汚泥の漏洩を発見して制御弁3を閉弁し、さらにドレン弁42を開いて測定室4内の汚泥を系外に排出しないと、汚泥は空気供給管37に流入してきてしまう。汚泥加圧行程時以外では、流路切換弁40は加圧室6が大気開放になる流路になっているので、汚泥が流路切換弁40にまで流入してきて、流路切換弁40の配管未接続の開口から汚泥が系外に流出してしまう。加えて、空気供給管37は管径が小さいので、汚泥が流入してしまうと管内の洗浄作業は労力を要し、復旧に時間が掛かってしまうという問題があった。しかし、実施の形態8の超音波式汚泥濃度測定装置1によれば、空気供給管37に空気制御弁59を設けたことによって、漏洩検知器34が汚泥の漏洩を検知したときに空気制御弁59を閉弁すると、加圧室6および空気制御弁59の手前までの管内は空気で密閉状態にできるので、汚泥の空気供給管37への流入を防止できるという効果がある。   Further, as described above, when the elastic member 24 is damaged and sludge flows into the pressurizing chamber 6, the leak of the sludge is immediately detected, the control valve 3 is closed, and the drain valve 42 is further turned on. If the sludge in the measuring chamber 4 is not opened and discharged outside the system, the sludge flows into the air supply pipe 37. Except during the sludge pressurization stroke, the flow path switching valve 40 is a flow path in which the pressurizing chamber 6 is opened to the atmosphere, so that sludge flows into the flow path switching valve 40 and the flow path switching valve 40 Sludge flows out of the system through the opening that is not connected to the pipe. In addition, since the air supply pipe 37 has a small diameter, there is a problem that if the sludge flows in, the cleaning operation in the pipe requires labor, and it takes time to recover. However, according to the ultrasonic sludge concentration measuring apparatus 1 of the eighth embodiment, the air control valve 59 is provided in the air supply pipe 37 so that when the leak detector 34 detects sludge leakage, the air control valve When the valve 59 is closed, the inside of the pipe up to the pressurizing chamber 6 and the air control valve 59 can be sealed with air, so that it is possible to prevent the sludge from flowing into the air supply pipe 37.

実施の形態9.
図13は、実施の形態9における超音波式汚泥濃度測定装置1の正面図であり、図14はそのA−A線断面図である。また、図15は、外覆部材25部分のA−A線断面図であり、図16は、同じく外覆部材25部分のB−B線方向から見た側面図である。この実施の形態9から後述する実施の形態11までの超音波式汚泥濃度測定装置1は、外覆部材25が分割可能とされた実施の形態を示す。実施の形態9の超音波式汚泥濃度測定装置1は、実施の形態1の超音波式汚泥濃度測定装置1における外覆部材25が加圧部66と電極収納部63とで分割して形成され、加圧部66と電極収納部63が、ハウジング継ぎ手60で接続されている点が相違する。
Embodiment 9 FIG.
FIG. 13 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to Embodiment 9, and FIG. 14 is a cross-sectional view taken along the line AA. FIG. 15 is a cross-sectional view of the outer cover member 25 portion taken along the line AA, and FIG. 16 is a side view of the outer cover member 25 portion seen from the BB line direction. The ultrasonic sludge concentration measuring apparatus 1 from the ninth embodiment to the eleventh embodiment to be described later shows an embodiment in which the outer covering member 25 can be divided. The ultrasonic sludge concentration measuring apparatus 1 according to the ninth embodiment is formed by dividing the outer cover member 25 of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment into a pressurizing unit 66 and an electrode storage unit 63. The pressurizing part 66 and the electrode storage part 63 are different from each other in that the housing joint 60 is connected.

実施の形態9の電極収納部63は、ハウジング継ぎ手60の上下2つのハウジング60a,60bを接合している締結用のボルト65aおよびナット65bを緩めることで、加圧部66から取り外し可能とされている。電極収納部63は、加圧部66との接続軸を中心に回動可能である。半球状の加圧部66の電極収納部63側の部位には、フランジ部68aを備えた加圧室側接続口68が形成されている。   The electrode housing portion 63 of the ninth embodiment can be removed from the pressurizing portion 66 by loosening the fastening bolts 65a and nuts 65b joining the upper and lower housings 60a and 60b of the housing joint 60. Yes. The electrode storage part 63 is rotatable around a connection axis with the pressure part 66. A pressurizing chamber side connection port 68 having a flange portion 68a is formed at a portion of the hemispherical pressurizing portion 66 on the electrode housing portion 63 side.

加圧室側接続口68の内部には筒状の連通口67が形成されている。電極収納部63の加圧部66側の部位にはフランジ部69aを備えた収納部側接続口69が形成されている。収納部側接続口69の内部には連通口70が形成されている。加圧室側接続口68と収納部側接続口69のフランジ部68a,69aは同形同大の円形とされ、加圧室側接続口68の端面に外側となる嵌合筒部71が突出して形成され、収納部側接続口69の端面に内側となる嵌合筒部72が形成されている。嵌合筒部71の内側に嵌合筒部72が嵌合し、嵌合筒部71の外周にOリング等からなるシール材73が嵌め込まれており、シール材73はフランジ部68a,68bで挟み込まれており、ハウジング60a,60bでフランジ部68aと68bとを抑えつけることで、水密状態を保ちつつ、電極収納部63を接続軸を中心に回動自在にしている。   A cylindrical communication port 67 is formed inside the pressurizing chamber side connection port 68. A storage portion side connection port 69 having a flange portion 69 a is formed at a portion of the electrode storage portion 63 on the pressure portion 66 side. A communication port 70 is formed inside the storage unit side connection port 69. The flanges 68a and 69a of the pressurizing chamber side connection port 68 and the storage unit side connection port 69 are circular with the same shape and the same size, and the fitting tube portion 71 which is the outside projects from the end surface of the pressurization chamber side connection port 68. A fitting cylinder portion 72 is formed on the inner end surface of the storage portion side connection port 69. A fitting cylinder portion 72 is fitted inside the fitting cylinder portion 71, and a sealing material 73 made of an O-ring or the like is fitted on the outer periphery of the fitting cylinder portion 71. The sealing material 73 is formed by flange portions 68a and 68b. It is sandwiched and the flange portions 68a and 68b are held down by the housings 60a and 60b, so that the electrode housing portion 63 is rotatable around the connection shaft while maintaining a watertight state.

ハウジング継ぎ手60の各々のハウジング60a,60bは、半円形状部の両端にフランジ部64を形成した形状を有するものであり、一対のハウジング60a,60bで加圧室側接続口68と収納部側接続口69のフランジ部68a,69aの周りを覆うように形成されている。一対のハウジング60a,60bのフランジ部64同士は互いに重ね合わされて、ボルト65aおよびナット65bで締結される。   Each of the housings 60a and 60b of the housing joint 60 has a shape in which flange portions 64 are formed at both ends of the semicircular portion. The pair of housings 60a and 60b are connected to the pressurizing chamber side connection port 68 and the storage portion side. The connection port 69 is formed so as to cover the flanges 68a and 69a. The flange portions 64 of the pair of housings 60a and 60b are overlapped with each other and fastened with bolts 65a and nuts 65b.

空気流入口63aは、電極収納部63に開口630を設け、開口630の外側の外周にその外側に雄ネジが設けられた筒部631が形成され、筒部631の内側に筒状のシール材63bを挿入し、電極収納部63の開口630と連通する開口630cを備えた内側に雌ねじが設けられた蓋63cを筒部631の雄ねじと螺合させ、蓋63cの内側に設けられた凸部631cでシール材63bを電極収納部63側に押圧した構成となっている。そして、空気供給管37を蓋63cの開口630cから挿入して、シール材63bの筒内に押し込むことで、圧縮空気を供給する空気供給管37の端部開口と電極収納部63の開口630とを気密状態に接続することができる。なお、空気供給管37をシール材63bの筒内に押し込む際にきつ過ぎる場合には、蓋63cを緩める方向に回転させてシール材63bへの押圧を緩めることで空気供給管37を押し込み易くなる。逆に緩すぎて気密状態が保てない場合には、蓋63cを締め付ける方向に回転させてシール材63bへの押圧を強めることで、空気供給管37と電極収納部63との間の気密状態を確保することができる。   The air inflow port 63 a is provided with an opening 630 in the electrode housing 63, and a cylindrical portion 631 is formed on the outer periphery of the opening 630 with a male screw on the outer side. A cylindrical sealing material is formed on the inner side of the cylindrical portion 631. 63b is inserted, and a lid 63c provided with an internal thread provided with an opening 630c communicating with the opening 630 of the electrode housing 63 is screwed with an external thread of the cylindrical part 631, and a convex part provided inside the lid 63c. The sealing material 63b is pressed toward the electrode housing part 63 by 631c. Then, by inserting the air supply pipe 37 from the opening 630c of the lid 63c and pushing it into the cylinder of the sealing material 63b, the end opening of the air supply pipe 37 that supplies compressed air and the opening 630 of the electrode storage section 63 Can be connected in an airtight state. If the air supply pipe 37 is too tight when being pushed into the cylinder of the sealing material 63b, the air supply pipe 37 can be easily pushed by rotating the lid 63c in the loosening direction to loosen the pressure on the sealing material 63b. . On the other hand, if the airtight state cannot be maintained due to being too loose, the airtight state between the air supply pipe 37 and the electrode storage unit 63 is increased by rotating the lid 63c in the tightening direction to increase the pressure on the sealing material 63b. Can be secured.

なお、この実施の形態9における空気流入口63aの構成については、他の全ての実施の形態における空気流入口32aでも同様の構成を適用している。しかし、空気流入口32a,63aについては、この構成に限定されず、空気供給管37と電極収納部32,63の開口630とが気密状態で接続可能であれば、どのような構成であってもよい。また、この実施の形態9で使用したハウジング継ぎ手60に代えて、一対のハウジングの一端側のフランジ部64同士を蝶番構造とし、他端側のフランジ部64同士のみ、締結ボルト65a,ナット65bで締結するようにしたハウジング継ぎ手を適用してもよい。その他の構成は、実施の形態1の超音波式汚泥濃度測定装置1と同様な構成とされているので、実施の形態1の説明を用いて詳細な説明を省略する。   In addition, about the structure of the air inflow port 63a in this Embodiment 9, the same structure is applied also to the air inflow port 32a in all the other embodiments. However, the air inlets 32a and 63a are not limited to this configuration, and any configuration can be used as long as the air supply pipe 37 and the openings 630 of the electrode storage portions 32 and 63 can be connected in an airtight state. Also good. Further, instead of the housing joint 60 used in the ninth embodiment, the flange portions 64 on one end side of the pair of housings have a hinge structure, and only the flange portions 64 on the other end side are fastened with fastening bolts 65a and nuts 65b. A housing joint adapted to be fastened may be applied. Since other configurations are the same as those of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment, detailed description thereof will be omitted using the description of the first embodiment.

実施の形態9の超音波式汚泥濃度測定装置1のように、外覆部材25を加圧部66と電極収納部63で分割構成とし、両者をハウジング継ぎ手60で結合させる構成は、実施の形態1乃至実施の形態8あるいは実施の形態12乃至実施の形態19の超音波式汚泥濃度測定装置1にも適用することができる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   As in the ultrasonic sludge concentration measuring apparatus 1 according to the ninth embodiment, the outer cover member 25 is divided into the pressurizing unit 66 and the electrode storage unit 63, and the two are coupled by the housing joint 60. The present invention can also be applied to the ultrasonic sludge concentration measuring apparatus 1 according to the first to eighth embodiments or the twelfth to nineteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、実施の形態9における超音波式汚泥濃度測定装置1によれば、外覆部材25が加圧部66と電極収納部63とに分割され、両者がハウジング継ぎ手60によって接続される構成とされているので、測定室4内の清掃や弾性部材24の交換等のメンテナンスを行うために、通しボルト27をスパナ等の工具で緩めて外覆部材25を測定室4の周壁部材13から取り外す作業を行う際、突出している電極収納部63によって作業がしにくいときには、電極収納部63を加圧部66から取り外したり、あるいは電極収納部63を図13において接続軸を中心に右周りあるいは左周りに回転させたりすることで、作業を行うことが容易になり、作業効率を向上できる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 in the ninth embodiment, the outer cover member 25 is divided into the pressurizing part 66 and the electrode storage part 63, and both are connected by the housing joint 60. Since it is configured, in order to perform maintenance such as cleaning of the measurement chamber 4 and replacement of the elastic member 24, the through bolt 27 is loosened with a tool such as a spanner and the outer covering member 25 is moved to the peripheral wall member 13 of the measurement chamber 4. When it is difficult to perform the work by removing the electrode housing part 63, the electrode housing part 63 is removed from the pressurizing part 66, or the electrode housing part 63 is rotated clockwise around the connection axis in FIG. Or by rotating counterclockwise, it becomes easy to perform work, and there is an effect that work efficiency can be improved.

また、電極収納部63を加圧部66との接続軸を中心に回動自在な構成としたことにより、超音波式汚泥濃度測定装置1を設置する周りの環境に応じて、現場で簡単に電極収納部63が突出する方向を変えることができるという効果もある。   In addition, since the electrode housing part 63 is configured to be rotatable around a connecting shaft with the pressurizing part 66, it can be easily performed on site according to the surrounding environment where the ultrasonic sludge concentration measuring apparatus 1 is installed. There is also an effect that the direction in which the electrode housing part 63 protrudes can be changed.

