JP2006336497A - Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same - Google Patents

Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same Download PDF

Info

Publication number
JP2006336497A
JP2006336497A JP2005159426A JP2005159426A JP2006336497A JP 2006336497 A JP2006336497 A JP 2006336497A JP 2005159426 A JP2005159426 A JP 2005159426A JP 2005159426 A JP2005159426 A JP 2005159426A JP 2006336497 A JP2006336497 A JP 2006336497A
Authority
JP
Japan
Prior art keywords
giant magnetostrictive
hydraulic pressure
super magnetostrictive
plunger piston
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005159426A
Other languages
Japanese (ja)
Inventor
Takeshi Kitamura
剛 北村
Takehiko Hino
武彦 日野
Yukio Murata
幸雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Yuken Kogyo Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Yuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, Yuken Kogyo Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2005159426A priority Critical patent/JP2006336497A/en
Publication of JP2006336497A publication Critical patent/JP2006336497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super magnetostrictive hydraulic pressure generating device and a super magnetostrictive hydraulic pressure pump system provided with the device enabling miniaturization and weight reduction of the device, and more efficient use thereof. <P>SOLUTION: The super magnetostrictive hydraulic pressure generating device is provided with pressurized reservoir chamber in an outer circumference zone of the super magnetostrictive drive part in a same housing in which a super magnetostrictive drive part including a super magnetostrictive element changing volume by magnetic force and a drive coil generating magnetic force by excitation to change volume of the super magnetostrictive element, and a pump part including a plunger piston reciprocated in a cylinder with accompanying volume change of the super magnetostrictive element and discharging working fluid from a pressurized reservoir are arranged, and is provided with a communication structure to make at least the drive coil under a condition where the same is dipped in oil from the pressurized reservoir between the pressurized reservoir chamber and the super magnetostictive drive part. The super magnetostrictive hydraulic pressure pump system is provided with an output mechanism and a solenoid valve connected to the generating device and a control mechanism driving and controlling the generating device and the solenoid valve. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超磁歪材料を用いて油圧ポンプを構成してなる油圧発生装置に関するものである。   TECHNICAL FIELD The present invention relates to a hydraulic pressure generating device configured by forming a hydraulic pump using a giant magnetostrictive material.

従来の油圧ポンプ装置としては、駆動源として電動モータを用いて圧油を吸引、吐出させる構成のものが一般的であった。しかしながら、装置構成の小型・軽量化を目的として、電動モータに代わる駆動源が求められており、そこで、近年では磁力によって体積変化する超磁歪素子を利用した超磁歪式の油圧ポンプ装置が提案されている。   Conventional hydraulic pump devices generally have a configuration in which pressure oil is sucked and discharged using an electric motor as a drive source. However, for the purpose of reducing the size and weight of the device configuration, a drive source that replaces the electric motor is required. Therefore, in recent years, a giant magnetostrictive hydraulic pump device using a giant magnetostrictive element that changes its volume by magnetic force has been proposed. ing.

強磁性材料では、総称して磁歪と呼ばれる現象、即ち磁石やコイル等による外部磁界に応じて素子寸法が変化し、直交する磁界が同時に加わると素子が捻れ、捻れ応力によって素子の磁気特性が変化するという現象が生じるが、超磁歪素子は、従来の強磁性材料の寸法変化量に対して格段に大きい変位量を示すものである。   In ferromagnetic materials, the element size changes according to a phenomenon called magnetostriction, that is, an external magnetic field generated by a magnet, a coil, or the like. When an orthogonal magnetic field is applied simultaneously, the element twists, and the magnetic characteristics of the element change due to torsional stress. However, the giant magnetostrictive element exhibits a displacement that is much larger than the dimensional change of the conventional ferromagnetic material.

このような超磁歪素子を利用した油圧ポンプ装置としては、超磁歪素子を駆動するためのコイルと、超磁歪素子の体積変化に伴ってポンプ運動するプランジャピストンおよび作動油供給・回収用リザーバタンクとを備えたものがある。   As a hydraulic pump device using such a giant magnetostrictive element, there are a coil for driving the giant magnetostrictive element, a plunger piston that pumps as the volume of the giant magnetostrictive element changes, and a reservoir tank for supplying and collecting hydraulic oil. There is something with.

具体的には、例えば外部からコイルに通電して磁場を発生させ、この磁場により超磁歪素子を伸長方向に体積変化させることによってプランジャピストンをスプリングの付勢力に抗して移動させて、リザーバタンクからポンプ室に吸引した圧油をチェック弁を介してアクチュエータへ吐出させ、またコイルへの通電を立つことで磁場を消滅させ、超磁歪素子の体積を縮小方向に復帰させることによってプランジャピストンがスプリング付勢力で反対方向に移動することで、前記ポンプ室に圧油を吸引すると共に他のポンプ室から圧油をアクチュエータに吐出させるという繰り返し動作による連続油圧ポンプ、あるいは超磁歪素子の伸縮によるプランジャポンプの往復駆動による単動油圧ポンプとしての作動がなされるものである(例えば、特許文献1参照。)。   Specifically, for example, a magnetic field is generated by energizing a coil from outside, and the plunger piston is moved against the urging force of the spring by changing the volume of the giant magnetostrictive element in the extension direction by this magnetic field, so that the reservoir tank The pressure piston sucked into the pump chamber is discharged to the actuator through the check valve, and the magnetic field is extinguished by energizing the coil, and the volume of the giant magnetostrictive element is restored in the shrinking direction, so that the plunger piston springs. Continuous hydraulic pump by repetitive operation of sucking pressure oil into the pump chamber and discharging the pressure oil from other pump chambers to the actuator by moving in the opposite direction by urging force, or plunger pump by expansion and contraction of giant magnetostrictive element It can be operated as a single-acting hydraulic pump by reciprocating driving (for example, Reference 1.).

特開平11−93830号公報JP 11-93830 A

しかしながら、上記の如き従来の超磁歪素子を用いた油圧ポンプ装置は、超磁歪素子およびプランジャコイルの駆動部と、これと離れて設けられた加圧リザーバタンク等のそれぞれ単独で存在する部品同士の複雑な組合せ構成からなるものであって、また超磁歪素子が発熱体であることと駆動コイル等の冷却システムが必要となることから、装置設備に大きな占有空間が必要となり、また実際の使用に当たって煩雑な作業となり、効率的な利用が困難であった。   However, the conventional hydraulic pump device using the giant magnetostrictive element as described above is configured such that the components of the giant magnetostrictive element and the plunger coil drive unit, and the pressure reservoir tank provided separately from each other exist separately. It consists of a complicated combination structure, and since the giant magnetostrictive element is a heating element and a cooling system such as a drive coil is required, a large occupied space is required for the equipment and in actual use. It was a cumbersome task and it was difficult to use it efficiently.

本発明の目的は、上記問題点に鑑み、従来より装置の小型・軽量化が可能であると共により効率的に利用できる超磁歪式油圧発生装置及び該装置を備えた超磁歪式油圧ポンプシステムを提供することにある。   SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a giant magnetostrictive hydraulic pressure generator and a giant magnetostrictive hydraulic pump system including the device, which can be reduced in size and weight as compared with conventional devices and can be used more efficiently. It is to provide.

上記目的を達成するため、請求項1に記載の発明に係る超磁歪式油圧発生装置は、磁力により体積変化する超磁歪素子と、通電により磁力を発生して前記超磁歪素子を体積変化させる駆動コイルとを有する超磁歪駆動部と、前記超磁歪素子の体積変化に伴ってシリンダ内を往復駆動して加圧リザーバからの作動圧油を吐出するプランジャピストンを有するポンプ部と、を備えた超磁歪式油圧発生装置において、前記超磁歪駆動部とポンプ部とが配置された同一ハウジング内の前記超磁歪駆動部の外周領域に加圧リザーバ室が設けられ、該加圧リザーバ室と前記超磁歪駆動部との間に少なくとも前記駆動コイルを前記加圧リザーバ室からの油に浸漬状態とするための連通構造を備えているものである。   In order to achieve the above object, a giant magnetostrictive hydraulic pressure generator according to the first aspect of the present invention includes a giant magnetostrictive element that changes in volume by a magnetic force, and a drive that changes the volume of the giant magnetostrictive element by generating a magnetic force when energized. A super magnetostrictive drive unit having a coil, and a pump unit having a plunger piston that reciprocally drives the cylinder in accordance with a volume change of the super magnetostrictive element and discharges hydraulic oil pressure from a pressurized reservoir. In the magnetostrictive hydraulic pressure generator, a pressurized reservoir chamber is provided in an outer peripheral region of the giant magnetostrictive drive unit in the same housing where the giant magnetostrictive drive unit and the pump unit are arranged, and the pressurized reservoir chamber and the giant magnetostriction are provided. A communication structure is provided between the drive unit and at least the drive coil for immersing the drive coil in oil from the pressurized reservoir chamber.

また、請求項2に記載の発明に係る超磁歪式油圧発生装置は、請求項1に記載の超磁歪式油圧発生装置において、前記超磁歪素子と前記プランジャピストンとの間に、該超磁歪素子の体積変化による駆動を該プランジャピストンに伝達する両者とは別体の伝達部材を設けたものである。   According to a second aspect of the present invention, there is provided a giant magnetostrictive hydraulic pressure generator according to the first aspect of the present invention, wherein the giant magnetostrictive hydraulic pressure generator is provided between the giant magnetostrictive element and the plunger piston. A transmission member that is separate from both of them that transmits the drive due to the volume change to the plunger piston is provided.

請求項3に記載の発明に係る超磁歪式油圧発生装置は、請求項1に記載の超磁歪式油圧発生装置において、前記プランジャピストンは、複数個の吸い込み用チェックバルブを備えているものである。   A giant magnetostrictive hydraulic pressure generator according to a third aspect of the present invention is the giant magnetostrictive hydraulic pressure generator according to the first aspect, wherein the plunger piston includes a plurality of suction check valves. .

請求項4に記載の発明に係る超磁歪式油圧発生装置は、請求項1に記載の超磁歪式油圧発生装置において、前記プランジャピストンおよびハウジングが非磁性体材料製であることを特徴とするものである。   A giant magnetostrictive hydraulic pressure generator according to a fourth aspect of the present invention is the giant magnetostrictive hydraulic pressure generator according to the first aspect, wherein the plunger piston and the housing are made of a non-magnetic material. It is.

請求項5に記載の発明に係る超磁歪式油圧ポンプシステムは、前記請求項1〜4の何れかに記載の超磁歪式油圧発生装置と、該発生装置に接続された電磁弁と出力機構と、前記発生装置および電磁弁を駆動制御する制御機構と、を備えたことを特徴とするものである。   A giant magnetostrictive hydraulic pump system according to a fifth aspect of the present invention is a giant magnetostrictive hydraulic pressure generator according to any one of the first to fourth aspects, an electromagnetic valve and an output mechanism connected to the generator. And a control mechanism for driving and controlling the generator and the electromagnetic valve.

本発明の超磁歪式油圧発生装置では、作動油を供給源である加圧リザーバ室が超磁歪駆動部の外周領域に同一ハウジング内で設けられているため、リザーバタンクが装置本体と別体に設けられている場合に比べて装置構成全体が小型化し、且つ、この超磁歪駆動部の外周領域のリザーバ室からリザーバ油を超磁歪駆動部内に連通構造を介して導入して駆動コイルを油浸状態にするため、このリザーバ室からのリザーバ油導入を冷却システムとして兼用させることができるため、さらなる装置の軽量・小型化と効率化が図れるという効果がある。   In the giant magnetostrictive hydraulic pressure generator according to the present invention, the pressurized reservoir chamber as a supply source of the hydraulic oil is provided in the same housing in the outer peripheral region of the giant magnetostrictive drive unit, so that the reservoir tank is separated from the main body of the device. Compared with the case where it is provided, the entire device configuration is reduced in size, and reservoir oil is introduced from the reservoir chamber in the outer peripheral region of the giant magnetostrictive drive unit into the giant magnetostrictive drive unit through a communication structure, and the drive coil is immersed in oil. Since the reservoir oil introduction from the reservoir chamber can also be used as a cooling system to achieve the state, there is an effect that the device can be further reduced in weight, size, and efficiency.

本発明の超磁歪式油圧発生装置においては、駆動コイルへの通電により発生する磁力で超磁歪素子を体積変化させる超磁歪駆動部と、該超磁歪素子の体積変化に伴ってシリンダ内を往復駆動して加圧リザーバからの作動圧油を吐出するプランジャピストンを有するポンプ部とが配置された同一ハウジング内で、超磁歪駆動部の外周領域に加圧リザーバ室を設けると共に、この該加圧リザーバ室と超磁歪駆動部との間に連通構造を形成することによって駆動コイルを加圧リザーバ室からの油に浸漬状態とするものである。   In the giant magnetostrictive hydraulic pressure generator of the present invention, a giant magnetostrictive drive unit that changes the volume of the giant magnetostrictive element by the magnetic force generated by energizing the drive coil, and a reciprocating drive in the cylinder as the volume of the giant magnetostrictive element changes. A pressure reservoir chamber is provided in the outer peripheral region of the giant magnetostrictive drive unit in the same housing in which the pump unit having a plunger piston for discharging the working pressure oil from the pressure reservoir is disposed. By forming a communication structure between the chamber and the giant magnetostrictive drive unit, the drive coil is immersed in oil from the pressurized reservoir chamber.

このように、作動圧油を供給源である加圧リザーバ室が超磁歪駆動部の外周領域に同一ハウジング内に設けられている本発明においては、リザーバタンクが装置本体と別体に設けられている従来タイプに比べて占有空間が小さくて済み、また連結構造により超磁歪駆動部外周領域のリザーバ室からリザーバ油の超磁歪駆動部内へリザーバ油を導入してこれを冷却システムとして兼用させることができ、少なくとも最も発熱の大きい駆動コイルを油浸状態として冷却できるため、別個に冷却システムを設ける必要がなくなり、装置構成全体の軽量・小型化と効率化を図ることができる。   As described above, in the present invention in which the pressurized reservoir chamber that is the supply source of the working pressure oil is provided in the same housing in the outer peripheral region of the giant magnetostrictive drive unit, the reservoir tank is provided separately from the apparatus main body. Occupied space is small compared to the conventional type, and the reservoir oil is introduced from the reservoir chamber in the outer peripheral region of the giant magnetostrictive drive unit into the giant magnetostrictive drive unit of the reservoir oil by the connection structure, and this can also be used as a cooling system. In addition, since at least the drive coil generating the largest amount of heat can be cooled in an oil-immersed state, there is no need to provide a separate cooling system, and the overall device configuration can be reduced in weight, size, and efficiency.

このリザーバ油を利用した冷却システムでは、駆動コイルだけでなく、超磁歪素子やその周辺部材などの発熱体が存在する領域を全体的に油浸状態で冷却するものがより好ましい。このリザーバ油導入による冷却システムは、リザーバ室と超磁歪駆動部との連通構造によって構成されるものであるが、効率的な冷却システムを得るためには、この冷却用として超磁歪駆動部側に導入されるリザーバ油に流れが作られる構成が望まれる。   In this cooling system using reservoir oil, it is more preferable to cool not only the drive coil but also the region where the heating element such as the giant magnetostrictive element and its peripheral members are present in an oil-immersed state as a whole. This cooling system by introducing reservoir oil is composed of a communication structure between the reservoir chamber and the giant magnetostrictive drive unit, but in order to obtain an efficient cooling system, the giant magnetostrictive drive unit side is used for this cooling. A configuration is desired in which a flow is created in the introduced reservoir oil.

このようなリザーバ油をリザーバ室から導入するための連通構造としては、例えば、超磁歪駆動部を構成する駆動コイルおよび超磁歪素子が筒状ヨーク内に配置され、そのヨーク外周領域にリザーバ室が設けられるのであれば、該ヨークにリザーバ室とヨーク内とを連通する貫通孔を形成すれば、駆動コイルをリザーバ油に浸漬状態にでき、さらにヨーク内で駆動コイル部分と超磁歪素子側との間をシールするリング部材等が配置されている場合には、そのリング部材に一部切欠き部を設ければ、超磁歪素子周辺にリザーバ油を導いて油浸状態とすることができる。特に、前記貫通孔を二箇所設ければ、リザーバ室からヨーク内側へさらにヨーク内からリザーバ室側へとリザーバ油の流れが生じる連通構造が得られる。   As a communication structure for introducing such reservoir oil from the reservoir chamber, for example, the drive coil and the giant magnetostrictive element constituting the giant magnetostrictive drive unit are disposed in the cylindrical yoke, and the reservoir chamber is provided in the outer peripheral region of the yoke. If provided, if a through hole is formed in the yoke to communicate the reservoir chamber with the inside of the yoke, the drive coil can be immersed in the reservoir oil, and the drive coil portion and the giant magnetostrictive element side in the yoke can be immersed. In the case where a ring member or the like for sealing the gap is disposed, if a part of the ring member is provided with a notch, reservoir oil can be guided around the giant magnetostrictive element to be in an oil-immersed state. In particular, if two through holes are provided, a communication structure in which the reservoir oil flows from the reservoir chamber to the inside of the yoke and from the inside of the yoke to the reservoir chamber can be obtained.

また、超磁歪素子とプランジャピストンは、両者の端部同士を連結して直接超磁歪素子の体積変化でプランジャピストンを駆動させる構成としてもよいが、超磁歪素子とプランジャピストンとに間に両者とは別体の伝達部材を配置し、この伝達部材を介して超磁歪素子の体積変化による駆動をプランジャピストンに伝達する構成とれば、ハウジングから構成されるシリンダ内を摺動するプランジャピストンの偏心量が補正でき、よりスムーズなピストン運動を可能とする。   In addition, the giant magnetostrictive element and the plunger piston may be configured such that both ends are connected to each other and the plunger piston is directly driven by the volume change of the giant magnetostrictive element. If a separate transmission member is arranged and the drive due to the volume change of the giant magnetostrictive element is transmitted to the plunger piston via this transmission member, the eccentric amount of the plunger piston sliding in the cylinder constituted by the housing Can be corrected, and a smoother piston movement is possible.

また、プランジャピストンと超磁歪素子の間に別体の伝達部材を介在させることによって、プランジャピストンの素材として選択する部材の可能性が広がり、例えば、アルミ等などより装置の軽量化が可能な材質を選択でき、これは装置の大容量化を容易にすると言う利点もある。また、プランジャピストンだけでなくハウジングを非磁性体材料製とすれば、装置をさらに軽量化でき、これもまた装置の大容量化を容易にする。   In addition, by interposing a separate transmission member between the plunger piston and the giant magnetostrictive element, the possibility of a member to be selected as a material for the plunger piston is expanded, for example, a material that can reduce the weight of the device, such as aluminum. This has the advantage that the capacity of the apparatus can be easily increased. Further, if the housing is made of a non-magnetic material as well as the plunger piston, the device can be further reduced in weight, which also facilitates an increase in the capacity of the device.

さらに、従来は装置周辺の油圧回路中に設けられている吸い込み用チェックバルブをプランジャピストン自体に複数個設けることによっても、装置の全体構成を簡略化できる。   Furthermore, the overall configuration of the apparatus can be simplified by providing a plurality of suction check valves, which are conventionally provided in the hydraulic circuit around the apparatus, in the plunger piston itself.

以上のような、従来に比べて軽量・小型化と効率化が図れる本願発明の超磁歪式油圧発生装置を各種アクチュエータ等の出力機構に対する油圧ポンプとして用い、電磁切換弁を接続し、制御機構によって該油圧発生装置および電磁切換弁を駆動制御する構成とすれば、従来にない小型で効率的な超磁歪式油圧ポンプシステムを構築することができる。   As described above, the giant magnetostrictive hydraulic generator of the present invention, which is lighter, smaller and more efficient than the conventional one, is used as a hydraulic pump for the output mechanism of various actuators, etc. If the hydraulic pressure generator and the electromagnetic switching valve are configured to be driven and controlled, an unprecedented small and efficient giant magnetostrictive hydraulic pump system can be constructed.

本発明の一実施例による超磁歪式油圧発生装置を図1の側断面図に示す。本超磁歪式油圧発生装置1は、アクチュエータ20へ油圧を供給するものであり、電磁切換弁19が接続され、制御機構18により駆動制御されることによって油圧ポンプシステムが構築されている。   A giant magnetostrictive hydraulic pressure generator according to an embodiment of the present invention is shown in a side sectional view of FIG. The giant magnetostrictive hydraulic pressure generator 1 supplies hydraulic pressure to an actuator 20, and is connected to an electromagnetic switching valve 19 and driven and controlled by a control mechanism 18 to construct a hydraulic pump system.

本実施例による超磁歪式油圧発生装置1は、非磁性体材料である、例えばアルミニウム材から構成された同一ハウジング15内に、超磁歪駆動部とポンプ部とリザーブとが配置されるものである。即ち、超磁歪駆動部は、ハウジング15内に固定された略筒状ヨーク6内で、ボビン4の外周に巻回され制御機構18からの駆動制御で通電されることによって磁力を発生する駆動コイル5と、ボビン4内に伸縮可能に挿通された超磁歪素子2とが配置されてなるものである。   The giant magnetostrictive hydraulic pressure generator 1 according to the present embodiment has a giant magnetostrictive drive unit, a pump unit, and a reserve disposed in the same housing 15 made of, for example, an aluminum material which is a non-magnetic material. . That is, the giant magnetostrictive drive unit is a drive coil that generates a magnetic force by being wound around the outer periphery of the bobbin 4 and energized by drive control from the control mechanism 18 in a substantially cylindrical yoke 6 fixed in the housing 15. 5 and the giant magnetostrictive element 2 inserted in the bobbin 4 so as to be extendable and contractible are arranged.

この超磁歪素子2のハウジング内側端部には、ヨーク6を貫通状態で突出する磁性材料、例えば純鉄製の伝達部材3が、非磁性体素材であるアルミニウム製のプランジャピストン12との間に介在する。このプランジャピストン12が、ハウジング15内に形成されてシリンダ14内を往復摺動することによって本装置のポンプ部が構成される。このプランジャピストン12の駆動は、駆動コイル5への通電および通電解除によって磁力の発生、消滅に応じて体積変化する超磁歪素子2の伸縮運動が伝達部材3を介して伝わって行われる。   A magnetic material, for example, pure iron transmission member 3 projecting through the yoke 6 in a state of penetrating through the yoke 6 is interposed between a plunger piston 12 made of aluminum, which is a non-magnetic material, at the inner end of the housing of the giant magnetostrictive element 2. To do. The plunger piston 12 is formed in the housing 15 and reciprocally slides in the cylinder 14 to constitute a pump unit of the present apparatus. The plunger piston 12 is driven by transmitting and receiving the expansion and contraction motion of the giant magnetostrictive element 2 that changes its volume in accordance with the generation and disappearance of the magnetic force when the drive coil 5 is energized and de-energized.

また、ヨーク6の外周領域には、ハウジング15の内壁面とヨーク6の外表面に沿って摺動可能に設けられた壁部材9とで囲まれてなる加圧リザーバ室8が設けられている。この加圧リザーバ室8は、反対側からスプリング10によって付勢される壁部材9によって加圧状態であり、このスプリング10の付勢力に抗して壁部材9が摺動することによって室内容積が増大するものである。   In the outer peripheral area of the yoke 6, a pressurized reservoir chamber 8 is provided that is surrounded by an inner wall surface of the housing 15 and a wall member 9 slidably provided along the outer surface of the yoke 6. . The pressurized reservoir chamber 8 is in a pressurized state by a wall member 9 urged by a spring 10 from the opposite side, and the wall volume 9 slides against the urging force of the spring 10 to reduce the volume of the chamber. It will increase.

また、ヨーク6には、リザーバ室8との連通構造として、二つの貫通孔7が形成されており、一方の貫通孔7からヨーク6内に導入されたリザーバ油は、他方の貫通孔7からリザーバ室8へ戻る流れを作り、駆動コイル5を浸漬状態で冷却する冷却システムを形成している。さらに、ボビン4と超磁歪素子2側との間をシールするリング部材11には一部切欠き(不図示)が形成されており、これによってヨーク6内に導入されたリザーバ油は、駆動コイル5だけでなく、超磁歪素子2および伝達部材3をも浸漬状態として発熱体周辺を全体的に冷却することができる。   Further, two through holes 7 are formed in the yoke 6 as a communication structure with the reservoir chamber 8, and the reservoir oil introduced into the yoke 6 from one through hole 7 passes through the other through hole 7. A flow returning to the reservoir chamber 8 is created to form a cooling system that cools the drive coil 5 in an immersion state. Further, the ring member 11 that seals between the bobbin 4 and the giant magnetostrictive element 2 is partially cut away (not shown), whereby the reservoir oil introduced into the yoke 6 is supplied to the drive coil. In addition to 5, the giant magnetostrictive element 2 and the transmission member 3 can be immersed to cool the entire periphery of the heating element.

また、プランジャピストン12自身には、アクチュエータ20側からの戻り圧油に対して逆止となる複数個(本図1中では3個)の吸い込み用チェックバルブ13がリザーバ室8に連通する流路の端部開口に設けられている。   The plunger piston 12 itself has a plurality of (three in FIG. 1) suction check valves 13 that check against the return pressure oil from the actuator 20 side and communicate with the reservoir chamber 8. Is provided at the opening of the end of the.

以上の構成を備えた超磁歪式油圧発生装置1の作動は以下の通りである。まず駆動コイル5への通電がなく磁力が発生していない状態では、超磁歪素子2はボビン4内で軸方向に縮小しており、これによってプランジャピストン12は伝達部材3を介してコイル側(図中紙面向かって右方)へ引き寄せられている。従ってシリンダ14内ではプランジャピストン12の左側の空間容積が拡大されており、この左側空間にリザーバ室8からリザーバ油がプランジャピストン12内の流路を介して各チェックバルブ13を通って吸い込まれている。   The operation of the giant magnetostrictive hydraulic pressure generator 1 having the above configuration is as follows. First, in a state where the drive coil 5 is not energized and no magnetic force is generated, the giant magnetostrictive element 2 is contracted in the axial direction in the bobbin 4, whereby the plunger piston 12 is connected to the coil side via the transmission member 3 ( It is drawn to the right in the figure. Therefore, the space volume on the left side of the plunger piston 12 is expanded in the cylinder 14, and reservoir oil is sucked into the left space from the reservoir chamber 8 through the check valves 13 via the flow paths in the plunger piston 12. Yes.

次に制御機構18による駆動制御で駆動コイル5に通電し磁力を発生させると、超磁歪素子2はボビン4内で軸方向に伸長し、この体積変化に伴って伝達部材3はプランジャピストン12を反対側(図中紙面向かって左方)へ押し出し、この左方へ移動するプランジャピストン12はシリンダ14内左側空間に吸い込まれていたリザーバ油をアクチュエータ20へ吐出する。以上のような駆動コイル5への通電、通電解除を繰り返すことによって、プランジャポンプ12はシリンダ14内を往復摺動して油圧ポンプとして作動する。この間、発熱体である駆動コイル5および超磁歪素子2、伝達部材3はヨーク6の貫通孔7を介してリザーバ室8から流入してくるリザーバ油に浸漬状態で冷却されている。   Next, when the drive coil 5 is energized by drive control by the control mechanism 18 to generate a magnetic force, the giant magnetostrictive element 2 extends in the axial direction in the bobbin 4, and the transmission member 3 moves the plunger piston 12 along with this volume change. The plunger piston 12 which is pushed out to the opposite side (leftward in the drawing in the drawing) and moves to the left discharges the reservoir oil sucked into the left space in the cylinder 14 to the actuator 20. By repeatedly energizing the drive coil 5 and releasing the energization as described above, the plunger pump 12 reciprocates in the cylinder 14 and operates as a hydraulic pump. During this time, the drive coil 5, the giant magnetostrictive element 2, and the transmission member 3, which are heating elements, are cooled while immersed in reservoir oil flowing from the reservoir chamber 8 through the through holes 7 of the yoke 6.

超磁歪式油圧ポンプシステムとしては、制御機構18からの駆動制御で電磁切換弁19を切り換えることによってアクチュエータの作動を停止する。即ち、アクチュエータ20からの戻り油は、電磁切換弁19を介してシリンダ14内のプランジャピストン12の右側空間に流れ、リザーバ室8へ導入される。リザーバ室8は、戻り油の圧によってスプリング10に抗して壁部材9が摺動することによって容積を拡大していくことができる。   In the giant magnetostrictive hydraulic pump system, the operation of the actuator is stopped by switching the electromagnetic switching valve 19 by drive control from the control mechanism 18. That is, the return oil from the actuator 20 flows into the right space of the plunger piston 12 in the cylinder 14 via the electromagnetic switching valve 19 and is introduced into the reservoir chamber 8. The reservoir chamber 8 can be expanded in volume by sliding the wall member 9 against the spring 10 by the pressure of the return oil.

以上のように本実施例による超磁歪式油圧発生装置1は、リザーバ室も発熱体冷却システムも同一ハウジング内にコンパクトに設けられ、装置全体の軽量・小型化および効率化が実現できたものである。この油圧発生装置1を用いれば、簡便な設計で容易に超磁歪式油圧ポンプシステムを構築することができる。   As described above, the giant magnetostrictive hydraulic pressure generating device 1 according to the present embodiment has a reservoir chamber and a heating element cooling system that are compactly provided in the same housing, and thus the overall weight, size and efficiency of the device can be realized. is there. If this hydraulic pressure generator 1 is used, a giant magnetostrictive hydraulic pump system can be easily constructed with a simple design.

本発明の一実施例による超磁歪式油圧発生装置の概略構成を示す側断面図である。1 is a side sectional view showing a schematic configuration of a giant magnetostrictive hydraulic pressure generator according to an embodiment of the present invention.

符号の説明Explanation of symbols

1:超磁歪式油圧発生装置
2:超磁歪素子
3:伝達部材
4:ボビン
5:駆動コイル
6:ヨーク
7:貫通孔
8:リザーバ室
9:壁部材
10:スプリング
11:リング部材
12:プランジャピストン
13:チェックバルブ
14:シリンダ
15:ハウジング
18:制御機構
19:電磁切換弁
20:アクチュエータ
1: Giant magnetostrictive hydraulic pressure generator 2: Giant magnetostrictive element 3: Transmission member 4: Bobbin 5: Drive coil 6: Yoke 7: Through hole 8: Reservoir chamber 9: Wall member 10: Spring 11: Ring member 12: Plunger piston 13: Check valve 14: Cylinder 15: Housing 18: Control mechanism 19: Electromagnetic switching valve 20: Actuator

Claims (5)

磁力により体積変化する超磁歪素子と、通電により磁力を発生して前記超磁歪素子を体積変化させる駆動コイルとを有する超磁歪駆動部と、前記超磁歪素子の体積変化に伴ってシリンダ内を往復駆動して加圧リザーバからの作動圧油を吐出するプランジャピストンを有するポンプ部と、を備えた超磁歪式油圧発生装置において、
前記超磁歪駆動部とポンプ部とが配置された同一ハウジング内の前記超磁歪駆動部の外周領域に加圧リザーバ室が設けられ、
該加圧リザーバ室と前記超磁歪駆動部との間に少なくとも前記駆動コイルを前記加圧リザーバ室からの油に浸漬状態とするための連通構造を備えていることを特徴とする超磁歪式油圧発生装置。
A giant magnetostrictive drive unit having a giant magnetostrictive element that changes in volume by a magnetic force, and a drive coil that changes the volume of the giant magnetostrictive element by generating a magnetic force when energized, and reciprocates in the cylinder as the volume of the giant magnetostrictive element changes. In a giant magnetostrictive hydraulic pressure generator comprising: a pump unit having a plunger piston that drives and discharges working pressure oil from a pressurized reservoir;
A pressurized reservoir chamber is provided in an outer peripheral region of the giant magnetostrictive drive unit in the same housing where the giant magnetostrictive drive unit and the pump unit are disposed;
A giant magnetostrictive hydraulic system comprising a communication structure between at least the drive reservoir and the giant magnetostrictive drive unit for immersing at least the drive coil in oil from the pressurized reservoir chamber. Generator.
前記超磁歪素子と前記プランジャピストンとの間に、該超磁歪素子の体積変化による駆動を該プランジャピストンに伝達する両者とは別体の伝達部材を設けたことを特徴とする請求項1に記載の超磁歪式油圧発生装置。   The transmission member separate from both of which the drive by the volume change of this super magnetostrictive element is transmitted to this plunger piston between said super magnetostrictive element and said plunger piston is provided. Giant magnetostrictive hydraulic generator. 前記プランジャピストンは、複数個の吸い込み用チェックバルブを備えていることを特徴とする請求項1に記載の超磁歪式油圧発生装置。   2. The giant magnetostrictive hydraulic pressure generating apparatus according to claim 1, wherein the plunger piston includes a plurality of suction check valves. 前記プランジャピストンおよびハウジングが非磁性体材料製であることを特徴とする請求項1に記載の超磁歪式油圧発生装置。   2. The giant magnetostrictive hydraulic pressure generator according to claim 1, wherein the plunger piston and the housing are made of a non-magnetic material. 前記請求項1〜4の何れかに記載の超磁歪式油圧発生装置と、該発生装置に接続された電磁弁と出力機構と、前記発生装置および電磁弁を駆動制御する制御機構と、を備えたことを特徴とする超磁歪式油圧ポンプシステム。
A giant magnetostrictive hydraulic pressure generator according to any one of claims 1 to 4, an electromagnetic valve connected to the generator and an output mechanism, and a control mechanism for driving and controlling the generator and the electromagnetic valve. Giant magnetostrictive hydraulic pump system.
JP2005159426A 2005-05-31 2005-05-31 Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same Pending JP2006336497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159426A JP2006336497A (en) 2005-05-31 2005-05-31 Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159426A JP2006336497A (en) 2005-05-31 2005-05-31 Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same

Publications (1)

Publication Number Publication Date
JP2006336497A true JP2006336497A (en) 2006-12-14

Family

ID=37557268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159426A Pending JP2006336497A (en) 2005-05-31 2005-05-31 Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same

Country Status (1)

Country Link
JP (1) JP2006336497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135170A (en) * 2020-01-17 2021-07-20 扬州五环龙电动车有限公司 Automobile line control brake system
CN114352609A (en) * 2022-01-11 2022-04-15 无锡职业技术学院 Composite energy recovery mechanism and multi-stage linkage composite energy recovery device
CN115876571A (en) * 2022-12-28 2023-03-31 北京城建勘测设计研究院有限责任公司 Rock hardness detection device for geological exploration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135170A (en) * 2020-01-17 2021-07-20 扬州五环龙电动车有限公司 Automobile line control brake system
CN114352609A (en) * 2022-01-11 2022-04-15 无锡职业技术学院 Composite energy recovery mechanism and multi-stage linkage composite energy recovery device
CN114352609B (en) * 2022-01-11 2023-05-23 无锡职业技术学院 Composite energy recovery mechanism and multistage linkage composite energy recovery device
CN115876571A (en) * 2022-12-28 2023-03-31 北京城建勘测设计研究院有限责任公司 Rock hardness detection device for geological exploration

Similar Documents

Publication Publication Date Title
JP5976673B2 (en) Double-acting refrigerant compressor
JP4926507B2 (en) Reservoir built-in actuator
KR910012555A (en) Electro-hydraulic valve actuator
TWI473942B (en) Reciprocating fluid pumps including magnets, devices including magnets for use with reciprocating fluid pumps, and related methods
JP6673551B2 (en) Fluid pressure cylinder
JP4682086B2 (en) MR fluid valve
JP2006336497A (en) Super magnetostrictive hydraulic pressure generating device and super magnetostrictive hydraulic pump system provided with same
JP2022133521A (en) suspension device
US7201096B2 (en) Linear motor having a magnetically biased neutral position
KR20190127763A (en) Electronic proportional valve
JP2006300022A (en) Electromagnetic pump
JP2008002452A (en) Linear compressor
JP6538854B2 (en) Valve device
JP4186256B2 (en) Solenoid valve integrated solenoid pump
JP7325192B2 (en) Solenoid valve and working machine
CN112600379A (en) Integrated hydraulic pump directly driven by slotless moving magnet type linear oscillation motor
JP4654984B2 (en) Fluid control device
JP6077342B2 (en) Fluid pressure control device
JP2009203892A (en) Electromagnetic pump
JP2005273477A (en) Electromagnetic type diaphragm pump
JP2008163853A (en) Electromagnetically driven pump
JPH06101631A (en) Ultra-magnetostrictive liquid pump
JPH1193830A (en) Super-magnetrostrictive fluid pump
WO2019054510A1 (en) Hydraulic pump
JP5286751B2 (en) Fluid storage tank