JP2008164352A - Distributed water pressure sensor - Google Patents

Distributed water pressure sensor Download PDF

Info

Publication number
JP2008164352A
JP2008164352A JP2006352165A JP2006352165A JP2008164352A JP 2008164352 A JP2008164352 A JP 2008164352A JP 2006352165 A JP2006352165 A JP 2006352165A JP 2006352165 A JP2006352165 A JP 2006352165A JP 2008164352 A JP2008164352 A JP 2008164352A
Authority
JP
Japan
Prior art keywords
tubular body
strain
water pressure
optical fiber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352165A
Other languages
Japanese (ja)
Other versions
JP4874785B2 (en
Inventor
Daiki Takeda
大樹 竹田
Tadayoshi Sayama
忠嘉 佐山
Takeshi Shimomichi
毅 下道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Neubrex Co Ltd
Original Assignee
Fujikura Ltd
Neubrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Neubrex Co Ltd filed Critical Fujikura Ltd
Priority to JP2006352165A priority Critical patent/JP4874785B2/en
Publication of JP2008164352A publication Critical patent/JP2008164352A/en
Application granted granted Critical
Publication of JP4874785B2 publication Critical patent/JP4874785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed water pressure sensor capable of more accurately measuring distortion and reducing cost by commonly using one optical fiber for water pressure measuring and for temperature compensating. <P>SOLUTION: A distributed water pressure sensor is provided with a tubular body having a groove capable of installing optical fibers continuously or intermittently along the longitudinal direction and the optical fibers stranded at the outer periphery of the tubular body. The stranded parts where the optical fibers are stranded at the outer periphery of the tubular body and the linear parts where the optical fibers are installed in the tubular body are arranged alternately along the longitudinal direction of the tubular body. The folding part is set at the tip side of the stranded part to fold and introduce the tip side of the stranded part or the linear part of the optical fibers to inside of the tubular body, and the temperature compensating part is formed with linearly installing the optical fibers, which run from the folding part to the distal end side of the tubular body, inside the tubular body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は水圧又はその変化を歪として検知し、水圧分布異常を検出するセンサとしての役割を担う光ケーブル等において、単ファイバを、その巻きつけ方により軸方向、および径方向の歪を分離検知し、かつ温度補償を行うことによって、水圧による歪を正確に測定可能な分布型水圧センサに関する。   The present invention detects a water pressure or a change thereof as a strain, and separates and detects strains in an axial direction and a radial direction depending on how the single fiber is wound in an optical cable or the like that plays a role as a sensor for detecting a water pressure distribution abnormality. In addition, the present invention relates to a distributed water pressure sensor that can accurately measure strain due to water pressure by performing temperature compensation.

水や油の地下備蓄貯槽等において、その気密性を確保するために、貯層槽内、もしくは貯蔵槽周辺の地中における水圧分布を計測し、水封機能が確保されていることを常時監視する必要がある。現在、これらの水圧分布に関する測定方法の一つとして分布型光ファイバ水圧計が挙げられる。   In order to ensure air tightness in underground storage tanks for water and oil, etc., the water pressure distribution in the reservoir tank or in the vicinity of the storage tank is measured and the water sealing function is constantly monitored. There is a need to. At present, a distributed optical fiber pressure gauge is one of measuring methods related to the water pressure distribution.

分布型光ファイバ水圧計は光ファイバ(もしくは光ファイバケーブル)の全体が水圧計として機能するものであり、BOTDR(Brillouin Optical Time Domain Reflectmetry)、BOTDA(Brillouin Optical Time Domain Analysis)法等により、水圧による光ファイバへの歪量を測定することで水圧計として使用されている。   Distributed fiber optic water pressure gauge is an optical fiber (or optical fiber cable) that functions as a water pressure gauge. By using BOTDR (Brillouin Optical Time Domain Reflectmetry), BOTDA (Brillouin Optical Time Domain Analysis) methods, etc. It is used as a water pressure gauge by measuring the amount of strain on the optical fiber.