実施の形態10.
この実施の形態10の超音波式汚泥濃度測定装置1においても、実施の形態9の場合と同様に外覆部材25を分割形成しており、正面図は、図13の正面図と概ね同じ構成であり、A−A線断面図も、図14のA−A線断面図と概ね同じ構成となっている。ただし、図17および図18に示す通り、外覆部材25の構成については、実施の形態9の外覆部材25とは大きく異なっている。図17、図18は実施の形態10の超音波式汚泥濃度測定装置1における外覆部材25のA−A線断面図及びB−B線方向から見た側面図である。この実施の形態10では、外覆部材25を加圧部66と電極収納部63に分割形成している点や加圧部66および電極収納部63の構造に関する点については実施の形態9と同様であるが、その両者をクリップ74で挟み込んで接続している点が実施の形態9と相違する。
Embodiment 10 FIG.
Also in the ultrasonic sludge concentration measuring apparatus 1 of the tenth embodiment, the outer covering member 25 is divided and formed as in the ninth embodiment, and the front view is substantially the same as the front view of FIG. The AA line cross-sectional view has substantially the same configuration as the AA line cross-sectional view of FIG. However, as shown in FIGS. 17 and 18, the configuration of the outer cover member 25 is significantly different from the outer cover member 25 of the ninth embodiment. 17 and 18 are a cross-sectional view of the outer covering member 25 in the ultrasonic sludge concentration measuring apparatus 1 according to the tenth embodiment, taken along the line AA and a side view as seen from the BB line direction. The tenth embodiment is similar to the ninth embodiment in that the outer cover member 25 is divided into a pressurizing portion 66 and an electrode storage portion 63 and the structure of the pressurization portion 66 and the electrode storage portion 63 is the same. However, it is different from the ninth embodiment in that both of them are sandwiched by clips 74 and connected.

図19にクリップ74の斜視図を示す。クリップ74は、全体が金属で形成されており、断面コの字に折り曲げ加工された突出部74aの前方側のコの字断面の両端に半円形の半割リング74b,74cをそれぞれ配置し、突出部74aの前方側に半割リング74b,74cで1組のリング形状を形成し、同様に突出部74aの後方側にも2つの半割リング74b,74cでリング形状を形成し、突出部の前方側と後方側のコの字断面の左側に配置された半割リング74bの上端同士を連結部材74dで連結し、同様に半割リング74cの上端同士を連結部材74eで連結した構成となっており、連結部材74dと連結部材74eとは上方に向かって開いた形状に加工され、半割リング74b同士の間に開口部77が形成され、同様に半割リング74c同士の間にも開口部77が形成された構成となっている。以上の説明では、クリップ74の構造を説明する便宜上、突出部74a,半割リング74b,74c,連結部材74d,74eを別々の部材であるかのように表現した。もちろん、別々の部材を溶接等で接続してクリップ74を構成してもよいが、1枚の金属板をくり抜き加工、折り曲げ加工および曲げ加工をすることで一体に形成したほうが耐久性も高く、製造コストも安価で済むので好ましい。   FIG. 19 shows a perspective view of the clip 74. The clip 74 is entirely made of metal, and semicircular half rings 74b and 74c are arranged at both ends of the U-shaped cross section on the front side of the projecting portion 74a bent into a U-shaped cross section, A pair of ring shapes are formed by the half rings 74b and 74c on the front side of the protrusion 74a, and a ring shape is also formed on the rear side of the protrusion 74a by the two half rings 74b and 74c. The upper ends of the half rings 74b arranged on the left side of the U-shaped cross section on the front side and the rear side are connected by a connecting member 74d, and the upper ends of the half rings 74c are similarly connected by a connecting member 74e. The connecting member 74d and the connecting member 74e are processed into a shape that opens upward, and an opening 77 is formed between the half rings 74b, and similarly between the half rings 74c. Opening 77 is shaped And it has a configuration. In the above description, for convenience of explaining the structure of the clip 74, the protrusion 74a, the half rings 74b and 74c, and the connecting members 74d and 74e are expressed as if they were separate members. Of course, the clip 74 may be configured by connecting different members by welding or the like, but it is more durable to integrally form a single metal plate by punching, bending and bending, This is preferable because the manufacturing cost is low.

また、クリップ74の材質としては、素材自体にある程度以上の弾性を有し、かつ耐食性の高いものが望ましい。耐食性の面では、チタン等の非常に高い耐食性を有する素材もあるが非常に高価である。コスト面も合わせて考慮するとステンレスが最適である。また、弾性を長期間確保できるのであれば、容易に一体成型ができるプラスチックでも適用可能である。このようなクリップ74の構成としたことにより、連結部材74d,74eを離す方向に押し広げることができ、そこから、挟む目的物を挿入することができる。また、クリップの下端がコの字断面の突出部74aで形成されていること、クリップ74自体が弾性を有する金属で形成されていることによって、一度、連結部材74d,74eを離す方向に押し広げても、連結部材74d,74e同士が閉じる方向に付勢力が働くようになっている。   Further, as the material of the clip 74, it is desirable that the material itself has a certain degree of elasticity and has high corrosion resistance. In terms of corrosion resistance, there are materials having very high corrosion resistance such as titanium, but they are very expensive. Stainless steel is optimal when considering the cost. In addition, as long as elasticity can be secured for a long period of time, a plastic that can be easily integrally molded is also applicable. By adopting such a configuration of the clip 74, the connecting members 74d, 74e can be pushed away in the direction in which they are separated, and the object to be sandwiched can be inserted therefrom. Further, since the clip is formed with a U-shaped projecting portion 74a at the lower end and the clip 74 itself is formed of an elastic metal, the connecting members 74d and 74e are once pushed away in the direction of separating. However, the urging force acts in the direction in which the connecting members 74d and 74e are closed.

実施の形態10では、実施の形態9に示したハウジング継ぎ手60の代わりにクリップ74を用いて電極収納部63と加圧部66とを接続するが、接続作業は以下の手順で行われる。
(1)実施の形態9の場合と同様に、加圧室側接続口68と収納部側接続口69とを接続する。
(2)このとき、フランジ部68a、シール材73、フランジ部69aによって三層のフランジが形成される。
(3)クリップ74の連結部材74d,74e同士を押し広げてクリップ74のリング内に挿入し、前記の三層のフランジを両側の開口部77に嵌め込む。
(4)連結部材74d,74eを押し広げるのを止めると、クリップ74自体の付勢力によって、連結部材74d,74eが再度接近し、半割リング74b,74cが三層のフランジを挟み込み、電極収納部63と加圧部66が気密状態で接続される。
In the tenth embodiment, the electrode storage portion 63 and the pressurizing portion 66 are connected using the clip 74 instead of the housing joint 60 shown in the ninth embodiment, and the connection work is performed according to the following procedure.
(1) As in the case of the ninth embodiment, the pressurizing chamber side connection port 68 and the storage unit side connection port 69 are connected.
(2) At this time, a three-layer flange is formed by the flange portion 68a, the sealing material 73, and the flange portion 69a.
(3) The connecting members 74d and 74e of the clip 74 are pushed and expanded and inserted into the ring of the clip 74, and the three-layer flanges are fitted into the openings 77 on both sides.
(4) When the expansion of the connecting members 74d and 74e is stopped, the connecting members 74d and 74e approach again due to the urging force of the clip 74 itself, and the half rings 74b and 74c sandwich the three layers of flanges to store the electrodes. The part 63 and the pressurizing part 66 are connected in an airtight state.

これによって、加圧部66と電極収納部63とが接続され、結合状態を維持する。その他の構成は、実施の形態1の超音波式汚泥濃度測定装置1と同様な構成であるのでその説明を援用し、詳細な説明を省略する。加圧部66と電極収納部63とが接続された後は、リング部分74aの両端部74d,74e同士を更に図示しないボルトナットで締結して、さらに結合を強化しても良い。   Thereby, the pressurization part 66 and the electrode storage part 63 are connected, and a coupling | bonding state is maintained. Since the other configuration is the same as that of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment, the description is used and the detailed description is omitted. After the pressurization part 66 and the electrode storage part 63 are connected, both ends 74d and 74e of the ring part 74a may be further fastened with bolts and nuts (not shown) to further strengthen the coupling.

この実施の形態10における超音波式汚泥濃度測定装置1における、外覆部材25を加圧部66と電極収納部63で分割構成とし、両者をクリップ74で結合させる構成は、実施の形態1乃至実施の形態8あるいは実施の形態12乃至実施の形態19の超音波式汚泥濃度測定装置1にも適用することができる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   In the ultrasonic sludge concentration measuring apparatus 1 according to the tenth embodiment, the outer cover member 25 is divided into a pressurizing unit 66 and an electrode storage unit 63, and the two are coupled by a clip 74. The present invention can also be applied to the ultrasonic sludge concentration measuring apparatus 1 according to the eighth embodiment or the twelfth to nineteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、この実施の形態10の超音波式汚泥濃度測定装置によれば、加圧部66と電極収納部63とを分離するときは、クリップ74の両端部74d,74eを広げて引っ張ることでクリップ74を取り外すことができ、電極収納部63は、加圧部66から簡単に取り外すことが可能である。また、その他の実施の形態9に示した様々な効果も同様に得ることができる。   As described above, according to the ultrasonic sludge concentration measuring apparatus of the tenth embodiment, when separating the pressurizing unit 66 and the electrode storage unit 63, the both end portions 74d and 74e of the clip 74 are spread and pulled. Thus, the clip 74 can be removed, and the electrode storage portion 63 can be easily removed from the pressurizing portion 66. The other various effects shown in the ninth embodiment can be obtained in the same manner.

実施の形態11.
この実施の形態11の超音波式汚泥濃度測定装置1においても、実施の形態9の場合と同様に外覆部材を分割形成しており、正面図は、図13の正面図と概ね同じ構成であり、A−A線断面図も、図14のA−A線断面図と概ね同じ構成となっている。ただし、図20および図21に示す通り、外覆部材25の構成については、実施の形態9の外覆部材とは大きく異なっている。図20および図21は実施の形態11の超音波式汚泥濃度測定装置1における外覆部材25のA−A線断面図及びB−B線方向から見た側面図である。この実施の形態11では、実施の形態9,10のものと同様に、外覆部材25を加圧部78と電極収納部79によって分割形成した構成とされているが、その両者をコネクタ80で固定している点において、実施の形態9,10のものと相違する。
Embodiment 11 FIG.
Also in the ultrasonic sludge concentration measuring apparatus 1 according to the eleventh embodiment, the outer cover member is divided and formed in the same manner as in the ninth embodiment, and the front view has substantially the same configuration as the front view of FIG. Yes, the cross-sectional view taken along the line AA has substantially the same configuration as the cross-sectional view taken along the line AA in FIG. However, as shown in FIGS. 20 and 21, the configuration of the outer cover member 25 is significantly different from that of the ninth embodiment. 20 and 21 are a cross-sectional view of the outer cover member 25 in the ultrasonic sludge concentration measuring apparatus 1 according to the eleventh embodiment taken along the line AA and a side view as seen from the BB line direction. In the eleventh embodiment, as in the ninth and tenth embodiments, the outer cover member 25 is divided and formed by the pressurizing portion 78 and the electrode housing portion 79. This is different from the ninth and tenth embodiments in that it is fixed.

この実施の形態11では、電極収納部79の接続口87は加圧部78側の接続口85の外側に装着される。コネクタ80は電極収納部79側の筒状の接続口87に設けられている。加圧部78の接続口85はコネクタ80が挿入される側であり、加圧部78の接続口85の外周には係止ボール82を保持する係合溝83が設けられている。係止ボール82は接続口85と接続口87との境界部分に挿入されて両者の接続状態をロックするためのボールである。係止ボール82は、電極収納部79の接続口87の周りに数カ所(例えば4カ所)開口されたボール保持孔82aに配設されている。ボール保持孔82aは接続口87の肉厚壁を貫通しており、底部側の口径が係止ボール82の直径よりも小さくスリーブ81側の口径が大きいすり鉢状の形状を有する貫通孔とされている。そして、スリーブ81の内壁面であって係合溝83の対向する部位に形成された突起部81aが、係止ボール82を係合溝83の底部に押し込むことによって、接続口85,87同士の接続状態のロック(固定)がなされる。スリーブ81の突起部81aは、スリーブ81がバネ84に押されて係止リング86に接触しているときに、係合溝83の対向する位置に位置する。接続口85,87は、係止ボール82がボール保持孔82aと係止溝83の中に存在することによって、互いに滑り抜けることが防止されてロック状態になる。接続口85,87が接続状態にあるとき、接続口85,87同士の軸方向への変位はロックされているが、係合ボール82がリング状の係合溝83の中を移動可能とされているので、接続口85,87同士は接続軸周り方向には相対的に回動可能に接続されている。   In the eleventh embodiment, the connection port 87 of the electrode storage unit 79 is mounted outside the connection port 85 on the pressure unit 78 side. The connector 80 is provided in a cylindrical connection port 87 on the electrode housing part 79 side. The connection port 85 of the pressure unit 78 is the side where the connector 80 is inserted, and an engagement groove 83 that holds the locking ball 82 is provided on the outer periphery of the connection port 85 of the pressure unit 78. The locking ball 82 is a ball that is inserted into a boundary portion between the connection port 85 and the connection port 87 to lock the connection state between the two. The locking balls 82 are disposed in ball holding holes 82 a opened at several places (for example, four places) around the connection port 87 of the electrode housing portion 79. The ball holding hole 82a passes through the thick wall of the connection port 87, and is a through hole having a mortar-like shape in which the diameter on the bottom side is smaller than the diameter of the locking ball 82 and the diameter on the sleeve 81 side is large. Yes. A projection 81a formed on the inner wall surface of the sleeve 81 and facing the engagement groove 83 pushes the locking ball 82 into the bottom of the engagement groove 83, so that the connection ports 85 and 87 are connected to each other. The connection state is locked (fixed). The protruding portion 81 a of the sleeve 81 is located at a position where the engaging groove 83 faces when the sleeve 81 is pressed by the spring 84 and is in contact with the locking ring 86. The connection ports 85 and 87 are in a locked state because the locking balls 82 are present in the ball holding holes 82 a and the locking grooves 83, so that they do not slip out of each other. When the connection ports 85 and 87 are in the connected state, the displacement of the connection ports 85 and 87 in the axial direction is locked, but the engagement ball 82 can move in the ring-shaped engagement groove 83. Therefore, the connection ports 85 and 87 are connected so as to be relatively rotatable in the direction around the connection axis.

