JP2008163113A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP2008163113A
JP2008163113A JP2006352216A JP2006352216A JP2008163113A JP 2008163113 A JP2008163113 A JP 2008163113A JP 2006352216 A JP2006352216 A JP 2006352216A JP 2006352216 A JP2006352216 A JP 2006352216A JP 2008163113 A JP2008163113 A JP 2008163113A
Authority
JP
Japan
Prior art keywords
rubber composition
molecular weight
rubber
weight
tire tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352216A
Other languages
Japanese (ja)
Inventor
Naoya Amino
直也 網野
Yoichi Takizawa
陽一 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006352216A priority Critical patent/JP2008163113A/en
Publication of JP2008163113A publication Critical patent/JP2008163113A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition having high gripping performance and good heat aging resistance without reducing modulus. <P>SOLUTION: The rubber composition for the tire tread comprises (A) 100 pts.wt. of a diene rubber having 350,000-2,000,000 weight average molecular weight, (B) 0.5-15 pts.wt. of a metal salt of acrylic acid or methacrylic acid, and (C) 3-100 pts.wt. of a low-molecular weigh diene rubber having 2,000-100,000 weight average molecular weight. The pneumatic tire uses the rubber composition at the tread part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はタイヤトレッド用ゴム組成物に関し、更に詳しくはモジュラスを低下させることなく、高グリップで耐熱老化性の良好な、競技用タイヤとして好適なタイヤトレッド用ゴム組成物に関する。   The present invention relates to a rubber composition for a tire tread, and more particularly to a rubber composition for a tire tread suitable as a racing tire, which has a high grip and good heat aging resistance without lowering the modulus.

競技用タイヤ向けゴム組成物では、グリップ力を向上させるために低分子量のスチレン−ブタジエン共重合体(SBR)を配合する技術が知られている。しかしながら、低分子量SBRを配合すると、ゴム組成物のモジュラスが低下するという問題があった。   In rubber compositions for racing tires, a technique is known in which a low molecular weight styrene-butadiene copolymer (SBR) is blended in order to improve gripping power. However, when low molecular weight SBR is blended, there is a problem that the modulus of the rubber composition is lowered.

日本特許第2992102号明細書Japanese Patent No. 2992102

従って、本発明の目的は、モジュラスを低下させることなく、グリップ力が高く、耐熱老化性も良好なゴム組成物を得ることにある。   Accordingly, an object of the present invention is to obtain a rubber composition having high grip strength and good heat aging resistance without lowering the modulus.

本発明に従えば、(A)重量平均分子量が350,000〜2,000,000のジエン系ゴム100重量部、(B)アクリル酸又はメタクリル酸の金属塩0.5〜15重量部及び(C)重量平均分子量が2,000〜100,000の低分子量ジエン系ゴム3〜100重量部を含んでなるタイヤトレッド用ゴム組成物並びにそれをトレッド部に用いた空気入りタイヤが提供される。   According to the present invention, (A) 100 parts by weight of a diene rubber having a weight average molecular weight of 350,000 to 2,000,000, (B) 0.5 to 15 parts by weight of a metal salt of acrylic acid or methacrylic acid, and ( C) A rubber composition for a tire tread comprising 3 to 100 parts by weight of a low molecular weight diene rubber having a weight average molecular weight of 2,000 to 100,000, and a pneumatic tire using the rubber composition for the tread part are provided.

本発明によれば、低分子量SBRなどの低分子量ジエン系ゴムを配合したゴム組成物に対して、(メタ)アクリル酸の金属塩を配合することにより、硫黄量を増やすことなく、モジュラスを低下させることなく、高グリップで耐熱性の良好なゴム組成物が得られる。   According to the present invention, by adding a metal salt of (meth) acrylic acid to a rubber composition containing a low molecular weight diene rubber such as low molecular weight SBR, the modulus is reduced without increasing the amount of sulfur. Thus, a rubber composition having a high grip and good heat resistance can be obtained.

モジュラス低下の原因が低分子量SBRなどの低分子量ジエン系ゴムも、低分子量でないジエン系ゴムと同様に、硫黄と反応するが、分子鎖が短いために有効架橋が得られにくいことにより、低分子量SBRなどの低分子量ジエン系ゴムと反応して無効となる硫黄を補うために、硫黄配合量を増大して、モジュラスを調整する手法が一般的に行われている。しかしながら、硫黄量の増加は耐熱老化性を悪化させるという別の問題を生じる。競技用タイヤの場合には、耐熱老化性の悪化は、レース中のグリップ低下を招き、一方、モジュラスの低下は耐ブロー性を悪化させるので、モジュラスの調整が必要となる。   Low molecular weight diene rubbers such as low molecular weight SBR cause the lowering of the modulus, as with diene rubbers that are not low molecular weight, but react with sulfur, but due to the short molecular chain, it is difficult to obtain effective crosslinking, resulting in low molecular weight. In order to compensate for sulfur that becomes ineffective by reacting with a low molecular weight diene rubber such as SBR, a method of adjusting the modulus by increasing the amount of sulfur is generally used. However, an increase in the amount of sulfur causes another problem of deteriorating the heat aging resistance. In the case of racing tires, the deterioration in heat aging resistance leads to a decrease in grip during the race, while the decrease in modulus deteriorates the blow resistance, so that it is necessary to adjust the modulus.

本発明者らは、前記課題を解決すべく研究を進めた結果、低分子量ゴム組成物を配合したゴム組成物に対して、(メタ)アクリル酸の金属塩を配合することにより、硫黄の配合量を増やすことなく、モジュラスの低下を抑え、グリップ力が高く、耐熱老化性の良好なゴム組成物を得ることに成功した。   As a result of advancing research to solve the above problems, the present inventors have formulated a compound of sulfur by blending a metal salt of (meth) acrylic acid with a rubber composition blended with a low molecular weight rubber composition. The inventors succeeded in obtaining a rubber composition that suppresses the decrease in modulus without increasing the amount, has high grip strength, and has good heat aging resistance.

本発明では、重量平均分子量が350,000〜2,000,000、好ましくは380,000〜1,800,000のジエン系ゴム100重量部に対して、(メタ)アクリル酸(アクリル酸又はメタクリル酸)の金属塩を0.5〜15重量部、好ましくは0.6〜12重量部及び重量平均分子量が2,000〜100,000、好ましくは2,500〜80,000の低分子量ジエン系ゴムを3〜100重量部、好ましくは5〜90重量部配合することによって、所望のタイヤトレッドゴム組成物を得ることができる。   In the present invention, (meth) acrylic acid (acrylic acid or methacrylic acid) is added to 100 parts by weight of a diene rubber having a weight average molecular weight of 350,000 to 2,000,000, preferably 380,000 to 1,800,000. Low molecular weight diene system having 0.5 to 15 parts by weight, preferably 0.6 to 12 parts by weight, and a weight average molecular weight of 2,000 to 100,000, preferably 2,500 to 80,000 A desired tire tread rubber composition can be obtained by blending 3 to 100 parts by weight, preferably 5 to 90 parts by weight of rubber.

前記(メタ)アクリル酸の金属塩の配合量が少ないと所望の効果が十分得られず、逆に多いと配合による効果の更なる向上が見られず、コストを上昇させるだけなので好ましくない。前記(メタ)アクリル酸の金属塩(B)としてはアクリル酸又はメタクリル酸の亜鉛、アクリル酸又はメタクリル酸のカルシウム塩、アクリル酸又はメタクリル酸のマグネシウム塩などの塩を用いることができ、モノメタクリル酸亜鉛の使用が最も好ましい。これらの金属塩は公知の化合物であり、広く市販されている。   If the blending amount of the metal salt of (meth) acrylic acid is small, the desired effect cannot be obtained sufficiently. Conversely, if the blending amount is large, further improvement of the effect due to blending is not seen and the cost is increased, which is not preferable. As the metal salt (B) of (meth) acrylic acid, a salt such as zinc of acrylic acid or methacrylic acid, calcium salt of acrylic acid or methacrylic acid, magnesium salt of acrylic acid or methacrylic acid, etc. can be used. Most preferred is the use of zinc acid. These metal salts are known compounds and are widely commercially available.

低分子量ジエン系ゴムの分子量が前記範囲外ではグリップ力の向上効果が不十分であり、低分子量ジエン系ゴムの配合量が少ないとグリップ力の向上効果が不十分であり、逆に多いと加工性が悪化するので好ましくない。本発明で用いる低分子量ジエン系ゴムとしては前記低分子量のスチレン−ブタジエン共重合体、ポリブタジエン、ポリイソプレン、スチレン−イソプレン共重合体、アクリロニトリル−ブタジエン共重合体などを使用することができ、これらは公知の低分子量ポリマーであり、広く市販されている。前記低分子量ジエン系ゴム(C)は平均ガラス転移温度Tg(示差走査熱量計(DSC)を用いて20℃/minの昇温速度で測定し、中点法にて算出)が−45℃〜0℃であるのが好ましい。Tgが低いとグリップが低下するおそれがあり、逆に高いとゴムが硬くなり、走行初期のグリップが低下するおそれがある。 If the molecular weight of the low molecular weight diene rubber is outside the above range, the effect of improving the grip force is insufficient, and if the amount of the low molecular weight diene rubber is small, the effect of improving the grip force is insufficient. This is not preferable because the properties deteriorate. As the low molecular weight diene rubber used in the present invention, the low molecular weight styrene-butadiene copolymer, polybutadiene, polyisoprene, styrene-isoprene copolymer, acrylonitrile-butadiene copolymer, and the like can be used. It is a known low molecular weight polymer and is widely available commercially. The low molecular weight diene rubber (C) has an average glass transition temperature T g (measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC) and calculated by a midpoint method) of −45 ° C. It is preferably ˜0 ° C. If the Tg is low, the grip may be lowered. Conversely, if the Tg is high, the rubber becomes hard and the grip in the initial stage of travel may be lowered.

本発明で用いるジエン系ゴム(A)としては、例えば天然ゴム、スチレンブタジエン共重合体ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン−イソプレン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴムなどをあげることができる。ジエン系ゴムは平均ガラス転移温度Tg(示差走査熱量計(DSC)を用いて20℃/minの昇温速度で測定し、中点法にて算出)が好ましくは−45℃〜0℃である。Tgが低いと、グリップが低下するおそれがあり、高いとゴムが硬くなり、走行初期のグリップが低下するおそれがある。 Examples of the diene rubber (A) used in the present invention include natural rubber, styrene butadiene copolymer rubber, polybutadiene rubber, polyisoprene rubber, styrene-isoprene copolymer rubber, and acrylonitrile-butadiene copolymer rubber. Can do. The diene rubber preferably has an average glass transition temperature T g (measured at a temperature increase rate of 20 ° C./min using a differential scanning calorimeter (DSC) and calculated by a midpoint method) at −45 ° C. to 0 ° C. is there. If the Tg is low, the grip may be lowered. If the Tg is high, the rubber becomes hard, and the grip at the beginning of running may be lowered.

本発明の好ましい態様では、窒素吸着比表面積が80〜400m2/g(ASTM D3037に従って測定)のカーボンブラック及び/又はシリカを、ジエン系ゴム(A)100重量部当り、50〜200重量部、好ましくは55〜180重量部配合する。窒素吸着比表面積が小さいと、グリップが低下するおそれがあり、逆に大きいと加工性が悪化するおそれがある。またカーボンブラック及び/又はシリカの合計配合量が少ないとグリップが低下するおそれがあり、逆に多いと加工性が悪化するおそれがある。 In a preferred embodiment of the present invention, carbon black and / or silica having a nitrogen adsorption specific surface area of 80 to 400 m 2 / g (measured according to ASTM D3037) is 50 to 200 parts by weight per 100 parts by weight of the diene rubber (A). Preferably, 55 to 180 parts by weight are blended. If the nitrogen adsorption specific surface area is small, the grip may be lowered. Conversely, if the nitrogen adsorption specific surface area is large, the workability may be deteriorated. Further, when the total amount of carbon black and / or silica is small, the grip may be lowered, and when it is large, the workability may be deteriorated.

本発明に係るゴム組成物には、前記した成分に加えて、カーボンブラック及びシリカ以外のその他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他のゴム組成物用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the components described above, the rubber composition according to the present invention includes other reinforcing agents (fillers) other than carbon black and silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, and anti-aging agents. Various additives generally blended for tires such as plasticizers and other rubber compositions can be blended, and these additives are kneaded by a general method to obtain a composition and vulcanized. Or it can be used to crosslink. As long as the amount of these additives is not contrary to the object of the present invention, a conventional general amount can be used.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

標準例、実施例1〜2及び比較例1〜2
サンプルの調製
表Iに示す配合において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、160℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。
Standard example, Examples 1-2 and Comparative Examples 1-2
Sample preparation In the formulation shown in Table I, the components other than the vulcanization accelerator and sulfur were kneaded in a 1.7 liter closed mixer for 5 minutes and released when the temperature reached 160 ° C to obtain a master batch. A vulcanization accelerator and sulfur were kneaded with this masterbatch with an open roll to obtain a rubber composition.

次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で30分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表Iに示す。   Next, the resulting rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 30 minutes to prepare a vulcanized rubber sheet. The physical properties of the vulcanized rubber were measured by the following test methods. It was measured. The results are shown in Table I.

ゴム物性評価試験法
デュロメーター硬度:JIS K 6253(タイプA)に準拠して測定した。
Rubber physical property evaluation test method Durometer hardness: Measured according to JIS K 6253 (type A).

引張試験:JIS K 6251(JIS 3号ダンベル)に準拠して、老化(100℃×48時間又は120℃×24時間)前後のM300(300%モジュラス)、TB(引張強さ)及びEB(切断時伸び)を測定した。   Tensile test: M300 (300% modulus), TB (tensile strength) and EB (cut) before and after aging (100 ° C. × 48 hours or 120 ° C. × 24 hours) according to JIS K 6251 (JIS No. 3 dumbbell) Time elongation) was measured.

摩擦係数:ASTM E−1911に従って、ダイナミック・フリクション・テスターを用いて、濡れたアルファルト路面上で測定した。結果は標準例の値を100として指数表示した。この数値が大きいほど摩擦係数が大きくグリップが高いことを示す。   Coefficient of friction: Measured on wet Alfart road surface using a dynamic friction tester according to ASTM E-1911. The results are shown as an index with the value of the standard example being 100. The larger this value, the greater the coefficient of friction and the higher the grip.

Figure 2008163113
Figure 2008163113

表I脚注
*1:日本ゼオン(株)製SBR(Tg=−31℃)
*2:東海カーボン(株)製カーボンブラック(N2SA=142m2/g)
*3:正同化学工業(株)製
*4:日本油脂(株)製
*5:FLEXSYS製老化防止剤
*6:SARTOMER製低分子量SBR(Mw=4500,Tg=−18℃)
*7:ジャパンエナジー(株)製石油系軟化剤
*8:(株)鶴見化学工業製
*9:大内新興化学工業(株)製加硫促進剤
*10:SARTOMER製モノメタクリル酸亜鉛
Table I Footnote * 1: SBR manufactured by Nippon Zeon Co., Ltd. (T g = −31 ° C.)
* 2: Carbon black (N 2 SA = 142 m 2 / g) manufactured by Tokai Carbon Co., Ltd.
* 3: manufactured by Shodo Chemical Industry Co., Ltd. * 4: manufactured by Nippon Oil & Fats Co., Ltd. * 5: anti-aging agent manufactured by FLEXSYS * 6: low molecular weight SBR manufactured by SARTOMER (Mw = 4500, T g = −18 ° C.)
* 7: Petroleum softener made by Japan Energy Co., Ltd. * 8: Made by Tsurumi Chemical Co., Ltd. * 9: Vulcanization accelerator made by Ouchi Shinsei Chemical Co., Ltd. * 10: Zinc monomethacrylate made by SARTOMER

以上の通り、本発明によれば、低分子量ゴムを配合したゴム組成物に対して、(メタ)アクリル酸金属塩を配合することにより、硫黄の配合量を増やすことなく、モジュラスの低下を防止し、グリップ力が高く、耐熱老化性も良好なゴム組成物が得られるので、空気入りタイヤのトレッド部などに有用である。   As described above, according to the present invention, by reducing the amount of sulfur without increasing the amount of sulfur, by adding a (meth) acrylic acid metal salt to a rubber composition containing a low molecular weight rubber, it is possible to prevent a decrease in modulus. In addition, since a rubber composition having high grip strength and good heat aging resistance can be obtained, it is useful for a tread portion of a pneumatic tire.

Claims (6)

(A)重量平均分子量が350,000〜2,000,000のジエン系ゴム100重量部、(B)アクリル酸又はメタクリル酸の金属塩0.5〜15重量部及び(C)重量平均分子量が2,000〜100,000の低分子量ジエン系ゴム3〜100重量部を含んでなるタイヤトレッド用ゴム組成物。   (A) 100 parts by weight of a diene rubber having a weight average molecular weight of 350,000 to 2,000,000, (B) 0.5 to 15 parts by weight of a metal salt of acrylic acid or methacrylic acid, and (C) a weight average molecular weight. A rubber composition for a tire tread, comprising 3 to 100 parts by weight of a low molecular weight diene rubber having a molecular weight of 2,000 to 100,000. 窒素吸着比表面積(N2SA)が80〜400m2/gのカーボンブラック及び/又はシリカ50〜200重量部を更に含む請求項1に記載のタイヤトレッド用ゴム組成物。 The rubber composition for a tire tread according to claim 1, further comprising 50 to 200 parts by weight of carbon black and / or silica having a nitrogen adsorption specific surface area (N 2 SA) of 80 to 400 m 2 / g. 前記ジエン系ゴム(A)の平均ガラス転移温度Tgが−45℃〜0℃である請求項1又は2に記載のタイヤトレッド用ゴム組成物。 The diene rubber average glass transition temperature T g is a tire tread rubber composition according to claim 1 or 2, which is -45 ° C. ~0 ° C. of (A). 前記低分子量ジエン系ゴム(C)の平均ガラス転移温度Tgが−45℃〜0℃である請求項1〜3のいずれか1項に記載のタイヤトレッド用ゴム組成物。 The low molecular weight diene rubber average glass transition temperature T g is a tire tread rubber composition according to claim 1, which is -45 ° C. ~0 ° C. of (C). 前記アクリル酸又はメタクリル酸の金属塩(B)がモノメタクリル酸亜鉛である請求項1〜4のいずれか1項に記載のタイヤトレッド用ゴム組成物。   The rubber composition for a tire tread according to any one of claims 1 to 4, wherein the metal salt (B) of acrylic acid or methacrylic acid is zinc monomethacrylate. 請求項1〜5のいずれか1項に記載のゴム組成物をトレッド部に用いた空気入りタイヤ。   A pneumatic tire using the rubber composition according to any one of claims 1 to 5 in a tread portion.
JP2006352216A 2006-12-27 2006-12-27 Rubber composition for tire tread Pending JP2008163113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352216A JP2008163113A (en) 2006-12-27 2006-12-27 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352216A JP2008163113A (en) 2006-12-27 2006-12-27 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JP2008163113A true JP2008163113A (en) 2008-07-17

Family

ID=39693025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352216A Pending JP2008163113A (en) 2006-12-27 2006-12-27 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP2008163113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104099A (en) * 2016-02-12 2018-09-19 요코하마 고무 가부시키가이샤 Rubber composition for tire and pneumatic tire
CN114395260A (en) * 2022-01-06 2022-04-26 江苏艾塔新材料有限公司 Pre-dispersed master batch of metal methacrylate and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104099A (en) * 2016-02-12 2018-09-19 요코하마 고무 가부시키가이샤 Rubber composition for tire and pneumatic tire
KR102217505B1 (en) * 2016-02-12 2021-02-19 요코하마 고무 가부시키가이샤 Tire rubber composition and pneumatic tire
CN114395260A (en) * 2022-01-06 2022-04-26 江苏艾塔新材料有限公司 Pre-dispersed master batch of metal methacrylate and preparation method thereof
CN114395260B (en) * 2022-01-06 2022-12-13 江苏艾塔新材料有限公司 Metal methacrylate pre-dispersed masterbatch and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4493712B2 (en) Rubber composition for tire
JP5177304B2 (en) Rubber composition and pneumatic studless tire
JP2009108298A (en) Rubber composition
JP2008138086A (en) Rubber composition for tire tread
JP2006282830A (en) Rubber composition
JP2006241216A (en) Rubber composition
JP2009084485A (en) Rubber composition for tire tread
JP2007039583A (en) Rubber composition for tire tread
JP2005133017A (en) Rubber composition for sidewall
JP2008163113A (en) Rubber composition for tire tread
JP2007186644A (en) Rubber composition for tire tread
JP2007217465A (en) Rubber composition for tire
JP2009007422A (en) Rubber composition and tire
JP4899322B2 (en) Rubber composition
JP4496622B2 (en) Rubber composition for tire
JP2005314533A (en) Rubber composition for tire tread
JP2011252069A (en) Diene-based rubber composition
JP2009298905A (en) Rubber composition for crawler
JP2001323071A (en) Method for producing carbon master batch
JP2009179658A (en) Rubber composition for tire tread and method for producing the same
JP2008163108A (en) Rubber composition and tire using the same
JP2009084483A (en) Rubber composition for tire and pneumatic tire using the same
JP2006056979A (en) Rubber composition and tire using it
JP6428371B2 (en) Rubber composition for run flat liner and pneumatic tire using the same
JP2005272720A (en) Tread rubber composition for tire and pneumatic tire using the same