JP2008163853A - Electromagnetically driven pump - Google Patents

Electromagnetically driven pump Download PDF

Info

Publication number
JP2008163853A
JP2008163853A JP2006354758A JP2006354758A JP2008163853A JP 2008163853 A JP2008163853 A JP 2008163853A JP 2006354758 A JP2006354758 A JP 2006354758A JP 2006354758 A JP2006354758 A JP 2006354758A JP 2008163853 A JP2008163853 A JP 2008163853A
Authority
JP
Japan
Prior art keywords
cylinder chamber
mover
fluid
generating portion
thrust generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006354758A
Other languages
Japanese (ja)
Inventor
Takemoto Sakai
建基 酒井
Fumihiro Okamura
文裕 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2006354758A priority Critical patent/JP2008163853A/en
Priority to PCT/JP2007/072683 priority patent/WO2008081658A1/en
Publication of JP2008163853A publication Critical patent/JP2008163853A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/046Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetically driven pump for enhancing an operational continuity, by realizing high pressure of fluid pressure, without reducing the cross-sectional area of a thrust generating part in a cylinder body. <P>SOLUTION: Fluid filled in a first cylinder chamber 4b smaller in the cross-sectional area than a second cylinder chamber 5, is sent out by being put under a high pressure by pressing by a moving piece 8 by using thrust generated in the trust generating part 10 of the second cylinder chamber 5 by carrying an electric current to an electromagnetic coil 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばディスペンサー、分析器、燃料電池、インクジェットプリンタなど高圧力を必要とする用途に適した電磁駆動ポンプに関する。   The present invention relates to an electromagnetically driven pump suitable for an application requiring high pressure such as a dispenser, an analyzer, a fuel cell, and an ink jet printer.

流体搬送用の直動式ポンプとしては、例えば電磁駆動ポンプが用いられる。電磁駆動ポンプは、シリンダ本体内に推力発生するマグネットを有する可動子(ピストンやプランジャ)が摺動可能に設けられている。また、シリンダ本体の外周にコイルが設けられており該コイル通電することにより発生する電磁力の反力で可動子を往復動させて可動子の両側に設けられたバルブ(弁)を開閉させて一方のシリンダ室へ流体を吸い込み、他方のシリンダ室内の流体を送り出す。電磁駆動ポンプは、ポンプサイズを小型化でき、比較的簡易な構成にできるメリットがある(特許文献1)。
特開2004−124724号公報
For example, an electromagnetically driven pump is used as the direct acting pump for fluid conveyance. The electromagnetically driven pump is provided with a mover (piston or plunger) having a magnet that generates thrust in a cylinder body so as to be slidable. In addition, a coil is provided on the outer periphery of the cylinder body, and the movable element is reciprocated by the reaction force of the electromagnetic force generated by energizing the coil to open and close the valves (valves) provided on both sides of the movable element. The fluid is sucked into one cylinder chamber and the fluid in the other cylinder chamber is sent out. The electromagnetically driven pump has an advantage that the pump size can be reduced and the configuration can be made relatively simple (Patent Document 1).
JP 2004-124724 A

電磁駆動ポンプの更なる流体圧の高圧化を図るためには、シリンダ本体の管路断面積を小さくしかつ入力を増やして可動子に高推力を発生させることが考えられる。しかしながら、可動子には推力発生部であるマグネットが設けられるため、シリンダ室の管路断面積が小さくなるとマグネット径が小さくなり高推力が得られない。また、コイルへの入力を増やすことは省エネルギー化を図るうえで好ましくない。
また、流体押し出し部と推力発生部がシリンダ本体内で断面積が異なるように形成されていると、可動子の往復動に伴い推力発生部の移動空間に可動子の外周面とシリンダ本体内壁面との隙間から流体が漏出するため、流体が非圧縮性の液体の場合、可動子が移動することができなくなるおそれがある。
In order to further increase the fluid pressure of the electromagnetically driven pump, it is conceivable to reduce the pipe cross-sectional area of the cylinder body and increase the input to generate a high thrust in the mover. However, since the mover is provided with a magnet which is a thrust generating portion, when the pipe cross-sectional area of the cylinder chamber is reduced, the magnet diameter is reduced and high thrust cannot be obtained. Further, increasing the input to the coil is not preferable for energy saving.
In addition, if the fluid push-out portion and the thrust generating portion are formed to have different cross-sectional areas in the cylinder body, the outer peripheral surface of the mover and the inner wall surface of the cylinder body are moved in the moving space of the thrust generating portion as the mover reciprocates. Since the fluid leaks from the gap, the mover may not be able to move when the fluid is an incompressible liquid.

本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、シリンダ本体内の推力発生部の断面積を減らすことなく流体圧の高圧化を図り動作継続性を高めた電磁駆動ポンプを提供することにある。   The present invention has been made to solve these problems, and the purpose of the present invention is to increase the fluid pressure without reducing the cross-sectional area of the thrust generating portion in the cylinder body and to improve the operation continuity. It is to provide an electromagnetically driven pump.