電極収納部79側の接続口87の先端部外周には係止リング86が取り付けられている。係止リング86は、円形リングの一部を切り離した金属板からなり、後述のバネ84の付勢力でスリーブ81が接続口87から外れないように、スリーブ81の突起部81aを押さえている。接続口87の内側には段部が形成され、この段部にOリングからなるシール材88が配設されている。シール材88は、接続口85,87同士が接続状態にあるときには、接続口85の端部は、シール材88に密着しており、これにより、接続口85と接続口87とは気密状態となり、かつ接続口85の連通口89と接続口87の連通口90とは連通状態となる。広がる方向に付勢力を有するコイルスプリングからなるバネ84の一端部は接続口87の角部91上に支持されており、バネ84の他端部はコネクタ80の突起部81aの側面に当たって接触している。   A locking ring 86 is attached to the outer periphery of the distal end portion of the connection port 87 on the electrode housing portion 79 side. The locking ring 86 is made of a metal plate from which a part of the circular ring is cut, and presses the protruding portion 81a of the sleeve 81 so that the sleeve 81 does not come off from the connection port 87 by a biasing force of a spring 84 described later. A step portion is formed inside the connection port 87, and a sealing material 88 made of an O-ring is disposed on the step portion. When the connection ports 85 and 87 are in a connected state, the sealing material 88 is in close contact with the sealing material 88 at the end of the connection port 85, whereby the connection port 85 and the connection port 87 are in an airtight state. In addition, the communication port 89 of the connection port 85 and the communication port 90 of the connection port 87 are in a communication state. One end of a spring 84 made of a coil spring having a biasing force in the spreading direction is supported on the corner 91 of the connection port 87, and the other end of the spring 84 abuts against and contacts the side surface of the protrusion 81 a of the connector 80. Yes.

スリーブ81はバネ84によって加圧部78側に弾性付勢されている。バネ84を圧縮させるように、スリーブ81を電極収納部79側に移動させると、突起部81aが係止ボール82を押すことをやめて、係止ボール82が係合溝83から離脱可能となり、接続口85,87を分離できる。すなわち、電極収納部79を加圧部78から取り外す際は、スリーブ81をバネ84の付勢力に反して電極収納部79側に引っ張ることにより、突起部81aが係止ボール82から離れ、係止ボール82がフリーになって接続口85,87の引き抜き防止機能が解消されるので、電極収納部79を引っ張ると接続口85から簡単に取り外すことができる。実施の形態11では、コネクタ80により加圧部78の接続口85と電極収納部79の接続口87とを接続する構成とされ、実施の形態9の場合と同様に、電極収納部79は、加圧部78と接続する軸を中心に回動可能である。その他の構成は実施の形態1の超音波式汚泥濃度測定装置1と同様な構成であるのでその説明を援用して詳細な説明を省略する。   The sleeve 81 is elastically biased toward the pressurizing portion 78 by a spring 84. When the sleeve 81 is moved toward the electrode housing portion 79 so as to compress the spring 84, the projection 81a stops pushing the locking ball 82, and the locking ball 82 can be detached from the engagement groove 83, and the connection is made. The mouths 85 and 87 can be separated. That is, when removing the electrode storage portion 79 from the pressurizing portion 78, the projection 81a is separated from the locking ball 82 by pulling the sleeve 81 toward the electrode storage portion 79 against the biasing force of the spring 84. Since the ball 82 becomes free and the pull-out preventing function of the connection ports 85 and 87 is eliminated, the electrode housing part 79 can be easily removed from the connection port 85 by pulling. In the eleventh embodiment, the connector 80 is configured to connect the connection port 85 of the pressurizing unit 78 and the connection port 87 of the electrode storage unit 79, and as in the case of the ninth embodiment, the electrode storage unit 79 includes: It can be rotated around an axis connected to the pressure unit 78. Since other configurations are the same as those of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment, the description thereof is incorporated and detailed description is omitted.

この実施の形態11の超音波式汚泥濃度測定装置1に示した、外覆部材25を加圧部78と電極収納部79で分割構成とし、両者をコネクタ80で結合させる構成は、実施の形態1乃至実施の形態8あるいは実施の形態12乃至実施の形態19の超音波式汚泥濃度測定装置1にも組み合わせて適用することができる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   The structure shown in the ultrasonic sludge concentration measuring apparatus 1 according to the eleventh embodiment is configured such that the outer cover member 25 is divided into a pressurizing part 78 and an electrode storage part 79, and both are connected by a connector 80. The present invention can also be applied in combination with the ultrasonic sludge concentration measuring apparatus 1 of the first to eighth embodiments or the twelfth to nineteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、実施の形態11の超音波式汚泥濃度測定装置1によれば、実施の形態9に記載した効果と同様の効果があると共に、コネクタ80は、加圧部78から電極収納部79を取り外す際においても、電極収納部79から外れることがないので、部品を紛失する恐れがない効果もある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the eleventh embodiment, there is an effect similar to the effect described in the ninth embodiment, and the connector 80 is connected from the pressurizing unit 78 to the electrode housing unit. Even when detaching 79, since it does not come off from the electrode storage part 79, there is an effect that there is no possibility of losing parts.

実施の形態12.
図22は実施の形態12の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、エアドライヤ138を備えている点以外は実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態12の超音波式汚泥濃度測定装置1は、実施の形態1の超音波式汚泥濃度測定装置1と比較して、空気圧縮機38とエアタンク39との間にエアドライヤ138が配設されているところに特徴がある。その他の構成は実施の形態1の超音波式汚泥濃度測定装置と同様であるので、エアドライヤ138が設けられている点について説明し、その他の構成の説明は実施の形態8のものを援用する。
Embodiment 12 FIG.
FIG. 22 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the twelfth embodiment. The AA line sectional view is substantially the same as FIG. 2 which is an AA line sectional view of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment except that the air dryer 138 is provided. Incorporate. The ultrasonic sludge concentration measuring apparatus 1 according to the twelfth embodiment is provided with an air dryer 138 between the air compressor 38 and the air tank 39 as compared with the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment. There is a feature in being done. Since the other configuration is the same as that of the ultrasonic sludge concentration measuring apparatus of the first embodiment, the point that the air dryer 138 is provided will be described, and the description of the other configuration will be based on that of the eighth embodiment.

一般に、超音波式汚泥濃度測定装置1の設置されるところの周辺環境は、水槽や開放水路等があり、比較的湿度の高い(空気中の水分量の多い)雰囲気である。空気圧縮機38は、周りの空気を取り込んで圧縮するので、必然的に水分量の多い圧縮空気となる。そして、汚泥加圧行程時、この蒸気量の多い圧縮空気が加圧室6に送られる。超音波式汚泥濃度測定装置1は、汚泥が流れているので、特に外気温の高い夏季においては、周囲の温度よりも温度が低く、しかも加圧室6内の空気は水分量が多いため、飽和蒸気圧に達してしまい、加圧室内部に結露が生じてしまう。そして、加圧室6には漏洩検知器34が設置されているが、加圧室6内に結露が集まった結露水が溜まると、この結露水が漏洩検知器34と外覆部材25とを電気的に導通させてしまい、制御盤内の検知回路内に電流がながれ、弾性部材24が破損して汚泥が漏洩したと誤って検知してしまうことがあり、問題となっていた。   Generally, the surrounding environment where the ultrasonic sludge concentration measuring apparatus 1 is installed includes a water tank, an open water channel, and the like, and is an atmosphere having a relatively high humidity (a large amount of moisture in the air). Since the air compressor 38 takes in the surrounding air and compresses it, it inevitably becomes compressed air with a large amount of moisture. Then, during the sludge pressurization process, this compressed air with a large amount of steam is sent to the pressurizing chamber 6. Since the sludge flows in the ultrasonic sludge concentration measuring device 1, the temperature is lower than the ambient temperature especially in summer when the outside air temperature is high, and the air in the pressurizing chamber 6 has a large amount of moisture. The saturated vapor pressure is reached, and condensation occurs in the pressurized chamber. A leak detector 34 is installed in the pressurizing chamber 6, and when condensed water that has accumulated in the pressurizing chamber 6 accumulates, the condensed water is connected to the leak detector 34 and the outer cover member 25. Electrical conduction is made, current flows in the detection circuit in the control panel, and the elastic member 24 may be damaged and it may be erroneously detected that sludge has leaked, which has been a problem.

そこで、この実施の形態12の超音波式汚泥濃度測定装置1では、圧縮空気を乾燥させるエアドライヤ138を設けている。このエアドライヤ138は、例えば電気ヒータで空気を暖めるものや吸湿剤で乾燥させるもの等がある。実施の形態12の超音波式汚泥濃度測定装置1のように空気圧縮機38とエアタンク39の間の配管にエアドライヤ138を設ける構成は、実施の形態12のみならず、実施の形態1から実施の形態11までの超音波式汚泥濃度測定装置1、あるいは実施の形態13から実施の形態19の超音波式汚泥濃度測定装置1にも適用できる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   Therefore, in the ultrasonic sludge concentration measuring apparatus 1 according to the twelfth embodiment, an air dryer 138 for drying the compressed air is provided. The air dryer 138 includes, for example, a device that warms air with an electric heater and a device that dries with a moisture absorbent. The configuration in which the air dryer 138 is provided in the pipe between the air compressor 38 and the air tank 39 as in the ultrasonic sludge concentration measuring apparatus 1 of the twelfth embodiment is not limited to the twelfth embodiment but the first to the second embodiments. The present invention can also be applied to the ultrasonic sludge concentration measuring apparatus 1 up to the eleventh embodiment or the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth to nineteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、実施の形態12の超音波式汚泥濃度測定装置1によれば、実施の形態1の効果に加えて、加圧室6内の空気中の水分量も少なくなり、結露水が溜まることもなくなるので、漏洩検知器35が誤作動することを防止できる。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the twelfth embodiment, in addition to the effects of the first embodiment, the amount of moisture in the air in the pressurizing chamber 6 is reduced, and the condensed water is reduced. Since it does not accumulate, it is possible to prevent the leak detector 35 from malfunctioning.

実施の形態13.
図23は実施の形態13の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態13の超音波式汚泥濃度測定装置1は、測定室4に給水管93を接続し、その給水管93に給水制御弁94を、ドレン管43にドレン制御弁95をそれぞれ配設し、給水制御弁94およびドレン制御弁95を制御器8で開閉制御することにより、測定室4の内壁や超音波送受信子5aの送受信面の洗浄を定期的に自動で行えるようにした点が、実施の形態1の超音波式汚泥濃度測定装置1と相違する。
Embodiment 13 FIG.
FIG. 23 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment. The AA line cross-sectional view is generally the same as FIG. 2, which is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, taken along line AA. In the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment, a water supply pipe 93 is connected to the measurement chamber 4, a water supply control valve 94 is provided in the water supply pipe 93, and a drain control valve 95 is provided in the drain pipe 43. The water supply control valve 94 and the drain control valve 95 are controlled to be opened and closed by the controller 8 so that the inner wall of the measurement chamber 4 and the transmission / reception surface of the ultrasonic transmitter / receiver 5a can be automatically cleaned regularly. This is different from the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment.

給水管93は、周壁部材13に設けられた配管接続口に接続されており、測定室4内に洗浄水を供給している。給水管93には、制御器8で開閉制御される給水制御弁94のほかに、給水制御弁94のメンテナンス時等に使用する手動で開閉する開閉弁92が設置されている。開閉弁92とドレン弁42は、常時は開弁状態となっており、給水制御弁94やドレン制御弁95のメンテナンス時などに閉弁される。なお、ドレン排水口41が測定室4の下方に設けられているので、給水管93は、測定室4の上方、周壁部材13の上方側に配管接続口を設けて接続することが望ましい。   The water supply pipe 93 is connected to a pipe connection port provided in the peripheral wall member 13, and supplies cleaning water into the measurement chamber 4. In addition to the water supply control valve 94 that is controlled to be opened and closed by the controller 8, the water supply pipe 93 is provided with an open / close valve 92 that is manually opened and closed and used during maintenance of the water supply control valve 94. The on-off valve 92 and the drain valve 42 are normally open, and are closed when the water supply control valve 94 and the drain control valve 95 are maintained. Since the drain drain port 41 is provided below the measurement chamber 4, it is desirable that the water supply pipe 93 is connected by providing a pipe connection port above the measurement chamber 4 and above the peripheral wall member 13.

