DE102013107276A1 - Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction - Google Patents

Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction Download PDF

Info

Publication number
DE102013107276A1
DE102013107276A1 DE201310107276 DE102013107276A DE102013107276A1 DE 102013107276 A1 DE102013107276 A1 DE 102013107276A1 DE 201310107276 DE201310107276 DE 201310107276 DE 102013107276 A DE102013107276 A DE 102013107276A DE 102013107276 A1 DE102013107276 A1 DE 102013107276A1
Authority
DE
Germany
Prior art keywords
light
pressure
core
optical
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201310107276
Other languages
German (de)
Inventor
Wieland Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luna Innovations Germany GmbH
Original Assignee
Lios Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lios Technology GmbH filed Critical Lios Technology GmbH
Priority to DE201310107276 priority Critical patent/DE102013107276A1/en
Publication of DE102013107276A1 publication Critical patent/DE102013107276A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35367Sensor working in reflection using reflected light other than backscattered to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis
    • G01L1/245Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis using microbending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The device comprises an optical light guide (3) with a core, which guides the light from a light source along a measurement path. A compressible component (2) is arranged around the light-conducting core. A casing (1) is provided, which reacts to pressure or a pressure change with a longitudinal elongation or contraction. An independent claim is included for a method for distributed optical pressure measurement in a borehole.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren für die verteilte optische Druckmessung.The present invention relates to an apparatus and method for distributed optical pressure measurement.

Bei der Ölförderung und anderen geologischen Anwendungen besteht der Bedarf, die Druckverteilung in einem Bohrloch ortsaufgelöst zu messen. Druckunterschiede können Aufschluss geben über die Zusammensetzung der Medien im Bohrloch (Öl, Wasser, Gas), über Fließgeschwindigkeiten und über das Einströmen von Medien.In oil exploration and other geological applications there is a need to measure the pressure distribution in a borehole in a spatially resolved manner. Pressure differences can reveal the composition of the media in the wellbore (oil, water, gas), flow rates, and media infiltration.

Bisher werden diskrete elektrische und optische Sensoren eingesetzt bzw. erforscht. Alle unter den harten Bedingungen im Bohrloch einsetzbaren Lösungen beruhen auf der Wandlung von Druck in elektrische oder optische Signale durch diskrete Messköpfe. Meist wird eine flexible Membran durch den Druck durchgebogen. Eine Wandlung in ein elektrisches Signal erfolgt z. B. durch eine Kapazitätsmessung. Ein optisches Signal wird z. B. durch Umsetzung der Durchbiegung in einen Zug auf eine optische Faser mit integriertem Gitter (Fibre Bragg Grating FBG) erzeugt. Das Gitter ändert seine Periode und somit die Wellenlänge der Reflektion. Es ist schwierig und aufwändig, robuste Messköpfe zu konstruieren und diese in ausreichender Zahl im Bohrloch zu platzieren. Außerdem würde man aus Gründen des Explosionsschutzes gerne auf elektrischen Strom verzichten.So far, discrete electrical and optical sensors are used or explored. All solutions that can be used in the downhole environment are based on the conversion of pressure into electrical or optical signals by discrete measuring heads. Usually, a flexible membrane is deflected by the pressure. A conversion into an electrical signal is z. B. by a capacitance measurement. An optical signal is z. B. by converting the deflection in a train on an optical fiber with integrated grating (Fiber Bragg Grating FBG) generated. The grid changes its period and thus the wavelength of the reflection. It is difficult and expensive to design robust probes and place them in sufficient numbers downhole. In addition, you would like to do without electrical power for reasons of explosion protection.

Weiterer Stand der Technik: US20080068606 , JP2008203131 , JP2008180580 , JP2008175560 , JP2008164352 , US5844927 , JP6249734 , GB2243908 , US4524436 , GB2125179 , GB2125572 , EP0066493 . Diese Erfindungen werden wohl nicht benutzt. Es ist aber eine Abgrenzung, insbesondere bezüglich GB2243908 / US20080068606 erforderlich.Further state of the art: US20080068606 . JP2008203131 . JP2008180580 . JP2008175560 . JP2008164352 . US5844927 . JP6249734 . GB2243908 . US4524436 . GB2125179 . GB2125572 . EP0066493 , These inventions will probably not be used. But it is a delineation, especially regarding GB2243908 / US20080068606 required.