現在までに、分布型光ファイバ歪センサに関して、例えば、特許文献1〜5に開示された技術が提案されている。
特許文献1には、中心導体の外周に順に内部半導電層、絶縁層、外部半導電層、遮蔽層、及びケーブルシースを有してなる高電圧用電力ケーブルに、前記遮蔽層の一部にその長手方向に沿いかつ螺旋巻きあるいはSZ巻きした光ファイバを少なくとも一本設けた構造の分布型歪センサが開示されている。
特許文献2には、円筒外周にセンシングコイルを螺旋密巻きし、一方、温度補償用の参照光ファイバを溝に収納した構成の光ファイバセンサが開示されている。
特許文献3には、センシング光ファイバを内部円筒と外部円筒の間に樹脂により固定し、一方、温度補償用の光ファイバを内部円筒内にルースに収納した構成の歪センサが開示されている。
特許文献4には、光ファイバ心線をセンサとし、該光ファイバ中のブリルアン散乱光を用いて光ファイバケーブルの歪分布を測定する歪分布測定システムにおいて、光ファイバ心線の温度分布を測定し、光ファイバ心線のブリルアン散乱光分布測定結果の温度補正を行い光ファイバケーブルの歪分布を導出する測定システムが開示されている。
特許文献5には、歪計測用光ファイバは固定とし、一方、温度補償用光ファイバは非固定とすることで、温度の影響を排除するように構成された光ファイバセンサが開示されている。
特許第2746424号公報 米国特許第5475216号明細書 米国特許第5094527号明細書 特開平11−173943号公報 特開2002−156215号公報
To date, with respect to distributed optical fiber strain sensors, for example, techniques disclosed in Patent Documents 1 to 5 have been proposed.
In Patent Document 1, a high-voltage power cable having an inner semiconductive layer, an insulating layer, an outer semiconductive layer, a shielding layer, and a cable sheath in order on the outer periphery of the central conductor is formed on a part of the shielding layer. A distributed strain sensor having a structure in which at least one optical fiber along the longitudinal direction and spirally wound or SZ wound is provided is disclosed.
Patent Document 2 discloses an optical fiber sensor having a configuration in which a sensing coil is spirally wound around the outer periphery of a cylinder, and a reference optical fiber for temperature compensation is housed in a groove.
Patent Document 3 discloses a strain sensor having a configuration in which a sensing optical fiber is fixed between an inner cylinder and an outer cylinder with a resin, while an optical fiber for temperature compensation is housed loosely in the inner cylinder.
In Patent Document 4, a temperature distribution of an optical fiber core is measured in a strain distribution measurement system that uses an optical fiber core as a sensor and measures the strain distribution of an optical fiber cable using Brillouin scattered light in the optical fiber. A measurement system for deriving the strain distribution of an optical fiber cable by correcting the temperature of the Brillouin scattered light distribution measurement result of the optical fiber core wire is disclosed.
Patent Document 5 discloses an optical fiber sensor configured to eliminate the influence of temperature by fixing the strain-measuring optical fiber while fixing the temperature-compensating optical fiber unfixed.
Japanese Patent No. 2746424 US Pat. No. 5,475,216 US Pat. No. 5,094,527 Japanese Patent Laid-Open No. 11-173943 JP 2002-156215 A

しかしながら、前述した従来技術には、次のような問題があった。
図1及び図2は、従来の分布型水圧センサの概要を示し、図1は分布型センサの概略断面図、図2はその部分拡大図である。この従来の歪センサ1は、ポリアミドチューブ2の外面に1本以上の光ファイバ3を撚り合わせ、これらをシース4内に収容した構造になっている。布設環境下において光ファイバ3に印加される歪は、図2のようにセンサ径方向については水圧による歪+自重による伸び歪が加わる。図1に示した従来構造の場合、得られる歪計測値は水圧による歪と長手方向での伸び歪を切り分けられず、目的とする水圧分布のみを歪情報として得ることが不可能である。水圧変化に伴う歪分布を得るためには、別途もう1本の歪計測用光ファイバを布設し、センサ自重による伸び歪を計測する必要があった。
However, the above-described conventional technique has the following problems.
1 and 2 show an outline of a conventional distributed water pressure sensor, FIG. 1 is a schematic sectional view of the distributed sensor, and FIG. 2 is a partially enlarged view thereof. This conventional strain sensor 1 has a structure in which one or more optical fibers 3 are twisted on the outer surface of a polyamide tube 2 and these are accommodated in a sheath 4. As shown in FIG. 2, the strain applied to the optical fiber 3 under the installation environment is a strain due to water pressure plus an elongation strain due to its own weight in the sensor radial direction. In the case of the conventional structure shown in FIG. 1, the strain measurement value obtained cannot separate the strain due to water pressure and the elongation strain in the longitudinal direction, and it is impossible to obtain only the intended water pressure distribution as strain information. In order to obtain the strain distribution accompanying the change in water pressure, it was necessary to install another optical fiber for strain measurement and measure the elongation strain due to the sensor's own weight.