この実施の形態13の測定室4の洗浄行程は、単独行程(制御弁3を閉弁後、給水制御弁94およびドレン制御弁95を開弁して測定室4内を洗浄。洗浄完了後、給水制御弁94およびドレン制御弁95を閉弁、制御弁3を開弁。)で行ってもよいが、汚泥濃度測定の行程と組み合わせて行う方がより効率的である。組み合わせた場合の行程を以下に示す。その他の超音波式汚泥濃度測定装置1の構成や超音波送受信器5による汚泥濃度測定方法については実施の形態1の説明を用い、詳細な説明を省略する。
(1)制御弁3を開いて本管部2から汚泥を測定室4に導入する。
(2)制御弁3を閉じて測定室4を本管部2から遮断し、測定室4内で汚泥を密閉状態にする。
(3)流路切換弁40をエアタンク39と加圧室6とを結ぶ流路に切り換える。このとき、圧縮空気が加圧室6内に流入して弾性部材24を測定室4の内部側に押し、測定室4内の汚泥を加圧する。
(4)測定室4内の汚泥中の気泡が消滅するだけの時間経過後、超音波送受信器5で汚泥濃度を測定する。
(5)流路切換弁40を加圧室6が大気開放となる流路に切り換え、加圧室6内の圧縮空気を系外に排出する。
(6)ドレン制御弁95を開弁して測定室4内の汚泥を自然流下で系外に排出する。
(7)給水制御弁94を開弁して、洗浄水を測定室4内に供給して測定室4内を水洗浄する(このときもドレン制御弁95は開弁したままとし、洗浄水を系外に排水する。)。
(8)ドレン制御弁95を閉弁し、測定室4内を洗浄水で満水にする。
(9)測定室4内が洗浄水で満水になった後、給水制御弁94を閉弁。次回の汚泥濃度測定行程を開始するまで、測定室4内を洗浄水で満水にしておく。
The cleaning process of the measurement chamber 4 according to the thirteenth embodiment is a single process (after the control valve 3 is closed, the water supply control valve 94 and the drain control valve 95 are opened to clean the measurement chamber 4. After the cleaning is completed, The water supply control valve 94 and the drain control valve 95 may be closed, and the control valve 3 may be opened.) However, it is more efficient to perform this in combination with the sludge concentration measurement process. The process when combined is shown below. Other configurations of the ultrasonic sludge concentration measuring apparatus 1 and the sludge concentration measuring method using the ultrasonic transmitter / receiver 5 are the same as those in the first embodiment, and detailed descriptions thereof are omitted.
(1) Open the control valve 3 and introduce sludge into the measurement chamber 4 from the main pipe 2.
(2) The control valve 3 is closed to shut off the measurement chamber 4 from the main pipe section 2, and the sludge is sealed in the measurement chamber 4.
(3) The flow path switching valve 40 is switched to a flow path connecting the air tank 39 and the pressurizing chamber 6. At this time, the compressed air flows into the pressurizing chamber 6 and pushes the elastic member 24 to the inside of the measuring chamber 4 to pressurize the sludge in the measuring chamber 4.
(4) The sludge concentration is measured by the ultrasonic transmitter / receiver 5 after elapse of time sufficient for the bubbles in the sludge in the measurement chamber 4 to disappear.
(5) The flow path switching valve 40 is switched to a flow path in which the pressurizing chamber 6 is opened to the atmosphere, and the compressed air in the pressurizing chamber 6 is discharged out of the system.
(6) The drain control valve 95 is opened and the sludge in the measurement chamber 4 is discharged outside the system under natural flow.
(7) The water supply control valve 94 is opened, and cleaning water is supplied into the measurement chamber 4 to wash the inside of the measurement chamber 4 (the drain control valve 95 remains open at this time as well, Drain out of the system.)
(8) The drain control valve 95 is closed, and the measurement chamber 4 is filled with washing water.
(9) The water supply control valve 94 is closed after the measurement chamber 4 is filled with washing water. Until the next sludge concentration measurement process is started, the inside of the measurement chamber 4 is filled with washing water.

なお、上記の行程では、汚泥濃度測定毎に洗浄工程を行うようにしたが、所定回数の汚泥濃度測定行程の後に、洗浄工程を実施するようにしてもよい。また、汚泥の粘性が高い等、汚泥の性状によっては、汚泥濃度測定行程の際に制御弁3を開弁しても本管部2から汚泥がスムーズに流入しない場合がある。このような場合には、ドレン制御弁95を所定時間開弁して、測定室4内の汚泥あるいは洗浄水を排水するようにすると、汚泥を強制的に測定室4に流入させることができる。   In the above process, the cleaning process is performed every time the sludge concentration is measured. However, the cleaning process may be performed after a predetermined number of processes of measuring the sludge concentration. Further, depending on the properties of the sludge, such as high sludge viscosity, the sludge may not flow smoothly from the main pipe section 2 even if the control valve 3 is opened during the sludge concentration measurement process. In such a case, the sludge can be forced to flow into the measurement chamber 4 by opening the drain control valve 95 for a predetermined time to drain the sludge or washing water in the measurement chamber 4.

上記の実施の形態13の超音波式汚泥濃度測定装置1の構成及び洗浄方法は、実施の形態2〜12あるいは実施の形態15の超音波式汚泥濃度測定装置1にも適用できる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   The configuration and cleaning method of the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment can also be applied to the ultrasonic sludge concentration measuring apparatus 1 according to the second to twelfth embodiments or the fifteenth embodiment. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、この実施の形態13の超音波式汚泥濃度測定装置によれば、実施の形態1の効果を得ることができることに加えて、時間の経過とともに測定室4内や超音波送受信子5aの送受信面に付着してしまう汚泥について、それを放置すると固着してしまい、容易に除去できなくなってしまうことを防止できる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus of the thirteenth embodiment, in addition to being able to obtain the effects of the first embodiment, the inside of the measurement chamber 4 and the ultrasonic transceiver as time passes. The sludge adhering to the transmission / reception surface 5a has an effect of preventing the sludge from adhering to it and leaving it unremovable.

実施の形態14.
図24は実施の形態14の超音波式汚泥濃度測定装置1の正面図である。この実施の形態14の超音波式汚泥濃度測定装置1は、ドレン管43に圧力測定器96を配設し、ドレン管43が接続される測定室4内の圧力を測定するように構成した点が、実施の形態13の超音波式汚泥濃度測定装置1と相違する。
Embodiment 14 FIG.
FIG. 24 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the fourteenth embodiment. The ultrasonic sludge concentration measuring apparatus 1 according to the fourteenth embodiment is configured such that a pressure measuring device 96 is provided in the drain pipe 43 and the pressure in the measurement chamber 4 to which the drain pipe 43 is connected is measured. However, it is different from the ultrasonic sludge concentration measuring apparatus 1 of the thirteenth embodiment.

すなわち、実施の形態13では、汚泥を強制的に測定室4に流入させる方法として、制御弁3を開弁した状態でドレン制御弁95を開弁することを提示したが、ドレン管43の測定室4に接続している端部とは反対側の端部は、開放水路(側溝等)や水槽に、大気開放状態で開口となっている場合が多い。そして、超音波式汚泥濃度測定装置1を設置した汚泥配管の管内が負圧状態となっているときに、ドレン制御弁95を開弁すると、ドレン管43の開口から空気を測定室4に吸い込んでしまい、汚泥加圧行程に支障が生じてしまうことがある。   That is, in the thirteenth embodiment, as a method for forcibly allowing the sludge to flow into the measurement chamber 4, it has been proposed to open the drain control valve 95 with the control valve 3 opened. In many cases, the end opposite to the end connected to the chamber 4 is open to an open water channel (such as a side groove) or a water tank in an open state. When the drain control valve 95 is opened while the inside of the sludge pipe in which the ultrasonic sludge concentration measuring apparatus 1 is installed is in a negative pressure state, air is sucked into the measurement chamber 4 from the opening of the drain pipe 43. Therefore, the sludge pressurization process may be hindered.

そこで、実施の形態14の超音波式汚泥濃度測定装置1はドレン制御弁95の設置位置から測定室4側のドレン管43に圧力測定器96を設置して測定室4内の圧力を測定し、この圧力測定器96の測定値を制御器8に送るように構成したものである。そして、ドレン制御弁95を開弁して測定室4内の汚泥を排出しようとするときには、圧力測定器96で測定室4内の圧力を測定し、圧力が正圧であるときは、ドレン制御弁95を開けるが、負圧であるときには、ドレン制御弁95を開けないように、制御器8を制御する構成とした。その他の構成は実施の形態13と同様であるのでその説明を用い、詳細な説明を省略する。なお、圧力測定器96は、測定室4内の圧力が測定可能であれば、設置場所は限定されない。例えば、周壁部材13に新たに接続口を設けて圧力測定器96を設置してもよいし、給水制御弁より測定室4側に給水管93に設置してもよく、さらには、閉塞蓋44や気体排出口45に設置してもよい。上記の実施の形態14の超音波式汚泥濃度測定装置1の構成及び洗浄方法は、実施の形態2〜12あるいは実施の形態15の超音波式汚泥濃度測定装置1にも適用できる。   Therefore, the ultrasonic sludge concentration measuring apparatus 1 according to the fourteenth embodiment measures the pressure in the measurement chamber 4 by installing the pressure measuring device 96 in the drain pipe 43 on the measurement chamber 4 side from the installation position of the drain control valve 95. The measured value of the pressure measuring device 96 is sent to the controller 8. When the drain control valve 95 is opened to discharge the sludge in the measurement chamber 4, the pressure in the measurement chamber 4 is measured by the pressure measuring device 96, and when the pressure is positive, the drain control is performed. Although the valve 95 is opened, the controller 8 is controlled so that the drain control valve 95 is not opened when the pressure is negative. Since other configurations are the same as those of the thirteenth embodiment, the description is used and the detailed description is omitted. Note that the installation place of the pressure measuring device 96 is not limited as long as the pressure in the measurement chamber 4 can be measured. For example, a connection port may be newly provided in the peripheral wall member 13 and the pressure measuring device 96 may be installed. Alternatively, the pressure measuring device 96 may be installed in the water supply pipe 93 on the measurement chamber 4 side from the water supply control valve. Or the gas outlet 45 may be installed. The configuration and cleaning method of the ultrasonic sludge concentration measuring apparatus 1 according to the fourteenth embodiment can also be applied to the ultrasonic sludge concentration measuring apparatus 1 according to the second to twelfth or fifteenth embodiments.

以上のように、この実施の形態14の超音波式汚泥濃度測定装置1によれば、実施の形態13に示した効果のほかに、ドレン管43に圧力測定器96を配設したことにより、測定室4内が負圧状態のときには、汚泥を強制的に流入させる行程を行わないように制御器8で制御することができ、汚泥加圧行程に支障が生じることを防止することができる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the fourteenth embodiment, in addition to the effects shown in the thirteenth embodiment, the pressure measuring device 96 is disposed in the drain pipe 43. When the inside of the measurement chamber 4 is in a negative pressure state, it can be controlled by the controller 8 so as not to perform the process of forcibly introducing the sludge, and the effect of preventing the sludge pressurizing process from being hindered. There is.

実施の形態15.
図25は実施の形態15の超音波式汚泥濃度測定装置1のA−A線断面図である。正面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1の正面図である図1と概ね同一である。この実施の形態15の超音波式汚泥濃度測定装置1は、測定室4の内壁や超音波送受信子5aの送受信面を超音波によって洗浄する超音波発振器97を測定室4に設けている点が、実施の形態4の超音波式汚泥濃度測定装置1と相違する。一般に、超音波洗浄に使用される超音波の周波数は低周波である。一方、本願発明もそうであるが、一般に超音波による汚泥濃度測定に使用する超音波の周波数は前記の超音波洗浄の超音波よりも高い。よって、超音波送受信子5aから発信される超音波では、測定室4内に付着する汚泥を除去することはできない。そこで、この実施の形態15の超音波式汚泥濃度測定装置1では、超音波送受信子5aから送信される超音波の周波数よりも低く、超音波洗浄に適した周波数の超音波を照射可能な超音波発振器97が周壁部材13を貫通して設置されている。超音波発振器97は制御器8の制御によって洗浄用の低周波の超音波を発振可能とされている。その他の構成は実施の形態1の超音波式汚泥濃度測定装置1の構成と同様であるのでその説明を用い詳細な説明を省略する。
Embodiment 15 FIG.
FIG. 25 is a cross-sectional view taken along line AA of the ultrasonic sludge concentration measuring apparatus 1 according to the fifteenth embodiment. The front view is substantially the same as FIG. 1 which is a front view of the ultrasonic sludge concentration measuring apparatus 1 of the first embodiment. The ultrasonic sludge concentration measuring apparatus 1 according to the fifteenth embodiment is provided with an ultrasonic oscillator 97 in the measurement chamber 4 for cleaning the inner wall of the measurement chamber 4 and the transmission / reception surface of the ultrasonic transmitter / receiver 5a with ultrasonic waves. This is different from the ultrasonic sludge concentration measuring apparatus 1 of the fourth embodiment. Generally, the frequency of ultrasonic waves used for ultrasonic cleaning is low. On the other hand, as is the case with the present invention, in general, the frequency of ultrasonic waves used for measuring sludge concentration by ultrasonic waves is higher than that of ultrasonic cleaning. Therefore, the sludge adhering in the measurement chamber 4 cannot be removed by the ultrasonic waves transmitted from the ultrasonic transmitter / receiver 5a. Therefore, in the ultrasonic sludge concentration measuring apparatus 1 according to the fifteenth embodiment, an ultrasonic wave having a frequency lower than the ultrasonic frequency transmitted from the ultrasonic transceiver 5a and suitable for ultrasonic cleaning can be irradiated. A sound wave oscillator 97 is installed through the peripheral wall member 13. The ultrasonic oscillator 97 can oscillate low-frequency ultrasonic waves for cleaning under the control of the controller 8. Other configurations are the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, and thus detailed description thereof is omitted.

