JP2008162840A - Method for producing quartz glass crucible - Google Patents

Method for producing quartz glass crucible Download PDF

Info

Publication number
JP2008162840A
JP2008162840A JP2006353530A JP2006353530A JP2008162840A JP 2008162840 A JP2008162840 A JP 2008162840A JP 2006353530 A JP2006353530 A JP 2006353530A JP 2006353530 A JP2006353530 A JP 2006353530A JP 2008162840 A JP2008162840 A JP 2008162840A
Authority
JP
Japan
Prior art keywords
quartz glass
arc
electrode
glass crucible
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006353530A
Other languages
Japanese (ja)
Other versions
JP5121227B2 (en
Inventor
Hiroshi Kishi
弘史 岸
Minoru Kanda
稔 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Super Quartz Corp
Original Assignee
Japan Super Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Super Quartz Corp filed Critical Japan Super Quartz Corp
Priority to JP2006353530A priority Critical patent/JP5121227B2/en
Publication of JP2008162840A publication Critical patent/JP2008162840A/en
Application granted granted Critical
Publication of JP5121227B2 publication Critical patent/JP5121227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a quartz glass crucible whose curved part and bottom part are not excessively heated, and which has a shape excellent in formability and contains few internal air bubbles. <P>SOLUTION: In the method for producing the quartz glass crucible, comprising arc-melting a quartz powder molding filled in a rotating mold while evacuating it, an electrode is moved to the side relatively to the mold center line at the start of arc-melting or during arc-melting, and arc-melting is performed at the eccentric position. Preferably, the time for heating the whole body is ≤60% of the total time for arc-melting. The quartz glass crucible produced by this method is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコン単結晶に引上げに用いる石英ガラスルツボに関し、より詳しくは、成形性に優れると共に内部気泡が少ない石英ガラスルツボとその製造方法および装置に関する。   The present invention relates to a quartz glass crucible used for pulling up a silicon single crystal, and more particularly to a quartz glass crucible having excellent moldability and few internal bubbles, and a method and apparatus for producing the same.

単結晶シリコンは主にCZ法によって製造されている。この方法は、高温下、石英ルツボ中のシリコン融液に種結晶を浸し、これを徐々に引き上げて単結晶シリコンを製造する方法であり、シリコン融液を溜める高純度の石英ガラスルツボが用いられている。   Single crystal silicon is mainly manufactured by the CZ method. In this method, a seed crystal is immersed in a silicon melt in a quartz crucible at a high temperature, and this is gradually pulled up to produce single crystal silicon. A high-purity quartz glass crucible for storing the silicon melt is used. ing.

単結晶シリコンの引上げに用いる石英ガラスルツボは主にアーク溶融法によって製造されている。この方法は、カーボン製の回転モールドの内表面に石英粉を一定厚さに堆積して石英粉成形体を形成し、モールドの内側上方に設置した電極のアーク放電によって石英粉を加熱溶融してガラス化し、石英ガラスルツボを製造する方法(回転モールド法)である。   Quartz glass crucibles used for pulling single crystal silicon are mainly manufactured by the arc melting method. In this method, quartz powder is deposited on the inner surface of a rotating mold made of carbon to a certain thickness to form a quartz powder compact, and the quartz powder is heated and melted by arc discharge of an electrode placed inside the mold. This is a method (rotating mold method) for producing a vitreous silica glass crucible.

上記製造方法において、ガラス層内部の気泡を除去するため、モールド側から吸引して石英粉成形体を減圧脱気しながら石英粉を溶融する方法が知られている(特許文献1、特許文献2)。この溶融工程において石英粉成形体を減圧脱気(これを真空引きと云う)するには、石英粉成形体の内表面を均一に薄く溶融させて表面に薄いガラス層を形成することによって内面をシールし、石英粉成形体内の真空度を上げる必要がある。   In the above manufacturing method, in order to remove bubbles inside the glass layer, a method is known in which quartz powder is melted while being sucked from the mold side and degassing the quartz powder molded body under reduced pressure (Patent Document 1, Patent Document 2). ). In this melting step, the quartz powder molded body is degassed under reduced pressure (this is called evacuation) by melting the inner surface of the quartz powder molded body uniformly and thinly to form a thin glass layer on the surface. It is necessary to seal and increase the degree of vacuum in the quartz powder molded body.

石英粉成形体を溶融してガラスルツボを製造する上記製造方法において、従来は、回転モールドの中心線上にアーク電極を設定し、モールド内回りの石英粉成形体を均一に加熱する方法が一般的である。ところが、モールド内面に形成した石英粉成形体上部のリム端は、該成形体の湾曲部や底部よりも保温性が低いためにリム端の溶融速度が遅く、リム端表面に薄いガラス層が十分に形成されないため、石英粉成形体の真空度が上がらず、ガラス層の内部気泡が少ないルツボを得ることができない。一方、リム端の溶融不足を補うために、アーク溶融の発熱量を増やして上記リム端を溶融すると、湾曲部や底部が過剰に加熱されて溶融し、石英粉成形体の形状が崩れやすくなると云う問題がある。
特開平06−191986号公報 特開平10−025184号公報
In the above production method for producing a glass crucible by melting a quartz powder molded body, conventionally, an arc electrode is set on the center line of the rotary mold, and the quartz powder molded body around the mold is generally heated uniformly. is there. However, the rim end at the top of the quartz powder molded body formed on the inner surface of the mold has a lower heat retention than the curved and bottom portions of the molded body, so the melting speed of the rim end is slow, and a thin glass layer is sufficient on the rim end surface. Thus, the degree of vacuum of the quartz powder molded body does not increase, and a crucible with few internal bubbles in the glass layer cannot be obtained. On the other hand, when the rim end is melted by increasing the amount of heat generated by arc melting in order to compensate for the insufficient melting of the rim end, the curved part and the bottom part are excessively heated and melted, and the shape of the quartz powder compact tends to collapse. There is a problem.
Japanese Patent Laid-Open No. 06-191986 Japanese Patent Laid-Open No. 10-025184

本発明は、従来の製造方法における上記問題を解決したものであり、ルツボのリム端が十分に内面シールされると共に湾曲部および底部が過剰加熱されず、石英粉成形体の真空度が高く、形状の成形性に優れると共に内部気泡の少ない石英ガラスルツボを製造する方法、該方法によって製造した石英ガラスルツボ、およびその製造装置を提供する。   The present invention solves the above problems in the conventional manufacturing method, the rim end of the crucible is sufficiently sealed inside and the curved portion and the bottom portion are not excessively heated, and the degree of vacuum of the quartz powder compact is high, A method for producing a quartz glass crucible having excellent shape moldability and few internal bubbles, a quartz glass crucible produced by the method, and a production apparatus therefor are provided.

本発明は、以下の構成によって上記問題を解決した石英ガラスルツボの製造方法等に関する。
(1)回転モールドに充填した石英粉成形体を真空引きしながらアーク溶融して石英ガラスルツボを製造する方法において、アーク溶融開始ないしアーク溶融中に電極をモールド中心線に対して相対的に側方に移動し、偏芯位置でアーク溶融することを特徴とする石英ガラスルツボの製造方法。
(2)電極をモールド中心線上にてアーク溶融を行う全体加熱と、電極をモールド中心線から外した偏芯位置でアーク溶融を行う局所加熱とを行う上記(1)に記載する石英ガラスルツボの製造方法。
(3)全体加熱の時間がアーク溶融全時間の60%以下である上記(1)または上記(2)に記載する石英ガラスルツボの製造方法。
(4)局部加熱において、電極先端中心と石英粉成形体の加熱部位との距離L2を、モールド中心線から上記加熱部位までの距離L1の5〜80%に保持して加熱溶融する上記(1)〜上記(3)の何れかに記載する石英ガラスルツボの製造方法。
(5)複数の電極先端に接する外接円の面積を710cm2以下とし、該外接円の円内全体をアーク加熱する上記(1)〜上記(4)の何れかに記載される石英ガラスルツボの製造方法。
(6)上記(5)の製造方法において、電極中心間の距離が15cm以下である石英ガラスルツボの製造方法。
(7) 上記(1)〜上記(6)の何れかの方法によって製造されたルツボであって、湾曲部内面の曲率W2が湾曲部外面の曲率W1の0.8〜1.2倍である石英ガラスルツボ。
(8)上記(1)〜上記(6)の何れかの方法によって製造されたルツボであって、ルツボ全体の内表面から1.0mmの肉厚範囲において、0.5mm以上の内部気泡が湾曲部全体で5個以下である石英ガラスルツボ。
(9)アーク電極と回転モールドの少なくとも何れかに側方への移動手段を有し、回転モールドに対するアーク電極の相対位置が偏芯可能である石英ガラスルツボの製造装置。
The present invention relates to a method for producing a quartz glass crucible that solves the above problems by the following configuration.
(1) In a method of producing a quartz glass crucible by arc melting while evacuating a quartz powder compact filled in a rotary mold, the electrode is positioned relatively to the mold center line during or after arc melting. The method for producing a quartz glass crucible is characterized by moving in the direction and arc melting at an eccentric position.
(2) The quartz glass crucible described in the above (1), in which the entire heating in which the electrode is arc-melted on the mold center line and the local heating in which the electrode is arc-melted at an eccentric position removed from the mold center line are performed. Production method.
(3) The method for producing a quartz glass crucible as described in (1) or (2) above, wherein the total heating time is 60% or less of the total arc melting time.
(4) In local heating, the distance L2 between the center of the electrode tip and the heated portion of the quartz powder molded body is maintained at 5 to 80% of the distance L1 from the mold center line to the heated portion, and the above (1) The method for producing a quartz glass crucible according to any one of (3) to (3).
(5) The quartz glass crucible according to any one of (1) to (4) above, wherein an area of a circumscribed circle in contact with a plurality of electrode tips is 710 cm 2 or less, and the entire inside of the circumscribed circle is arc-heated. Production method.
(6) A method for producing a quartz glass crucible, wherein the distance between the electrode centers is 15 cm or less in the method (5).
(7) The crucible manufactured by any one of the above methods (1) to (6), wherein the curvature W2 of the curved portion inner surface is 0.8 to 1.2 times the curvature W1 of the curved portion outer surface. Quartz glass crucible.
(8) A crucible manufactured by any one of the above methods (1) to (6), wherein internal bubbles of 0.5 mm or more are curved in a thickness range of 1.0 mm from the inner surface of the entire crucible. Quartz glass crucible with 5 or fewer parts as a whole.
(9) An apparatus for producing a quartz glass crucible having a means for moving to the side of at least one of an arc electrode and a rotary mold so that the relative position of the arc electrode with respect to the rotary mold can be eccentric.

本発明の製造方法は、アーク溶融開始ないしアーク溶融中に電極をモールド中心線に対して側方に移動し、偏芯位置でアーク溶融するので、電極をルツボリム端に近づけてアーク溶融することによって、側壁下部、湾曲部および底部の過剰加熱を抑制してリム端を十分に加熱溶融し、ルツボ内表面の全体に薄いガラス層による内面シールを均一に形成することができる。従って、内部気泡の少ない石英ガラスルツボを得ることができる。   In the manufacturing method of the present invention, the electrode is moved laterally with respect to the mold center line during arc melting start or during arc melting, and arc melting is performed at the eccentric position. The rim end can be sufficiently heated and melted by suppressing excessive heating of the lower portion of the side wall, the curved portion and the bottom portion, and an inner surface seal with a thin glass layer can be uniformly formed on the entire inner surface of the crucible. Therefore, a quartz glass crucible with few internal bubbles can be obtained.

本発明の製造方法は、電極をモールド中心線上にてアーク溶融を行う全体加熱と、電極をモールド中心線から外した偏芯位置でアーク溶融を行う局所加熱とを行い、全体加熱の時間がアーク溶融全時間の60%以下になるようにアーク溶融を制御することによって、リム端を十分に加熱溶融すると共にルツボ側壁下部から湾曲部・底部に至る部分の過剰加熱が抑制されるので、この部分のガラス粘性が大幅に低下することがなく、側壁下部からのガラスの垂れ込みや、底部からガラスの片寄りがなく、コーナ部の極度な肉厚増加が防止され、成形性に優れたルツボを得ることができる。   The manufacturing method of the present invention performs the whole heating in which the electrode is arc-melted on the mold center line and the local heating in which the electrode is melted at an eccentric position where the electrode is removed from the mold center line. By controlling the arc melting so that it is 60% or less of the total melting time, the rim end is sufficiently heated and melted, and overheating from the lower part of the crucible side wall to the curved part / bottom part is suppressed. A glass crucible with excellent moldability can be prevented without drastically lowering the glass viscosity, preventing the glass from sagging from the lower part of the side wall, or shifting the glass from the bottom. Obtainable.

本発明の製造方法は、具体的には、例えば、局部加熱において、電極先端中心と石英粉成形体の加熱部位との距離L2を、モールド中心線から上記加熱部位までの距離L1の5〜80%に保持して加熱溶融し、また、三相交流電極によるアーク溶融において、各電極先端に接する外接円の面積を710cm2以下とし、該外接円の円内全体をアーク加熱し、電極中心間の距離を15cm以下に設定してアーク溶融を行うことによって、例えば、湾曲部内面の曲率W2が湾曲部外面の曲率W1の0.8〜1.2倍であり、ルツボ全体の内表面から1.0mmの肉厚範囲において、0.5mm以上の内部気泡が湾曲部全体で5個以下である石英ガラスルツボを得ることができる。 Specifically, in the manufacturing method of the present invention, for example, in local heating, the distance L2 between the center of the electrode tip and the heating part of the quartz powder molded body is set to 5 to 80 of the distance L1 from the mold center line to the heating part. In the arc melting with a three-phase alternating current electrode, the area of the circumscribed circle in contact with the tip of each electrode is set to 710 cm 2 or less, and the entire inner circle of the circumscribed circle is arc-heated, Is set to 15 cm or less, for example, the curvature W2 of the inner surface of the curved portion is 0.8 to 1.2 times the curvature W1 of the outer surface of the curved portion, and 1 from the entire inner surface of the crucible. In the thickness range of 0.0 mm, it is possible to obtain a quartz glass crucible in which internal bubbles of 0.5 mm or more are 5 or less in the entire curved portion.

以下、本発明を実施形態に即して具体的に説明する。
本発明の製造方法は、回転モールドに充填した石英粉成形体を真空引きしながらアーク溶融して石英ガラスルツボを製造する方法において、アーク溶融開始ないしアーク溶融中に電極をモールド中心線に対して相対的に側方に移動し、偏芯位置でアーク溶融することを特徴とする石英ガラスルツボの製造方法である。
Hereinafter, the present invention will be specifically described with reference to embodiments.
The production method of the present invention is a method for producing a silica glass crucible by evacuating a quartz powder molded body filled in a rotating mold to produce a quartz glass crucible. It is a method for producing a quartz glass crucible, which moves relatively to the side and arc melts at an eccentric position.

回転モールドに充填した石英粉成形体をアーク溶融して石英ガラスルツボを製造する方法の概略を図1に示す。図示するように、回転するモールド10の内面に石英粉が所定の厚さに充填されて石英粉成形体11が形成されている。該モールド10には真空引き用の通気孔12が設けられており、該通気孔12はモールド内面に開口している。上記モールド10の中心線Lの線上にはアーク加熱用の電極13が設けられており、石英粉成形体11を真空引きしながら電極13によってアーク溶融し、石英粉を溶融してガラスルツボを製造する。   FIG. 1 shows an outline of a method for producing a quartz glass crucible by arc-melting a quartz powder compact filled in a rotary mold. As shown in the drawing, the quartz powder compact 11 is formed by filling the inner surface of the rotating mold 10 with a predetermined thickness of quartz powder. The mold 10 is provided with a vent hole 12 for evacuation, and the vent hole 12 opens on the inner surface of the mold. An arc heating electrode 13 is provided on the center line L of the mold 10. The quartz powder molded body 11 is arc-melted by the electrode 13 while evacuating it, and the quartz powder is melted to produce a glass crucible. To do.

本発明の製造方法を実施する装置としては、上記モールド10または電極13の何れかに上下動手段(図示省略)が設けられており、さらに上記モールド10または電極13の何れかに側方移動手段(図示省略)が設けられているものが好ましい。本発明の製造方法は、図2に示すように、回転モールド10またはアーク電極13の何れかを側方に移動することによって、電極13をモールド中心線Lに対して相対的に側方移動し、偏芯位置でアーク溶融する。   As an apparatus for carrying out the manufacturing method of the present invention, vertical movement means (not shown) is provided in either the mold 10 or the electrode 13, and lateral movement means is provided in either the mold 10 or the electrode 13. What is provided (illustration omitted) is preferable. As shown in FIG. 2, the manufacturing method of the present invention moves the electrode 13 sideways relative to the mold center line L by moving either the rotary mold 10 or the arc electrode 13 sideways. The arc melts at the eccentric position.

アーク溶融時にモールド10は回転しているので、電極13を一方のリム端15bに近づけてアーク溶融しても、リム端15の全体は断続的に連続して電極13に近づいた位置でアーク溶融され、リム端全体が均一に加熱溶融される。   Since the mold 10 is rotating at the time of arc melting, even if the electrode 13 is brought close to one rim end 15b and arc melting is performed, the entire rim end 15 is intermittently melted at a position close to the electrode 13 continuously. Then, the entire rim end is heated and melted uniformly.

本発明の製造方法は、電極13をモールド中心線上にてアーク溶融を行う全体加熱と、電極13をモールド中心線から外した偏芯位置でアーク溶融を行う局所加熱とを行い、全体加熱の時間をアーク溶融全時間の60%以下に制御するのが好ましい。   The manufacturing method of the present invention performs the entire heating for performing the arc melting of the electrode 13 on the mold center line and the local heating for performing the arc melting at an eccentric position where the electrode 13 is removed from the mold center line. Is preferably controlled to 60% or less of the total arc melting time.

一般に、石英粉成形体11のリム端15は、側面と上面が大気に接しているので、側壁部16、湾曲部17、底部18に比べて保温性が低い。このため、アーク溶融の総時間を通じてリム端15を基準にした全体加熱を行うと、側壁部16の下部から湾曲部17および底部18に至る部分が適温を超えて加熱されることになり、この過剰加熱によって上記部分のガラス粘度が大きく低下する。その結果、重力による側壁下部から溶融ガラスの垂れ込み、モールド回転の遠心力による底部からガラスの片寄りが生じ、湾曲部の厚みにバラツキが生じる可能性がある。   In general, the rim end 15 of the quartz powder molded body 11 has lower heat retention than the side wall portion 16, the curved portion 17, and the bottom portion 18 because the side surface and the upper surface are in contact with the atmosphere. For this reason, when the entire heating based on the rim end 15 is performed throughout the total arc melting time, the portion from the lower portion of the side wall portion 16 to the curved portion 17 and the bottom portion 18 is heated exceeding an appropriate temperature. Excessive heating greatly reduces the glass viscosity of the above part. As a result, the molten glass sags from the lower portion of the side wall due to gravity and the glass shifts from the bottom due to the centrifugal force of mold rotation, which may cause variations in the thickness of the curved portion.

一方、本発明の製造方法において、全体加熱の時間をアーク溶融全時間の60%以下に制御すれば、リム端15を十分に加熱しつつ、側壁下部から湾曲部・底部に至る部分の過剰加熱を抑制することができ、この部分のガラス粘性が大幅に低下することがないので、湾曲部17のコーナ部分の極度な肉厚増加が防止され、成形性に優れたルツボを得ることができる。なお、各部位での肉厚のバラツキを抑制するためには、全体加熱をアーク溶融全時間の50%程度行うのが良く、従って、アーク溶融総時間に対して局部加熱を40〜50%、全体加熱を50〜60%行うのが好ましい。   On the other hand, in the manufacturing method of the present invention, if the total heating time is controlled to 60% or less of the total arc melting time, the rim end 15 is heated sufficiently while the portion from the lower portion of the side wall to the curved portion / bottom portion is overheated. Since the glass viscosity at this portion is not significantly reduced, an extreme increase in the thickness of the corner portion of the curved portion 17 is prevented, and a crucible with excellent moldability can be obtained. In addition, in order to suppress the variation in the thickness at each part, it is preferable that the entire heating is performed about 50% of the total arc melting time. Therefore, the local heating is 40 to 50% with respect to the total arc melting time. It is preferable to perform the entire heating by 50 to 60%.

具体的には、例えば、口径28〜32インチ、平均肉厚11〜16mmの石英ルツボを製造する場合、ルツボ内面の温度1600〜2500℃、アーク溶融全時間20〜40分であるとき、電極13をリム端15に近づけて、アーク溶融開始から10〜20分間、局部加熱を行い、その後、引き続き、全体加熱を10〜20分間行うと良い。   Specifically, for example, when producing a quartz crucible having a diameter of 28 to 32 inches and an average wall thickness of 11 to 16 mm, when the temperature of the inner surface of the crucible is 1600 to 2500 ° C. and the total time of arc melting is 20 to 40 minutes, the electrode 13 To the rim end 15, and local heating is performed for 10 to 20 minutes from the start of arc melting, and then the entire heating is preferably performed for 10 to 20 minutes.

本発明の製造方法は局部加熱において、図2に示すように、電極先端中心と石英粉成形体11の加熱部位との距離L2を、モールド中心線Lから上記加熱部位までの距離L1の5〜80%に保持してアーク溶融するのが好ましい。上記距離L2がL1の80%より大きいと、電極先端が加熱部位から離れすぎので局部加熱の効果が不十分になる。一方、上記距離L2がL1の5%より小さいと、電極先端が加熱部位に近すぎるのでアーク放電で発生する気流によって石英粉や溶融ガラスが飛ばされる。   As shown in FIG. 2, the manufacturing method of the present invention is such that the distance L2 between the center of the electrode tip and the heating part of the quartz powder molded body 11 is 5 to 5 of the distance L1 from the mold center line L to the heating part. It is preferable to hold at 80% and perform arc melting. If the distance L2 is greater than 80% of L1, the tip of the electrode is too far away from the heating part, and the effect of local heating becomes insufficient. On the other hand, if the distance L2 is smaller than 5% of L1, the tip of the electrode is too close to the heated portion, so that quartz powder or molten glass is blown by the air flow generated by arc discharge.

複数本の電極を使用する場合、本発明の製造方法は、図3に示すように、これらの電極21、22、23の各先端外周に接する外接円Sの面積を710cm2以下に設定し、該外接円Sの円内全体をアーク加熱するのが好ましい。また、各電極の中心間距離L3は15cm以下が好ましい。具体的には、例えば、上記局部加熱において例示したアーク溶融条件(段落0018)において、外接円Sの面積が上記範囲よりも大きく、また電極相互の中心間距離L3が15cmより離れていると、加熱面積が広がりすぎて局部加熱にならない。 When using a plurality of electrodes, as shown in FIG. 3, the manufacturing method of the present invention sets the area of the circumscribed circle S in contact with the outer periphery of each tip of these electrodes 21, 22, 23 to 710 cm 2 or less, It is preferable to arc-heat the entire circle of the circumscribed circle S. The center-to-center distance L3 of each electrode is preferably 15 cm or less. Specifically, for example, in the arc melting condition (paragraph 0018) exemplified in the local heating, when the area of the circumscribed circle S is larger than the above range and the center-to-center distance L3 between the electrodes is more than 15 cm, The heating area is too wide and local heating does not occur.

本発明の製造方法によれば、アーク溶融条件において、湾曲部内面の曲率W2が湾曲部外面の曲率W1の0.8〜1.2倍(W2/W1=0.8〜1.2)であり、ルツボ全体の内表面から1.0mmの肉厚範囲において0.5mm以上の内部気泡が湾曲部全体で5個以下である石英ガラスルツボを得ることができる。なお、湾曲部の内面曲率W2、外面曲率W1は、図4に示すように、湾曲部の一定の測定範囲Rにおいて、内面および外面についておのおの測定される曲率であり、一定範囲Rごとに湾曲部全体について測定し、その平均値によって判断すれば良い。   According to the manufacturing method of the present invention, the curvature W2 of the curved portion inner surface is 0.8 to 1.2 times the curvature W1 of the curved portion outer surface (W2 / W1 = 0.8 to 1.2) in the arc melting condition. In addition, a quartz glass crucible can be obtained in which the internal bubbles of 0.5 mm or more are 5 or less in the entire curved portion in the thickness range of 1.0 mm from the inner surface of the entire crucible. Note that the inner surface curvature W2 and the outer surface curvature W1 of the curved portion are the curvatures measured for the inner surface and the outer surface, respectively, in the constant measurement range R of the curved portion, as shown in FIG. What is necessary is just to measure about the whole and to judge by the average value.

湾曲部内面の曲率W2が湾曲部外面の曲率W1の0.8〜1.2倍を外れると湾曲部の肉厚の不均質性が大きくなり、成形性が低下するので好ましくない。また、ルツボ全体の内表面から1.0mmの肉厚範囲において0.5mm以上の内部気泡が湾曲部全体で5個を上回ると、ルツボの使用時に高温下で上記内部気泡が膨張してルツボ内表面を剥離させ、シリコン単結晶の収率を低下させるなどの問題を招く場合があるので好ましくない。   If the curvature W2 of the inner surface of the curved portion deviates from 0.8 to 1.2 times the curvature W1 of the outer surface of the curved portion, the thickness nonuniformity of the curved portion becomes large, and the moldability deteriorates. Also, if the number of internal bubbles of 0.5 mm or more exceeds 5 in the entire curved portion within a thickness range of 1.0 mm from the inner surface of the entire crucible, the internal bubbles expand at a high temperature when the crucible is used, and the inside of the crucible This is not preferable because it may cause problems such as peeling the surface and reducing the yield of the silicon single crystal.

以下に本発明の実施例を比較例と共に示す。
口径28インチ、高さ500mm、平均壁厚11mmの石英ガラスルツボについて、合成石英粉または天然石英粉を原料とし、ルツボ内面の温度が1600〜2500℃になるようにアーク加熱し、表1に示す条件に従って石英ガラスルツボを製造した。このルツボについて湾曲部の内部気泡数、内面曲率と外面曲率の比を製造条件と共に表1に示した。
Examples of the present invention are shown below together with comparative examples.
A quartz glass crucible having a diameter of 28 inches, a height of 500 mm, and an average wall thickness of 11 mm is made of synthetic quartz powder or natural quartz powder and arc-heated so that the temperature on the inner surface of the crucible is 1600 to 2500 ° C. A quartz glass crucible was produced according to the conditions. Table 1 shows the number of internal bubbles of the curved portion, the ratio of the internal curvature and the external curvature of this crucible together with the manufacturing conditions.

表1において、全体加熱の割合はアーク総時間に対する全体加熱の比(%)、電極先端の距離は加熱部位とモールド中心線との距離L1に対する加熱部位と電極先端との距離L2の比(L2/L1:%)、到達真空度は石英粉成形体のアーク溶融時の最高真空度、気泡数はルツボ全体について内表面から肉厚1.0mmの範囲に含まれる大きさ0.5mm以上の気泡数、曲率比は湾曲部内面曲率W2と湾曲部外面曲率W1の比(W2/W1)を湾曲部全体について一定範囲ごとに測定した平均値に基づく値である。   In Table 1, the ratio of the total heating is the ratio (%) of the total heating to the total arc time, and the distance between the electrode tips is the ratio of the distance L2 between the heating site and the electrode tip to the distance L1 between the heating site and the mold center line (L2). / L1:%), the ultimate vacuum is the maximum vacuum at the time of arc melting of the quartz powder compact, and the number of bubbles is a bubble of 0.5 mm or more in size within the thickness of 1.0 mm from the inner surface of the entire crucible The number and the curvature ratio are values based on an average value obtained by measuring the ratio (W2 / W1) of the curved portion inner surface curvature W2 and the curved portion outer surface curvature W1 for each predetermined range with respect to the entire curved portion.

表1に示すように、本発明の実施例1〜6は何れも到達真空度が高く、従って気泡数が少ない。また、曲率比が0.8〜1.2の範囲であり、成形性が良い。一方、本発明の範囲を外れる比較例1〜5は何れも到達真空度が低く、気泡数が各段に多い。また曲率比が1.2よりも大きく、成形性が劣る。   As shown in Table 1, each of Examples 1 to 6 of the present invention has a high ultimate vacuum and therefore has a small number of bubbles. Further, the curvature ratio is in the range of 0.8 to 1.2, and the moldability is good. On the other hand, Comparative Examples 1 to 5 outside the scope of the present invention all have a low ultimate vacuum and a large number of bubbles in each stage. Moreover, a curvature ratio is larger than 1.2, and a moldability is inferior.

Figure 2008162840
Figure 2008162840

回転モールド法による石英ガラスルツボ製造の概念図Conceptual diagram of quartz glass crucible production by rotary mold method ルツボの湾曲部の曲率を示す概念図Conceptual diagram showing the curvature of the crucible curve 電極と外接円とを示す概念図Conceptual diagram showing electrodes and circumscribed circle ルツボ湾曲部の曲率を示す説明図Explanatory drawing showing the curvature of the crucible curved part

符号の説明Explanation of symbols

10−モールド、11−石英粉成形体、12−通気孔、13−電極、15−リム上端、16−側壁部、17−湾曲部、18−底部、L−モールド中心線、L1−加熱部位とモールド中心線との距離、L2−加熱部位と電極先端との距離、L3−電極中心間の距離、W1−湾曲部外面曲率、W2−湾曲部内面曲率、S−外接円、R−曲率の測定範囲。 10-mold, 11-quartz powder compact, 12-air vent, 13-electrode, 15-rim top, 16-side wall, 17-curved, 18-bottom, L-mold center line, L1-heating site Measurement of distance from mold center line, L2-distance between heated part and electrode tip, distance between L3-electrode centers, W1-curved portion outer surface curvature, W2-curved portion inner surface curvature, S- circumscribed circle, R-curvature range.

Claims (9)

回転モールドに充填した石英粉成形体を真空引きしながらアーク溶融して石英ガラスルツボを製造する方法において、アーク溶融開始ないしアーク溶融中に電極をモールド中心線に対して相対的に側方に移動し、偏芯位置でアーク溶融することを特徴とする石英ガラスルツボの製造方法。
In the method of producing a quartz glass crucible by arc melting while vacuuming the quartz powder compact filled in the rotary mold, the electrode is moved to the side relative to the mold center line during or after arc melting. And a method for producing a quartz glass crucible, wherein arc melting is performed at an eccentric position.
電極をモールド中心線上にてアーク溶融を行う全体加熱と、電極をモールド中心線から外した偏芯位置でアーク溶融を行う局所加熱とを行う請求項1に記載する石英ガラスルツボの製造方法。
The method for producing a quartz glass crucible according to claim 1, wherein the whole heating is performed in which the electrode is arc-melted on the mold center line, and the local heating is performed in which the electrode is melted at an eccentric position removed from the mold center line.
全体加熱の時間がアーク溶融全時間の60%以下である請求項1または請求2に記載する石英ガラスルツボの製造方法。
The method for producing a quartz glass crucible according to claim 1 or 2, wherein the total heating time is 60% or less of the total arc melting time.
局部加熱において、電極先端中心と石英粉成形体の加熱部位との距離L2を、モールド中心線から上記加熱部位までの距離L1の5〜80%に保持して加熱溶融する請求項1〜請求項3の何れかに記載する石英ガラスルツボの製造方法。
In the local heating, the distance L2 between the center of the electrode tip and the heating part of the quartz powder molded body is maintained at 5 to 80% of the distance L1 from the mold center line to the heating part, and heat melting is performed. 4. A method for producing a quartz glass crucible according to any one of 3).
複数の電極先端に接する外接円の面積を710cm2以下とし、該外接円の円内全体をアーク加熱する請求項1〜請求項4の何れかに記載される石英ガラスルツボの製造方法。
The method for producing a quartz glass crucible according to any one of claims 1 to 4, wherein an area of a circumscribed circle in contact with a plurality of electrode tips is set to 710 cm 2 or less, and the entire inside of the circumscribed circle is arc-heated.
請求項5の製造方法において、電極中心間の距離が15cm以下である石英ガラスルツボの製造方法。
6. The method of manufacturing a quartz glass crucible according to claim 5, wherein the distance between the electrode centers is 15 cm or less.
請求項1〜請求項6の何れかの方法によって製造されたルツボであって、湾曲部内面の曲率W2が湾曲部外面の曲率W1の0.8〜1.2倍である石英ガラスルツボ。
A crucible manufactured by the method according to any one of claims 1 to 6, wherein the curvature W2 of the curved portion inner surface is 0.8 to 1.2 times the curvature W1 of the curved portion outer surface.
請求項1〜請求項6の何れかの方法によって製造されたルツボであって、ルツボ全体の内表面から1.0mmの肉厚範囲において、0.5mm以上の内部気泡が湾曲部全体で5個以下である石英ガラスルツボ。
A crucible manufactured by the method according to any one of claims 1 to 6, wherein five internal bubbles of 0.5 mm or more are present in the entire curved portion in a thickness range of 1.0 mm from the inner surface of the entire crucible. A quartz glass crucible that is:
アーク電極と回転モールドの少なくとも何れかに側方への移動手段を有し、回転モールドに対するアーク電極の相対位置が偏芯可能である石英ガラスルツボの製造装置。 An apparatus for producing a quartz glass crucible having a means for moving to the side of at least one of an arc electrode and a rotary mold, wherein the relative position of the arc electrode with respect to the rotary mold can be eccentric.
JP2006353530A 2006-12-27 2006-12-27 Method for producing quartz glass crucible Active JP5121227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353530A JP5121227B2 (en) 2006-12-27 2006-12-27 Method for producing quartz glass crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353530A JP5121227B2 (en) 2006-12-27 2006-12-27 Method for producing quartz glass crucible

Publications (2)

Publication Number Publication Date
JP2008162840A true JP2008162840A (en) 2008-07-17
JP5121227B2 JP5121227B2 (en) 2013-01-16

Family

ID=39692813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353530A Active JP5121227B2 (en) 2006-12-27 2006-12-27 Method for producing quartz glass crucible

Country Status (1)

Country Link
JP (1) JP5121227B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076949A (en) * 2008-09-24 2010-04-08 Japan Siper Quarts Corp Method and apparatus for producing quartz glass crucible and quartz glass crucible
US20100170298A1 (en) * 2009-01-08 2010-07-08 Japan Super Quartz Corporation Vitreous silica crucible manufacturing apparatus
JP2010168246A (en) * 2009-01-22 2010-08-05 Japan Siper Quarts Corp Crucible and method for pulling single crystal
KR101097097B1 (en) 2008-07-10 2011-12-22 쟈판 스파 쿼츠 가부시키가이샤 Method for producing quartz glass crucible

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236233A (en) * 1998-02-23 1999-08-31 Sumikin Sekiei Kk Production of quartz crucible
JP2003243151A (en) * 2002-02-13 2003-08-29 Toshiba Ceramics Co Ltd Arc fusion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236233A (en) * 1998-02-23 1999-08-31 Sumikin Sekiei Kk Production of quartz crucible
JP2003243151A (en) * 2002-02-13 2003-08-29 Toshiba Ceramics Co Ltd Arc fusion device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097097B1 (en) 2008-07-10 2011-12-22 쟈판 스파 쿼츠 가부시키가이샤 Method for producing quartz glass crucible
JP2010076949A (en) * 2008-09-24 2010-04-08 Japan Siper Quarts Corp Method and apparatus for producing quartz glass crucible and quartz glass crucible
KR101094823B1 (en) * 2008-09-24 2011-12-16 쟈판 스파 쿼츠 가부시키가이샤 Method and apparatus for manufacturing vitreous silica crucible and vitreous silica crucible
US8657957B2 (en) 2008-09-24 2014-02-25 Japan Super Quartz Corporation Method and apparatus for manufacturing fused silica crucible, and the fused silica crucible
US20100170298A1 (en) * 2009-01-08 2010-07-08 Japan Super Quartz Corporation Vitreous silica crucible manufacturing apparatus
US8240169B2 (en) * 2009-01-08 2012-08-14 Japan Super Quartz Corporation Vitreous silica crucible manufacturing apparatus
JP2010168246A (en) * 2009-01-22 2010-08-05 Japan Siper Quarts Corp Crucible and method for pulling single crystal
US8980004B2 (en) 2009-01-22 2015-03-17 Japan Super Quartz Corporation Crucible and method for pulling a single crystal

Also Published As

Publication number Publication date
JP5121227B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101423074B1 (en) Vitreous silica crucible
JP5022230B2 (en) Quartz glass crucible and its manufacturing method and application
KR101104674B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot which enables reduction of pinhole defect among large-diameter single-crystal silicon ingot
JP5069663B2 (en) Quartz glass crucible with multilayer structure
KR101104673B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot
JP5121227B2 (en) Method for producing quartz glass crucible
CN101724888B (en) Method of manufacturing silica glass crucible for pulling silicon single crystals
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
US20100126407A1 (en) Silica glass crucible and method for pulling single-crystal silicon
JP2010275151A (en) Silica glass crucible
JP5901072B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US20100147213A1 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
JP6253976B2 (en) Quartz glass crucible and manufacturing method thereof
US20100000465A1 (en) Method for producing vitreous silica crucible
JP5036735B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5121226B2 (en) Method for producing quartz glass crucible
EP2141130B1 (en) Method for producing vitreous silica crucible
JP2016033093A (en) Quartz glass crucible for lifting single crystal silicon, and method of manufacturing the same
JP6546721B2 (en) Quartz glass crucible for pulling single crystal silicon
JP2020097512A (en) Silica glass crucible
JP6413973B2 (en) Method for producing silicon single crystal
JP5763027B2 (en) Method and apparatus for producing silica glass crucible for pulling silicon single crystal
KR101156965B1 (en) Method for producing vitreous silica crucible, vitreous silica crucible produced thereby and producing apparatus thereof
TWI448592B (en) Method for manufacturing silica glass crucible

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250