本発明は上記目的を達成するため、次の構成を備える。
両端に開口部が形成され内部側が拡径した多段径を有するシリンダ室が設けられたシリンダ本体と、開口部と各々連通する第1のシリンダ室に連通して中空の可動子軸の両端側が摺動可能に挿入され、可動子軸の中途部外周側にマグネットを有する推力発生部が第2のシリンダ室内に収容される可動子と、第1のシリンダ室に開閉可能に設けられ、一方側は外部流路から第1のシリンダ室内へ流体を吸い込み他方側は第1のシリンダ室から外部流路へ流体を送り出す第1、第2のバルブと、シリンダ本体の外周に空芯の電磁コイルを配置し、該電磁コイルに通電して可動子をシリンダ本体の軸線方向に往復駆動することにより第1、第2のバルブを開閉して流体を輸送する電磁駆動ポンプであって、電磁コイルに通電して第2のシリンダ室の推力発生部で発生した推力を利用して当該第2のシリンダ室より断面積の小さい第1のシリンダ室内に満たされた流体を可動子で押圧することで高圧化して送り出すことを特徴とする。
In order to achieve the above object, the present invention comprises the following arrangement.
A cylinder body provided with a cylinder chamber having a multi-stage diameter with openings formed at both ends and the inner side being expanded, and a first cylinder chamber communicating with each of the openings and the both ends of the hollow mover shaft are slid A thrust generating portion inserted in a movable manner and having a magnet on the outer peripheral side of the middle portion of the mover shaft is provided in the second cylinder chamber so as to be openable and closable in the first cylinder chamber. The first and second valves that draw fluid from the external flow path into the first cylinder chamber and send the fluid from the first cylinder chamber to the external flow path, and an air-core electromagnetic coil on the outer periphery of the cylinder body An electromagnetically driven pump that opens and closes the first and second valves to transport fluid by energizing the electromagnetic coil and reciprocatingly driving the mover in the axial direction of the cylinder body. The second cylinder chamber Wherein the sending the filled utilizing the thrust generated by the force generating unit in a small first cylinder chamber cross-sectional area than that of the second cylinder chamber fluid and high pressure by being pressed by the movable element.

また、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部と第2のシリンダ室の内壁面との間に形成された隙間を通じて推力発生部の移動方向と反対側の第2のシリンダ室内へ逃がすことを特徴とする。
また、推力発生部に軸線方向に沿った貫通孔が形成されており、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体が推力発生部の移動方向と反対側の第2のシリンダ室内へ貫通孔を通じて逃がすことを特徴とする。
また、可動子軸には推力発生部の両側に軸線方向と直交する連通孔が各々形成されており、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部が移動する一方の連通孔から中空軸孔を通じて他方の連通孔から反対側の第2のシリンダ室内へ逃がすことを特徴とする。
この場合、可動子軸の吸込側開口部に、当該可動子軸が吐出側に向かって動いた際に軸孔に満たされた流体が移動して吸込みバルブが閉止されるのを防ぐ第3のバルブを設けたことを特徴とする。
Further, when the mover reciprocates, the fluid that leaks from the first cylinder chamber to the second cylinder chamber passes through a gap formed between the thrust generator and the inner wall surface of the second cylinder chamber. The second cylinder chamber is on the opposite side to the moving direction of the cylinder.
Also, a through hole is formed in the thrust generating portion along the axial direction, and the fluid leaked from the first cylinder chamber to the second cylinder chamber when the mover reciprocates is moved in the moving direction of the thrust generating portion. The second cylinder chamber on the opposite side escapes through the through hole.
In addition, the mover shaft is formed with communication holes perpendicular to the axial direction on both sides of the thrust generating portion, and the fluid leaked from the first cylinder chamber to the second cylinder chamber when the mover reciprocates. From the other communication hole through the hollow shaft hole to the second cylinder chamber on the opposite side.
In this case, when the mover shaft moves toward the discharge side, the fluid filled in the shaft hole moves to the suction side opening of the mover shaft to prevent the suction valve from closing. A valve is provided.

また、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を、推力発生部と第2のシリンダ室の内壁面との間に形成された隙間、推力発生部に軸線方向に沿った貫通孔、可動子軸に推力発生部の両側に各々形成された軸線方向と直交する連通孔のうち少なくともいずれか2以上の組み合わせで反対側の第2のシリンダ室内へ逃がすことを特徴とする。   Further, when the mover reciprocates, the fluid leaked from the first cylinder chamber to the second cylinder chamber is caused by a gap formed between the thrust generating portion and the inner wall surface of the second cylinder chamber, and thrust generation At least two of the through-holes along the axial direction in the part and the communication holes perpendicular to the axial direction formed on both sides of the thrust generating part on the mover shaft into the opposite second cylinder chamber Characterized by escape.

上述した電磁駆動ポンプを用いれば、両端に開口部が形成され内部側が拡径した多段径を有するシリンダ室が設けられたシリンダ本体に、開口部と各々連通する第1のシリンダ室に連通して中空の可動子軸の両端側が摺動可能に挿入され、中空可動子軸の中途部外周側に設けられるマグネットを有する推力発生部が第2のシリンダ室内に収容されて可動子が組み付けられ、電磁コイルに通電して第2のシリンダ室の推力発生部で発生した推力を利用して当該第2のシリンダ室より断面積の小さい第1のシリンダ室内に満たされた流体を可動子で押圧することで高圧力にして送り出す。これにより、シリンダ本体内の流路断面積を減らすことなく可動子による流体圧の高圧化が図れる。   If the above-described electromagnetically driven pump is used, the cylinder body provided with a cylinder chamber having a multi-stage diameter in which openings are formed at both ends and the inner side is expanded is communicated with the first cylinder chamber that communicates with each of the openings. Both ends of the hollow mover shaft are slidably inserted, and a thrust generating portion having a magnet provided on the outer peripheral side of the middle portion of the hollow mover shaft is housed in the second cylinder chamber and the mover is assembled. Energizing the coil and pressing the fluid filled in the first cylinder chamber having a smaller cross-sectional area than the second cylinder chamber with the mover using the thrust generated in the thrust generating portion of the second cylinder chamber At high pressure. As a result, the fluid pressure can be increased by the mover without reducing the flow path cross-sectional area in the cylinder body.

また、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部と第2のシリンダ室の内壁面との間に形成された隙間を通じて推力発生部の移動方向と反対側の第2のシリンダ室内へ逃がすことにより、又は推力発生部に軸線方向に沿った貫通孔が形成されており、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体が推力発生部の移動方向と反対側の第2のシリンダ室内へ貫通孔を通じて逃がすことにより、又は可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部が移動する一方の連通孔から中空軸孔を通じて他方の連通孔から反対側の第2のシリンダ室内へ逃がすことにより、第2のシリンダ室に浸入した流体、特に非圧縮性の液体が推力発生部の往復動を妨げることなく動作継続性を保つことができる。   Further, when the mover reciprocates, the fluid that leaks from the first cylinder chamber to the second cylinder chamber passes through a gap formed between the thrust generator and the inner wall surface of the second cylinder chamber. Through the second cylinder chamber on the opposite side of the moving direction, or a through-hole is formed in the thrust generating portion along the axial direction, so that the first move from the first cylinder chamber when the mover reciprocates. The fluid leaking into the second cylinder chamber escapes from the first cylinder chamber to the second cylinder chamber opposite to the moving direction of the thrust generating section through the through hole, or when the mover reciprocates. The fluid that has entered the second cylinder chamber by letting the fluid leaking into the cylinder chamber escape from the one communication hole through which the thrust generating unit moves through the hollow shaft hole to the second cylinder chamber on the opposite side, Especially incompressible liquid There can be maintained operational continuity without interfering with reciprocation of the thrust generating unit.