なお、超音波送受信子5aに、汚泥濃度測定に適した周波数の超音波と、超音波洗浄に適した周波数の超音波の両方を発振することが可能なものを適用した場合には、超音波発振器97を設置せずに、超音波送受信子5aの発振周波数を切り換えることで兼用してもよい。この実施の形態15の超音波式汚泥濃度測定装置1における、測定室4内部に洗浄用の超音波発振器97を設置する構成は、実施の形態2から実施の形態19までの超音波式汚泥濃度測定装置1に適用できる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   In addition, in the case where an ultrasonic transmitter / receiver 5a that can oscillate both an ultrasonic wave having a frequency suitable for sludge concentration measurement and an ultrasonic wave having a frequency suitable for ultrasonic cleaning is applied, the ultrasonic wave You may use it by switching the oscillation frequency of the ultrasonic transmitter-receiver 5a, without installing the oscillator 97. FIG. In the ultrasonic sludge concentration measuring apparatus 1 according to the fifteenth embodiment, the configuration in which the ultrasonic oscillator 97 for cleaning is installed inside the measurement chamber 4 is the ultrasonic sludge concentration from the second embodiment to the nineteenth embodiment. It can be applied to the measuring device 1. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、この実施の形態15の超音波式汚泥濃度測定装置1によれば、実施の形態1の効果を得ることができることに加えて、超音波発振器97で測定室4内に超音波を所定時間毎に発信することにより、測定室4内や超音波送受信器97の送受信面への汚泥の付着を防止でき、洗浄工程の時間間隔を長くすることができる、あるいは、定期メンテナンス時以外は、洗浄工程を実施しなくてもよくなり、洗浄水量を大幅に低減することができ、メンテナンスに係るランニングコストが低減できる効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the fifteenth embodiment, in addition to obtaining the effects of the first embodiment, the ultrasonic oscillator 97 generates ultrasonic waves in the measurement chamber 4. Is transmitted at predetermined time intervals to prevent sludge from adhering to the measurement chamber 4 and the transmission / reception surface of the ultrasonic transmitter / receiver 97, and the time interval of the cleaning process can be extended, or other than during regular maintenance This eliminates the need for a cleaning step, greatly reduces the amount of cleaning water, and has the effect of reducing the running cost for maintenance.

実施の形態16.
図26は実施の形態16の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態16の超音波式汚泥濃度測定装置1は、実施の形態13のそれとは、ドレン管43の測定室4に接続している端部とは反対側の端部を超音波式汚泥濃度測定装置1の設置箇所よりも下流側の汚泥配管98に接続し、移送手段99でドレン管43に流入する汚泥や洗浄水を強制的に下流の汚泥配管98に圧送するようにした点が、実施の形態13の超音波式汚泥濃度測定装置1とは相違する。その他の構成は実施の形態13の超音波式汚泥濃度測定装置1の構成と同様であるのでその説明を用い詳細な説明を省略する。
Embodiment 16 FIG.
FIG. 26 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the sixteenth embodiment. The AA line cross-sectional view is generally the same as FIG. 2, which is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, taken along line AA. The ultrasonic sludge concentration measuring apparatus 1 of the sixteenth embodiment is different from that of the thirteenth embodiment in that the end of the drain pipe 43 opposite to the end connected to the measurement chamber 4 is an ultrasonic sludge. It is connected to the sludge pipe 98 on the downstream side of the installation location of the concentration measuring device 1, and the sludge and washing water flowing into the drain pipe 43 are forcibly sent to the downstream sludge pipe 98 by the transfer means 99. This is different from the ultrasonic sludge concentration measuring apparatus 1 of the thirteenth embodiment. Other configurations are the same as the configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment, and thus detailed description thereof is omitted.

すなわち、実施の形態16の超音波式汚泥濃度測定装置1の移送手段99としては、ラインポンプ(渦巻きポンプ)、チューブポンプ、ダイヤフラムポンプ等の圧送ポンプが適用可能であるが、図25に示す例では、吸引力の強いチューブポンプ100を用いている。チューブポンプ100は、弾性があり、口径の小さな樹脂製の円筒形状のチューブ101と、複数本のローラからなって取付中心軸を中心に回転可能なローラ群102と、ローラ群102と共同してチューブ101を扁平化可能な支持壁部材103と、ローラ群102を回転させるモーター等の駆動源(図示省略)と、これらを配備するケーシング104とを備えている。ローラ群102を回転させるモーターは制御器8により制御される。ドレン管43の下流側には開閉弁105が配設されている。開閉弁105は、常時は開かれ、チューブポンプのメンテナンス時には閉じられ、汚泥配管98から汚泥が系外に流出することを防止する。その他の構成は実施の形態13の超音波式汚泥濃度測定装置1と同様であるのでその説明を用いて詳細な説明を省略する。実施の形態16の超音波式汚泥濃度測定装置1の構成は、他の実施の形態1乃至実施の形態15にも適用可能である。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   That is, as the transfer means 99 of the ultrasonic sludge concentration measuring apparatus 1 according to the sixteenth embodiment, a pressure pump such as a line pump (spiral pump), a tube pump, or a diaphragm pump can be applied, but the example shown in FIG. Then, the tube pump 100 with a strong suction force is used. The tube pump 100 is elastic and has a small cylindrical tube 101 made of a resin, a roller group 102 composed of a plurality of rollers and rotatable about a mounting center axis, and the roller group 102. A support wall member 103 capable of flattening the tube 101, a drive source (not shown) such as a motor that rotates the roller group 102, and a casing 104 in which these are provided. The motor that rotates the roller group 102 is controlled by the controller 8. An on-off valve 105 is disposed on the downstream side of the drain pipe 43. The on-off valve 105 is normally opened and is closed during maintenance of the tube pump, and prevents sludge from flowing out of the system from the sludge pipe 98. Since other configurations are the same as those of the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment, detailed description thereof will be omitted using the description. The configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the sixteenth embodiment is also applicable to the other first to fifteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

この実施の形態16の超音波式汚泥濃度測定装置1では、ローラ群102が回転すると、円筒チューブ101は、ローラ群102と支持壁部材103に圧迫されて扁平となり、内蔵物が下流側に押し出される。従って、ドレン管43内に汚泥が入った状態でローラ群102が回転を始めると、円筒チューブ101が潰れて汚泥が下流側に移送され、下流の汚泥配管98に送り出される。チューブポンプ100は円筒チューブ101を直接的に圧迫して扁平化し内容物を下流側に押し出すので、確実かつ強力な汚泥の搬送を行うことが可能である。また、チューブポンプは、ローラ群102等の可動部分が汚泥とは直接接触しないので、耐腐食性に非常に優れている。ただし、円筒チューブ101に関しては、使用時間の経過とともに劣化が進行するので定期的な交換が必要である。   In the ultrasonic sludge concentration measuring apparatus 1 according to the sixteenth embodiment, when the roller group 102 rotates, the cylindrical tube 101 is pressed flat by the roller group 102 and the support wall member 103, and the built-in material is pushed downstream. It is. Therefore, when the roller group 102 starts to rotate with the sludge in the drain pipe 43, the cylindrical tube 101 is crushed and the sludge is transferred to the downstream side, and sent to the downstream sludge pipe 98. Since the tube pump 100 directly compresses and flattens the cylindrical tube 101 and pushes the contents downstream, it is possible to reliably and strongly convey sludge. In addition, the tube pump is extremely excellent in corrosion resistance because movable parts such as the roller group 102 do not come into direct contact with sludge. However, as the cylindrical tube 101 deteriorates with the passage of time of use, it needs to be replaced periodically.

以上のように、この実施の形態16の超音波式汚泥濃度測定装置1によれば、実施の形態13に示した効果のほかに、汚泥や洗浄水を系外に排出しなくとも済むので、汚泥や洗浄水が側溝等に排水された際に発生する臭気の問題や、汚泥が側溝で見られることによる外観の悪さの問題を解消することができる。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the sixteenth embodiment, in addition to the effects shown in the thirteenth embodiment, it is not necessary to discharge sludge and washing water out of the system. It is possible to solve the problem of odor generated when sludge and washing water are drained into the side groove or the like and the poor appearance due to the sludge being seen in the side groove.

実施の形態17.
図27は実施の形態17の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態17の超音波式汚泥濃度測定装置1は、測定室4から汚泥を排出するドレン排水口41を測定室4の上方、すなわち周壁部材31の上部に設け、ドレン管43を接続し、汚泥を測定室4の上部から取り出して下流側の汚泥配管98に強制的に圧送させる構成とした点が実施の形態16とは相違する。ドレン管43には実施の形態16のドレン管43の場合と同様に移送手段99としてのチューブポンプ100、ドレン弁42、ドレン制御弁95及び開閉弁105が配備されている。チューブポンプ100、ドレン弁42、ドレン制御弁95及び開閉弁105の構成は実施の形態16のものと同一であるので、その説明を用いる。また、その他の構成は実施の形態13と同様であるのでその説明を用いて詳細な省略する。実施の形態17の超音波式汚泥濃度測定装置1の構成は、他の実施の形態1乃至実施の形態15にも適用可能である。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。
Embodiment 17. FIG.
FIG. 27 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the seventeenth embodiment. The AA line cross-sectional view is generally the same as FIG. 2, which is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, taken along line AA. In the ultrasonic sludge concentration measuring apparatus 1 according to the seventeenth embodiment, a drain discharge port 41 for discharging sludge from the measurement chamber 4 is provided above the measurement chamber 4, that is, above the peripheral wall member 31, and a drain pipe 43 is connected. The difference from the sixteenth embodiment is that the sludge is taken out from the upper part of the measurement chamber 4 and forcedly fed to the sludge pipe 98 on the downstream side. Similarly to the drain pipe 43 of the sixteenth embodiment, the drain pipe 43 is provided with a tube pump 100 as a transfer means 99, a drain valve 42, a drain control valve 95, and an on-off valve 105. Since the configuration of the tube pump 100, the drain valve 42, the drain control valve 95, and the on-off valve 105 is the same as that of the sixteenth embodiment, the description thereof will be used. Other configurations are the same as those of the thirteenth embodiment, and thus detailed description thereof is omitted. The configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the seventeenth embodiment can be applied to the other first to fifteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、実施の形態17の超音波式汚泥濃度測定装置1によれば、移送手段99であるチューブポンプ100を用いて汚泥を測定室4から強力に排出できたり、汚泥や洗浄水を系外に排出することを防止したり、外観の悪化を防止できるという実施の形態16の効果のほかに、測定室4から汚泥を汚泥配管98に強制的に圧送する際、測定室4内の上方に滞留するガス溜まりも同時に圧送することができ、ガス溜まりに起因する汚泥加圧行程の不具合を解消できるという、実施の形態17特有の効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the seventeenth embodiment, sludge can be strongly discharged from the measurement chamber 4 using the tube pump 100 as the transfer means 99, and sludge and washing water can be discharged. In addition to the effects of the sixteenth embodiment, which can prevent discharge outside the system and the deterioration of the appearance, when the sludge is forcibly pumped from the measurement chamber 4 to the sludge pipe 98, the inside of the measurement chamber 4 There is an effect peculiar to the embodiment 17 that the gas reservoir staying in the upper part can be simultaneously pumped, and the problem of the sludge pressurization process caused by the gas reservoir can be solved.

実施の形態18.
図28は実施の形態18の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態18の超音波式汚泥濃度測定装置1は、移送手段99を空気圧で作動するピストンポンプ106とした点が、実施の形態16の超音波式汚泥濃度測定装置1と異なっている。すなわち、測定室4の下部に接続されたドレン制御弁95の下流側にピストンポンプ106が配備されている。ピストンポンプ106はドレン室107と、ドレンピストン108と、空気室109と、空気ピストン110と、連結シャフト111と、空気管112,113と、流路切換弁114,115を備えている。空気管112,113はエアタンク39に接続されており、圧縮空気を空気室109の空気ピストン110の前後の室内に供給可能とされている。空気室109の内部に配設された空気ピストン110は流路切換弁114,115の開閉制御により空気室109内部を長手方向に往復運動可能とされている。空気ピストン110は、連結シャフト111を介してドレンピストン108に接続されており、空気ピストン110の往復動作がドレンピストン108に伝達されてドレン室107内への汚泥の搬入搬出が行われるという構成とされている。
Embodiment 18 FIG.
FIG. 28 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the eighteenth embodiment. The AA line cross-sectional view is generally the same as FIG. 2, which is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, taken along line AA. The ultrasonic sludge concentration measuring apparatus 1 according to the eighteenth embodiment is different from the ultrasonic sludge concentration measuring apparatus 1 according to the sixteenth embodiment in that the transfer means 99 is a piston pump 106 that is operated by air pressure. That is, the piston pump 106 is disposed on the downstream side of the drain control valve 95 connected to the lower part of the measurement chamber 4. The piston pump 106 includes a drain chamber 107, a drain piston 108, an air chamber 109, an air piston 110, a connecting shaft 111, air pipes 112 and 113, and flow path switching valves 114 and 115. The air pipes 112 and 113 are connected to the air tank 39 so that compressed air can be supplied to the air chambers 109 before and after the air piston 110. The air piston 110 disposed in the air chamber 109 can reciprocate in the longitudinal direction in the air chamber 109 by opening / closing control of the flow path switching valves 114 and 115. The air piston 110 is connected to the drain piston 108 via the connecting shaft 111, and the reciprocating motion of the air piston 110 is transmitted to the drain piston 108 so that the sludge is carried into and out of the drain chamber 107. Has been.

流路切換弁114,115は、一方の切換弁がエアタンク39の圧縮空気を空気室109に導入する流路としているとき、他方の切換弁は空気室109の空気を大気に開放する流路としている。すなわち、ドレンピストン108で測定室4から汚泥をドレン室107に吸引するとき、流路切換弁114が大気に開放する流路をとる一方、流路切換弁115がエアタンク39の圧縮空気を空気室109に導入する流路をとる。これによって、空気ピストン110は図28において左側に移動し、測定室4から汚泥をドレン室107に導入する。勿論この時ドレン制御弁95が開いており、排出制御弁116が閉じていることは言うまでもない。汚泥をドレン室107に導入したら、ドレン制御弁95が閉じて排出制御弁116を開く。そして、流路切換弁115を大気解放する一方、流路切換弁114をエアタンク39に接続する。これによって、空気ピストン110が図28中の右側に移動し、連結シャフト111がドレンピストン108を図28中の右側に移動させて汚泥をドレン室107から排出制御弁116側のドレン管43に排出し、汚泥を超音波汚泥濃度測定装置1の下流側の汚泥配管98に強制的に圧送する。その他の構成は、実施の形態16のものと同様であるので、その説明を用いて詳細な説明を省略する。   When one of the switching valves 114 and 115 is a channel for introducing the compressed air of the air tank 39 into the air chamber 109, the other switching valve is a channel for opening the air in the air chamber 109 to the atmosphere. Yes. That is, when the sludge is sucked from the measurement chamber 4 to the drain chamber 107 by the drain piston 108, the flow path switching valve 114 takes a flow path that opens to the atmosphere, while the flow path switching valve 115 allows the compressed air in the air tank 39 to flow into the air chamber. The flow path introduced into 109 is taken. As a result, the air piston 110 moves to the left in FIG. 28 and introduces sludge from the measurement chamber 4 into the drain chamber 107. Needless to say, at this time, the drain control valve 95 is open and the discharge control valve 116 is closed. When the sludge is introduced into the drain chamber 107, the drain control valve 95 is closed and the discharge control valve 116 is opened. Then, the flow path switching valve 115 is released to the atmosphere, and the flow path switching valve 114 is connected to the air tank 39. As a result, the air piston 110 moves to the right side in FIG. 28, the connecting shaft 111 moves the drain piston 108 to the right side in FIG. 28, and the sludge is discharged from the drain chamber 107 to the drain pipe 43 on the discharge control valve 116 side. Then, the sludge is forcibly pumped to the sludge pipe 98 on the downstream side of the ultrasonic sludge concentration measuring apparatus 1. Since other configurations are the same as those of the sixteenth embodiment, detailed description thereof is omitted using the description.

この実施の形態18の超音波式汚泥濃度測定装置1は、測定室4内の汚泥の移送手段として空気ピストン110とドレンピストン108を用い、その動力源としてエアタンク39の圧縮空気を用いるものであるが、このような構成は実施の形態17のように本管部2及び汚泥配管98の上を通って搬送する構成としても良い。   The ultrasonic sludge concentration measuring apparatus 1 according to the eighteenth embodiment uses an air piston 110 and a drain piston 108 as sludge transfer means in the measurement chamber 4 and uses compressed air in an air tank 39 as a power source. However, such a configuration may be configured so as to be conveyed over the main pipe section 2 and the sludge pipe 98 as in the seventeenth embodiment.

実施の形態18の超音波式汚泥濃度測定装置1の構成は、実施の形態2から実施の形態15までの超音波式汚泥濃度測定装置1にも適用できる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   The configuration of the ultrasonic sludge concentration measuring apparatus 1 according to the eighteenth embodiment can also be applied to the ultrasonic sludge concentration measuring apparatus 1 according to the second to fifteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

以上のように、この実施の形態18の超音波式汚泥濃度測定装置1によれば、実施の形態16の効果のほかに、移送手段をエアタンク39からの空気圧で作動するピストンポンプ106としたことにより、実施の形態17に示した通常の電動機を用いた圧送ポンプであれば大きな電力が必要であるのに対して、流路切換弁114,115とエアタンク39の空気のみで済むので、運転コストが低コストであるという効果がある。   As described above, according to the ultrasonic sludge concentration measuring apparatus 1 of the eighteenth embodiment, in addition to the effects of the sixteenth embodiment, the transfer means is the piston pump 106 that operates with the air pressure from the air tank 39. As a result, the pumping pump using the ordinary electric motor shown in the seventeenth embodiment requires a large amount of electric power, whereas only the air in the flow path switching valves 114 and 115 and the air tank 39 is required, so that the operating cost is reduced. Has the effect of low cost.

実施の形態19.
図29は実施の形態19の超音波式汚泥濃度測定装置1の正面図である。A−A線断面図に関しては、実施の形態1の超音波式汚泥濃度測定装置1のA−A線断面図である図2と概ね同一であるのでこれを援用する。この実施の形態19の超音波式汚泥濃度測定装置1は、測定室4内の汚泥を移送するための移送手段99をエアリフト117によって構成したものであり、超音波式汚泥濃度測定装置1の最寄りに汚泥貯留槽等の汚泥や洗浄水を貯留可能な水槽(図示せず)がある場合に、ドレン管43に流入する測定室4の汚泥や洗浄水を、エアリフト117を使用して、当該水槽に移送可能とした点が、実施の形態16と大きく異なる。その他の構成は実施の形態16と同様であるのでその説明を用いて詳細な説明を省略する。
Embodiment 19. FIG.
FIG. 29 is a front view of the ultrasonic sludge concentration measuring apparatus 1 according to the nineteenth embodiment. The AA line cross-sectional view is generally the same as FIG. 2, which is a cross-sectional view of the ultrasonic sludge concentration measuring apparatus 1 according to the first embodiment, taken along line AA. In the ultrasonic sludge concentration measuring apparatus 1 according to the nineteenth embodiment, the transfer means 99 for transferring the sludge in the measurement chamber 4 is constituted by an air lift 117, which is the closest to the ultrasonic sludge concentration measuring apparatus 1. When there is a water tank (not shown) capable of storing sludge and cleaning water such as a sludge storage tank, the sludge and cleaning water of the measurement chamber 4 flowing into the drain pipe 43 is used to supply the water tank using the air lift 117. The difference from Embodiment 16 is that it can be transferred. Since other configurations are the same as those of the sixteenth embodiment, detailed description thereof will be omitted by using the description.

図29に示される超音波式汚泥濃度測定装置1において、エアリフト117は、揚水室119を構成するシリンダの底部に吐出ノズル120が設置されており、この吐出ノズル120から圧縮空気が揚水室119の室内上方に向かって噴出可能とされている。揚水室119の上部には送水管121が接続されており、揚水室119の側壁下部にはドレン管43が接続されている。吐出ノズル120にはエアタンク39から延びる空気管122が接続され、空気管122には空気供給弁123が設けられている。空気供給弁123は制御器8の制御により開閉される。   In the ultrasonic sludge concentration measuring apparatus 1 shown in FIG. 29, the air lift 117 has a discharge nozzle 120 installed at the bottom of a cylinder constituting the pumping chamber 119, and compressed air is supplied from the discharge nozzle 120 to the pumping chamber 119. It can be ejected upward in the room. A water pipe 121 is connected to the upper part of the pumping chamber 119, and a drain pipe 43 is connected to the lower part of the side wall of the pumping chamber 119. An air pipe 122 extending from the air tank 39 is connected to the discharge nozzle 120, and an air supply valve 123 is provided in the air pipe 122. The air supply valve 123 is opened and closed under the control of the controller 8.

実施の形態19の超音波式汚泥濃度測定装置では、揚水室119を経由して水槽に測定室4の汚泥を送り出すときには、制御器8の制御によって、ドレン制御弁95、空気制御弁123が開かれる。これによって、汚泥や洗浄水が測定室4からドレン管43を経由して、揚水室119内に流入し、汚泥や洗浄水で充たされる。このとき、揚水室119で吐出ノズル120からエアタンク39の圧縮空気が噴出されると、圧縮空気が汚泥や洗浄水の中を上昇するときに浮力が発生する。この浮力によって、汚泥や洗浄水は重力に反して送水管121内を上昇し、水槽に移送される。   In the ultrasonic sludge concentration measuring apparatus according to the nineteenth embodiment, when the sludge in the measurement chamber 4 is sent to the water tank via the pumping chamber 119, the drain control valve 95 and the air control valve 123 are opened under the control of the controller 8. It is. As a result, sludge and washing water flow into the pumping chamber 119 from the measurement chamber 4 via the drain pipe 43 and are filled with sludge and washing water. At this time, if the compressed air in the air tank 39 is ejected from the discharge nozzle 120 in the pumping chamber 119, buoyancy is generated when the compressed air rises in sludge or washing water. Due to this buoyancy, sludge and washing water rise in the water pipe 121 against gravity and are transferred to the water tank.

この実施の形態19の超音波式汚泥濃度測定装置1は、実施の形態16の効果のほかに、測定室4内の汚泥を測定室4から排出する際の移送手段99を、ドレン管43にエアリフト117を配備し、エアリフト117の移送動力源としてエアタンク39の圧縮空気を利用するものであり、大略配管によって構成されるから、故障等が少なく、配備スペースが小さくてすむ。また、ポンプ駆動用のモーター等を設置しないですみ、運転コストも低く抑えることができる。   In the ultrasonic sludge concentration measuring apparatus 1 according to the nineteenth embodiment, in addition to the effects of the sixteenth embodiment, a transfer means 99 for discharging the sludge in the measurement chamber 4 from the measurement chamber 4 is provided in the drain pipe 43. The air lift 117 is provided, and the compressed air of the air tank 39 is used as a power source for transferring the air lift 117. Since the air lift 117 is generally constituted by piping, there is little failure and the installation space can be reduced. Moreover, it is not necessary to install a motor for driving the pump, and the operation cost can be kept low.

実施の形態19の超音波式汚泥濃度測定装置1は、実施の形態2乃至実施の形態15の超音波式汚泥濃度測定装置1に組み合わせて構成することができる。また、移送されている汚泥が大きな正圧状態にならないような汚泥配管に超音波式汚泥濃度測定装置1を配設する場合においては、図7のA−A線断面図に示したように、弾性部材24を保護する保護カバー7を不要としてもよい。   The ultrasonic sludge concentration measuring apparatus 1 according to the nineteenth embodiment can be configured in combination with the ultrasonic sludge concentration measuring apparatus 1 according to the second to fifteenth embodiments. Further, in the case where the ultrasonic sludge concentration measuring device 1 is disposed in the sludge pipe so that the transferred sludge does not become a large positive pressure state, as shown in the AA line cross-sectional view of FIG. The protective cover 7 that protects the elastic member 24 may be unnecessary.

超音波式汚泥濃度測定装置1を使用した汚泥移送システム.
図30は上述の実施の形態1から実施の形態19までのいずれかの超音波式汚泥濃度測定装置1を用いた汚泥移送システムを示す。また、図31は、この図30の汚泥移送システムをC−C線方向から見た断面図である。図30の汚泥システムは、汚泥貯留槽124に貯留されている汚泥を移送ポンプ125で他の水槽等へ移送する場合の汚泥移送システムの一例を示している。図30に示すように、この汚泥移送システムでは、複数の移送ポンプ125で汚泥を移送するためにヘッダー管126が組まれており、ヘッダー管126にフランジ126aを配設して複数の分岐部が設けられ、各分岐部には汚泥吸引管127がフランジ126aとフランジ127aによって接続され、その他端にはそれぞれ移送ポンプ125が接続している。そして、超音波式汚泥濃度測定装置1は、このヘッダー管126の汚泥吸引管127が接続する分岐部よりも汚泥貯留槽124側に配設されている。ヘッダー管126の上流側の端部は水槽124の側壁下部の汚泥流出管130に接続されている。汚泥貯留槽124の天井部には貯留槽124内を大気と通じさせる通気口124aが設けられている。
Sludge transfer system using ultrasonic sludge concentration measuring device 1.
FIG. 30 shows a sludge transfer system using the ultrasonic sludge concentration measuring apparatus 1 according to any one of the first to nineteenth embodiments. FIG. 31 is a cross-sectional view of the sludge transfer system of FIG. 30 as seen from the CC line direction. The sludge system of FIG. 30 shows an example of a sludge transfer system when the sludge stored in the sludge storage tank 124 is transferred to another water tank or the like by the transfer pump 125. As shown in FIG. 30, in this sludge transfer system, a header pipe 126 is assembled in order to transfer sludge by a plurality of transfer pumps 125, and a flange 126a is provided on the header pipe 126 to provide a plurality of branch portions. A sludge suction pipe 127 is connected to each branch portion by a flange 126a and a flange 127a, and a transfer pump 125 is connected to each other end. The ultrasonic sludge concentration measuring apparatus 1 is disposed closer to the sludge storage tank 124 than the branch portion to which the sludge suction pipe 127 of the header pipe 126 is connected. The upstream end of the header pipe 126 is connected to a sludge outflow pipe 130 at the bottom of the side wall of the water tank 124. A vent 124 a is provided at the ceiling of the sludge storage tank 124 to allow the inside of the storage tank 124 to communicate with the atmosphere.

移送ポンプ125が稼動しないときであっても、ヘッダー管126内には、汚泥貯留槽124から水頭圧で汚泥が流入し、ヘッダー管126内は汚泥で満たされる、いわゆる満管状態となっている。しかし、移送ポンプ125が稼動しない状態が継続すると汚泥内でガスが発生し、図31のヘッダー管26のC−C線方向断面図に示す通り、ヘッダー管26内で汚泥140の上方にガス溜まり141が滞留してしまう。この状態のときに移送ポンプ125が稼動すると、汚泥吸引管127内には強力な吸引力が発生し、例え汚泥吸引管127内にガス溜まり141が多少滞留していたとしても汚泥140共々吸引・圧送してしまうので問題は発生しない。しかし、ヘッダー管126からの分岐配管である汚泥吸引管127の方が、ヘッダー管126よりも小径であることから、汚泥吸引管127の内壁上端からヘッダー管126の内壁上端までの間に高低差がある。一度ガス溜まり141がそこに滞留してしまうと、移送ポンプ125の停止時は、汚泥貯留槽124からの押込圧があっても、汚泥吸引管127の内壁上端よりも上位(図31中の汚泥境界面142より上位)のガス溜まり141は汚泥吸引管127側に移動できない。また、移送ポンプ125の稼動時においても、移送ポンプ125の吸引力が汚泥貯留槽124の水頭圧よりも強い場合には、ヘッダー管126内は負圧状態となり、ガス溜まり141よりも汚泥140が優先的に吸引されていまい、ガス溜まり141は取り残されてしまい、ずっと滞留しつづけることになってしまう。
この状態においては、このヘッダー管126と同径の本管部2を有する超音波式汚泥濃度測定装置1にも、ガス溜まり141が滞留していることになり、ガス溜まり141が測定室4に流入してしまうと、超音波式汚泥濃度測定装置1の汚泥加圧行程に不具合が発生してしまう。
Even when the transfer pump 125 is not operated, the sludge flows into the header pipe 126 from the sludge storage tank 124 with the hydraulic head pressure, and the header pipe 126 is filled with sludge. . However, if the state where the transfer pump 125 is not operated continues, gas is generated in the sludge, and as shown in the sectional view in the CC line direction of the header pipe 26 in FIG. 141 stays. When the transfer pump 125 is operated in this state, a strong suction force is generated in the sludge suction pipe 127, and even if the gas reservoir 141 is somewhat retained in the sludge suction pipe 127, There is no problem because it is pumped. However, since the sludge suction pipe 127, which is a branch pipe from the header pipe 126, has a smaller diameter than the header pipe 126, there is a difference in height between the upper end of the inner wall of the sludge suction pipe 127 and the upper end of the inner wall of the header pipe 126. There is. Once the gas reservoir 141 stays there, when the transfer pump 125 is stopped, even if there is a pushing pressure from the sludge storage tank 124, it is higher than the upper end of the inner wall of the sludge suction pipe 127 (sludge in FIG. 31). The gas reservoir 141 (above the boundary surface 142) cannot move to the sludge suction pipe 127 side. In addition, even when the transfer pump 125 is in operation, if the suction force of the transfer pump 125 is stronger than the head pressure of the sludge storage tank 124, the header pipe 126 is in a negative pressure state, and the sludge 140 is more than the gas reservoir 141. The gas is not sucked preferentially, and the gas reservoir 141 is left behind and stays there for a long time.
In this state, the gas reservoir 141 is also retained in the ultrasonic sludge concentration measuring apparatus 1 having the main pipe portion 2 having the same diameter as the header tube 126, and the gas reservoir 141 is retained in the measurement chamber 4. If it flows in, a malfunction will generate | occur | produce in the sludge pressurization process of the ultrasonic-type sludge density | concentration measuring apparatus 1. FIG.

そこで、この汚泥移送システムの一例では、ヘッダー管126のヘッダー部分(大径部分)を配管で同軸方向に延伸し、その延伸した配管の上部にフランジ128aを備えた気体排出口部128を設け、気体排出口部128から気体排出管129をフランジ128aとフランジ129aによって接続し、最寄りの汚泥貯留槽124の最高の汚泥水位面よりも上の位置以上に立ち上げて、汚泥貯留槽124に接続する構成としている。   Therefore, in an example of this sludge transfer system, the header portion (large diameter portion) of the header pipe 126 is extended in the coaxial direction by piping, and a gas discharge port portion 128 having a flange 128a is provided on the extended piping, The gas discharge pipe 129 is connected to the gas discharge port portion 128 by the flange 128a and the flange 129a, and is raised to a position above the highest sludge water level surface of the nearest sludge storage tank 124 and connected to the sludge storage tank 124. It is configured.

すなわち、図30の汚泥移送システムは、汚泥貯留槽124の側壁下部に汚泥流出管130を設け、この汚泥流出管130にヘッダー管126を接続し、このヘッダー管126に超音波式汚泥濃度測定装置1の本管部2と汚泥吸引管127とを接続し、この汚泥吸引管127に他の系統に汚泥を移送する移送ポンプ125を設け、ヘッダー管126を汚泥貯留槽124の接続部分の反対側に延ばして、この延ばした部分の上壁部に気体排出口部128を形成し、この気体排出口部128の上に上方に延びる気体排出管129を接続し、この気体排出管129の上端部を前記汚泥貯留槽124の汚泥水位の上限位置以上の部位に連通させて接続する構成としたものである。   That is, in the sludge transfer system of FIG. 30, a sludge outflow pipe 130 is provided at the lower portion of the side wall of the sludge storage tank 124, a header pipe 126 is connected to the sludge outflow pipe 130, and an ultrasonic sludge concentration measuring device is connected to the header pipe 126. 1 is connected to the sludge suction pipe 127, and the sludge suction pipe 127 is provided with a transfer pump 125 for transferring the sludge to another system, and the header pipe 126 is disposed on the opposite side of the connection portion of the sludge storage tank 124. A gas discharge port portion 128 is formed in the upper wall portion of the extended portion, a gas discharge pipe 129 extending upward is connected to the gas discharge port portion 128, and an upper end portion of the gas discharge tube 129 is connected. Is connected to a portion of the sludge storage tank 124 that is equal to or higher than the upper limit position of the sludge water level.

以上のように、この汚泥移送システムによれば、このような構成としたことにより、移送ポンプ125の停止時は、汚泥貯留槽124内の汚泥による水頭圧によって、汚泥貯留槽124内の汚泥がヘッダー管126内に押し出され、ヘッダー管126内に滞留するガス溜まり141は、気体排出口部128に押し出されて、気体排出管129を経由して、汚泥貯留槽124に返送される。そして、ガス溜まり141を全て押し出した後においても、汚泥140は気体排出口部128から気体排出管129内を上昇するが、汚泥貯留槽124の汚泥水位以上には上昇することなく停止する。また、移送ポンプ125が作動している場合においても、移送ポンプ125の吸引圧力(負圧)と汚泥貯留槽124からの水頭圧による押込圧力(正圧)との差が大きくなりすぎないように設計することにより、極端な正圧状態にも負圧状態にもならず、ヘッダー管126内の汚泥140が気体排出管129から汚泥貯留槽124に返送されることも、気体排出管129から空気や汚泥ガスが吸引されることもない。よって、超音波式汚泥濃度測定装置1によって汚泥濃度を正確に計ることが出来ると共に、汚泥を下流系統に一定して移送できる。   As described above, according to this sludge transfer system, when the transfer pump 125 is stopped, the sludge in the sludge storage tank 124 is caused by the head pressure due to the sludge in the sludge storage tank 124 when the transfer pump 125 is stopped. The gas reservoir 141 pushed out into the header pipe 126 and staying in the header pipe 126 is pushed out to the gas discharge port 128 and returned to the sludge storage tank 124 via the gas discharge pipe 129. Even after all the gas reservoir 141 is pushed out, the sludge 140 rises in the gas discharge pipe 129 from the gas discharge port 128, but stops without rising above the sludge water level in the sludge storage tank 124. In addition, even when the transfer pump 125 is operating, the difference between the suction pressure (negative pressure) of the transfer pump 125 and the pushing pressure (positive pressure) due to the water head pressure from the sludge storage tank 124 should not be too large. By designing, the sludge 140 in the header pipe 126 can be returned from the gas discharge pipe 129 to the sludge storage tank 124 without being in an extremely positive pressure state or a negative pressure state. And sludge gas is not sucked. Therefore, the sludge concentration can be accurately measured by the ultrasonic sludge concentration measuring device 1, and the sludge can be transferred to the downstream system constantly.

超音波式汚泥濃度測定装置の応用例.
図32は実施の形態13の超音波式汚泥濃度測定装置1の応用例の正面図であり、図33は図32のA−A方向断面図である。図32,33に示す超音波式汚泥濃度測定装置1は、実施の形態13で示された超音波式汚泥濃度測定装置1から、弾性部材24および外覆部材25を取り外し、外覆部材25の代わりにフランジ蓋133(図33参照)をシール材135を介して測定室4の開口23にボルト131で取付け、制御弁3に代えて、手動の測定室開閉弁132を設置したものである。また、給水管93から給水制御弁94を取り除き、手動の開閉弁92のみとし、ドレン管43からドレン制御弁95を取り外している。さらに空気供給管37や、エアタンク39、空気圧縮機38等の圧縮空気供給関連の機器を取り外した構成が、実施の形態13の超音波式汚泥濃度測定装置1と大きく異なる。
Application example of ultrasonic sludge concentration measuring device.
32 is a front view of an application example of the ultrasonic sludge concentration measuring apparatus 1 according to the thirteenth embodiment, and FIG. 33 is a cross-sectional view taken along the line AA of FIG. The ultrasonic sludge concentration measuring apparatus 1 shown in FIGS. 32 and 33 removes the elastic member 24 and the outer covering member 25 from the ultrasonic sludge concentration measuring apparatus 1 shown in the thirteenth embodiment, and Instead, a flange lid 133 (see FIG. 33) is attached to the opening 23 of the measurement chamber 4 with a bolt 131 via a sealing material 135, and a manual measurement chamber opening / closing valve 132 is installed instead of the control valve 3. Further, the water supply control valve 94 is removed from the water supply pipe 93, and only the manual opening / closing valve 92 is provided, and the drain control valve 95 is removed from the drain pipe 43. Furthermore, the configuration in which compressed air supply related devices such as the air supply pipe 37, the air tank 39, and the air compressor 38 are removed is significantly different from the ultrasonic sludge concentration measuring apparatus 1 of the thirteenth embodiment.

この超音波式汚泥濃度測定装置は、図32および図33に示すように、汚泥濃度を測定する汚泥を加圧することはせず、汚泥配管から本管部2、連通口10、測定室4に流れてくる汚泥に対して、超音波送受信器5で超音波を送受信して汚泥濃度を測定するようになっている。また、通常時は、測定室開閉弁132を開弁しておくが、手動の測定室開閉弁132を閉弁することで、測定室4を本管部2の汚泥の流路から切り離すことができ、測定室4内の部品交換(超音波送受信子5a等)等のメンテナンス作業を汚泥配管の流れを止めること無く、またバイパス管を別途設けることなく行うことができる。測定室4内の清掃等を行う場合においては、測定室開閉弁132を手動で閉じて本管部2から汚泥の流路を切り離し、手動で開閉弁92を開いて洗浄水を測定室4に導入し、手動でドレン弁42を開いて、測定室4内の汚泥や洗浄水をドレン管43に排水することで、測定室4内を洗浄することができる。また、測定室開閉弁132の弁機能が低下した場合においても、リペアゲート11を閉弁することで、汚泥配管の流れを停止しなくとも測定室開閉弁132を交換することができる。   As shown in FIGS. 32 and 33, this ultrasonic sludge concentration measuring apparatus does not pressurize the sludge for measuring the sludge concentration, and passes from the sludge pipe to the main section 2, the communication port 10, and the measurement chamber 4. The ultrasonic transmitter / receiver 5 transmits / receives ultrasonic waves to the flowing sludge to measure the sludge concentration. In addition, the measurement chamber opening / closing valve 132 is normally opened, but the measurement chamber 4 can be separated from the sludge flow path in the main pipe section 2 by closing the manual measurement chamber opening / closing valve 132. In addition, maintenance work such as replacement of parts in the measurement chamber 4 (such as the ultrasonic transmitter / receiver 5a) can be performed without stopping the flow of the sludge pipe and without providing a separate bypass pipe. When cleaning the measurement chamber 4 or the like, the measurement chamber opening / closing valve 132 is manually closed to disconnect the sludge flow path from the main pipe section 2 and the opening / closing valve 92 is manually opened to supply cleaning water to the measurement chamber 4. The inside of the measurement chamber 4 can be cleaned by introducing it, manually opening the drain valve 42, and draining the sludge and cleaning water in the measurement chamber 4 to the drain pipe 43. Further, even when the valve function of the measurement chamber opening / closing valve 132 is lowered, the measurement chamber opening / closing valve 132 can be replaced without closing the flow of the sludge pipe by closing the repair gate 11.

この応用例にかかる超音波式汚泥濃度測定装置に、図6に示す実施の形態4の気体排出管51及び排出制御弁53、図8に示す実施の形態5の気体排出管54及び排出制御弁56、図9に示す実施の形態6の圧力測定器57、図10に示す実施の形態7の圧力測定器58、図25に示す実施の形態15の超音波発振器97等を組み合わせても良い。また、測定室4内の汚泥を下流の汚泥配管に移送する実施の形態16〜19の構成を組み合わせても良い。
In the ultrasonic sludge concentration measuring apparatus according to this application example, the gas discharge pipe 51 and the discharge control valve 53 of the fourth embodiment shown in FIG. 6 and the gas discharge pipe 54 and the discharge control valve of the fifth embodiment shown in FIG. 56, the pressure measuring device 57 of the sixth embodiment shown in FIG. 9, the pressure measuring device 58 of the seventh embodiment shown in FIG. 10, the ultrasonic oscillator 97 of the fifteenth embodiment shown in FIG. Moreover, you may combine the structure of Embodiment 16-19 which transfers the sludge in the measurement chamber 4 to a downstream sludge piping.

本発明の実施の形態1の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 1 of this invention. 図1の実施の形態1のA−A線断面図である。It is an AA line sectional view of Embodiment 1 of FIG. 本発明の実施の形態2の超音波式汚泥濃度測定装置のA−A線断面図である。It is the sectional view on the AA line of the ultrasonic sludge density | concentration measuring apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 3 of this invention. 図4の実施の形態4のA−A線断面図である。It is the sectional view on the AA line of Embodiment 4 of FIG. 本発明の実施の形態4の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 4 of this invention. 図6の実施の形態4のA−A線断面図である。It is an AA line sectional view of Embodiment 4 of FIG. 本発明の実施の形態5の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 5 of this invention. 本発明の実施の形態6の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 6 of this invention. 本発明の実施の形態7の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 7 of this invention. 本発明の実施の形態8の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 8 of this invention. 図11の実施の形態8のA−A線断面図である。It is AA sectional view taken on the line of Embodiment 8 of FIG. 本発明の実施の形態9の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 9 of this invention. 図13の実施の形態9のA−A線断面図である。It is AA sectional view taken on the line of Embodiment 9 of FIG. 本発明の実施の形態9の外覆部材のA−A線断面図である。It is AA sectional view taken on the line of the outer covering member of Embodiment 9 of this invention. 図15の実施の形態9の外覆部材のB−B線方向から見た側面図である。It is the side view seen from the BB line direction of the outer covering member of Embodiment 9 of FIG. 本発明の実施の形態10の外覆部材のA−A線断面図である。It is AA sectional view taken on the line of the outer covering member of Embodiment 10 of this invention. 図17の実施の形態10の外覆部材のB−B線方向から見た側面図である。It is the side view seen from the BB line direction of the outer covering member of Embodiment 10 of FIG. 図17の実施の形態10のクリップの斜視図である。It is a perspective view of the clip of Embodiment 10 of FIG. 本発明の実施の形態11の外覆部材のA−A線断面図である。It is AA sectional view taken on the line of the outer covering member of Embodiment 11 of this invention. 図20の実施の形態11の外覆部材のB−B線方向から見た側面図である。It is the side view seen from the BB line direction of the outer covering member of Embodiment 11 of FIG. 本発明の実施の形態12の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 12 of this invention. 本発明の実施の形態13の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 13 of this invention. 本発明の実施の形態14の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 14 of this invention. 本発明の実施の形態15の超音波式汚泥濃度測定装置のA−A線断面図である。It is the sectional view on the AA line of the ultrasonic sludge density | concentration measuring apparatus of Embodiment 15 of this invention. 本発明の実施の形態16の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 16 of this invention. 本発明の実施の形態17の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 17 of this invention. 本発明の実施の形態18の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 18 of this invention. 本発明の実施の形態19の超音波式汚泥濃度測定装置を示す正面図である。It is a front view which shows the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 19 of this invention. 本発明の実施の形態1乃至19の超音波式汚泥濃度測定装置を応用した汚泥移送システムの一例を示す模式図である。It is a schematic diagram which shows an example of the sludge transfer system which applied the ultrasonic type sludge density | concentration measuring apparatus of Embodiment 1 thru | or 19 of this invention. 図30の汚泥移送システムにおけるヘッダー管と汚泥吸引管の水位差を示すC−C線断面図である。It is CC sectional view taken on the line which shows the water level difference of the header pipe | tube and sludge suction pipe in the sludge transfer system of FIG. 手動により測定室開閉弁を開閉する超音波式汚泥濃度測定装置の応用例の正面図である。It is a front view of the application example of the ultrasonic type sludge density | concentration measuring apparatus which opens and closes a measurement chamber on-off valve manually. 図32のA−A線断面図である。It is AA sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 超音波式汚泥濃度測定装置
2 本管部
3 制御弁
4 測定室
5 超音波送受信器
5a 超音波送受信子
6 加圧室
7 保護カバー
8 制御器
10 連通口
13 周壁部材
11 リペアゲート
16a,16b 汚泥流入口
17 突出部
23 開口
24 弾性部材
25 外覆部材
27 固定ボルト
29 連通口
30 変換器
31 加圧部
32 電極収納部
32a 空気流入口
33 空気流通孔
34 漏洩検知器
35 端子収納箱
37 空気供給管
38 空気圧縮機
39 エアタンク
40 流路切換弁
41 ドレン排水口
42 ドレン弁
43 ドレン管
44 閉塞蓋
45 気体排出口
48 流路制御弁
49 流路制御弁
50 切欠部
51,54 気体排出管
52,55 気体排出口
53,56 排出制御弁
57,58 圧力測定器
59 空気制御弁
60 ハウジング継ぎ手
63 電極収納部
63a,79a 空気流入口
630,790 開口
631,791 筒部
63b,79b シール材
63c,79c 蓋
630c,790c 開口
631c,791c 凸部
66 加圧部
74 クリップ
93 給水管
94 給水制御弁
95 ドレン制御弁
96 圧力測定器
97 超音波発振器
99 移送手段
100 チューブポンプ
106 ピストンポンプ
116 排出制御弁
117 エアリフト
DESCRIPTION OF SYMBOLS 1 Ultrasonic-type sludge density | concentration measuring apparatus 2 Main pipe part 3 Control valve 4 Measurement chamber 5 Ultrasonic transmitter / receiver 5a Ultrasonic transmitter / receiver 6 Pressurization chamber 7 Protective cover 8 Controller 10 Communication port 13 Perimeter wall member 11 Repair gate 16a, 16b Sludge inlet 17 Protruding part 23 Opening 24 Elastic member 25 Outer member 27 Fixing bolt 29 Communication port 30 Converter 31 Pressurizing part 32 Electrode storage part 32a Air inlet 33 Air circulation hole 34 Leakage detector 35 Terminal storage box 37 Air Supply pipe 38 Air compressor 39 Air tank 40 Flow path switching valve 41 Drain drain port 42 Drain valve 43 Drain pipe 44 Closure lid 45 Gas discharge port 48 Flow path control valve 49 Flow path control valve 50 Notch 51, 54 Gas discharge pipe 52 , 55 Gas discharge port 53, 56 Discharge control valve 57, 58 Pressure measuring device 59 Air control valve 60 Housing joint 63 Electrode storage part 63a, 79a Air inlet 630, 790 Opening 631, 791 Tube part 63b, 79b Sealing material 63c, 79c Lid 630c, 790c Opening 631c, 791c Convex part 66 Pressurization part 74 Clip 93 Water supply pipe 94 Water supply control valve 95 Drain control valve 96 Pressure measuring device 97 Ultrasonic oscillator 99 Transfer means 100 Tube pump 106 Piston pump 116 Discharge control valve 117 Air lift

Claims (5)

汚泥が流通する本管部に連通口を設け、
該連通口に制御弁を介して測定室を配設し、
前記制御弁を閉弁して前記測定室内の汚泥を加圧手段で加圧し、
前記測定室に設けられた超音波送受信器によって汚泥に対して超音波を送受信して減衰量を測定し、該減衰量から汚泥濃度を算出する超音波式汚泥濃度測定装置において、
前記測定室に設けられた開口を覆う弾性部材と、
該弾性部材の外側を覆い、加圧室を形成する外覆部材と、
前記加圧室側の弾性部材を覆う保護カバーと
を備えることを特徴とする超音波式汚泥濃度測定装置。
A communication port is provided in the main section where sludge flows.
A measurement chamber is arranged at the communication port via a control valve,
Close the control valve and pressurize the sludge in the measurement chamber with pressurizing means,
In the ultrasonic sludge concentration measuring apparatus for measuring the amount of attenuation by transmitting and receiving ultrasonic waves to and from the sludge by the ultrasonic transmitter / receiver provided in the measurement chamber, and calculating the sludge concentration from the amount of attenuation,
An elastic member covering an opening provided in the measurement chamber;
An outer covering member that covers the outside of the elastic member and forms a pressurizing chamber;
An ultrasonic sludge concentration measuring apparatus comprising: a protective cover that covers the elastic member on the pressurizing chamber side.
保護カバーは、空気流通孔を有する
ことを特徴とする請求項1記載の超音波式汚泥濃度測定装置。
2. The ultrasonic sludge concentration measuring apparatus according to claim 1, wherein the protective cover has air circulation holes.
汚泥が流通する本管部に連通口を設け、
該連通口に制御弁を介して測定室を配設し、
前記制御弁を閉弁して前記測定室内の汚泥を加圧手段で加圧し、
前記測定室に設けられた超音波送受信器によって汚泥に対して超音波を送受信して減衰量を測定し、該減衰量から汚泥濃度を算出する超音波式汚泥濃度測定装置において、
前記測定室に設けられた開口を覆う弾性部材と、
該弾性部材の外側を覆い、加圧室を形成する外覆部材と、
本管部および/または測定室の上部に設けられた
気体排出口および排出制御弁と
を備えることを特徴とする超音波式汚泥濃度測定装置。
A communication port is provided in the main section where sludge flows.
A measurement chamber is arranged at the communication port via a control valve,
Close the control valve and pressurize the sludge in the measurement chamber with pressurizing means,
In the ultrasonic sludge concentration measuring apparatus for measuring the amount of attenuation by transmitting and receiving ultrasonic waves to and from the sludge by the ultrasonic transmitter / receiver provided in the measurement chamber, and calculating the sludge concentration from the amount of attenuation,
An elastic member covering an opening provided in the measurement chamber;
An outer covering member that covers the outside of the elastic member and forms a pressurizing chamber;
An ultrasonic sludge concentration measuring apparatus comprising a gas discharge port and a discharge control valve provided at an upper portion of a main pipe part and / or a measurement chamber.
加圧手段は、
空気供給源からの圧縮空気を加圧室へ供給する
空気制御弁が設けられた空気供給管である
ことを特徴とする請求項1から3のいずれかに記載の超音波式汚泥濃度測定装置。
The pressurizing means is
The ultrasonic sludge concentration measuring apparatus according to any one of claims 1 to 3, wherein the ultrasonic sludge concentration measuring apparatus is an air supply pipe provided with an air control valve for supplying compressed air from an air supply source to a pressurizing chamber.
外覆部材は、分割可能である
ことを特徴とする請求項1から4のいずれかに記載の超音波式汚泥濃度測定装置。
The ultrasonic sludge concentration measuring apparatus according to any one of claims 1 to 4, wherein the outer covering member is separable.
JP2006352450A 2006-12-27 2006-12-27 Ultrasonic sludge concentration measuring device Active JP4402107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352450A JP4402107B2 (en) 2006-12-27 2006-12-27 Ultrasonic sludge concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352450A JP4402107B2 (en) 2006-12-27 2006-12-27 Ultrasonic sludge concentration measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009227767A Division JP5068796B2 (en) 2009-09-30 2009-09-30 Ultrasonic sludge concentration measuring device

Publications (2)

Publication Number Publication Date
JP2008164362A true JP2008164362A (en) 2008-07-17
JP4402107B2 JP4402107B2 (en) 2010-01-20

Family

ID=39694074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352450A Active JP4402107B2 (en) 2006-12-27 2006-12-27 Ultrasonic sludge concentration measuring device

Country Status (1)

Country Link
JP (1) JP4402107B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178518A (en) * 2007-01-24 2008-08-07 Aloka Co Ltd Ultrasonic diagnostic equipment
KR101045112B1 (en) * 2009-05-22 2011-06-30 고려대학교 산학협력단 Apparatus for measuring distribution of ultrasound energy according to position of reflector
KR101142899B1 (en) * 2011-10-06 2012-05-10 웨스글로벌 주식회사 Ultrasonic measure system and method for concentration to be attached on the wall
CN114994170A (en) * 2022-05-26 2022-09-02 浙江大学 System and method for measuring water content of sludge by utilizing ultrasonic waves

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178518A (en) * 2007-01-24 2008-08-07 Aloka Co Ltd Ultrasonic diagnostic equipment
KR101045112B1 (en) * 2009-05-22 2011-06-30 고려대학교 산학협력단 Apparatus for measuring distribution of ultrasound energy according to position of reflector
KR101142899B1 (en) * 2011-10-06 2012-05-10 웨스글로벌 주식회사 Ultrasonic measure system and method for concentration to be attached on the wall
WO2013051800A2 (en) * 2011-10-06 2013-04-11 웨스글로벌(주) Exterior wall-coupling type ultrasound system for measuring density and method for same
WO2013051800A3 (en) * 2011-10-06 2013-05-30 웨스글로벌(주) Exterior wall-coupling type ultrasound system for measuring density and method for same
US9476858B2 (en) 2011-10-06 2016-10-25 Wess Global, Inc. Clamp-on-type ultrasonic concentration metering system and method
CN114994170A (en) * 2022-05-26 2022-09-02 浙江大学 System and method for measuring water content of sludge by utilizing ultrasonic waves
CN114994170B (en) * 2022-05-26 2023-01-03 浙江大学 System and method for measuring water content of sludge by utilizing ultrasonic waves
US11788988B1 (en) * 2022-05-26 2023-10-17 Zhejiang University System and method for measuring sludge moisture content by ultrasound

Also Published As

Publication number Publication date
JP4402107B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4402107B2 (en) Ultrasonic sludge concentration measuring device
EP2204507A3 (en) Washing device
EP1816352A3 (en) Controller for a motor and a method of controlling the motor
JP5068796B2 (en) Ultrasonic sludge concentration measuring device
EP2894092B1 (en) Apparatus for treating ballast water with ultraviolet rays, having square cross-section
EP2236332A3 (en) Water chamber for a motor vehicle and motor vehicle with such a water chamber
JP2007085690A (en) Air conditioner
KR200410621Y1 (en) Fire Hydrant Outlet
KR20140002105A (en) Pipe cleaning apparatus
KR100889641B1 (en) Pumping apparatus installed in water supply pipeline
EP2894091B1 (en) Apparatus for treating ballast water with ultraviolet rays, having double wiper structure
JP2010031920A (en) Operation state detecting device of valve components
EP1994994A1 (en) Method for the removal of sediments, fouling agents and the like from ducts and tanks, and apparatus adapted to perform the said method
KR200244747Y1 (en) An air compressing pump for operating in the water
KR101085573B1 (en) Apparatus for exhausting cut off
JP2007247170A (en) Pipe connecting device of fire extinguishing apparatus
KR100370603B1 (en) Gas removal device of cooling and heating pipe
CN109695977B (en) Ice making device and refrigerator with same
KR200383633Y1 (en) Fire department connection
KR200458922Y1 (en) Reparing device of tube for seawater intake pumping station
KR101063008B1 (en) Motor-pump separation type auto-fire extinguisher
JP2018178742A (en) Pump unit
KR20070105756A (en) Double check valve type reverse-flowing breaker
RU2152551C1 (en) Inflatable cock
JP2001342988A (en) Well pump

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4402107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250