Die hier vorgeschlagene Lösung ermöglicht eine ortsaufgelöste optische Druckmessung ohne diskrete Messköpfe und mit praktisch beliebiger Zahl von Messpunkten. Hierzu dienen ein Messgerät (Lichtquelle, Modulator, Filter, optischer Empfänger, Verstärker, Auswertung) und ein Sensorkabel mit folgenden Komponenten:

  • – Optischer Lichtleiter: Der optische Lichtleiter führt Licht aus einer Lichtquelle entlang der Messstrecke.
  • – Leicht streuendes Material oder Gitter im Lichtleiter. Ein Teil des Lichts wird im Lichtleitermaterial zurückgestreut oder an in den Lichtleiter eingebrachten Gittern reflektiert. (Anmerkung: Jedes Material streut etwas.)
  • – Eine komprimierbare Komponente (z. B. Luft, Gas, offenporige/gasgefüllte Materialien), die um den lichtleitenden Kern herum angeordnet ist.
  • – Eine (rohrähnliche) Hülle, die auf (seitlichen) Druck u. a. mit einer Längsdehnung oder -kontraktion reagiert. (Das Hüllmaterial kann z. B. schlecht komprimierbar sein und reagiert deshalb auf Druck (Kompression/Dehnung) in einer Richtung mit einer Ausdehnung bzw. Kontraktion in anderen Richtungen. – Querdehnung bzw. -kontraktion)
  • – Ggf. ein Material, das den lichtleitenden Kern mit der äußeren Hülle verbindet.
  • – Ggf. ein Mittel zur Temperaturkompensation. Die Temperatur kann im gleichen oder einem anderen Lichtleiter anhand von Raman- oder Brillouin-Streuung bzw. FBG-Reflektion gemessen werden und zur rechnerischen Kompensation von temperaturinduzierten Längenänderungen benutzt werden.
  • – Ggf. ein (mechanischer) Schutz: äußeres (druckdurchlässiges, z. B. perforiertes) Rohr/Polymermantel
The solution proposed here enables a spatially resolved optical pressure measurement without discrete measuring heads and with virtually any number of measuring points. This is done by a measuring device (light source, modulator, filter, optical receiver, amplifier, evaluation) and a sensor cable with the following components:
  • - Optical fiber: The optical fiber carries light from a light source along the measurement path.
  • - Lightly scattering material or grid in the light guide. A portion of the light is scattered back in the optical fiber material or reflected to introduced into the light guide gratings. (Note: Every material scatters something.)
  • A compressible component (eg, air, gas, open-pored / gas-filled materials) disposed around the photoconductive core.
  • - A (tube-like) shell that responds to (lateral) pressure, inter alia, with a longitudinal strain or contraction. (The shell material may, for example, be poorly compressible and therefore react to compression (compression / elongation) in one direction with expansion or contraction in other directions.) - Transverse Elongation or Contraction)
  • - Possibly. a material that connects the photoconductive core with the outer shell.
  • - Possibly. a means for temperature compensation. The temperature can be measured in the same or a different light guide based on Raman or Brillouin scattering or FBG reflection and used for computational compensation of temperature-induced changes in length.
  • - Possibly. a (mechanical) protection: outer (pressure-permeable, eg perforated) tube / polymer jacket

Ein (hydrostatischer) Druck bewirkt eine Längsdehnung bzw. -kontraktion der rohrähnlichen Hülle, die auf den Lichtleiter übertragen wird. Die Längsdehnung bzw. -kontraktion ist materialabhängig und um so größer, je geringer die Wandstärke ist und je besser die komprimierbare Komponente nachgibt (Druckunterschied innerhalb/außerhalb Hülle). Die Dehnung/Kontraktion führt im Lichtleiter zu einer Änderung der zurückgestreuten/reflektierten Lichtanteile, z. B. durch einen der folgenden Effekte:
Wellenlängenänderung eines FBG,
Änderung der Brillouin-Verschiebung oder
geänderte Dämpfung durch Microbending.
A (hydrostatic) pressure causes a longitudinal expansion or contraction of the tube-like shell, which is transmitted to the light guide. The longitudinal strain or contraction is material-dependent and the greater the smaller the wall thickness and the better the compressible component yields (pressure difference inside / outside the shell). The elongation / contraction leads in the light guide to a change in the backscattered / reflected light components, z. By one of the following effects:
Wavelength change of an FBG,
Change of Brillouin shift or
changed damping by microbending.