また、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を、推力発生部と第2のシリンダ室の内壁面との間に形成された隙間、推力発生部に軸線方向に沿った貫通孔、可動子軸に推力発生部の両側に各々形成された軸線方向と直交する連通孔のうち少なくともいずれか2以上の組み合わせで反対側の第2のシリンダ室内へ逃がすようにすると推力発生部の外径を必要以上に減らすことがなく、よって可動子の推力を低下せずに動作継続性を向上することができる。   Further, when the mover reciprocates, the fluid leaked from the first cylinder chamber to the second cylinder chamber is caused by a gap formed between the thrust generating portion and the inner wall surface of the second cylinder chamber, and thrust generation At least two of the through-holes along the axial direction in the part and the communication holes perpendicular to the axial direction formed on both sides of the thrust generating part on the mover shaft into the opposite second cylinder chamber When escaped, the outer diameter of the thrust generating portion is not reduced more than necessary, and therefore the continuity of operation can be improved without reducing the thrust of the mover.

以下、本発明に係る電磁駆動ポンプの最良の実施形態について添付図面とともに詳細に説明する。本実施形態は、電磁駆動ポンプとして非圧縮性流体(特に水や冷媒などの液体)を送り出す電磁駆動ポンプを例示して説明するものとする。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiment of an electromagnetically driven pump according to the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, an electromagnetically driven pump that delivers an incompressible fluid (particularly liquid such as water or refrigerant) will be described as an example of the electromagnetically driven pump.

先ず、電磁駆動ポンプの概略構成について図1を参照して説明する。
シリンダ本体1は、第1のブロック体Eと第2のブロック体Gを、リング材Fを介して重ね合わせて組み立てられる。シリンダ両端に開口部(吸込み口)2、開口部(送出口)3が形成されている。また、シリンダ本体1には内部側が拡径した(断面積が大きい)多段径を有する複数のシリンダ室が設けられている。
First, a schematic configuration of the electromagnetically driven pump will be described with reference to FIG.
The cylinder body 1 is assembled by stacking the first block body E and the second block body G with the ring material F interposed therebetween. An opening (suction port) 2 and an opening (sending port) 3 are formed at both ends of the cylinder. Further, the cylinder body 1 is provided with a plurality of cylinder chambers having a multi-stage diameter whose inner side is enlarged in diameter (having a large sectional area).

即ち、吸込み口2に隣接してこれより拡径した第1のシリンダ室4a(吸込み側)、送出口3に隣接してこれより拡径した第1のシリンダ室4b(送出側)が設けられている。また第1のシリンダ室4aと第1のシリンダ室4bの間にこれらより拡径した(断面積が大きい)第2のシリンダ室5が設けられている。シリンダ本体1は例えば非磁性体よりなる金属材が用いられる。第1のシリンダ室4aには筒体状の弁座部材6が嵌め込まれており、該弁座部材6の弁孔6aには第1のバルブ7が開閉可能に設けられる。第1のバルブ7は、例えばゴムなどの樹脂材が好適に用いられる。   That is, a first cylinder chamber 4a (suction side) having a diameter larger than that adjacent to the suction port 2 and a first cylinder chamber 4b (sending side) having a diameter larger than that are provided adjacent to the delivery port 3. ing. A second cylinder chamber 5 having a larger diameter (large cross-sectional area) is provided between the first cylinder chamber 4a and the first cylinder chamber 4b. For example, a metal material made of a non-magnetic material is used for the cylinder body 1. A cylindrical valve seat member 6 is fitted into the first cylinder chamber 4a, and a first valve 7 is provided in the valve hole 6a of the valve seat member 6 so as to be opened and closed. For the first valve 7, for example, a resin material such as rubber is preferably used.

シリンダ本体1には可動子8が往復動可能に組み付けられる。可動子8は中空の可動子軸9とその外周側に推力発生部10が設けられている。可動子軸9は、両端側に吸入側開口部9a、送出側開口部9bが各々形成されている。可動子軸9の両端側は、第1のシリンダ室4a、4bに摺動可能に挿入されている。可動子軸9の軸孔9cは、第1のシリンダ室4a、4bと各々連通しており、シリンダ本体1内の流体の流路を形成する。また、送出側開口部9bには、第2のバルブ11が開閉可能に設けられる。第2のバルブ11は、例えばゴムなどの樹脂材が好適に用いられる。
尚、可動子軸9とシリンダ本体1との間にOリングなどのシール材を設けて第1のシリンダ室4a、4bから第2のシリンダ室5への流体の漏出を防ぐことも考えられる。しかしながら、シール材の摩耗による寿命が短く部品加工も必要になることから、あえて第1のシリンダ室4a、4bから第2のシリンダ室5への流体の漏出が許容される構造になっている。
A movable element 8 is assembled to the cylinder body 1 so as to be able to reciprocate. The mover 8 is provided with a hollow mover shaft 9 and a thrust generator 10 on the outer peripheral side thereof. The mover shaft 9 has a suction opening 9a and a delivery opening 9b on both ends. Both end sides of the mover shaft 9 are slidably inserted into the first cylinder chambers 4a and 4b. The shaft hole 9c of the mover shaft 9 communicates with each of the first cylinder chambers 4a and 4b, and forms a fluid flow path in the cylinder body 1. A second valve 11 is provided in the delivery side opening 9b so as to be openable and closable. For the second valve 11, for example, a resin material such as rubber is preferably used.
It is also conceivable to provide a sealing material such as an O-ring between the mover shaft 9 and the cylinder body 1 to prevent fluid leakage from the first cylinder chambers 4a and 4b to the second cylinder chamber 5. However, since the life due to wear of the sealing material is short and part processing is required, the structure is such that fluid leakage from the first cylinder chambers 4a and 4b to the second cylinder chamber 5 is allowed.