さらに、測定値の温度補償を行うためには、温度補償用の光ファイバ5を別途にもう一本実装する必要があった。   Furthermore, in order to perform temperature compensation of the measured value, it is necessary to mount another optical fiber 5 for temperature compensation separately.

本発明は、前記事情に鑑みてなされ、より正確な歪計測が可能であり、しかも水圧測定用と温度補償用とを1本の光ファイバで兼用させることで、低コスト化が可能な分布型水圧センサの提供を目的とする。   The present invention has been made in view of the above circumstances, enables more accurate strain measurement, and is a distributed type capable of reducing costs by combining water pressure measurement and temperature compensation with a single optical fiber. The purpose is to provide a water pressure sensor.

前記目的を達成するため、本発明は、長手方向に沿って連続的に又は断続的に光ファイバを収納可能な溝が設けられた管状体と、該管状体の外周に撚り合わされた光ファイバとを備え、前記管状体の外周に光ファイバが撚り合わされた撚り部と、前記管状体内に光ファイバが収納された直線部とが、前記管状体の長手方向に沿って交互に設けられ、前記管状体の先端部に設けられた撚り部又は直線部の先端側の光ファイバを折り返して管状体内に導入する折り返し部が設けられるとともに、該折り返し部から基端側に向かう光ファイバが管状体内に直線的に収納されて温度補償部が形成されてなり、
前記光ファイバの長手方向の歪を測定し、前記撚り部で測定された歪量から前記直線部で測定された歪量を差し引くことによって水圧による歪量を測定可能とし、且つ該温度補償部で測定された歪量によって前記水圧による歪量の温度による歪変化分を補正可能としたことを特徴とする分布型水圧センサを提供する。
In order to achieve the above object, the present invention provides a tubular body provided with a groove capable of accommodating an optical fiber continuously or intermittently along the longitudinal direction, and an optical fiber twisted around the outer periphery of the tubular body. A twisted portion in which an optical fiber is twisted around the outer periphery of the tubular body, and a straight portion in which the optical fiber is housed in the tubular body are alternately provided along the longitudinal direction of the tubular body, There is provided a folded portion that folds the optical fiber on the distal end side of the twisted portion or linear portion provided at the distal end portion of the body and introduces it into the tubular body, and the optical fiber directed from the folded portion toward the proximal end side is straight in the tubular body. And a temperature compensation part is formed.
The strain in the longitudinal direction of the optical fiber is measured, and the amount of strain due to water pressure can be measured by subtracting the amount of strain measured in the linear portion from the amount of strain measured in the twisted portion, and the temperature compensation unit The distributed water pressure sensor is characterized in that the strain change due to the temperature of the strain amount due to the water pressure can be corrected by the measured strain amount.

以上のように、本発明の分布型水圧センサは、センサ自重による歪と水圧による歪を切り分けて測定することが可能となり、撚り部で測定された歪量から直線部で測定された歪量を差し引くことによって、水圧による歪量を正確に測定することができる。
また、1本の光ファイバで水圧による歪、センサ自重による歪、温度補償の3つの測定用光ファイバを兼ねることができ、低コストな分布型水圧センサを提供することができる。
As described above, the distributed water pressure sensor of the present invention can measure the strain due to the sensor's own weight and the strain due to the water pressure separately, and the strain amount measured at the linear portion can be calculated from the strain amount measured at the twist portion. By subtracting, the amount of strain due to water pressure can be accurately measured.
In addition, a single optical fiber can also serve as three measurement optical fibers: strain due to water pressure, strain due to the sensor's own weight, and temperature compensation, and a low-cost distributed water pressure sensor can be provided.

以下、図面を参照して本発明の分布型水圧センサの実施形態を説明する。
図3は、本発明の分布型水圧センサの一実施形態を示す図であり、図3(a)は分布型水圧センサ10の縦断面図、(b)はその撚り部13の横断面図、(c)は直線部14の横断面図である。
Hereinafter, embodiments of a distributed water pressure sensor of the present invention will be described with reference to the drawings.
FIG. 3 is a diagram showing an embodiment of the distributed water pressure sensor of the present invention, FIG. 3 (a) is a longitudinal sectional view of the distributed water pressure sensor 10, and FIG. 3 (b) is a transverse sectional view of the twisted portion 13. (C) is a cross-sectional view of the straight portion 14.