Spannungsinduzierte Doppelbrechung ließe sich auch nutzen, könnte aber durch GB2243908 / US20080068606 abgedeckt sein.Stress-induced birefringence could also be used, but could through GB2243908 / US20080068606 be covered.

Weitere Merkmale und Vorteile der vorliegenden Erfindung werden deutlich anhand der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beiliegenden Abbildungen. Darin zeigenFurther features and advantages of the present invention will become apparent from the following description of preferred embodiments with reference to the accompanying drawings. Show in it

1 einen schematischen Querschnitt durch einen Lichtleiter im Röhrchen; 1 a schematic cross section through a light pipe in the tube;

2 einen schematischen Querschnitt durch einen Lichtleiter mit Hohlräumen. 2 a schematic cross section through a light guide with cavities.

Lichtleiter im RöhrchenLight guide in the tube

Der Lichtleiter 3 (Kern/Mantel/Beschichtung) wird in ein (teilweise) luftgefülltes Röhrchen 1 aus Metall oder Kunststoff eingebaut. Ggf. wird ein Material in das Röhrchen 1 eingebracht (z. B. Gel), das eine Kraftübertragung vom Röhrchen 1 auf den Lichtleiter 3 bewirkt. Ggf. ist das kraftübertragende Material komprimierbar. Mit dem Bezugszeichen 2 werden die Luft und/oder das Material wie beispielsweise Gel bezeichnet.The light guide 3 (Core / Coat / Coating) is placed in a (partially) air-filled tube 1 made of metal or plastic. Possibly. gets a material in the tube 1 introduced (eg gel), which is a power transmission from the tube 1 on the light guide 3 causes. Possibly. is the force transmitting material compressible. With the reference number 2 become the air and / or the material such as gel called.

Lichtleiter mit HohlräumenLight guide with cavities

Der Lichtleiter verfügt über (gasgefüllte) Hohlräume 5, die um den lichtführenden Kern 6 angeordnet sind. Die Hohlräume 5 dienen als komprimierbare Komponente und ggf. auch der Führung des Lichts (Stichwort: Photonic Crystal Fibre). Die äußere Hülle 4 des Lichtleiters (Glas- oder Kunststoffmantel) reagiert auf Druck mit einer Längsdehnung bzw. -kontraktion, die durch Glasstege zwischen den Hohlräumen 5 auf den lichtführenden Glaskern 6 übertragen wird. Der Lichtleiter kann aus (anorganischem) Glas oder organischen Polymeren bestehen.The light guide has (gas-filled) cavities 5 that surround the light-guiding core 6 are arranged. The cavities 5 serve as a compressible component and possibly also the guidance of the light (keyword: Photonic Crystal Fiber). The outer shell 4 of the light guide (glass or plastic sheath) responds to pressure with a longitudinal strain or contraction, through glass webs between the cavities 5 on the light-guiding glass core 6 is transmitted. The light guide may consist of (inorganic) glass or organic polymers.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • US 20080068606 [0004, 0004, 0007] US 20080068606 [0004, 0004, 0007]
  • JP 2008203131 [0004] JP 2008203131 [0004]
  • JP 2008180580 [0004] JP 2008180580 [0004]
  • JP 2008175560 [0004] JP 2008175560 [0004]
  • JP 2008164352 [0004] JP 2008164352 [0004]
  • US 5844927 [0004] US 5844927 [0004]
  • JP 6249734 [0004] JP 6249734 [0004]
  • GB 2243908 [0004, 0004, 0007] GB 2243908 [0004, 0004, 0007]
  • US 4524436 [0004] US 4524436 [0004]
  • GB 2125179 [0004] GB 2125179 [0004]
  • GB 2125572 [0004] GB 2125572 [0004]
  • EP 0066493 [0004] EP 0066493 [0004]

Claims (2)

Vorrichtung für die verteilte optische Druckmessung, umfassend – einen optischen Lichtleiter (3) mit einem Kern (6), der Licht aus einer Lichtquelle entlang einer Messstrecke führen kann, – eine komprimierbare Komponente (2, 5), die um den lichtleitenden Kern (6) herum angeordnet ist, – eine Hülle (1, 4), die auf Druck beziehungsweise eine Druckänderung mit einer Längsdehnung oder einer Längskontraktion reagieren kann oder reagiert.Device for distributed optical pressure measurement, comprising - an optical waveguide ( 3 ) with a core ( 6 ), which can guide light from a light source along a measuring path, - a compressible component ( 2 . 5 ) surrounding the photoconductive core ( 6 ) is arranged around, 1 . 4 ), which can react or react to pressure or a pressure change with a longitudinal expansion or a longitudinal contraction. Verfahren für die verteilte optische Druckmessung, gekennzeichnet durch folgende Verfahrensschritte: – Bei einer Vorrichtung für die verteilte optische Druckmessung, insbesondere bei einer Vorrichtung gemäß Anspruch 1, wird Licht in einen von der Vorrichtung umfassten optischen Leitleiter (3) beziehungsweise in dessen lichtleitenden Kern (6) eingekoppelt, – die zurückgestreuten oder zurückreflektierten Lichtanteile werden erfasst, – aus den zurückgestreuten oder zurückreflektierten Lichtanteilen wird der Druck außerhalb des Lichtleiters (3) beziehungsweise der Druck außerhalb einer den Lichtleiter (3) umgebenden Hülle (1, 4) ermittelt.Method for the distributed optical pressure measurement, characterized by the following method steps: In a device for the distributed optical pressure measurement, in particular in a device according to claim 1, light is introduced into an optical guide (FIG. 3 ) or in its photoconductive core ( 6 ), - the backscattered or reflected back light components are detected, - from the backscattered or reflected back light components, the pressure outside the light guide ( 3 ) or the pressure outside of the optical fiber ( 3 ) surrounding envelope ( 1 . 4 ).
DE201310107276 2012-07-11 2013-07-10 Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction Withdrawn DE102013107276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201310107276 DE102013107276A1 (en) 2012-07-11 2013-07-10 Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012013673 2012-07-11
DE102012013673.0 2012-07-11
DE201310107276 DE102013107276A1 (en) 2012-07-11 2013-07-10 Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction

Publications (1)

Publication Number Publication Date
DE102013107276A1 true DE102013107276A1 (en) 2013-10-02

Family

ID=49154895

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310107276 Withdrawn DE102013107276A1 (en) 2012-07-11 2013-07-10 Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction

Country Status (1)