可動子軸9の中途部外周側に設けられた推力発生部10はマグネット12が設けられている。マグネット12は、円環状をしており軸線方向に着磁されている。マグネット12の両側は、磁性体を用いたヨーク部13が設けられている。各ヨーク部13の外周面部13aは軸線方向に延設されている。即ち、ヨーク部13の磁束作用面は外周面部13aに径方向で形成される。推力発生部10は第2のシリンダ室5内に収容されており、推力発生部10の外周面部13aと第2のシリンダ室5の内壁面5aとの間には隙間14が形成されている。   The thrust generating unit 10 provided on the outer peripheral side of the middle part of the mover shaft 9 is provided with a magnet 12. The magnet 12 has an annular shape and is magnetized in the axial direction. On both sides of the magnet 12, yoke parts 13 using a magnetic material are provided. The outer peripheral surface portion 13a of each yoke portion 13 extends in the axial direction. That is, the magnetic flux acting surface of the yoke portion 13 is formed on the outer peripheral surface portion 13a in the radial direction. The thrust generating unit 10 is accommodated in the second cylinder chamber 5, and a gap 14 is formed between the outer peripheral surface portion 13 a of the thrust generating unit 10 and the inner wall surface 5 a of the second cylinder chamber 5.

シリンダ本体1の外周には空芯の電磁コイル15が可動子8と同心状に設けられている。電磁コイル15は外装ケース16により軸方向にシリンダ本体1(第1のブロック対E)に押さえ込まれて固定されている。外装体16は、絶縁性のある部材、例えば樹脂材が用いられる。また、第1のブロック対Eと第2のブロック体Gとの間に挟み込まれるリング材Fには、シール用のOリング17が嵌め込まれている。   An air core electromagnetic coil 15 is provided concentrically with the mover 8 on the outer periphery of the cylinder body 1. The electromagnetic coil 15 is pressed and fixed to the cylinder body 1 (first block pair E) in the axial direction by the outer case 16. The exterior body 16 is made of an insulating member such as a resin material. An O-ring 17 for sealing is fitted into the ring material F sandwiched between the first block pair E and the second block body G.

上記電磁コイル15に通電する方向を切り替えることにより当該電磁コイル15に作用する電磁力の反力によって可動子8がシリンダ本体1の軸線方向に往復駆動する。例えば、可動子8が上方へ移動すると、第2のバルブ11を閉じて第1のシリンダ室4bから送出口3を通じて外部流路へ流体を送り出し、第1のバルブ7が開放している間だけ吸込み口2から第1のシリンダ室4aへ流体が吸い込まれる。また、可動子8が下方へ移動すると、第2のバルブ11が開放している間だけ可動子軸9の軸孔9cから第1のシリンダ室4bへ流体が移動し、第1のバルブ7は閉じたまま第1のシリンダ室4aから軸孔9c内へ流体が移動する。このような動作を繰り返して流体をシリンダ本体1から送り出すようになっている。
このように、電磁コイル15に通電して第2のシリンダ室5の推力発生部10で発生した推力を利用して当該第2のシリンダ室5より断面積の小さい第1のシリンダ室4b内に第2のバルブ11を閉じて満たされた流体を可動子8で押圧することで高圧力にして送り出す。よって、シリンダ本体1内の流路断面積を減らすことなく可動子8による流体圧の高圧化が図れる。
By switching the direction in which the electromagnetic coil 15 is energized, the mover 8 is reciprocated in the axial direction of the cylinder body 1 by the reaction force of the electromagnetic force acting on the electromagnetic coil 15. For example, when the mover 8 moves upward, the second valve 11 is closed, the fluid is sent from the first cylinder chamber 4b to the external flow path through the delivery port 3, and only while the first valve 7 is open. Fluid is sucked from the suction port 2 into the first cylinder chamber 4a. When the mover 8 moves downward, the fluid moves from the shaft hole 9c of the mover shaft 9 to the first cylinder chamber 4b only while the second valve 11 is open, and the first valve 7 The fluid moves from the first cylinder chamber 4a into the shaft hole 9c while being closed. Such an operation is repeated to send the fluid from the cylinder body 1.
As described above, the electromagnetic coil 15 is energized and the thrust generated in the thrust generating portion 10 of the second cylinder chamber 5 is used to enter the first cylinder chamber 4 b having a smaller cross-sectional area than the second cylinder chamber 5. The fluid filled with the second valve 11 closed is pressed by the mover 8 to be sent out at a high pressure. Therefore, the fluid pressure can be increased by the mover 8 without reducing the cross-sectional area of the flow path in the cylinder body 1.

また、可動子8が往復動する際に第1のシリンダ室4a、4bから第2のシリンダ室5へ漏出した流体が充満してくると、可動子8の推力が低下して動きが悪くなることが想定される。このため、推力発生部10の外周面部13aと第2のシリンダ室5の内壁面5aとの間に形成された隙間14を通じて第2のシリンダ室5内に溜まった流体を推力発生部10の移動方向と反対側の第2のシリンダ室5内へ逃がすようになっている(矢印P参照)。   Further, when the fluid leaking from the first cylinder chambers 4a and 4b to the second cylinder chamber 5 is filled when the mover 8 reciprocates, the thrust of the mover 8 decreases and the movement becomes worse. It is assumed that For this reason, the fluid accumulated in the second cylinder chamber 5 is moved through the gap 14 formed between the outer peripheral surface portion 13 a of the thrust generating portion 10 and the inner wall surface 5 a of the second cylinder chamber 5. It escapes in the 2nd cylinder chamber 5 on the opposite side to a direction (refer arrow P).

また、図1の左半図において、推力発生部10に軸線方向に沿った貫通孔18が形成されていても良い。即ち、マグネット12及びこれを挟み込むヨーク部13に貫通孔18が形成されている。可動子8が往復動する際に第1のシリンダ室4a、4bから第2のシリンダ室5へ漏出した流体が推力発生部10の移動方向と反対側の第2のシリンダ室5内へ貫通孔18を通じて逃がす(矢印Q参照)。この場合には、推力発生部10の外周面部13aと第2のシリンダ室5の内壁面5aとの間に形成された隙間14は必要以上に設けなくても良い。或いは流体を逃がすための隙間14を設けかつ推力発生部10の貫通孔18を設けて、これらを通過する流体量が所定量確保することにより可動子8の動作継続性を維持することも可能である。   Further, in the left half view of FIG. 1, a through hole 18 may be formed in the thrust generation unit 10 along the axial direction. That is, the through hole 18 is formed in the magnet 12 and the yoke portion 13 that sandwiches the magnet 12. When the mover 8 reciprocates, the fluid leaked from the first cylinder chambers 4a and 4b to the second cylinder chamber 5 enters the second cylinder chamber 5 on the side opposite to the moving direction of the thrust generator 10 into the through-hole. Escape through 18 (see arrow Q). In this case, the gap 14 formed between the outer peripheral surface portion 13a of the thrust generating portion 10 and the inner wall surface 5a of the second cylinder chamber 5 may not be provided more than necessary. Alternatively, it is also possible to maintain the continuity of operation of the mover 8 by providing a clearance 14 for allowing the fluid to escape and providing a through hole 18 of the thrust generating unit 10 and securing a predetermined amount of fluid passing through these holes. is there.

また、図1の左半図において、中空可動子軸9に推力発生部10の両側には軸孔9cと第2のシリンダ室5とを連通する連通孔19が軸線方向と直交する向きに各々形成されている。可動子8が往復動する際に第1のシリンダ室4a、4bから第2のシリンダ室5へ漏出した流体を推力発生部10が移動する一方の連通孔19から軸孔9cを通じて他方の連通孔19から反対側の第2のシリンダ室5内へ逃がす(矢印R参照)。この場合には、推力発生部10の外周面部13aと第2のシリンダ室5の内壁面5aとの間に形成された隙間14は必要以上に設けなくても良く、推力発生部10に貫通孔18を必ずしも設ける必要もない。   Further, in the left half view of FIG. 1, communication holes 19 that connect the shaft hole 9 c and the second cylinder chamber 5 on both sides of the thrust generating portion 10 to the hollow mover shaft 9 are arranged in directions orthogonal to the axial direction. Is formed. When the mover 8 reciprocates, the fluid leaked from the first cylinder chambers 4a and 4b to the second cylinder chamber 5 moves from one communication hole 19 through which the thrust generating unit 10 moves to the other communication hole through the shaft hole 9c. 19 to escape into the second cylinder chamber 5 on the opposite side (see arrow R). In this case, the gap 14 formed between the outer peripheral surface portion 13a of the thrust generating portion 10 and the inner wall surface 5a of the second cylinder chamber 5 may not be provided more than necessary, and the thrust generating portion 10 has a through hole. 18 is not necessarily provided.

或いは、推力発生部10と第2のシリンダ室5の間に形成された隙間14、推力発生部10に軸線方向に沿った貫通孔18、可動子軸9に推力発生部10の両側に各々形成された連通孔19のうちいずれか2以上の組み合わせ、これらを通過する流体量が所定量確保することにより可動子8の動作継続性を維持することも可能である。
このように、第2のシリンダ室5に浸入した流体、特に非圧縮性の液体が推力発生部10の往復動を妨げることなく動作継続性を保つことができる。
Alternatively, a gap 14 formed between the thrust generating unit 10 and the second cylinder chamber 5, a through hole 18 in the axial direction in the thrust generating unit 10, and a mover shaft 9 formed on both sides of the thrust generating unit 10, respectively. It is also possible to maintain the continuity of operation of the mover 8 by combining any two or more of the communicating holes 19 and securing a predetermined amount of fluid passing through them.
As described above, the fluid that has entered the second cylinder chamber 5, particularly the incompressible liquid, can maintain the continuity of operation without hindering the reciprocating motion of the thrust generating unit 10.

図2は推力発生部10と第2のシリンダ室5の間に形成された隙間14及び推力発生部10に軸線方向に沿った貫通孔18を設けたポンプ構造を示す。隙間14及び貫通孔18は推力発生部10の推力を低減させる要因となるため、第2のシリンダ室5の断面積に対して必要最小限であることが望ましい。   FIG. 2 shows a pump structure in which a gap 14 formed between the thrust generating unit 10 and the second cylinder chamber 5 and a through hole 18 along the axial direction are provided in the thrust generating unit 10. Since the gap 14 and the through hole 18 are factors that reduce the thrust of the thrust generating unit 10, it is desirable that the gap 14 and the through hole 18 be the minimum necessary for the cross-sectional area of the second cylinder chamber 5.

図3A、Bは、推力発生部10に貫通孔18を形成した場合の可動子8の動作と第2のシリンダ室5の流体の流れを示すものである。図3Aは、可動子8が上方へ移動した場合を示す。
可動子8が上方へ移動すると、閉弁していた第1のバルブ7が開弁し、吸込み口2から第1のシリンダ室4a、軸孔9cへ所定量の流体が吸い込まれる。また、開弁していた第2のバルブ11が閉弁し、可動子8の移動に伴って第1のシリンダ室4bから送出口3へ所定量の流体が送り出される。このとき、第2のシリンダ室5の推力発生部10の上方に満たされた流体は、隙間14及び貫通孔18を通じて推力発生部10の移動方向と反対側(下方)の第2のシリンダ室5内へ移動する(矢印P1、Q1参照)。
3A and 3B show the operation of the mover 8 and the flow of fluid in the second cylinder chamber 5 when the through-hole 18 is formed in the thrust generating unit 10. FIG. 3A shows a case where the mover 8 moves upward.
When the mover 8 moves upward, the closed first valve 7 is opened, and a predetermined amount of fluid is sucked from the suction port 2 into the first cylinder chamber 4a and the shaft hole 9c. Further, the second valve 11 that has been opened is closed, and a predetermined amount of fluid is sent from the first cylinder chamber 4 b to the delivery port 3 as the mover 8 moves. At this time, the fluid filled above the thrust generating portion 10 of the second cylinder chamber 5 passes through the gap 14 and the through hole 18 and is opposite to the moving direction of the thrust generating portion 10 (downward). Move in (see arrows P1, Q1).

また、図3Bは可動子8が下方へ移動した場合を示す。可動子8が下方へ移動すると、閉弁していた第2のバルブ11が開弁し軸孔9c内の流体が所定量第1のシリンダ室4bへ移動する。また、開弁していた第1のバルブ11が閉弁し、吸込み口2から第1のシリンダ室4aへの流体の吸い込み遮断される。このとき、第2のシリンダ室5の推力発生部10の下方に満たされた流体は、隙間14及び貫通孔18を通じて推力発生部10の移動方向と反対側(上方)の第2のシリンダ室5内へ移動する(矢印P2、Q2参照)。   FIG. 3B shows a case where the mover 8 moves downward. When the mover 8 moves downward, the second valve 11 that has been closed opens, and the fluid in the shaft hole 9c moves to the first cylinder chamber 4b by a predetermined amount. Further, the first valve 11 that has been opened is closed, and the suction of fluid from the suction port 2 to the first cylinder chamber 4a is blocked. At this time, the fluid filled below the thrust generating portion 10 of the second cylinder chamber 5 passes through the gap 14 and the through hole 18 and the second cylinder chamber 5 on the opposite side (upward) of the moving direction of the thrust generating portion 10. Move inward (see arrows P2, Q2).

図4は可動子軸9に推力発生部10の軸方向両側で連通孔19が各々形成されたポンプ構造を示す。また、可動子軸9の吸入側開口部9aに第3のバルブ20が設けられている。この第3のバルブ20は、可動子軸9が吐出側に向かって動いた際に軸孔9cに満たされた流体が移動して吸込みバルブ(第1のバルブ7)が閉止されるのを防ぐために設けられる。第3のバルブ20は、第1、第2のバルブと同様に例えばゴムなどの樹脂材が好適に用いられる。   FIG. 4 shows a pump structure in which communicating holes 19 are formed in the mover shaft 9 on both axial sides of the thrust generator 10. A third valve 20 is provided in the suction side opening 9 a of the mover shaft 9. The third valve 20 prevents the suction valve (first valve 7) from being closed by the movement of the fluid filled in the shaft hole 9c when the mover shaft 9 moves toward the discharge side. It is provided for the purpose. For the third valve 20, for example, a resin material such as rubber is preferably used as in the first and second valves.

図5A、Bは、可動子軸9に連通孔19を形成した場合の可動子8の動作と第2のシリンダ室5の流体の流れを示すものである。図5Aは、可動子8が上方へ移動した場合を示す。
可動子8が上方へ移動すると、閉弁していた第1のバルブ7が開弁し、開口部2から第1のシリンダ室4aへ所定量の流体が吸い込まれる。また、開弁していた第2のバルブ11、第3のバルブ20が閉弁し、可動子8の移動に伴って第1のシリンダ室4bから送出口3へ所定量の流体が送り出される。このとき、第2のシリンダ室5の推力発生部10の上方に満たされた流体は、連通孔19、軸孔9c、連通孔19を通じて推力発生部10の移動方向と反対側(下方)の第2のシリンダ室5内へ矢印方向に移動する(矢印R1参照)。また、第3のバルブ20が閉弁し軸孔9cに満たされた流体が第1のシリンダ室4aに移動することを防ぎ、第1のバルブ7が開弁することを妨げない。よって、第1のバルブ7が開いている間だけ、吸込み口2から第1のシリンダ室4aへ所定量の流体が吸い込まれる。
5A and 5B show the operation of the mover 8 and the flow of fluid in the second cylinder chamber 5 when the communication hole 19 is formed in the mover shaft 9. FIG. 5A shows a case where the mover 8 moves upward.
When the mover 8 moves upward, the closed first valve 7 is opened, and a predetermined amount of fluid is sucked into the first cylinder chamber 4a from the opening 2. Further, the second valve 11 and the third valve 20 that have been opened are closed, and a predetermined amount of fluid is sent from the first cylinder chamber 4 b to the delivery port 3 as the mover 8 moves. At this time, the fluid filled above the thrust generating portion 10 of the second cylinder chamber 5 passes through the communication hole 19, the shaft hole 9 c, and the communication hole 19, and is the second (downward) side opposite to the moving direction of the thrust generating portion 10. 2 moves in the direction of the arrow into the cylinder chamber 5 (see arrow R1). Further, the third valve 20 is closed and the fluid filled in the shaft hole 9c is prevented from moving to the first cylinder chamber 4a, and the first valve 7 is not prevented from opening. Accordingly, a predetermined amount of fluid is sucked into the first cylinder chamber 4a from the suction port 2 only while the first valve 7 is open.

また、図5Bは可動子8が下方へ移動した場合を示す。可動子8が下方へ移動すると、軸孔9c内から第1のシリンダ室4bへ流体が移動し、第1のシリンダ室4aから軸孔9cへ流体が移動するため、閉弁していた第2のバルブ11、第3のバルブ20が開弁する。また、開弁していた第1のバルブ7が閉弁し、吸込み口2から第1のシリンダ室4aへの流体の吸い込み遮断される。このとき、第2のシリンダ室5の推力発生部10の下方に満たされた流体は、連通孔19、軸孔9c、連通孔19を通じて推力発生部10の移動方向と反対側(上方)の第2のシリンダ室5内へ矢印方向に移動する(矢印R2参照)。   FIG. 5B shows a case where the mover 8 moves downward. When the mover 8 moves downward, the fluid moves from the inside of the shaft hole 9c to the first cylinder chamber 4b, and the fluid moves from the first cylinder chamber 4a to the shaft hole 9c. The valve 11 and the third valve 20 are opened. Further, the first valve 7 that has been opened is closed, and the suction of fluid from the suction port 2 to the first cylinder chamber 4a is blocked. At this time, the fluid filled below the thrust generating portion 10 of the second cylinder chamber 5 passes through the communication hole 19, the shaft hole 9 c, and the communication hole 19, on the opposite side (upward) of the moving direction of the thrust generating portion 10. 2 moves in the direction of the arrow into the cylinder chamber 5 (see arrow R2).

尚、可動子軸9形成された連通孔19と、推力発生部10と第2のシリンダ室5の隙間14又は推力発生部10に設けた貫通孔18のいずれかと組み合わせて流体を逃がすようにしても良いし、これらを併用してもよい。
また、マグネット12は焼結金属材が用いられるが、流体の種類により最適なものが選択される。例えば、水などであれば防錆を考慮してフェライト系マグネット、サマリュウムコバルト系マグネットなどが用いられ、油などではネオジ・鉄・ボロン系マグネットなどが用いられる。
The fluid is allowed to escape by combining with the communication hole 19 formed in the mover shaft 9 and any one of the gap 14 between the thrust generating portion 10 and the second cylinder chamber 5 or the through hole 18 provided in the thrust generating portion 10. These may be used in combination.
Moreover, although the sintered metal material is used for the magnet 12, the optimal thing is selected according to the kind of fluid. For example, ferritic magnets and samarium cobalt based magnets are used in consideration of rust prevention for water and the like, and neodymium / iron / boron based magnets are used for oil and the like.

電磁駆動ポンプの断面説明図及び第2シリンダ室内の流体の流れを示す説明図である。It is sectional drawing of an electromagnetic drive pump, and explanatory drawing which shows the flow of the fluid in a 2nd cylinder chamber. 電磁駆動ポンプの一例を示す断面図である。It is sectional drawing which shows an example of an electromagnetic drive pump. 図2のポンプの動作状態を示す説明図である。It is explanatory drawing which shows the operation state of the pump of FIG. 電磁駆動ポンプの一例を示す断面図である。It is sectional drawing which shows an example of an electromagnetic drive pump. 図4のポンプの動作状態を示す説明図である。It is explanatory drawing which shows the operation state of the pump of FIG.

符号の説明Explanation of symbols

1 シリンダ本体
2 吸込み口
3 送出口
4a、4b 第1のシリンダ室
5 第2のシリンダ室
5a 内壁面
6 弁座部材
6a 弁孔
7 第1のバルブ
8 可動子
9a 吸入側開口部
9b 送出側開口部
9c 軸孔
10 推力発生部
11 第2のバルブ
12 マグネット
13 ヨーク部
13a 外周面部
14 隙間
15 電磁コイル
16 外装ケース
17 Oリング
18 貫通孔
19 連通孔
20 第3のバルブ
DESCRIPTION OF SYMBOLS 1 Cylinder main body 2 Suction port 3 Outlet 4a, 4b 1st cylinder chamber 5 2nd cylinder chamber 5a Inner wall surface 6 Valve seat member 6a Valve hole 7 1st valve 8 Movable element 9a Inlet side opening 9b Outlet side opening Part 9c Shaft hole 10 Thrust generating part 11 Second valve 12 Magnet 13 Yoke part 13a Outer peripheral surface part 14 Clearance 15 Electromagnetic coil 16 Exterior case 17 O-ring 18 Through hole 19 Communication hole 20 Third valve

Claims (6)

両端に開口部が形成され内部側が拡径した多段径を有するシリンダ室が設けられたシリンダ本体と、
開口部と各々連通する第1のシリンダ室に連通して中空の可動子軸の両端側が摺動可能に挿入され、可動子軸の中途部外周側にマグネットを有する推力発生部が第2のシリンダ室内に収容される可動子と、
第1のシリンダ室に開閉可能に設けられ、一方側は外部流路から第1のシリンダ室内へ流体を吸い込み他方側は第1のシリンダ室から外部流路へ流体を送り出す第1、第2のバルブと、
シリンダ本体の外周に空芯の電磁コイルを配置し、該電磁コイルに通電して可動子をシリンダ本体の軸線方向に往復駆動することにより第1、第2のバルブを開閉して流体を輸送する電磁駆動ポンプであって、
電磁コイルに通電して第2のシリンダ室の推力発生部で発生した推力を利用して当該第2のシリンダ室より断面積の小さい第1のシリンダ室内に満たされた流体を可動子で押圧することで高圧化して送り出す電磁駆動ポンプ。
A cylinder body provided with a cylinder chamber having a multistage diameter in which openings are formed at both ends and the inner side is enlarged;
Both ends of the hollow mover shaft are slidably inserted in communication with the first cylinder chambers respectively communicating with the openings, and a thrust generating portion having a magnet on the outer peripheral side of the middle portion of the mover shaft is the second cylinder. A mover housed in the room;
The first cylinder chamber is provided so as to be openable and closable. One side sucks fluid from the external flow path into the first cylinder chamber, and the other side feeds fluid from the first cylinder chamber to the external flow path. A valve,
An air-core electromagnetic coil is disposed on the outer periphery of the cylinder body, and the electromagnetic coil is energized to reciprocate the mover in the axial direction of the cylinder body, thereby opening and closing the first and second valves to transport the fluid. An electromagnetically driven pump,
By energizing the electromagnetic coil and using the thrust generated in the thrust generating portion of the second cylinder chamber, the fluid filled in the first cylinder chamber having a smaller cross-sectional area than that of the second cylinder chamber is pressed by the mover. This is an electromagnetically driven pump that delivers high pressure.
可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部と第2のシリンダ室の内壁面との間に形成された隙間を通じて推力発生部の移動方向と反対側の第2のシリンダ室内へ逃がす請求項1記載の電磁駆動ポンプ。   Movement of the thrust generating portion through a gap formed between the thrust generating portion and the inner wall surface of the second cylinder chamber for the fluid leaked from the first cylinder chamber to the second cylinder chamber when the mover reciprocates. The electromagnetically driven pump according to claim 1, wherein the second cylinder chamber escapes in a direction opposite to the direction. 推力発生部に軸線方向に沿った貫通孔が形成されており、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体が推力発生部の移動方向と反対側の第2のシリンダ室内へ貫通孔を通じて逃がす請求項1記載の電磁駆動ポンプ。   A through hole along the axial direction is formed in the thrust generating portion, and the fluid leaking from the first cylinder chamber to the second cylinder chamber when the mover reciprocates is opposite to the moving direction of the thrust generating portion. The electromagnetically driven pump according to claim 1, wherein the second cylinder chamber escapes through a through hole. 可動子軸には推力発生部の両側に軸線方向と直交する連通孔が各々形成されており、可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を推力発生部が移動する一方の連通孔から中空軸孔を通じて他方の連通孔から反対側の第2のシリンダ室内へ逃がす請求項1記載の電磁駆動ポンプ。   The mover shaft is formed with communication holes perpendicular to the axial direction on both sides of the thrust generating portion, and thrusts the fluid leaked from the first cylinder chamber to the second cylinder chamber when the mover reciprocates. 2. The electromagnetically driven pump according to claim 1, wherein the one communicating hole through which the generating portion moves escapes from the other communicating hole into the second cylinder chamber on the opposite side through the hollow shaft hole. 可動子軸の吸込側開口部に、当該可動子軸が吐出側に向かって動いた際に軸孔に満たされた流体が移動して吸込みバルブが閉止されるのを防ぐ第3のバルブを設けた請求項4記載の電磁駆動ポンプ。   A third valve is provided in the suction side opening of the mover shaft to prevent the fluid filled in the shaft hole from moving and closing the suction valve when the mover shaft moves toward the discharge side. The electromagnetically driven pump according to claim 4. 可動子が往復動する際に第1のシリンダ室から第2のシリンダ室へ漏出した流体を、推力発生部と第2のシリンダ室の内壁面との間に形成された隙間、推力発生部に軸線方向に沿った貫通孔、可動子軸に推力発生部の両側に各々形成された軸線方向と直交する連通孔のうち少なくともいずれか2以上の組み合わせで反対側の第2のシリンダ室内へ逃がす請求項1記載の電磁駆動ポンプ。   The fluid leaked from the first cylinder chamber to the second cylinder chamber when the mover reciprocates is transferred to the gap formed between the thrust generating portion and the inner wall surface of the second cylinder chamber, the thrust generating portion. A combination of at least any two of a through hole along the axial direction and a communicating hole formed on both sides of the thrust generating portion on the mover shaft and perpendicular to the axial direction is allowed to escape into the second cylinder chamber on the opposite side. Item 2. An electromagnetically driven pump according to item 1.
JP2006354758A 2006-12-28 2006-12-28 Electromagnetically driven pump Withdrawn JP2008163853A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006354758A JP2008163853A (en) 2006-12-28 2006-12-28 Electromagnetically driven pump
PCT/JP2007/072683 WO2008081658A1 (en) 2006-12-28 2007-11-22 Electromagnetically operated pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354758A JP2008163853A (en) 2006-12-28 2006-12-28 Electromagnetically driven pump

Publications (1)

Publication Number Publication Date
JP2008163853A true JP2008163853A (en) 2008-07-17

Family

ID=39588342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354758A Withdrawn JP2008163853A (en) 2006-12-28 2006-12-28 Electromagnetically driven pump

Country Status (2)

Country Link
JP (1) JP2008163853A (en)
WO (1) WO2008081658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047339A (en) * 2009-08-28 2011-03-10 Idoya Inc Electromagnetic pump and electromagnetic pump system using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH549896A (en) * 1972-09-22 1974-05-31 Landis & Gyr Ag ROCKER - PISTON PUMP.
JPS59160079A (en) * 1983-03-02 1984-09-10 Nippon Denso Co Ltd Compressor
JP2742897B2 (en) * 1995-07-14 1998-04-22 日本コントロール工業株式会社 Electromagnetic pump
JP2005307816A (en) * 2004-04-20 2005-11-04 Shicoh Eng Co Ltd Piston pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047339A (en) * 2009-08-28 2011-03-10 Idoya Inc Electromagnetic pump and electromagnetic pump system using the same

Also Published As

Publication number Publication date
WO2008081658A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US10871159B2 (en) Valve device and high pressure pump using the same
TWI473942B (en) Reciprocating fluid pumps including magnets, devices including magnets for use with reciprocating fluid pumps, and related methods
JP2006037942A (en) Reciprocating compressor
JP2008163853A (en) Electromagnetically driven pump
JP2005180332A (en) Plunger pump and fluid pump for engine
US20050053490A1 (en) Oscillating-piston drive for a vacuum pump and an operating method for said drive
KR20150064376A (en) piston fluid pump
JP2006300022A (en) Electromagnetic pump
KR102376121B1 (en) Reciprocating fluid pumps including magnets, and related assemblies, systems, and methods
JP5449115B2 (en) Solenoid pump
JP2005083309A (en) Driving method for electromagnetic pump
JP2006336497A (en) Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same
US7621723B2 (en) Electromagnetic pump
JP2012122426A (en) Fuel injection valve
JP2006246550A (en) Drive unit of electromagnetic capacity type pump
KR100748545B1 (en) Apparatus for reducing magnetic flux loss of reciprocating compressor
JP4570342B2 (en) Electromagnetic pump stator
JP4570343B2 (en) Electromagnetic pump
JP2009203892A (en) Electromagnetic pump
JP4206248B2 (en) Electromagnetic pump
JP2019127914A (en) Hydraulic pump
JP2010121494A (en) Electromagnetic pump
JP7129861B2 (en) electromagnetic pump
KR20150114651A (en) Solenoid pump
WO2019054510A1 (en) Hydraulic pump

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091202