本実施形態の分布型水圧センサ10は、長手方向に沿って連続的に又は断続的に光ファイバを収納可能な溝18が設けられた管状体11と、該管状体11の外周に撚り合わされた光ファイバ12とを備え、前記管状体11の外周に光ファイバ12が撚り合わされた撚り部と、前記管状体11内に光ファイバ12が収納された直線部14とが、前記管状体11の長手方向に沿って交互に設けられてセンシング部16が形成され、また前記管状体11の先端部に設けられた撚り部13又は直線部14の先端側の光ファイバ12を折り返して管状体11内に導入する折り返し部15が設けられるとともに、該折り返し部15から基端側に向かう光ファイバ12が管状体11内に直線的に収納されて温度補償部17が形成され、これらをシース19で被覆した構造になっている。   The distributed water pressure sensor 10 of the present embodiment is twisted on the outer periphery of the tubular body 11 provided with a groove 18 capable of accommodating an optical fiber continuously or intermittently along the longitudinal direction. An optical fiber 12, a twisted portion in which the optical fiber 12 is twisted around the outer periphery of the tubular body 11, and a straight portion 14 in which the optical fiber 12 is accommodated in the tubular body 11. The sensing portions 16 are formed alternately along the direction, and the optical fiber 12 on the distal end side of the twisted portion 13 or the straight portion 14 provided at the distal end portion of the tubular body 11 is folded back into the tubular body 11. A folded portion 15 to be introduced is provided, and the optical fiber 12 from the folded portion 15 toward the proximal end side is linearly accommodated in the tubular body 11 to form a temperature compensating portion 17. It has become overturned structure.

本実施形態において筒状体11は、円筒体の円周の一部を切欠した溝18が長手方向に沿って連続的に形成し、断面C字状の合成樹脂製チューブを用いている。この筒状体11の材料としては、ポリエチレン樹脂、ポリスチレン樹脂、フッ素樹脂、ポリプロピレン樹脂、ポリアミド樹脂、シリコーン樹脂等が挙げられる。   In the present embodiment, the cylindrical body 11 uses a synthetic resin tube having a C-shaped cross section in which a groove 18 in which a part of the circumference of the cylindrical body is cut is continuously formed along the longitudinal direction. Examples of the material of the cylindrical body 11 include polyethylene resin, polystyrene resin, fluororesin, polypropylene resin, polyamide resin, and silicone resin.

なお、筒状体11の形状は本例示に限定されるものではなく、直線部14に配置した光ファイバ12が周囲からの圧力を受けない構造であればよい。つまり、直線部14のみが断面C字状をなし、撚り部13は溝18を設けない断面円環状としてもよい。また、管状体11は、直線部14のみに少なくとも測定用光ファイバの本数以上の溝があればよい。   In addition, the shape of the cylindrical body 11 is not limited to this illustration, What is necessary is just the structure where the optical fiber 12 arrange | positioned in the linear part 14 does not receive the pressure from the circumference | surroundings. That is, only the straight portion 14 may have a C-shaped cross section, and the twisted portion 13 may have an annular shape with no groove 18. Moreover, the tubular body 11 should just have the groove | channel more than the number of the optical fibers for a measurement only in the linear part 14 at least.

本実施形態の分布型水圧センサ10は、1本の光ファイバ12で、水圧による歪、センサ自重による歪、温度補償の3つの測定用光ファイバを兼ねることができる。これに用いる光ファイバ12としては、光ファイバに加わる歪をBOTDR(Brillouin Optical Time Domain Reflectmetry)等によって検出可能なものであればよく、特に限定されず、光通信用光ファイバとして用いられるシングルモード光ファイバやマルチモード光ファイバを用いることができる。また、光ファイバ12の被覆は、光ファイバ裸線を十分保護することができ、一方、歪センシングに影響を及ぼさない程度の厚みであればよく、特に限定されない。   The distributed water pressure sensor 10 of this embodiment can serve as three optical fibers for measurement, ie, strain due to water pressure, strain due to the sensor's own weight, and temperature compensation. The optical fiber 12 used for this is not particularly limited as long as the strain applied to the optical fiber can be detected by BOTDR (Brillouin Optical Time Domain Reflectmetry) or the like, and is not limited to a single mode light used as an optical fiber for optical communication. A fiber or a multimode optical fiber can be used. Further, the coating of the optical fiber 12 is not particularly limited as long as it can sufficiently protect the bare optical fiber and has a thickness that does not affect the strain sensing.

この筒状体11と光ファイバ12とからなるセンサ本体部を被覆するシース19は、外部から加わる水圧をセンシング部16に直接伝えられる程度の厚さの合成樹脂薄肉被覆が好ましく、このシース樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、フッ素樹脂、ポリプロピレン樹脂、ポリアミド樹脂、シリコーン樹脂等が挙げられる。   The sheath 19 that covers the sensor main body portion composed of the cylindrical body 11 and the optical fiber 12 is preferably a synthetic resin thin-walled coating having a thickness that can directly transmit the water pressure applied from the outside to the sensing unit 16. Examples thereof include polyethylene resin, polystyrene resin, fluorine resin, polypropylene resin, polyamide resin, and silicone resin.

本実施形態の分布型水圧センサ10において、直線部14及び撚り部13の長さは、BOTDR等の歪計測器の最小分解距離以上の長さとする。これにより、直線部14は、外部からの水圧の影響を受けず、単純にセンサ自重による伸び歪のみを測定可能となる。   In the distributed water pressure sensor 10 of the present embodiment, the lengths of the straight line portion 14 and the twisted portion 13 are longer than the minimum resolution distance of a strain measuring instrument such as BOTDR. As a result, the linear portion 14 is not affected by the external water pressure, and can simply measure only the elongation strain due to the sensor's own weight.

本実施形態の分布型水圧センサ10は、前述した構成を採用したことで、センサ自重による歪と水圧による歪を切り分けて測定することが可能となり、撚り部で測定された歪量から直線部で測定された歪量を差し引くことによって、水圧による歪量を正確に測定することができる。   By adopting the configuration described above, the distributed water pressure sensor 10 of the present embodiment can measure the strain due to the sensor's own weight and the strain due to the water pressure separately, and from the strain amount measured at the twist portion, By subtracting the measured strain amount, the strain amount due to water pressure can be accurately measured.

図4は、本実施形態の分布型水圧センサ10における水圧測定結果の一例を示す図である。図4において、A部はセンシング部16上部側の撚り部13での歪、B部はその直下の直線部14での歪(歪(2)と記す。)、C部はAの次段の撚り部13での歪(歪(1)と記す。)、D部はC部の直下の直線部14での歪(歪(3)と記す。)、E部はC部の次段の撚り部13の歪を示す。   FIG. 4 is a diagram illustrating an example of a water pressure measurement result in the distributed water pressure sensor 10 of the present embodiment. In FIG. 4, A part is strain at the twisted part 13 on the upper side of the sensing part 16, B part is strain at the straight part 14 immediately below it (denoted as strain (2)), and C part is the next stage of A. Strain at the twisted portion 13 (denoted as strain (1)), D portion is a strain at the straight portion 14 immediately below the C portion (denoted as strain (3)), and E portion is the next twist of the C portion. The distortion of the part 13 is shown.

図4の左側のグラフに示すように、中央の撚り部13で測定されるC部の歪(1)は、水圧による歪+センサ自重による伸びの合計量が測定され、一方、該C部の上下両側の直線部14であるB部及びD部は、センサ自重による伸びのみが測定された。また、このC部直上の直線部14(B部)での歪(2)と、C部直下の直線部14(D部)での歪(3)との差(歪(2)−歪み(3))は、センサ自重による伸びに相当している。従って、C部で測定される[水圧による歪+センサ自重による伸び]から[センサ自重による伸び]を差し引くことで、水圧による歪を正確に測定することができる。   As shown in the graph on the left side of FIG. 4, the strain (1) measured at the central twisted portion 13 is the total amount of strain due to water pressure + elongation due to the sensor's own weight. Only the elongation due to the sensor's own weight was measured in the B part and D part which are the linear parts 14 on both the upper and lower sides. Further, the difference between the strain (2) at the straight portion 14 (B portion) immediately above the C portion and the strain (3) at the straight portion 14 (D portion) immediately below the C portion (strain (2) −distortion ( 3)) corresponds to elongation due to the sensor's own weight. Therefore, by subtracting [elongation due to the sensor's own weight] from [strain due to the water pressure + elongation due to the sensor's own weight], which is measured in the portion C, the strain due to the water pressure can be accurately measured.

また本実施形態の分布型水圧センサ10では、センシング部16を折り返した光ファイバ12を管状体11の管内に導入して温度補償部17として用い、温度による歪変化分を補正可能としている。この温度補償部17は、光ファイバ12がアラミド繊維などの抗張力繊維とともにルースに収納され、水圧やセンサ自重による歪が加わらないことから、温度変化に起因した歪のみを測定可能である。   Further, in the distributed water pressure sensor 10 of the present embodiment, the optical fiber 12 in which the sensing unit 16 is folded is introduced into the tube of the tubular body 11 and used as the temperature compensation unit 17 so that the strain change due to temperature can be corrected. The temperature compensation unit 17 is capable of measuring only the strain caused by the temperature change because the optical fiber 12 is housed in the loose together with the tensile strength fiber such as the aramid fiber and the strain due to the water pressure or the sensor's own weight is not added.

この温度補償部17で測定された温度変化に起因した歪量によって、前記センシング部16で測定された[水圧による歪]を補正することで、センサに加わる水圧をさらに正確に測定することができる。また、前述した1つの撚り部13における水圧測定を、センサ長手方向に沿って各撚り部13に対して行うことによって、水圧測定箇所に布設された分布型水圧センサ10の全長にわたり、正確な水圧を測定することができる。   By correcting the [strain due to water pressure] measured by the sensing unit 16 with the amount of strain caused by the temperature change measured by the temperature compensation unit 17, the water pressure applied to the sensor can be measured more accurately. . In addition, the above-described water pressure measurement at one twisted portion 13 is performed on each twisted portion 13 along the sensor longitudinal direction, so that an accurate water pressure can be obtained over the entire length of the distributed water pressure sensor 10 installed at the water pressure measurement location. Can be measured.

従来のセンサの概略構成を例示する縦断面図及び横断面図である。It is the longitudinal cross-sectional view which illustrates schematic structure of the conventional sensor, and a cross-sectional view. 図1に示す従来センサにおける光ファイバにかかる歪を説明するための要部拡大図である。It is a principal part enlarged view for demonstrating the distortion concerning the optical fiber in the conventional sensor shown in FIG. 本発明の分布型水圧センサの一実施形態を示す図であり、(a)は分布型水圧センサの縦断面図、はその撚り部の横断面図、(c)は直線部の横断面図である。It is a figure which shows one Embodiment of the distributed water pressure sensor of this invention, (a) is a longitudinal cross-sectional view of a distributed water pressure sensor, is a cross-sectional view of the twist part, (c) is a cross-sectional view of a straight part. is there. 本発明の分布型水圧センサによる水圧測定結果を示す図である。It is a figure which shows the water pressure measurement result by the distributed water pressure sensor of this invention.

符号の説明Explanation of symbols

10…分布型水圧センサ、11…管状体、12…光ファイバ、13…撚り部、14…直線部、15…折り返し部、16…センシング部、17…温度補償部、18…溝、19…シース。   DESCRIPTION OF SYMBOLS 10 ... Distributed type water pressure sensor, 11 ... Tubular body, 12 ... Optical fiber, 13 ... Twist part, 14 ... Straight part, 15 ... Folding part, 16 ... Sensing part, 17 ... Temperature compensation part, 18 ... Groove, 19 ... Sheath .

Claims (1)

長手方向に沿って連続的に又は断続的に光ファイバを収納可能な溝が設けられた管状体と、該管状体の外周に撚り合わされた光ファイバとを備え、前記管状体の外周に光ファイバが撚り合わされた撚り部と、前記管状体内に光ファイバが収納された直線部とが、前記管状体の長手方向に沿って交互に設けられ、前記管状体の先端部に設けられた撚り部又は直線部の先端側の光ファイバを折り返して管状体内に導入する折り返し部が設けられるとともに、該折り返し部から基端側に向かう光ファイバが管状体内に直線的に収納されて温度補償部が形成されてなり、
前記光ファイバの長手方向の歪を測定し、前記撚り部で測定された歪量から前記直線部で測定された歪量を差し引くことによって水圧による歪量を測定可能とし、且つ該温度補償部で測定された歪量によって前記水圧による歪量の温度による歪変化分を補正可能としたことを特徴とする分布型水圧センサ。
A tubular body provided with a groove capable of accommodating an optical fiber continuously or intermittently along the longitudinal direction, and an optical fiber twisted around the outer periphery of the tubular body, and the optical fiber on the outer periphery of the tubular body Are twisted together, and straight portions in which the optical fiber is housed in the tubular body are alternately provided along the longitudinal direction of the tubular body, and the twisted portion provided at the distal end portion of the tubular body or A folding portion is provided to fold back the optical fiber on the distal end side of the straight portion and introduce it into the tubular body, and the optical fiber from the folded portion toward the proximal end is linearly stored in the tubular body to form a temperature compensation portion. And
The strain in the longitudinal direction of the optical fiber is measured, and the amount of strain due to water pressure can be measured by subtracting the amount of strain measured in the linear portion from the amount of strain measured in the twisted portion, and the temperature compensation unit A distributed water pressure sensor characterized in that a strain change due to temperature of a strain amount due to the water pressure can be corrected by the measured strain amount.
JP2006352165A 2006-12-27 2006-12-27 Distributed water pressure sensor Expired - Fee Related JP4874785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352165A JP4874785B2 (en) 2006-12-27 2006-12-27 Distributed water pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352165A JP4874785B2 (en) 2006-12-27 2006-12-27 Distributed water pressure sensor

Publications (2)

Publication Number Publication Date
JP2008164352A true JP2008164352A (en) 2008-07-17
JP4874785B2 JP4874785B2 (en) 2012-02-15

Family

ID=39694065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352165A Expired - Fee Related JP4874785B2 (en) 2006-12-27 2006-12-27 Distributed water pressure sensor

Country Status (1)

Country Link
JP (1) JP4874785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032358A (en) * 2008-07-29 2010-02-12 Fujikura Ltd Fiber optic sensor cable for distributed pressure sensor
DE102013107276A1 (en) 2012-07-11 2013-10-02 Lios Technology Gmbh Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction
CN115266075A (en) * 2022-09-26 2022-11-01 中交第一公路勘察设计研究院有限公司 Bulging self-sensing plate type support and manufacturing method thereof, monitoring system and monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032358A (en) * 2008-07-29 2010-02-12 Fujikura Ltd Fiber optic sensor cable for distributed pressure sensor
DE102013107276A1 (en) 2012-07-11 2013-10-02 Lios Technology Gmbh Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction
CN115266075A (en) * 2022-09-26 2022-11-01 中交第一公路勘察设计研究院有限公司 Bulging self-sensing plate type support and manufacturing method thereof, monitoring system and monitoring method

Also Published As

Publication number Publication date
JP4874785B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP2010185729A (en) Distributed optical fiber pressure sensor cable
JP5005363B2 (en) Fiber optic sensor cable
CN103502788B (en) Hose deterioration monitoring system
BRPI0713004A2 (en) multi-core temperature sensing fiber
JP5259340B2 (en) Medical equipment
JP3668199B2 (en) Tunnel deformation measurement method
CN103314415A (en) Method for measuring the length of an electric cable that uses an optical fibre element as a sensor
WO2010129942A1 (en) Cable including strain-free fiber and strain-coupled fiber
JP4954687B2 (en) Fiber optic sensor cable
CN108139235B (en) DPTSS cable
JP4874785B2 (en) Distributed water pressure sensor
US20120132008A1 (en) Fiber optic load measurement device
JP2008180866A (en) Optical fiber cord
WO2013052543A2 (en) Sensing cable
JP2019070593A (en) Pc steel strand wire with optical fiber, strain measurement method, and strain measurement apparatus
JP2008180580A (en) Distributed type optic fiber sensor
JP2009150800A (en) Optical fiber sensor, and distortion and temperature measuring method using optical fiber sensor
JP2007114218A (en) Optical fiber cable and optical fiber sensor using the same
JP4865423B2 (en) Optical fiber sensor and strain measurement method using the same
JP6989285B2 (en) Fiber optic sensor cable
RU2552399C1 (en) Distributed fiber optical high sensitivity temperature sensor
CN210177368U (en) Intelligent inhaul cable and fiber reinforced optical fiber lacing wire
JP2008203131A (en) Distributed optical fiber sensor
DK2674738T3 (en) Load sensor, manufacturing method and system
KR100812309B1 (en) Inspection system use of optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees