JP2008161937A - Fusion-bonded product having high-strength part and manufacturing method thereof - Google Patents

Fusion-bonded product having high-strength part and manufacturing method thereof Download PDF

Info

Publication number
JP2008161937A
JP2008161937A JP2007315069A JP2007315069A JP2008161937A JP 2008161937 A JP2008161937 A JP 2008161937A JP 2007315069 A JP2007315069 A JP 2007315069A JP 2007315069 A JP2007315069 A JP 2007315069A JP 2008161937 A JP2008161937 A JP 2008161937A
Authority
JP
Japan
Prior art keywords
steel
processed product
carbon steel
intermediate processed
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315069A
Other languages
Japanese (ja)
Inventor
Akira Mataga
賀 晶 又
Takashi Kuwanote
隆 司 鍬之手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to JP2007315069A priority Critical patent/JP2008161937A/en
Priority to US11/952,226 priority patent/US8202628B2/en
Publication of JP2008161937A publication Critical patent/JP2008161937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fusion-bonded product capable of maintaining required strength of a bonded portion while having a high-strength part of required precision. <P>SOLUTION: The fusion-bonded product having a high- strength part, comprises: a first preform constituted by integrally, frictionally pressure-welding a first low-carbon steel part made of low-carbon steel containing less than 0.45% of C and a high-carbon steel part made of high-carbon steel containing not less than 0.45% of C; and a second preform having a second low-carbon steel part made of second low-carbon steel containing less than 0.45% of C. The high-carbon steel part of the first preform is provided with a high-strength part that has been previously formed into a desired shape and quenched, the second low-carbon steel part of the second preform has been previously formed into a predetermined shape, and the first low-carbon steel part of the first preform and the second low-carbon steel part of the second preform are bonded to each other by fusion welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度部を有する溶融接合製品及びその製造方法に関する。   The present invention relates to a fusion bonded product having a high strength portion and a method for manufacturing the same.

従来より、形状の異なる二つの部材を接合して接合製品を成形する技術として、摩擦圧接が知られている。例えば、特開平5−84614号公報には、精密鍛造により成形された歯形を有する第一中間加工製品と第二中間加工製品とが、摩擦圧接によって接合されて、歯形部を有する複合歯車が成形されることが開示されている。   Conventionally, friction welding is known as a technique for forming a joined product by joining two members having different shapes. For example, in Japanese Patent Laid-Open No. 5-84614, a first intermediate processed product having a tooth profile formed by precision forging and a second intermediate processed product are joined by friction welding to form a composite gear having a tooth profile portion. Is disclosed.

また、形状の異なる二つの部材を接合して接合製品を成形する他の技術として、レーザ溶接が知られている。例えば、特表2006−509172号公報には、高強度を要するリングギヤとデフケースとが、レーザ溶接されて、歯形部を有するデフケースが成形されることが開示されている。   Laser welding is known as another technique for forming a joined product by joining two members having different shapes. For example, Japanese Patent Application Publication No. 2006-509172 discloses that a ring gear and a differential case that require high strength are laser welded to form a differential case having a tooth profile.

特開平5−84614号公報に開示された技術、すなわち、精密鍛造により成形された歯形を有する第一中間加工製品及び第二中間加工製品を摩擦圧接により接合する技術においては、第一中間加工製品及び第二中間加工製品の何れか一方が高速回転されながら他方に圧接されて、第一中間加工製品の端部及び第二中間加工製品の端部が摩擦熱により溶融して接合が果たされる。このため、摩擦圧接された接合製品は、第一中間加工製品の軸心と第二中間加工製品の軸心とがずれた状態で接合されてしまったり、第一中間加工製品の端部と第二中間加工製品の端部との溶融によって軸線方向長さがばらつくことがある。このような場合には、摩擦圧接された接合製品において必要な精度を得ることができないという問題がある。摩擦圧接された接合製品について必要な精度を得ようとすると、摩擦圧接された接合製品に切削加工を施さなければならず、加工コストが著しく高くなる。   In the technique disclosed in Japanese Patent Application Laid-Open No. 5-84614, that is, in the technique of joining the first intermediate processed product and the second intermediate processed product having tooth shapes formed by precision forging by friction welding, the first intermediate processed product is used. Then, either one of the second intermediate processed product is pressed against the other while being rotated at a high speed, and the end portion of the first intermediate processed product and the end portion of the second intermediate processed product are melted by frictional heat to be joined. For this reason, the joined product that has been friction welded may be joined in a state where the axis of the first intermediate processed product and the axis of the second intermediate processed product are misaligned, The axial length may vary due to melting with the end of the two intermediate processed product. In such a case, there is a problem that the required accuracy cannot be obtained in the joined product subjected to friction welding. In order to obtain the necessary accuracy for the friction-welded joint product, it is necessary to perform cutting on the friction-welded joint product, which significantly increases the processing cost.

一方、特表2006−509172号公報に開示された技術では、特に当該文献の段落0017及び図1Bに示されているように、第一中間加工製品である第一デフケースと、第二中間加工製品であるリングギヤを有する第二デフケースと、が各々固定されて、レーザ溶接によって接合されて接合製品であるデフケースが成形される。このように第一デフケースと第二デフケースとが固定されて溶接される場合、固定時に第一デフケースの軸心と第二デフケースの軸心とが一致するように調整されれば、接合されて形成されるデフケースにおいても、軸心のずれが発生せず、必要な精度を得ることができる。   On the other hand, in the technique disclosed in Japanese Translation of PCT International Publication No. 2006-509172, as shown in paragraph 0017 of FIG. 1B and FIG. 1B in particular, the first differential case as the first intermediate processed product and the second intermediate processed product The second differential case having the ring gear is fixed and joined by laser welding to form a differential case as a joined product. In this way, when the first differential case and the second differential case are fixed and welded, if the axis of the first differential case and the axis of the second differential case are adjusted to coincide with each other at the time of fixing, they are joined and formed. Even in the differential case, the axial center does not deviate and the required accuracy can be obtained.

しかしながら、リングギヤは高強度が必要であるために、C(炭素)を多く含んでいる高炭素鋼で構成されることが多い。そのような場合、高炭素鋼からなる第二デフケースがレーザ溶接のような溶融溶接にさらされると、高炭素鋼の溶融した接合部が硬化して、接合部に割れが発生することがある。すなわち、第一デフケースと第二デフケースの接合部の強度が弱くなるという問題が生じることがある。
特開平5−84614号公報 特表2006−509172号公報
However, since the ring gear requires high strength, it is often composed of high carbon steel containing a large amount of C (carbon). In such a case, when the second differential case made of high carbon steel is exposed to fusion welding such as laser welding, the melted joint of the high carbon steel may harden and cracks may occur in the joint. That is, there may be a problem that the strength of the joint portion between the first differential case and the second differential case becomes weak.
Japanese Patent Laid-Open No. 5-84614 JP-T-2006-509172

本発明は、上記課題を解決するためになされたもので、高強度部を有する高炭素鋼部分と低炭素鋼部分とからなる溶融接合製品であって、所要の精度の高強度部を有する一方で、接合部における所要の強度を維持できる溶融接合製品を提供することを目的とする。また、その製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is a fusion-bonded product comprising a high carbon steel portion having a high strength portion and a low carbon steel portion, and having a high strength portion having a required accuracy. Then, it aims at providing the fusion | melting joining product which can maintain the required intensity | strength in a junction part. Moreover, it aims at providing the manufacturing method.

本発明は、Cの含有量が0.45%未満の低炭素鋼よりなる第一低炭素鋼部分と、Cの含有量が0.45%以上の高炭素鋼よりなる高炭素鋼部分と、が摩擦圧接で一体とされて構成された第一中間加工製品と、Cの含有量が0.45%未満の第二低炭素鋼よりなる第二低炭素鋼部分を有する第二中間加工製品と、を備え、第一中間加工製品の高炭素鋼部分には、予め所望の形状に成形され焼入れされた高強度部が設けられており、第二中間加工製品の第二低炭素鋼部分は、予め所定の形状に成形されており、第一中間加工製品の第一低炭素鋼部分と第二中間加工製品の第二低炭素鋼部分とが、溶融溶接によって接合されていることを特徴とする高強度部を有する溶融接合製品である。   The present invention includes a first low carbon steel portion made of a low carbon steel having a C content of less than 0.45%, a high carbon steel portion made of a high carbon steel having a C content of 0.45% or more, A first intermediate processed product that is formed by integral friction welding, and a second intermediate processed product having a second low carbon steel portion made of a second low carbon steel having a C content of less than 0.45%, The high-carbon steel portion of the first intermediate processed product is provided with a high-strength portion that is previously molded and quenched into a desired shape, and the second low-carbon steel portion of the second intermediate processed product is The first low-carbon steel part of the first intermediate processed product and the second low-carbon steel part of the second intermediate processed product are joined to each other by fusion welding. It is a melt bonded product having a high strength part.

本発明によれば、第一中間加工製品の高炭素鋼部分の高強度部に焼入れがされていることにより、所要の強度を得ることができる。また、第一中間加工製品の第一低炭素鋼部分と第二中間加工製品の第二低炭素鋼部分とが溶融溶接により接合されているため、当該接合部において高炭素鋼部分の溶融による硬化が生じることが防止され、当該硬化による割れの発生を防止することができる。すなわち、第一中間加工製品と第二中間加工製品との接合部において、所要の強度を維持することができる。また、溶融溶接は、第一中間加工製品と第二中間加工製品とを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、Cの含有量が0.45%以上の高炭素鋼とCの含有量が0.45%未満の低炭素鋼とを摩擦圧接して第一素材を成形し、その後に、所定の形状の第一中間加工製品に成形できるため、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   According to the present invention, the required strength can be obtained by quenching the high strength portion of the high carbon steel portion of the first intermediate processed product. In addition, since the first low carbon steel part of the first intermediate processed product and the second low carbon steel part of the second intermediate processed product are joined by fusion welding, hardening by melting the high carbon steel part at the joint. Is prevented, and the occurrence of cracks due to the curing can be prevented. That is, the required strength can be maintained at the joint between the first intermediate processed product and the second intermediate processed product. Moreover, since fusion welding can be performed in a state in which the first intermediate processed product and the second intermediate processed product are fixed, it is easy to obtain a joined product having a required accuracy. Further, the first material is formed by friction welding a high carbon steel having a C content of 0.45% or more and a low carbon steel having a C content of less than 0.45%, and then having a predetermined shape. Therefore, the deviation of the axial center of the first material and the variation in the axial length due to the friction welding can be corrected in the subsequent molding process.

例えば、高強度部は、歯形に形成され得る。   For example, the high-strength portion can be formed into a tooth profile.

また、例えば、第一中間加工製品は、第一デフケースを構成し、第二中間加工製品は、第二デフケースを構成し、第一中間加工製品の第一低炭素鋼部分と第二中間加工製品の第二低炭素鋼部分とが、溶融溶接によって接合されて、デフケースが構成され得る。この場合、ボルト等の接合部品を少なくすることができ、デフケースの軽量化を実現することができる。   Further, for example, the first intermediate processed product constitutes a first differential case, the second intermediate processed product constitutes a second differential case, and the first low carbon steel portion and the second intermediate processed product of the first intermediate processed product. The second low carbon steel portion is joined by fusion welding to form a differential case. In this case, joining parts such as bolts can be reduced, and the weight of the differential case can be reduced.

高炭素鋼部分のCの含有量は、例えば、0.45%乃至0.60%程度である。また、第一低炭素鋼部分のCの含有量は、例えば、0.10%乃至0.40%である。また、第二低炭素鋼部分のCの含有量も、例えば、0.10%乃至0.40%である。   The C content in the high carbon steel portion is, for example, about 0.45% to 0.60%. The C content in the first low carbon steel portion is, for example, 0.10% to 0.40%. Further, the C content in the second low carbon steel portion is, for example, 0.10% to 0.40%.

また、本発明は、Cの含有量が0.45%未満の低炭素鋼よりなる第一予備素材と、Cの含有量が0.45%以上の高炭素鋼よりなる第二予備素材と、を摩擦圧接して一体の第一素材を成形する工程と、前記第一素材の摩擦圧接によるバリを除去する工程と、前記第一素材の第二予備素材の領域に所定の形状の焼き入れ予定部を成形すると共に、前記第一素材の第一予備素材の領域に所定の形状の第一低炭素鋼部分を形成して、第一中間加工製品を形成する工程と、前記焼き入れ予定部を焼入れして高強度部を形成する工程と、Cの含有量が0.45%未満の第二低炭素鋼よりなる第二素材から、所定の形状の第二低炭素鋼部分を有する第二中間加工製品を形成する工程と、第一中間加工製品の第一低炭素鋼部分と第二中間加工製品の第二低炭素鋼部分とを、溶融溶接によって接合する工程と、を備えたことを特徴とする高強度部を有する溶融接合製品の製造方法である。   The present invention also includes a first preliminary material made of a low carbon steel having a C content of less than 0.45%, a second preliminary material made of a high carbon steel having a C content of 0.45% or more, A step of forming an integral first material by friction welding, a step of removing burrs due to friction welding of the first material, and a quenching schedule of a predetermined shape in the region of the second preliminary material of the first material Forming a part, forming a first low carbon steel portion of a predetermined shape in the first preliminary material region of the first material, and forming a first intermediate processed product; A second intermediate having a second low carbon steel portion of a predetermined shape from a step of quenching to form a high strength portion and a second material comprising a second low carbon steel having a C content of less than 0.45% The process of forming the processed product, the first low carbon steel part of the first intermediate processed product and the second low of the second intermediate processed product. And Motoko portion, a manufacturing method of melt bonding products having a high strength part characterized by comprising the steps of joining by fusion welding.

本発明によれば、高炭素鋼よりなる焼き入れ予定部に焼入れがされることにより、所要の強度の高強度部を得ることができる。また、第一中間加工製品の第一低炭素鋼部分と第二中間加工製品の第二低炭素鋼部分とが溶融溶接により接合されるため、当該接合部において高炭素鋼部分の溶融による硬化が生じることが防止され、当該硬化による割れの発生を防止することができる。すなわち、第一中間加工製品と第二中間加工製品との接合部において、所要の強度を維持することができる。また、溶融溶接は、第一中間加工製品と第二中間加工製品とを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、Cの含有量が0.45%以上の高炭素鋼(第二予備素材)とCの含有量が0.45%未満の低炭素鋼(第一予備素材)とを摩擦圧接して第一素材を成形し、その後、所定の形状の第一中間加工製品に成形するため、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   According to the present invention, a high strength portion having a required strength can be obtained by quenching a planned quenching portion made of high carbon steel. In addition, since the first low carbon steel portion of the first intermediate processed product and the second low carbon steel portion of the second intermediate processed product are joined by fusion welding, the high carbon steel portion is hardened by melting at the joint. Occurrence is prevented, and generation of cracks due to the curing can be prevented. That is, the required strength can be maintained at the joint between the first intermediate processed product and the second intermediate processed product. Moreover, since fusion welding can be performed in a state in which the first intermediate processed product and the second intermediate processed product are fixed, it is easy to obtain a joined product having a required accuracy. Further, a high carbon steel (second preliminary material) having a C content of 0.45% or more and a low carbon steel (first preliminary material) having a C content of less than 0.45% are friction welded. Since one material is molded and then formed into a first intermediate processed product of a predetermined shape, the axial displacement and axial length variation of the first material due to friction welding can be corrected in the subsequent molding process. is there.

例えば、所定の形状の焼き入れ予定部は、鍛造によって成型され得る。また、所定の形状の第一低炭素鋼部分も、鍛造によって成型され得る。さらには、所定の形状の第二低炭素鋼部分も、鍛造によって成型され得る。これらの場合、第一素材もしくは第二素材の歩どまりがよい。また、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきも鍛造工程中に修正できるため、加工コストを低減することができる。   For example, a predetermined quenching portion can be formed by forging. The first low carbon steel portion having a predetermined shape can also be formed by forging. Furthermore, the second low carbon steel portion having a predetermined shape can also be formed by forging. In these cases, the yield of the first material or the second material is good. Moreover, since the shift of the axial center of the first material and the variation in the length in the axial direction due to the friction welding can be corrected during the forging process, the processing cost can be reduced.

以上の考察は、主として、炭素量によって鋼材の性質が概ね決定される炭素鋼材についてなされたものである。本件発明者は、さらに、炭素以外の鋼材成分の量によって鋼材の性質が影響される構造用鋼鋼材について検討した。その結果、そのような構造用鋼鋼材については、炭素量の代わりに炭素当量を基準にすべきであることを知見した。   The above considerations are mainly made on carbon steel materials whose properties are generally determined by the amount of carbon. The present inventor further studied structural steel materials whose properties are affected by the amount of steel components other than carbon. As a result, it was found that such structural steel should be based on carbon equivalent instead of carbon content.

炭素当量とは、JISにおいて、以下のように規定されている。
炭素当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ここで、Cは炭素量(%)、Mnはマンガン量(%)、Siはシリコン量(%)、Niはニッケル量(%)、Crはクロム量(%)、Moはモリブデン量(%)、Vはバナジウム量(%)である。
The carbon equivalent is defined in JIS as follows.
Carbon equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
Here, C is carbon amount (%), Mn is manganese amount (%), Si is silicon amount (%), Ni is nickel amount (%), Cr is chromium amount (%), Mo is molybdenum amount (%) , V is the amount of vanadium (%).

そして、本件発明者が当初知見した閾値である「0.45%」という炭素量の炭素鋼材は、一般の炭素鋼材(例えばS45C等)の成分データを用いて換算すれば、「0.60%」という炭素当量の構造用鋼鋼材と等価であり、本件発明においてもそのような置換が可能であることが実際に確かめられた。(S45Cの一例:C=0.46、Mn=0.72、Si=0.18、Ni=0.04、Cr=0.11、V=0.00:炭素量=0.46%、炭素当量=0.613%)   And if carbon steel material of the carbon amount of "0.45%" which is the threshold value which this inventor discovered initially is converted using the component data of general carbon steel materials (for example, S45C etc.), "0.60% It is equivalent to a structural steel material having a carbon equivalent of "", and it was actually confirmed that such substitution is possible in the present invention. (An example of S45C: C = 0.46, Mn = 0.72, Si = 0.18, Ni = 0.04, Cr = 0.11, V = 0.00: Carbon content = 0.46%, carbon Equivalent = 0.613%)

すなわち、本発明は、炭素当量が0.60%未満の鋼材よりなる第一鋼材部分と、炭素当量が0.60%以上の鋼材よりなる焼入れ用鋼材部分と、が摩擦圧接で一体とされて構成された第一中間加工製品と、炭素当量が0.60%未満の鋼材よりなる第二鋼材部分を有する第二中間加工製品と、を備え、第一中間加工製品の焼入れ用鋼材部分には、予め所望の形状に成形され焼入れされた高強度部が設けられており、第二中間加工製品の第二鋼材部分は、予め所定の形状に成形されており、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが、溶融溶接によって接合されていることを特徴とする高強度部を有する溶融接合製品である。   That is, in the present invention, a first steel material portion made of a steel material having a carbon equivalent of less than 0.60% and a quenching steel material portion made of a steel material having a carbon equivalent of 0.60% or more are integrated by friction welding. A first intermediate processed product, and a second intermediate processed product having a second steel material portion made of a steel material having a carbon equivalent of less than 0.60%. , A high-strength portion that has been molded and hardened in a desired shape in advance is provided, and the second steel material portion of the second intermediate processed product is previously molded into a predetermined shape, and the first intermediate processed product is The steel material part and the second steel material part of the second intermediate processed product are melt-bonded products having a high-strength part characterized by being joined by fusion welding.

本発明によれば、第一中間加工製品の焼入れ用鋼材部分の高強度部に焼入れがされていることにより、所要の強度を得ることができる。また、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが溶融溶接により接合されているため、当該接合部において焼入れ用鋼材部分の溶融による硬化が生じることが防止され、当該硬化による割れの発生を防止することができる。すなわち、第一中間加工製品と第二中間加工製品との接合部において、所要の強度を維持することができる。また、溶融溶接は、第一中間加工製品と第二中間加工製品とを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、炭素当量が0.60%以上の焼入れ用鋼材と炭素当量が0.60%未満の第一鋼材とを摩擦圧接して第一素材を成形し、その後に、所定の形状の第一中間加工製品に成形できるため、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   According to the present invention, the required strength can be obtained by quenching the high strength portion of the steel material portion for quenching of the first intermediate processed product. In addition, since the first steel material portion of the first intermediate processed product and the second steel material portion of the second intermediate processed product are joined by fusion welding, hardening due to melting of the steel material portion for quenching may occur in the joint portion. It is prevented, and the generation | occurrence | production of the crack by the said hardening can be prevented. That is, the required strength can be maintained at the joint between the first intermediate processed product and the second intermediate processed product. Moreover, since fusion welding can be performed in a state in which the first intermediate processed product and the second intermediate processed product are fixed, it is easy to obtain a joined product having a required accuracy. Further, the first material is formed by friction welding a steel material for quenching having a carbon equivalent of 0.60% or more and a first steel material having a carbon equivalent of less than 0.60%, and then a first intermediate having a predetermined shape. Since it can be formed into a processed product, the deviation of the axial center of the first material and the variation in the axial length due to friction welding can be corrected in the subsequent forming process.

この場合も、例えば、高強度部は、歯形に形成され得る。   Also in this case, for example, the high-strength portion can be formed in a tooth profile.

また、この場合も、例えば、第一中間加工製品は、第一デフケースを構成し、第二中間加工製品は、第二デフケースを構成し、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが、溶融溶接によって接合されて、デフケースが構成され得る。この場合、ボルト等の接合部品を少なくすることができ、デフケースの軽量化を実現することができる。   Also in this case, for example, the first intermediate processed product constitutes the first differential case, the second intermediate processed product constitutes the second differential case, and the first steel material portion and the second intermediate processed product of the first intermediate processed product The second steel material part of the processed product can be joined by fusion welding to form a differential case. In this case, joining parts such as bolts can be reduced, and the weight of the differential case can be reduced.

なお、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが溶融溶接により接合される際、第一鋼材部分の高温割れ感受性の値と第二鋼材部分の高温割れ感受性の値との和が7以下であれば、割れの発生をより確実に防止することができる。ここで、高温割れ感受性の値は、以下の式で算出される。
高温割れ感受性=1000×C(S+P+(Si/25)+(Ni/100))/(3Mn+Cr+Mo+V)
ここで、Cは炭素量(%)、Sは硫黄量(%)、Pはリン量(%)、Siはシリコン量(%)、Niはニッケル量(%)、Mnはマンガン量(%)、Crはクロム量(%)、Moはモリブデン量(%)、Vはバナジウム量(%)である。
When the first steel part of the first intermediate product and the second steel part of the second intermediate product are joined by fusion welding, the value of the hot cracking susceptibility of the first steel part and the high temperature of the second steel part If the sum with the value of crack sensitivity is 7 or less, the occurrence of cracks can be prevented more reliably. Here, the value of hot cracking sensitivity is calculated by the following equation.
Hot cracking susceptibility = 1000 × C (S + P + (Si / 25) + (Ni / 100)) / (3Mn + Cr + Mo + V)
Here, C is the carbon content (%), S is the sulfur content (%), P is the phosphorus content (%), Si is the silicon content (%), Ni is the nickel content (%), and Mn is the manganese content (%). Cr is the chromium content (%), Mo is the molybdenum content (%), and V is the vanadium content (%).

また、本発明は、炭素当量が0.60%未満の鋼材よりなる第一予備素材と、炭素当量が0.60%以上の鋼材よりなる第二予備素材と、を摩擦圧接して一体の第一素材を成形する工程と、前記第一素材の摩擦圧接によるバリを除去する工程と、前記第一素材の第二予備素材の領域に所定の形状の焼き入れ予定部を成形すると共に、前記第一素材の第一予備素材の領域に所定の形状の第一鋼材部分を形成して、第一中間加工製品を形成する工程と、前記焼き入れ予定部を焼入れして高強度部を形成する工程と、炭素当量が0.60%未満の第二鋼材よりなる第二素材から、所定の形状の第二鋼材部分を有する第二中間加工製品を形成する工程と、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とを、溶融溶接によって接合する工程と、を備えたことを特徴とする高強度部を有する溶融接合製品の製造方法である。   In the present invention, the first preliminary material made of a steel material having a carbon equivalent of less than 0.60% and the second preliminary material made of a steel material having a carbon equivalent of 0.60% or more are friction-welded to form an integrated first material. A step of forming one material, a step of removing burrs due to friction welding of the first material, a portion to be quenched of a predetermined shape in the region of the second preliminary material of the first material, and the first A step of forming a first steel material portion having a predetermined shape in a region of a first preliminary material of one material to form a first intermediate processed product, and a step of quenching the portion to be quenched and forming a high strength portion And forming a second intermediate processed product having a second steel material portion of a predetermined shape from a second material made of a second steel material having a carbon equivalent of less than 0.60%, and a first of the first intermediate processed product Weld the steel part and the second steel part of the second intermediate processed product by fusion welding. A step of a manufacturing method of melt bonding products having a high strength part characterized by comprising a.

本発明によれば、第二予備素材よりなる焼き入れ予定部に焼入れがされることにより、所要の強度を得ることができる。また、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが溶融溶接により接合されるため、当該接合部において第二予備素材の溶融による硬化が生じることが防止され、当該硬化による割れの発生を防止することができる。すなわち、第一中間加工製品と第二中間加工製品との接合部において、所要の強度を維持することができる。また、溶融溶接は、第一中間加工製品と第二中間加工製品とを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、炭素当量が0.60%以上の第二予備素材と炭素当量が0.60%未満の第一予備素材とを摩擦圧接して第一素材を成形し、その後、所定の形状の第一中間加工製品に成形するため、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   According to the present invention, the required strength can be obtained by quenching the quenching planned portion made of the second preliminary material. In addition, since the first steel material part of the first intermediate processed product and the second steel material part of the second intermediate processed product are joined by fusion welding, it is prevented that the second preliminary material is cured due to melting at the joint. And generation of cracks due to the curing can be prevented. That is, the required strength can be maintained at the joint between the first intermediate processed product and the second intermediate processed product. Moreover, since fusion welding can be performed in a state where the first intermediate processed product and the second intermediate processed product are fixed, it is easy to obtain a joined product having a required accuracy. Further, the first preliminary material is formed by friction welding the second preliminary material having a carbon equivalent of 0.60% or more and the first preliminary material having a carbon equivalent of less than 0.60%, and then the first preliminary material having a predetermined shape is formed. Since it is formed into an intermediate processed product, the shift of the axial center of the first material and the variation in the axial length due to friction welding can be corrected in the subsequent forming process.

この場合も、例えば、所定の形状の焼き入れ予定部は、鍛造によって成型され得る。また、所定の形状の第一鋼材部分も、鍛造によって成型され得る。さらには、所定の形状の第二鋼材部分も、鍛造によって成型され得る。これらの場合、第一素材もしくは第二素材の歩どまりがよい。また、摩擦圧接による第一素材の軸心のずれや軸線方向長さのばらつきも鍛造工程中に修正できるため、加工コストを低減することができる。   Also in this case, for example, the quenching planned portion having a predetermined shape can be formed by forging. The first steel material portion having a predetermined shape can also be formed by forging. Furthermore, the second steel material portion having a predetermined shape can also be formed by forging. In these cases, the yield of the first material or the second material is good. Moreover, since the shift of the axial center of the first material and the variation in the length in the axial direction due to the friction welding can be corrected during the forging process, the processing cost can be reduced.

また、この場合も、第一中間加工製品の第一鋼材部分と第二中間加工製品の第二鋼材部分とが溶融溶接により接合される際、第一鋼材部分の高温割れ感受性の値と第二鋼材部分の高温割れ感受性の値との和が7以下であれば、割れの発生をより確実に防止することができる。   Also in this case, when the first steel material part of the first intermediate processed product and the second steel material part of the second intermediate processed product are joined by fusion welding, the value of the hot crack susceptibility of the first steel material part and the second If the sum with the value of the hot cracking susceptibility of the steel part is 7 or less, the occurrence of cracking can be prevented more reliably.

図1は、本発明の一実施の形態の溶融接合製品であるディファレンシャル装置の断面図である。図2A及び図2Bは、本発明の一実施の形態の製造方法における、第一素材の成形工程を説明する断面図である。図3A及び図3Bは、本発明の一実施の形態の製造方法における、第一素材から第一デフケースを成形する成形工程を説明する断面図である。図4は、本発明の一実施の形態の溶融接合製品における第一中間加工製品の断面図である。図5A乃至図5Cは、本発明の一実施の形態の製造方法における、第二素材から第二中間加工製品を成形する成形工程を説明する断面図である。図6は、本発明の一実施の形態の溶融接合製品であるディファレンシャル装置の、溶接前の状態の断面図である。   FIG. 1 is a cross-sectional view of a differential apparatus that is a fusion bonded product according to an embodiment of the present invention. 2A and 2B are cross-sectional views illustrating a first material forming step in the manufacturing method according to the embodiment of the present invention. 3A and 3B are cross-sectional views for explaining a molding process for molding the first differential case from the first material in the manufacturing method according to the embodiment of the present invention. FIG. 4 is a cross-sectional view of the first intermediate processed product in the melt-bonded product according to the embodiment of the present invention. 5A to 5C are cross-sectional views illustrating a molding process for molding a second intermediate processed product from the second material in the manufacturing method according to the embodiment of the present invention. FIG. 6 is a cross-sectional view of a differential apparatus that is a fusion-bonded product according to an embodiment of the present invention before welding.

まず、図1を参照して、ディファレンシャル装置1を説明する。本発明の一実施の形態の溶融接合製品であるディファレンシャル装置1のデフケース2は、第一中間加工製品である第一デフケース2aと、第二中間加工製品である第二デフケース2bとから構成されている。第一デフケース2aは、車軸方向に延びる第一ボス部13を有してCの含有量が0.45%以上である高炭素鋼部分Hと、Cの含有量が0.45%未満である第一低炭素鋼部分L1と、を有している。第二デフケース2bは、車軸方向に成形された第二ボス部14を有し、Cの含有量が0.45%未満である第二低炭素鋼部分L2からなる。   First, the differential apparatus 1 will be described with reference to FIG. A differential case 2 of a differential device 1 that is a melt-bonded product according to an embodiment of the present invention includes a first differential case 2a that is a first intermediate processed product and a second differential case 2b that is a second intermediate processed product. Yes. The first differential case 2a has a first boss portion 13 extending in the axle direction and a high carbon steel portion H having a C content of 0.45% or more and a C content of less than 0.45%. And a first low carbon steel portion L1. The second differential case 2b includes a second low carbon steel portion L2 having a second boss portion 14 formed in the axle direction and having a C content of less than 0.45%.

高炭素鋼部分HのCの含有量は、例えば、0.45%乃至0.60%程度である。また、第一低炭素鋼部分L1のCの含有量は、例えば、0.10%乃至0.40%である。また、第二低炭素鋼部分L2のCの含有量も、例えば、0.10%乃至0.40%である。   The content of C in the high carbon steel portion H is, for example, about 0.45% to 0.60%. Further, the content of C in the first low carbon steel portion L1 is, for example, 0.10% to 0.40%. Further, the C content in the second low carbon steel portion L2 is, for example, 0.10% to 0.40%.

第一デフケース2aの高炭素鋼部分Hには、高強度部である歯形9が成形されている。第一デフケース2aの第一低炭素鋼部分L1には、後述されるピニオンシャフト3を第一デフケース2a内に挿入するためのデフケース孔10、後述される固定ピン15を第一デフケース2a内に挿入するための固定ピン挿入孔16、及び、嵌合用の凹部11、が成形されている。また、第二デフケース2bの第二低炭素鋼部分L2には、嵌合用の凸部12が成形されている。嵌合用の凹部11と嵌合用の凸部12とが、電子ビーム溶接、レーザ溶接、及び抵抗溶接の何れか一の溶接方法によって接合されている。これにより、デフケース2が構成されている。   A tooth profile 9 that is a high-strength portion is formed in the high carbon steel portion H of the first differential case 2a. In the first low carbon steel portion L1 of the first differential case 2a, a differential case hole 10 for inserting a pinion shaft 3 to be described later into the first differential case 2a and a fixing pin 15 to be described later are inserted into the first differential case 2a. A fixing pin insertion hole 16 and a recess 11 for fitting are formed. Moreover, the convex part 12 for fitting is shape | molded by the 2nd low carbon steel part L2 of the 2nd differential case 2b. The concave portion 11 for fitting and the convex portion 12 for fitting are joined together by any one welding method of electron beam welding, laser welding, and resistance welding. Thus, the differential case 2 is configured.

デフケース2内には、デフケース2と一体に回転するピニオンシャフト3、ピニオンシャフト3をデフケース2内に固定する固定ピン15、デフケース孔10に挿入されるピニオンシャフト3によって回転自在に軸支されるピニオンギヤ6、ピニオンギヤ6とデフケースと2の間に取り付けられるピニオンギヤ用スラストワッシャー4、ピニオンギヤ6と噛合する第一サイドギヤ17及び第二サイドギヤ18、第一サイドギヤ17及び第二サイドギヤ18とデフケース2との間に取り付けられるサイドギヤ用スラストワッシャー5、が配置されている。   In the differential case 2, there are a pinion shaft 3 that rotates integrally with the differential case 2, a fixing pin 15 that fixes the pinion shaft 3 in the differential case 2, and a pinion gear that is rotatably supported by the pinion shaft 3 that is inserted into the differential case hole 10. 6, pinion gear thrust washer 4 mounted between pinion gear 6 and differential case 2, first side gear 17 and second side gear 18 meshing with pinion gear 6, first side gear 17 and second side gear 18 and differential case 2 A side gear thrust washer 5 is disposed.

次に、第一デフケース2aの成形方法について、図2A乃至図4に基づいて説明する。   Next, a method for forming the first differential case 2a will be described with reference to FIGS. 2A to 4.

図2Aに示すように、まず、Cの含有量が0.45%未満である低炭素鋼の第一予備素材20と、Cの含有量が0.45%以上である高炭素鋼の第二予備素材21と、が準備される。そして、これらの第一予備素材20及び第二予備素材21が、図示しない摩擦圧接装置に取り付けられ、第一予備素材20のみが高速回転されながら、第二予備素材21に摩擦圧接される。これにより、図2Bに示すように、第一予備素材20及び第二予備素材21が接合され、接合部の周りにバリ22を有する第一素材23が成形される。   As shown in FIG. 2A, first, a first preliminary material 20 of low carbon steel having a C content of less than 0.45% and a second high carbon steel having a C content of 0.45% or more. The spare material 21 is prepared. The first preliminary material 20 and the second preliminary material 21 are attached to a friction welding apparatus (not shown), and only the first preliminary material 20 is friction-welded to the second preliminary material 21 while being rotated at a high speed. Thereby, as shown in FIG. 2B, the first preliminary material 20 and the second preliminary material 21 are joined, and the first material 23 having the burr 22 around the joint portion is formed.

次に、第一素材23のバリが除去されて、図3Aに示すように、Cの含有量が0.45%以上である高炭素鋼部分Hと、Cの含有量が0.45%未満である第一低炭素鋼部分L1と、を有する第一素材23が成形される。ここでの摩擦圧接では、第一予備素材20と第二予備素材21とが軟化することによって接合されるので、接合部におけるブローホールの発生や、接合部における硬化による割れの発生が、防止される。すなわち、高炭素鋼部分H及び第一低炭素鋼部分L1を有する第一素材23は、強固に一体に接合されている。   Next, the burr | flash of the 1st raw material 23 is removed, and as shown to FIG. 3A, the content of C is the high carbon steel part H which is 0.45% or more, and the content of C is less than 0.45% The first raw material 23 having the first low carbon steel portion L1 is formed. In the friction welding here, since the first preliminary material 20 and the second preliminary material 21 are joined by softening, the occurrence of blowholes at the joint and cracking due to hardening at the joint are prevented. The That is, the first material 23 having the high carbon steel portion H and the first low carbon steel portion L1 is firmly and integrally joined.

第一素材23は、熱間鍛造による塑性変形によって、Cの含有量が0.45%以上の高炭素鋼部分Hの領域に、焼き入れ予定部9aである歯形、第一ボス部13、及び、第一ボス部13の内部の第一貫通孔31、が成形される。また、高炭素鋼部分H及び低炭素鋼部分L1の内部には、第一予備ギヤ室32が成形される。さらに、低炭素鋼部分L1の外周端部には、周状の嵌合用凹部11が形成される。以上により、予備第一デフケース30が完成される。   The first material 23 has a tooth profile that is a quenching planned portion 9a, a first boss portion 13, and a region of a high carbon steel portion H having a C content of 0.45% or more by plastic deformation by hot forging, The first through hole 31 inside the first boss portion 13 is formed. A first preliminary gear chamber 32 is formed inside the high carbon steel portion H and the low carbon steel portion L1. Further, a circumferential fitting recess 11 is formed at the outer peripheral end of the low carbon steel portion L1. Thus, the preliminary first differential case 30 is completed.

図4に示すように、予備第一デフケース30の第一貫通孔31には、内径仕上がなされ、第一潤滑溝33が切削加工される。また、第一予備ギヤ室32の内部は、当接するピニオンギヤ用スラストワッシャー4及びサイドギヤ用スラストワッシャー5の形状に対応するように切削加工されて、第一ギヤ室35が形成される。更に、予備第一デフケース30の外周と第一ギヤ室35との間にデフケース孔10が切削加工され、当該デフケース孔10に直交するように固定ピン挿入孔16が切削加工される。加えて、焼き入れ予定部9aである歯形についても、所要の形状に切削加工される。そして、焼き入れ予定部9aである歯形部分のみに高周波焼入れが施され、所要の形状及び硬度の歯形9を有する第一デフケース2aが完成される。   As shown in FIG. 4, the first through hole 31 of the preliminary first differential case 30 is finished with an inner diameter, and the first lubricating groove 33 is cut. Further, the inside of the first preliminary gear chamber 32 is cut so as to correspond to the shapes of the pinion gear thrust washer 4 and the side gear thrust washer 5 that are in contact with each other, thereby forming the first gear chamber 35. Further, the differential case hole 10 is cut between the outer periphery of the preliminary first differential case 30 and the first gear chamber 35, and the fixed pin insertion hole 16 is cut so as to be orthogonal to the differential case hole 10. In addition, the tooth profile which is the quenching scheduled portion 9a is also cut into a required shape. Then, induction hardening is performed only on the tooth profile portion which is the quenching scheduled portion 9a, and the first differential case 2a having the tooth profile 9 having a required shape and hardness is completed.

次に、第二デフケース2bの成形方法について、図5に基づいて説明する。まず、図5Aに示すように、Cの含有量が0.45%未満の低炭素鋼からなる第二素材40が用意される。そして、熱間鍛造によって、図5Bに示すように、外部に第二ボス部14が成形され、内部に第二貫通孔41及び第二予備ギヤ室42が成形され、外周端部に予備第一デフケース30の嵌合用凹部11と嵌合する周状の嵌合用凸部12が成形されて、予備第二デフケース50が完成される。   Next, a method for forming the second differential case 2b will be described with reference to FIG. First, as shown in FIG. 5A, a second material 40 made of low carbon steel having a C content of less than 0.45% is prepared. Then, by hot forging, as shown in FIG. 5B, the second boss portion 14 is formed outside, the second through hole 41 and the second auxiliary gear chamber 42 are formed inside, and the auxiliary first end is formed at the outer peripheral end portion. The circumferential fitting convex portion 12 that fits with the fitting concave portion 11 of the differential case 30 is formed, and the preliminary second differential case 50 is completed.

そして、図5Cに示すように、第二予備ギヤ室42の内部が、当接するピニオンギヤ用スラストワッシャー4及びサイドギヤ用スラストワッシャー5の形状に対応するように切削加工されて、第二ギヤ室45が形成される。また、第二貫通孔41には、内径仕上がなされ、第二潤滑溝43が切削加工される。以上により、第二デフケース2bが完成される。   Then, as shown in FIG. 5C, the inside of the second preliminary gear chamber 42 is cut so as to correspond to the shapes of the pinion gear thrust washer 4 and the side gear thrust washer 5, so that the second gear chamber 45 is formed. It is formed. The second through hole 41 is finished with an inner diameter, and the second lubricating groove 43 is cut. Thus, the second differential case 2b is completed.

続いて、図6に基いて、ディファレンシャル装置1の組み付け方法について説明する。   Next, a method for assembling the differential device 1 will be described with reference to FIG.

最初に、第一デフケース2a内に、サイドギヤ用スラストワッシャー5が反歯形側に取り付けられた第一サイドギヤ17が、当該第一サイドギヤ17の歯形側がデフケース中央Yに向くように、デフケース2の回転軸X上に載置される。   First, in the first differential case 2a, the first side gear 17 with the side gear thrust washer 5 attached on the side opposite to the tooth profile side is arranged so that the tooth profile side of the first side gear 17 faces the differential case center Y. Placed on X.

次に、ピニオンギヤ用スラストワッシャー4が反歯形側に取り付けられたピニオンギヤ6が、第一サイドギヤ17の上に載置される。このとき、各ピニオンギヤ6の歯形は、デフケース2の回転軸Xに向くと共に、デフケース回転軸Xを中心に互いに対向する。また、ピニオンギヤ6のピニオンギヤ孔7と第一デフケース2aのデフケース孔10とピニオンギヤ用スラストワッシャー4の孔とが、同一直線上に整列される。   Next, the pinion gear 6 to which the pinion gear thrust washer 4 is attached on the opposite tooth side is placed on the first side gear 17. At this time, the tooth profile of each pinion gear 6 faces the rotation axis X of the differential case 2 and faces each other around the differential case rotation axis X. Further, the pinion gear hole 7 of the pinion gear 6, the differential case hole 10 of the first differential case 2a, and the hole of the pinion gear thrust washer 4 are aligned on the same straight line.

そして、ピニオンシャフト3が、デフケース孔10、ピニオンギヤ用スラストワッシャー4の孔、及び、ピニオンギヤ6に成形されたピニオンギヤ孔7を貫通して、デフケース2の回転軸Xまで挿入され、更に、当該回転軸Xを挟んで対称のピニオンギヤ孔7、ピニオンギヤ用スラストワッシャー4の孔、及び、デフケース孔10に案内される。次に、第一デフケース2aにピニオンギヤ6が位置決めされる。そして、第一デフケース2aの固定ピン挿入孔16及びピニオンシャフト3の固定ピン挿通孔19に固定ピン15が挿入される。これにより、ピニオンギヤ6が第一デフケース2aに対して抜け落ち不能に組付けられる。   Then, the pinion shaft 3 passes through the differential case hole 10, the pinion gear thrust washer 4 and the pinion gear hole 7 formed in the pinion gear 6, and is inserted to the rotational axis X of the differential case 2. It is guided to the pinion gear hole 7 symmetrical with respect to X, the hole of the thrust washer 4 for pinion gear, and the differential case hole 10. Next, the pinion gear 6 is positioned in the first differential case 2a. Then, the fixing pin 15 is inserted into the fixing pin insertion hole 16 of the first differential case 2 a and the fixing pin insertion hole 19 of the pinion shaft 3. As a result, the pinion gear 6 is assembled to the first differential case 2a so as not to come off.

続いて、サイドギヤ用スラストワッシャー5が反歯形側に取り付けられた第二サイドギヤ18が、ピニオンギヤ6の上に載置される。このとき、第二サイドギヤ18の歯形がピニオンギヤ6側に向くように載置される。   Subsequently, the second side gear 18 to which the side gear thrust washer 5 is attached on the side opposite to the tooth shape is placed on the pinion gear 6. At this time, the second side gear 18 is placed so that the tooth profile thereof faces the pinion gear 6 side.

そして、第二デフケース2bの嵌合用凸部12と第一デフケース2aの嵌合用凹部11とが嵌合される。そして、第一低炭素鋼部分L1の嵌合用凹部11と第二低炭素鋼部分L2の嵌合凸部12とが電子ビーム溶接によって溶融接合されて、ディファレンシャル装置1のデフケース2の組み付けが完了する。   And the fitting convex part 12 of the 2nd differential case 2b and the recessed part 11 for fitting of the 1st differential case 2a are fitted. And the recessed part 11 for fitting of the 1st low carbon steel part L1 and the fitting convex part 12 of the 2nd low carbon steel part L2 are melt-bonded by electron beam welding, and the assembly | attachment of the differential case 2 of the differential apparatus 1 is completed. .

以上のようなデフケース2によれば、第一デフケース2aの高炭素鋼部分Hの焼き入れ予定部9aに焼入れがなされることにより、所要の強度の高強度部9を得ることができる。また、第一デフケース2aの第一低炭素鋼部分L1と第二デフケース2bの第二低炭素鋼部分L2とが電子ビーム溶接により接合されているため、接合部において高炭素鋼部分Hの溶融による硬化が生じることがなく、当該硬化による割れの発生を防止することができる。すなわち、第一デフケース2aと第二デフケース2bとの接合部において、所要の強度を有することができる。また、電子ビーム溶接は、第一デフケース2aと第二デフケース2bとを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、Cの含有量が0.45%以上の高炭素鋼とCの含有量が0.45%未満の低炭素鋼とを摩擦圧接して第一素材23を成形し、その後、所定の形状の第一デフケース2aに成形するため、摩擦圧接による第一素材23の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   According to the differential case 2 as described above, the high strength portion 9 having a required strength can be obtained by quenching the planned quenching portion 9a of the high carbon steel portion H of the first differential case 2a. Further, since the first low carbon steel portion L1 of the first differential case 2a and the second low carbon steel portion L2 of the second differential case 2b are joined by electron beam welding, the high carbon steel portion H is melted at the joint. Curing does not occur, and generation of cracks due to the curing can be prevented. That is, a required strength can be obtained at the joint between the first differential case 2a and the second differential case 2b. Further, since the electron beam welding can be performed with the first differential case 2a and the second differential case 2b being fixed, it is easy to obtain a joined product having a required accuracy. Further, the first material 23 is formed by friction welding a high carbon steel having a C content of 0.45% or more and a low carbon steel having a C content of less than 0.45%, and then has a predetermined shape. Since the first differential case 2a is molded, the shift of the axial center of the first material 23 and the variation in the length in the axial direction due to the friction welding can be corrected in the subsequent molding process.

また、第一デフケース2aと第二デフケース2bとが、溶接によって接合されることにより、ボルト等の接合部品を少なくすることができる。すなわち、ボルト等の接合部品の部品点数を削減することができる。従って、デフケース2の軽量化を実現することができる。   Moreover, joining parts, such as a volt | bolt, can be decreased by joining the 1st differential case 2a and the 2nd differential case 2b by welding. That is, the number of parts of joint parts such as bolts can be reduced. Accordingly, the weight reduction of the differential case 2 can be realized.

また、焼き入れ予定部9aである歯形の成形、第一デフケース2aの成形、及び、第二デフケース2bの成形が鍛造により行われる場合、それらを切削加工する場合より、第一デフケース2a及び第二デフケース2bの歩どまりがよい。また、摩擦圧接による第一素材23の軸心のずれや軸線方向長さのばらつきが、鍛造工程中に修正できるので、所要の寸法精度の達成に必要な加工コストを削減することができる。   In addition, when forming the tooth profile that is the quenching scheduled portion 9a, forming the first differential case 2a, and forming the second differential case 2b are performed by forging, the first differential case 2a and the second differential case 2a are formed by cutting. The yield of the differential case 2b is good. In addition, since the displacement of the axial center of the first material 23 and the variation in the length in the axial direction due to the friction welding can be corrected during the forging process, it is possible to reduce the processing cost required to achieve the required dimensional accuracy.

尚、以上の実施の形態では、高強度部9として歯形が成形されているが、高強度が必要な部分は、異なる形状に成形されてもよい。また、摩擦圧接工程の後の第一デフケース2a及び第二デフケース2bの成形は、熱間鍛造によって行われる他、冷間鍛造、温間鍛造、あるいは、切削加工によって行われても良い。   In the above embodiment, the tooth profile is formed as the high-strength portion 9, but the portion requiring high strength may be formed in a different shape. The first differential case 2a and the second differential case 2b after the friction welding process may be formed by hot forging, cold forging, warm forging, or cutting.

また、以上の実施の形態では、デフケース2について説明されているが、異なる接合製品にも本発明は適用され得る。また、第一デフケース2aと第二デフケース2bとを溶融させて接合する一例として、電子ビーム溶接での接合が説明されているが、レーザ溶接、抵抗溶接など、他の溶融溶接が用いられてもよい。   In the above embodiment, the differential case 2 has been described. However, the present invention can also be applied to different bonded products. Further, as an example of melting and joining the first differential case 2a and the second differential case 2b, joining by electron beam welding has been described. However, even if other melting welding such as laser welding or resistance welding is used. Good.

また、第一デフケース2aに嵌合用凹部11が成形され、第二デフケース2bに嵌合用凸部12が成形されて、溶接の際の位置決めが行われているが、第一デフケース2aに嵌合用凸部が成形され、第二デフケース2bに嵌合用凹部が成形されて位置決めが行われてもよい。   Further, the fitting recess 11 is formed in the first differential case 2a, and the fitting convex portion 12 is formed in the second differential case 2b, and positioning is performed during welding, but the fitting protrusion 11 is formed in the first differential case 2a. A part may be shape | molded and the recessed part for fitting may be shape | molded in the 2nd differential case 2b, and positioning may be performed.

また、第二デフケース2bは、第二低炭素鋼部分L2のみから構成されているが、溶融溶接による接合部が低炭素鋼部分であれば、高炭素鋼部分を有していてもよい。   Moreover, although the 2nd differential case 2b is comprised only from the 2nd low carbon steel part L2, if the junction part by fusion welding is a low carbon steel part, it may have a high carbon steel part.

また、焼き入れとして、高周波焼き入れが採用されているが、更に高度を高めるために、浸炭焼き入れが採用されてもよい。   Moreover, although induction hardening is employ | adopted as quenching, carburizing quenching may be employ | adopted in order to raise an altitude further.

以上の説明は、主として、炭素量によって鋼材の性質が概ね決定される炭素鋼材についてなされたものである。本件発明者は、さらに、炭素以外の鋼材成分の量によって鋼材の性質が影響される構造用鋼鋼材について検討した。その結果、そのような構造用鋼鋼材については、炭素量の代わりに炭素当量を基準にすべきであることを知見した。   The above explanation is mainly made on carbon steel materials whose properties are generally determined by the amount of carbon. The present inventor further studied structural steel materials whose properties are affected by the amount of steel components other than carbon. As a result, it was found that such structural steel should be based on carbon equivalent instead of carbon content.

炭素当量とは、JISにおいて、以下のように規定されている。
炭素当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
ここで、Cは炭素量(%)、Mnはマンガン量(%)、Siはシリコン量(%)、Niはニッケル量(%)、Crはクロム量(%)、Moはモリブデン量(%)、Vはバナジウム量(%)である。
The carbon equivalent is defined in JIS as follows.
Carbon equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
Here, C is carbon amount (%), Mn is manganese amount (%), Si is silicon amount (%), Ni is nickel amount (%), Cr is chromium amount (%), Mo is molybdenum amount (%) , V is the amount of vanadium (%).

そして、本件発明者が当初知見した閾値である「0.45%」という炭素量の炭素鋼材は、一般の炭素鋼材(例えばS45C等)の成分データを用いて換算すれば、「0.60%」という炭素当量の構造用鋼鋼材と等価であり、本件発明においてもそのような置換が可能であることが実際に確かめられた。(S45Cの一例:C=0.46、Mn=0.72、Si=0.18、Ni=0.04、Cr=0.11、V=0.00:炭素量=0.46%、炭素当量=0.613%)   And if carbon steel material of the carbon amount of "0.45%" which is the threshold value which this inventor discovered initially is converted using the component data of general carbon steel materials (for example, S45C etc.), "0.60% It is equivalent to a structural steel material having a carbon equivalent of "", and it was actually confirmed that such substitution is possible in the present invention. (An example of S45C: C = 0.46, Mn = 0.72, Si = 0.18, Ni = 0.04, Cr = 0.11, V = 0.00: Carbon content = 0.46%, carbon Equivalent = 0.613%)

すなわち、前記の実施の形態との対比において、高炭素鋼部分Hの替わりに、炭素当量が0.60%以上の鋼材(焼入れ用鋼材)を用いることができ、第一低炭素鋼部分L1の替わりに、炭素当量が0.60%未満の鋼材よりなる第一鋼材部分を用いることができ、
第二低炭素鋼部分L2の替わりに、炭素当量が0.60%未満の鋼材よりなる第二鋼材部分を用いることができる。
That is, in contrast to the above embodiment, instead of the high carbon steel portion H, a steel material (quenching steel material) having a carbon equivalent of 0.60% or more can be used, and the first low carbon steel portion L1 Instead, the first steel material portion made of a steel material having a carbon equivalent of less than 0.60% can be used,
Instead of the second low carbon steel portion L2, a second steel material portion made of a steel material having a carbon equivalent of less than 0.60% can be used.

この場合でも、第一デフケース2aの焼入れ用鋼材Hの焼き入れ予定部9aに焼入れがなされることにより、所要の強度の高強度部9を得ることができる。また、第一デフケース2aの第一鋼材部分L1と第二デフケース2bの第二鋼材部分L2とが電子ビーム溶接等により接合されて、接合部において焼入れ用鋼材Hの溶融による硬化が生じることがなく、当該硬化による割れの発生を防止することができる。すなわち、第一デフケース2aと第二デフケース2bとの接合部において、所要の強度を有することができる。また、電子ビーム溶接は、第一デフケース2aと第二デフケース2bとを固定した状態で行うことができるので、所要の精度を有する接合製品を得ることが容易である。更に、炭素当量が0.60%以上の焼入れ用鋼材Hと炭素当量が0.60%未満の第一鋼材部分とを摩擦圧接して第一素材23を成形し、その後、所定の形状の第一デフケース2aに成形することにより、摩擦圧接による第一素材23の軸心のずれや軸線方向長さのばらつきが、その後の成形工程において修正可能である。   Even in this case, the high strength portion 9 having the required strength can be obtained by quenching the quenching planned portion 9a of the quenching steel H of the first differential case 2a. Also, the first steel material portion L1 of the first differential case 2a and the second steel material portion L2 of the second differential case 2b are joined by electron beam welding or the like, and hardening due to melting of the quenching steel material H does not occur at the joined portion. The occurrence of cracks due to the curing can be prevented. That is, a required strength can be obtained at the joint between the first differential case 2a and the second differential case 2b. Further, since the electron beam welding can be performed in a state where the first differential case 2a and the second differential case 2b are fixed, it is easy to obtain a joined product having a required accuracy. Furthermore, the first material 23 is formed by friction welding the steel material H for quenching with a carbon equivalent of 0.60% or more and the first steel material part with a carbon equivalent of less than 0.60%, and then the first material 23 having a predetermined shape is formed. By forming the differential case 2a, the displacement of the axial center of the first material 23 and the variation in the length in the axial direction due to the friction welding can be corrected in the subsequent forming process.

なお、第一中間加工製品の第一鋼材部分L1と第二中間加工製品の第二鋼材部分L2とが溶融溶接により接合される際、第一鋼材部分の高温割れ感受性の値と第二鋼材部分の高温割れ感受性の値との和が7以下である時、割れの発生をより確実に防止することができる。ここで、高温割れ感受性の値は、以下の式で算出される。
高温割れ感受性=1000×C(S+P+(Si/25)+(Ni/100))/(3Mn+Cr+Mo+V)
ここで、Cは炭素量(%)、Sは硫黄量(%)、Pはリン量(%)、Siはシリコン量(%)、Niはニッケル量(%)、Mnはマンガン量(%)、Crはクロム量(%)、Moはモリブデン量(%)、Vはバナジウム量(%)である。
When the first steel part L1 of the first intermediate product and the second steel part L2 of the second intermediate product are joined by fusion welding, the value of the hot cracking susceptibility of the first steel part and the second steel part When the sum of the hot cracking susceptibility value is 7 or less, the occurrence of cracking can be prevented more reliably. Here, the value of hot cracking sensitivity is calculated by the following equation.
Hot cracking susceptibility = 1000 × C (S + P + (Si / 25) + (Ni / 100)) / (3Mn + Cr + Mo + V)
Here, C is the carbon content (%), S is the sulfur content (%), P is the phosphorus content (%), Si is the silicon content (%), Ni is the nickel content (%), and Mn is the manganese content (%). Cr is the chromium content (%), Mo is the molybdenum content (%), and V is the vanadium content (%).

図7に、本件発明者が実際に検討した鋼材のデータを示す。表中、Ceqが炭素当量であり、HCSが高温割れ感受性である。そして、図7に示された各鋼材を、前記実施の形態における焼入れ用鋼材Hないし溶融接合用鋼材L1,L2として用いた際の評価結果を、図8及び図9に示す。   FIG. 7 shows data of steel materials actually examined by the present inventors. In the table, Ceq is carbon equivalent, and HCS is hot cracking sensitive. And the evaluation result at the time of using each steel materials shown by FIG. 7 as the steel materials H for quenching thru | or the steel materials L1 and L2 for fusion joining in the said embodiment is shown in FIG.8 and FIG.9.

図8に示すように、焼入れ用鋼材Hとしては、焼き入れ後の歯形9の硬度(強度)という観点で、S45C、S50C、S55Cが好ましかった。その他の鋼材は、所望の歯形の高度を実現することができず、焼入れ用鋼材Hとしては不適格であった。   As shown in FIG. 8, S45C, S50C, and S55C were preferable as the steel material H for quenching from the viewpoint of the hardness (strength) of the tooth profile 9 after quenching. The other steel materials could not achieve the desired tooth profile height, and were not suitable as a steel material H for quenching.

一方、図9に示すように、溶融接合用鋼材L1,L2としては、炭素量0.45%ないし炭素当量0.60%を閾値として適否が分かれた。また、接合される二つの鋼材の高温割れ感受性の値の和が7以下であるとき、割れの発生がより確実に防止されることも実際に知見された。   On the other hand, as shown in FIG. 9, the suitability of the steel materials L1 and L2 for fusion bonding was determined with a carbon amount of 0.45% to a carbon equivalent of 0.60% as a threshold value. It has also been found that when the sum of the hot cracking susceptibility values of the two steel materials to be joined is 7 or less, the occurrence of cracking is more reliably prevented.

なお、鋼材選択の際には、その加工性が合わせて考慮される(所望の加工が困難であるような加工性の悪い鋼材は利用されない)ことは言うまでもない。   Needless to say, when selecting a steel material, its workability is also taken into account (a steel material with poor workability that makes it difficult to perform desired processing is not used).

本発明の一実施の形態の溶融接合製品であるディファレンシャル装置のデフケースの断面図。Sectional drawing of the differential case of the differential apparatus which is a fusion | melting joining product of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第一素材の成形工程を説明する断面図である。It is sectional drawing explaining the formation process of the 1st raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第一素材の成形工程を説明する断面図である。It is sectional drawing explaining the formation process of the 1st raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第一素材から第一デフケースを成形する成形工程を説明する断面図。Sectional drawing explaining the formation process which shape | molds the 1st differential case from the 1st raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第一素材から第一デフケースを成形する成形工程を説明する断面図。Sectional drawing explaining the formation process which shape | molds the 1st differential case from the 1st raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の溶融接合製品における第一中間加工製品の断面図。Sectional drawing of the 1st intermediate process product in the fusion-bonded product of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第二素材から第二中間加工製品を成形する成形工程を説明する断面図。Sectional drawing explaining the formation process which shape | molds the 2nd intermediate processed product from the 2nd raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第二素材から第二中間加工製品を成形する成形工程を説明する断面図。Sectional drawing explaining the formation process which shape | molds the 2nd intermediate processed product from the 2nd raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の製造方法における、第二素材から第二中間加工製品を成形する成形工程を説明する断面図。Sectional drawing explaining the formation process which shape | molds the 2nd intermediate processed product from the 2nd raw material in the manufacturing method of one embodiment of this invention. 本発明の一実施の形態の溶融接合製品であるディファレンシャル装置のデフケースの、溶接前の状態の断面図。Sectional drawing of the state before welding of the differential case of the differential apparatus which is a fusion | melting joining product of one embodiment of this invention. 本件発明者が実際に検討した鋼材のデータを示す表。The table | surface which shows the data of the steel materials which this inventor actually examined. 図7の鋼材についての、焼入れ用鋼材としての評価結果を示す表。The table | surface which shows the evaluation result as steel materials for hardening about the steel materials of FIG. 図7の鋼材についての、溶融溶接用鋼材としての評価結果を示す表。The table | surface which shows the evaluation result as a steel material for fusion welding about the steel material of FIG.

Claims (19)

Cの含有量が0.45%未満の低炭素鋼よりなる第一低炭素鋼部分(L1)と、Cの含有量が0.45%以上の高炭素鋼よりなる高炭素鋼部分(H)と、が摩擦圧接で一体とされて構成された第一中間加工製品(2a)と、
Cの含有量が0.45%未満の第二低炭素鋼よりなる第二低炭素鋼部分(L2)を有する第二中間加工製品(2b)と、
を備え、
第一中間加工製品(2a)の高炭素鋼部分(H)には、予め所望の形状に成形され焼入れされた高強度部(9)が設けられており、
第二中間加工製品(2b)の第二低炭素鋼部分(L2)は、予め所定の形状に成形されており、
第一中間加工製品(2a)の第一低炭素鋼部分(L1)と第二中間加工製品(2b)の第二低炭素鋼部分(L2)とが、溶融溶接によって接合されている
ことを特徴とする高強度部を有する溶融接合製品。
First low carbon steel part (L1) made of low carbon steel with a C content of less than 0.45% and high carbon steel part (H) made of high carbon steel with a C content of 0.45% or more And a first intermediate processed product (2a) configured to be integrated by friction welding,
A second intermediate processed product (2b) having a second low carbon steel portion (L2) made of a second low carbon steel having a C content of less than 0.45%;
With
The high-carbon steel part (H) of the first intermediate processed product (2a) is provided with a high-strength part (9) that has been molded and hardened in a desired shape in advance,
The second low carbon steel part (L2) of the second intermediate processed product (2b) is previously molded into a predetermined shape,
The first low carbon steel part (L1) of the first intermediate processed product (2a) and the second low carbon steel part (L2) of the second intermediate processed product (2b) are joined by fusion welding. A fusion bonded product having a high strength part.
高強度部(9)は、歯形である
ことを特徴とする請求項1に記載の高強度部を有する溶融接合製品。
The fusion-bonded product having a high-strength portion according to claim 1, wherein the high-strength portion (9) has a tooth profile.
第一中間加工製品(2a)は、第一デフケースを構成し、
第二中間加工製品(2b)は、第二デフケースを構成し、
第一中間加工製品(2a)の第一低炭素鋼部分(L1)と第二中間加工製品(2b)の第二低炭素鋼部分(L2)とが、溶融溶接によって接合されて、デフケース(2)が構成されている
ことを特徴とする請求項2に記載の高強度部を有する溶融接合製品。
The first intermediate processed product (2a) constitutes the first differential case,
The second intermediate processed product (2b) constitutes the second differential case,
The first low carbon steel part (L1) of the first intermediate processed product (2a) and the second low carbon steel part (L2) of the second intermediate processed product (2b) are joined by fusion welding to obtain a differential case (2 The melt-bonded product having a high-strength portion according to claim 2.
高炭素鋼部分(H)のCの含有量は、0.45%乃至0.60%である
ことを特徴とする請求項1乃至3のいずれかに記載の高強度部を有する溶融接合製品。
The melt-bonded product having a high-strength portion according to any one of claims 1 to 3, wherein the content of C in the high carbon steel portion (H) is 0.45% to 0.60%.
第一低炭素鋼部分(L1)のCの含有量は、0.10%乃至0.40%である
ことを特徴とする請求項1乃至4のいずれかに記載の高強度部を有する溶融接合製品。
The content of C in the first low carbon steel portion (L1) is 0.10% to 0.40%, and the fusion bonding having a high strength portion according to any one of claims 1 to 4 Product.
第二低炭素鋼部分(L2)のCの含有量は、0.10%乃至0.40%である
ことを特徴とする請求項1乃至5のいずれかに記載の高強度部を有する溶融接合製品。
The fusion bonding having a high strength portion according to any one of claims 1 to 5, wherein the content of C in the second low carbon steel portion (L2) is 0.10% to 0.40%. Product.
Cの含有量が0.45%未満の低炭素鋼よりなる第一予備素材(20)と、Cの含有量が0.45%以上の高炭素鋼よりなる第二予備素材(21)と、を摩擦圧接して一体の第一素材(23)を成形する工程と、
前記第一素材(23)の摩擦圧接によるバリ(22)を除去する工程と、
前記第一素材(23)の第二予備素材(21)の領域に所定の形状の焼き入れ予定部(9a)を成形すると共に、前記第一素材(23)の第一予備素材(20)の領域に所定の形状の第一低炭素鋼部分(L1)を形成して、第一中間加工製品(2a)を形成する工程と、
前記焼き入れ予定部(9a)を焼入れして高強度部(9)を形成する工程と、
Cの含有量が0.45%未満の第二低炭素鋼よりなる第二素材(40)から、所定の形状の第二低炭素鋼部分(L2)を有する第二中間加工製品(2b)を形成する工程と、
第一中間加工製品(2a)の第一低炭素鋼部分(L1)と第二中間加工製品(2b)の第二低炭素鋼部分(L2)とを、溶融溶接によって接合する工程と、
を備えたことを特徴とする高強度部を有する溶融接合製品の製造方法。
A first preliminary material (20) made of a low carbon steel having a C content of less than 0.45%, and a second preliminary material (21) made of a high carbon steel having a C content of 0.45% or more, Forming a first integrated material (23) by friction welding,
Removing the burrs (22) due to friction welding of the first material (23);
In the region of the second preliminary material (21) of the first material (23), a quenching planned portion (9a) having a predetermined shape is formed, and the first preliminary material (20) of the first material (23) is formed. Forming a first low carbon steel portion (L1) having a predetermined shape in a region to form a first intermediate processed product (2a);
Quenching the portion to be quenched (9a) to form a high strength portion (9);
A second intermediate processed product (2b) having a second low carbon steel portion (L2) of a predetermined shape from a second material (40) made of a second low carbon steel having a C content of less than 0.45% Forming, and
Joining the first low carbon steel part (L1) of the first intermediate processed product (2a) and the second low carbon steel part (L2) of the second intermediate processed product (2b) by fusion welding;
A method for producing a fusion bonded product having a high-strength portion.
所定の形状の焼き入れ予定部(9a)は、鍛造によって成型される
ことを特徴とする請求項7に記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion-bonded product having a high-strength portion according to claim 7, wherein the quenching scheduled portion (9 a) having a predetermined shape is formed by forging.
所定の形状の第一低炭素鋼部分(L1)は、鍛造によって成型される
ことを特徴とする請求項7または8に記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion bonded product having a high strength portion according to claim 7 or 8, wherein the first low carbon steel portion (L1) having a predetermined shape is formed by forging.
所定の形状の第二低炭素鋼部分(L2)は、鍛造によって成型される
ことを特徴とする請求項7乃至9のいずれかに記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion bonded product having a high strength portion according to any one of claims 7 to 9, wherein the second low carbon steel portion (L2) having a predetermined shape is formed by forging.
炭素当量が0.60%未満の鋼材よりなる第一鋼材部分(L1)と、炭素当量が0.60%以上の鋼材よりなる焼入れ用鋼材部分(H)と、が摩擦圧接で一体とされて構成された第一中間加工製品(2a)と、
炭素当量が0.60%未満の鋼材よりなる第二鋼材部分(L2)を有する第二中間加工製品(2b)と、
を備え、
第一中間加工製品(2a)の焼入れ用鋼材部分(H)には、予め所望の形状に成形され焼入れされた高強度部(9)が設けられており、
第二中間加工製品(2b)の第二鋼材部分(L2)は、予め所定の形状に成形されており、
第一中間加工製品(2a)の第一鋼材部分(L1)と第二中間加工製品(2b)の第二鋼材部分(L2)とが、溶融溶接によって接合されている
ことを特徴とする高強度部を有する溶融接合製品。
The first steel material portion (L1) made of a steel material having a carbon equivalent of less than 0.60% and the quenching steel material portion (H) made of a steel material having a carbon equivalent of 0.60% or more are integrated by friction welding. A first intermediate processed product (2a) configured;
A second intermediate processed product (2b) having a second steel part (L2) made of a steel having a carbon equivalent of less than 0.60%;
With
The steel material portion (H) for quenching of the first intermediate processed product (2a) is provided with a high-strength portion (9) that has been molded and hardened in a desired shape in advance.
The second steel material portion (L2) of the second intermediate processed product (2b) is previously formed into a predetermined shape,
High strength, characterized in that the first steel part (L1) of the first intermediate product (2a) and the second steel part (L2) of the second intermediate product (2b) are joined by fusion welding. Fusion-bonded product having a part.
高強度部(9)は、歯形である
ことを特徴とする請求項11に記載の高強度部を有する溶融接合製品。
The melt-bonded product having a high-strength portion according to claim 11, wherein the high-strength portion (9) has a tooth profile.
第一中間加工製品(2a)は、第一デフケースを構成し、
第二中間加工製品(2b)は、第二デフケースを構成し、
第一中間加工製品(2a)の第一鋼材部分(L1)と第二中間加工製品(2b)の第二鋼材部分(L2)とが、溶融溶接によって接合されて、デフケース(2)が構成されている
ことを特徴とする請求項12に記載の高強度部を有する溶融接合製品。
The first intermediate processed product (2a) constitutes the first differential case,
The second intermediate processed product (2b) constitutes the second differential case,
The first steel material portion (L1) of the first intermediate processed product (2a) and the second steel material portion (L2) of the second intermediate processed product (2b) are joined by fusion welding to form the differential case (2). The melt-bonded product having a high-strength portion according to claim 12.
第一鋼材部分(L1)の高温割れ感受性の値と第二鋼材部分(L2)の高温割れ感受性の値との和が7以下であるように、第一鋼材部分(L1)及び第二鋼材部分(L2)が選定されている
ことを特徴とする請求項11乃至13のいずれかに記載の高強度部を有する溶融接合製品。
The first steel part (L1) and the second steel part so that the sum of the value of the hot cracking susceptibility of the first steel part (L1) and the value of the hot cracking susceptibility of the second steel part (L2) is 7 or less. (L2) is selected, The fusion-bonded product having a high-strength portion according to any one of claims 11 to 13.
炭素当量が0.60%未満の鋼材よりなる第一予備素材(20)と、炭素当量が0.60%以上の鋼材よりなる第二予備素材(21)と、を摩擦圧接して一体の第一素材(23)を成形する工程と、
前記第一素材(23)の摩擦圧接によるバリ(22)を除去する工程と、
前記第一素材(23)の第二予備素材(21)の領域に所定の形状の焼き入れ予定部を成形すると共に、前記第一素材(23)の第一予備素材(20)の領域に所定の形状の第一鋼材部分(L1)を形成して、第一中間加工製品(2a)を形成する工程と、
前記焼き入れ予定部(9a)を焼入れして高強度部(9)を形成する工程と、
炭素当量が0.60%未満の第二鋼材よりなる第二素材(40)から、所定の形状の第二鋼材部分(L2)を有する第二中間加工製品(2b)を形成する工程と、
第一中間加工製品(2a)の第一鋼材部分(L1)と第二中間加工製品(2b)の第二鋼材部分(L2)とを、溶融溶接によって接合する工程と、
を備えたことを特徴とする高強度部を有する溶融接合製品の製造方法。
A first preliminary material (20) made of a steel material having a carbon equivalent of less than 0.60% and a second preliminary material (21) made of a steel material having a carbon equivalent of 0.60% or more are friction welded to form an integral first material. Forming one material (23);
Removing the burrs (22) due to friction welding of the first material (23);
A pre-quenched portion having a predetermined shape is formed in the region of the second preliminary material (21) of the first material (23), and predetermined in the region of the first preliminary material (20) of the first material (23). Forming a first steel material part (L1) of the shape of and forming a first intermediate processed product (2a);
Quenching the portion to be quenched (9a) to form a high strength portion (9);
Forming a second intermediate processed product (2b) having a second steel material portion (L2) having a predetermined shape from the second material (40) made of the second steel material having a carbon equivalent of less than 0.60%;
Joining the first steel part (L1) of the first intermediate processed product (2a) and the second steel part (L2) of the second intermediate processed product (2b) by fusion welding;
A method for producing a fusion bonded product having a high-strength portion.
所定の形状の焼き入れ予定部(9a)は、鍛造によって成型される
ことを特徴とする請求項15に記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion-bonded product having a high-strength portion according to claim 15, wherein the quenching scheduled portion (9 a) having a predetermined shape is formed by forging.
所定の形状の第一鋼材部分(L1)は、鍛造によって成型される
ことを特徴とする請求項15または16に記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion-bonded product having a high-strength portion according to claim 15 or 16, wherein the first steel material portion (L1) having a predetermined shape is formed by forging.
所定の形状の第二鋼材部分(L2)は、鍛造によって成型される
ことを特徴とする請求項15乃至17のいずれかに記載の高強度部を有する溶融接合製品の製造方法。
The method for producing a fusion-bonded product having a high-strength portion according to any one of claims 15 to 17, wherein the second steel material portion (L2) having a predetermined shape is formed by forging.
第一予備素材(20)の高温割れ感受性の値と第二素材(40)の高温割れ感受性の値との和が7以下であるように、第一予備素材(20)及び第二素材(40)が選定される
ことを特徴とする請求項15乃至18のいずれかに記載の高強度部を有する溶融接合製品の製造方法。
The first preliminary material (20) and the second material (40) so that the sum of the hot cracking susceptibility value of the first preliminary material (20) and the hot cracking sensitivity value of the second material (40) is 7 or less. The method for producing a fusion-bonded product having a high-strength portion according to any one of claims 15 to 18, wherein:
JP2007315069A 2006-12-08 2007-12-05 Fusion-bonded product having high-strength part and manufacturing method thereof Pending JP2008161937A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007315069A JP2008161937A (en) 2006-12-08 2007-12-05 Fusion-bonded product having high-strength part and manufacturing method thereof
US11/952,226 US8202628B2 (en) 2006-12-08 2007-12-07 Fusion-bonded product having high-strength part and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006331629 2006-12-08
JP2007315069A JP2008161937A (en) 2006-12-08 2007-12-05 Fusion-bonded product having high-strength part and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008161937A true JP2008161937A (en) 2008-07-17

Family

ID=39692094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315069A Pending JP2008161937A (en) 2006-12-08 2007-12-05 Fusion-bonded product having high-strength part and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008161937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066637A (en) * 2010-09-21 2012-04-05 Hiroyuki Ohashi Rear wheel unit, motor tricycle including the same and method for converting motorcycle into the motor tricycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528521A (en) * 2001-06-13 2004-09-16 メルツ,カール Camshaft assembled by welding, its manufacturing method and cams necessary for this purpose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528521A (en) * 2001-06-13 2004-09-16 メルツ,カール Camshaft assembled by welding, its manufacturing method and cams necessary for this purpose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066637A (en) * 2010-09-21 2012-04-05 Hiroyuki Ohashi Rear wheel unit, motor tricycle including the same and method for converting motorcycle into the motor tricycle

Similar Documents

Publication Publication Date Title
JP5453012B2 (en) Spline telescopic shaft manufacturing method
US8202628B2 (en) Fusion-bonded product having high-strength part and manufacturing method thereof
US8382632B2 (en) Differential gear
US10562138B2 (en) Method for manufacturing rack bar
EP2754904B1 (en) Lightweight wheel hub rolling bearing assembly and method of assembling the assembly
JP5687577B2 (en) Welded structure and welding method
CN103429921A (en) Manufacturing method for drive shaft and vehicle steering device
US11168761B2 (en) Worm wheel, worm reduction gear, and method for producing worm wheel
US8187136B2 (en) Differential gear
JP2010207850A (en) Welding joining member and welding joining method
JP2013505409A (en) Rotationally welded parts
JP2009097716A (en) Differential gear
JP2008161937A (en) Fusion-bonded product having high-strength part and manufacturing method thereof
JP2017025964A (en) Telescopic shaft and manufacturing method thereof
JP2652823B2 (en) Manufacturing method of gear shaft
JP4853776B2 (en) CVT shaft and manufacturing method thereof
JP4825550B2 (en) Worm wheel manufacturing method and worm wheel
JP2003322135A (en) Propeller shaft and manufacturing method thereof
JP2008275077A (en) Shaft for continuously variable transmission, and its manufacturing method
JP2007315463A (en) Hollow power transmission shaft
JP4344425B2 (en) Manufacturing method of outer ring member for constant velocity joint
JPS5927736A (en) Manufacture of gear shift fork
JP2023077974A (en) Spline shaft and manufacturing method thereof
JPH0780911A (en) Manufacture of screw segment and composite column or cylinder
JP2006061930A (en) Method for producing hollow power transmission shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121012