Country Link
DE (1) DE102013107276A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066493A1 (en) 1981-05-15 1982-12-08 Schlumberger Limited Pressure wave fiber optic transducer cable
GB2125179A (en) 1982-08-03 1984-02-29 Standard Telephones Cables Ltd Distributed sensors
GB2125572A (en) 1982-08-03 1984-03-07 Standard Telephones Cables Ltd Optical fibre sensors
US4524436A (en) 1981-05-15 1985-06-18 Schlumberger Technology Corporation Pressure wave fiber optic transducer cable
GB2243908A (en) 1990-03-31 1991-11-13 Sira Ltd Distributed fibre optic sensor
JPH06249734A (en) 1993-03-01 1994-09-09 Mitsubishi Heavy Ind Ltd Optical waveguide pressure sensor
US5844927A (en) 1995-03-20 1998-12-01 Optoplan As Optical fiber distributed feedback laser
US20080068606A1 (en) 2004-05-25 2008-03-20 Rogers Alan J Method and Apparatus for Detecting Pressure Distribution in Fluids
JP2008164352A (en) 2006-12-27 2008-07-17 Fujikura Ltd Distributed water pressure sensor
JP2008175560A (en) 2007-01-16 2008-07-31 Fujikura Ltd Optical fiber sensor cable
JP2008180580A (en) 2007-01-24 2008-08-07 Fujikura Ltd Distributed type optic fiber sensor
JP2008203131A (en) 2007-02-21 2008-09-04 Fujikura Ltd Distributed optical fiber sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066493A1 (en) 1981-05-15 1982-12-08 Schlumberger Limited Pressure wave fiber optic transducer cable
US4524436A (en) 1981-05-15 1985-06-18 Schlumberger Technology Corporation Pressure wave fiber optic transducer cable
GB2125179A (en) 1982-08-03 1984-02-29 Standard Telephones Cables Ltd Distributed sensors
GB2125572A (en) 1982-08-03 1984-03-07 Standard Telephones Cables Ltd Optical fibre sensors
GB2243908A (en) 1990-03-31 1991-11-13 Sira Ltd Distributed fibre optic sensor
JPH06249734A (en) 1993-03-01 1994-09-09 Mitsubishi Heavy Ind Ltd Optical waveguide pressure sensor
US5844927A (en) 1995-03-20 1998-12-01 Optoplan As Optical fiber distributed feedback laser
US20080068606A1 (en) 2004-05-25 2008-03-20 Rogers Alan J Method and Apparatus for Detecting Pressure Distribution in Fluids
JP2008164352A (en) 2006-12-27 2008-07-17 Fujikura Ltd Distributed water pressure sensor
JP2008175560A (en) 2007-01-16 2008-07-31 Fujikura Ltd Optical fiber sensor cable
JP2008180580A (en) 2007-01-24 2008-08-07 Fujikura Ltd Distributed type optic fiber sensor
JP2008203131A (en) 2007-02-21 2008-09-04 Fujikura Ltd Distributed optical fiber sensor

Similar Documents

Publication Publication Date Title
US10725237B2 (en) Polymer coated optical fiber
EP3797269B1 (en) Distributed optical fibre vibration sensor
US20130094798A1 (en) Monitoring Structural Shape or Deformations with Helical-Core Optical Fiber
CN105378437A (en) Optical fiber cable, optical fiber cable manufacturing method, and distributed measurement system
Mesquita et al. Groundwater level monitoring using a plastic optical fiber
Mohamad Temperature and strain sensing techniques using Brillouin optical time domain reflectometry
CN108139235A (en) DPTSS cables
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
CA2989301A1 (en) Method for measuring the displacement profile of buildings and sensor therefor
KR101498381B1 (en) System for monitoring three-dimension shape of pipe-structure using fiber bragg grating sensor
Pei et al. Monitoring and analysis of cast-in-place concrete bored piles adjacent to deep excavation by using BOTDA sensing technology
CN113188692B (en) Soil and water pressure monitoring early warning device
CN213398986U (en) All-purpose optical cable for communication and sensing
EP3730926B1 (en) Method and system for measuring or monitoring the viscosity of flowing materials
AT513732B1 (en) Method for spatially resolved pressure measurement
EP2539660B1 (en) Foundry ladle or intermediate vessel for receiving a liquid metal, comprising an integrated measuring element for detecting the temperature and/or mechanical load
JP7254172B2 (en) optical fiber
CN104614093B (en) Bending-insensitive distributed Brillouin optical fiber temperature and strain sensor
DE102013107276A1 (en) Device for distributed optical pressure measurement in borehole, comprises optical light guide with core, which guides light from light source along measurement path, and casing that reacts to pressure change with elongation or contraction
Woschitz et al. Distributed fibre optic strain measurements on a driven pile
Li et al. The experimental evaluation of FBG sensors for strain measurement of prestressed steel strand
Haase Strain sensors based on Bragg gratings
RU2552399C1 (en) Distributed fiber optical high sensitivity temperature sensor
CN202471317U (en) Optical fiber grating dynamometric device
CN202547682U (en) Spatial resolution calibration device of Brillouin optical time domain demodulator

Legal Events

Date Code Title Description
R230 Request for early publication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee