JP2008161897A - Welding condition setting method, apparatus and computer program - Google Patents

Welding condition setting method, apparatus and computer program Download PDF

Info

Publication number
JP2008161897A
JP2008161897A JP2006352403A JP2006352403A JP2008161897A JP 2008161897 A JP2008161897 A JP 2008161897A JP 2006352403 A JP2006352403 A JP 2006352403A JP 2006352403 A JP2006352403 A JP 2006352403A JP 2008161897 A JP2008161897 A JP 2008161897A
Authority
JP
Japan
Prior art keywords
press
analysis
welding
spot
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006352403A
Other languages
Japanese (ja)
Inventor
Hajime Murayama
元 村山
Toshiyuki Niwa
俊之 丹羽
Hiroshi Yoshida
博司 吉田
Eiji Isogai
栄志 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006352403A priority Critical patent/JP2008161897A/en
Publication of JP2008161897A publication Critical patent/JP2008161897A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To optimize press formation conditions and collision analysis conditions and also to determine welding conditions of spot welding. <P>SOLUTION: Plate thickness distribution and distortion distribution of a press formed article are calculated by press formation analysis based on a shape of the press formed article, punch transfer quantity, blank holding load, frictional coefficient and tensile strength, yield strength, a stress-distortion relationship and plate thickness of material, and collision energy absorption and deformation mode are calculated by collision analysis based on, in addition to the plate thickness distribution and distortion distribution of the press formed article, a member shape to be manufactured by spot welding of the press formed article, impact load, the number of spot welding and nugget diameter. The above press formation analysis and collision analysis are repeatedly performed while changing at least one of the press formation conditions and the collision conditions to calculate the press formation condition and collision condition giving the maximum value of the collision energy absorption. Thereafter, on the basis of the plate thickness distribution of the press formed article, the number of spot welding, and the nugget diameter which have been calculated in the repeated calculation, spot weld zone analysis is performed to calculate the welding conditions of the spot welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車のフロントサイドメンバ等の部材であって、自動車衝突時に発生する衝撃エネルギを吸収するための部材を製作する場合に用いて好適なプレス成形品をスポット溶接する場合の溶接条件設定方法、装置、及びコンピュータプログラムに関する。   The present invention is a member such as a front side member of an automobile, and is used for manufacturing a member for absorbing impact energy generated at the time of an automobile collision. The present invention relates to a method, an apparatus, and a computer program.

自動車衝突時に発生する衝撃エネルギを吸収するため、フロントサイドメンバ等の部材では、衝突時に部材の長軸方向に規則的な座屈を発生させ、この座屈による塑性変形によって衝撃エネルギを吸収して乗員の保護を図っている。   In order to absorb the impact energy generated at the time of automobile collision, members such as front side members generate regular buckling in the major axis direction of the member at the time of collision, and the impact energy is absorbed by plastic deformation due to this buckling. It aims to protect passengers.

従来の衝撃エネルギ吸収部材の設計では、初期形状を定めた後、有限要素法等の方法によって衝突解析を実施し衝撃エネルギの吸収量が目標値となるよう部材の形状等を変更する。解析による評価が目標値を達成した後、試作・実験によって最終確認を行い、設計を確定する。   In the design of a conventional impact energy absorbing member, after determining an initial shape, a collision analysis is performed by a method such as a finite element method, and the shape of the member is changed so that the absorbed amount of impact energy becomes a target value. After the evaluation by analysis achieves the target value, final confirmation is made by trial manufacture and experiment, and the design is confirmed.

これらの部材は、鋼材又はその他の材料の薄板、管又は棒を塑性加工し、必要に応じて接合することによって製作される。塑性加工は、プレス、ハイドロフォーム又は押し出し等の成形方法が用いられる。また、接合は、スポット溶接、アーク溶接、レーザ溶接又はリベット接合等の方法が用いられる。   These members are manufactured by plastic processing of thin plates, tubes or rods of steel or other materials and joining them as necessary. For the plastic working, a forming method such as pressing, hydroforming or extrusion is used. For joining, methods such as spot welding, arc welding, laser welding or rivet joining are used.

従来、図10に示すプレス成形から衝突解析に至る連成解析という手法が公知である。図10において、1001は加工前の材料、1002は成形解析の結果、1003は成形解析の結果を衝突解析の入力データに変換したもの、1004は衝突解析の結果を表わす。特許文献1には、プレス部品の最終部品形状データを基に、追加した形状データを作成した上で成形解析を行い、得られた解析結果を基に耐衝突性能等の特性解析を連成的に行うシミュレーション方法が開示されている。   Conventionally, a technique called coupled analysis from press forming to collision analysis shown in FIG. 10 is known. In FIG. 10, 1001 is a material before processing, 1002 is a result of molding analysis, 1003 is a result of molding analysis converted into input data for collision analysis, and 1004 is a result of collision analysis. In Patent Document 1, after forming the added shape data based on the final part shape data of the pressed part, forming analysis is performed, and characteristic analysis such as impact resistance performance is coupled based on the obtained analysis result. A simulation method is disclosed.

しかし、特許文献1には、最適な部品形状、成形条件を提示する方法については記載されていない。また、実際に部材を接合・溶接する際の方法についても記載されてはいない。   However, Patent Document 1 does not describe a method for presenting an optimal part shape and molding conditions. Further, it does not describe a method for actually joining and welding the members.

特開2004−50253号公報JP 2004-50253 A

鋼材等の金属を材料とする場合、部材製作時の塑性変形によって板厚の変化や、塑性ひずみによる加工硬化が発生し、板厚変化や加工硬化がない場合に比して部材が衝撃を受けた際の座屈変形モードや衝撃エネルギの吸収量が変化することが知られている。   When a metal such as steel is used as a material, changes in the plate thickness due to plastic deformation at the time of manufacturing the member and work hardening due to plastic strain occur, and the member receives an impact compared to when there is no plate thickness change or work hardening. It is known that the buckling deformation mode and the amount of absorption of impact energy change.

現状、有限要素法等の解析時に板厚変化や加工硬化を考慮していないため、解析の評価値によって設計しても、試作・実験では所望の座屈変形モードや衝撃エネルギの吸収量を得られない。   Currently, plate thickness changes and work hardening are not taken into account during analysis using the finite element method, etc., so even if the design is based on the evaluation value of the analysis, the desired buckling deformation mode and impact energy absorption can be obtained in the prototype / experiment. I can't.

また、部材製作時の塑性加工条件のばらつきにより、板厚変化や加工硬化にもばらつきが発生し、最終的に座屈変形モードや衝撃エネルギの吸収量がばらついてしまう。   In addition, due to variations in plastic working conditions at the time of member manufacture, variations in plate thickness change and work hardening also occur, and eventually the buckling deformation mode and the amount of shock energy absorbed vary.

さらに、プレス成形後に補強背板をスポット溶接するような場合、そのスポット溶接数やスポット溶接で実際に溶接接合される範囲であるナゲット径の大きさにより、座屈変形モードや衝撃エネルギの吸収量が変化することも公知である。有限要素解析でのスポット打点ピッチやナゲット径の評価値をそのまま実際にスポット溶接に適用する場合、プレス後の板厚変化を考慮しなければ必要なナゲット径を確実に得ることは難しい。   In addition, when spot-welding a reinforcing back plate after press molding, the amount of buckling deformation and impact energy absorption depends on the number of spot welds and the size of the nugget diameter, which is the range that is actually welded by spot welding. It is also known that changes. When the evaluation values of spot spot pitch and nugget diameter in finite element analysis are actually applied to spot welding as they are, it is difficult to surely obtain the necessary nugget diameter unless the thickness change after pressing is taken into consideration.

本発明は、部材製作時の塑性加工による板厚変化や加工硬化の影響を考慮しつつ所望の衝突性能を得るためにプレス成形条件、衝突解析条件を最適化するとともに、スポット溶接の溶接条件を決定できるようにすることを目的とする。   The present invention optimizes the press forming conditions and the collision analysis conditions in order to obtain the desired collision performance while taking into account the influence of the plate thickness change and work hardening caused by plastic working during the production of the member, and the welding conditions for spot welding. The purpose is to be able to decide.

本発明の溶接条件設定方法は、プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定する溶接条件設定方法であって、プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいて、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析と、衝突解析条件として、前記プレス成形解析で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて、衝撃エネルギ吸収量及び変形モードを算出する衝突解析とを、前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与えるプレス成形条件及び衝突条件を算出する繰り返し計算手順と、前記繰り返し計算手順で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析手順とを有することを特徴とする。
本発明の溶接条件設定装置は、プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定する溶接条件設定装置であって、プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚を入力するプレス成形条件入力手段と、前記プレス成形条件入力手段に入力されたプレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析手段と、衝突解析条件として、前記プレス成形解析手段で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径を入力する衝突解析条件入力手段と、前記衝突解析条件入力手段に入力された前記プレス成形解析手段で算出されたプレス成形品の板厚分布及びひずみ分布、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて衝突解析を行い、衝撃エネルギ吸収量及び変形モードを算出する衝突解析手段と、前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて前記プレス成形条件入力手段から前記衝突解析手段に至る処理を繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与える繰り返し計算制御手段と、前記繰り返し計算制御手段による繰り返し計算で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析手段とを備えたことを特徴とする。
本発明のコンピュータプログラムは、プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定するコンピュータプログラムであって、プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析と、衝突解析条件として、前記プレス成形解析で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて衝突解析を行い、衝撃エネルギ吸収量及び変形モードを算出する衝突解析とを、前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与えるプレス成形条件及び衝突条件を算出する繰り返し計算処理と、前記繰り返し計算処理で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析処理とをコンピュータに実行させることを特徴とする。
The welding condition setting method of the present invention is a welding condition setting method for setting welding conditions for spot welding when spot-welding a press-formed product, and as the press-forming conditions, the shape of the press-formed product, the amount of punch movement, the wrinkle holding Based on the load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness, press molding analysis to calculate the thickness distribution and strain distribution of the press molded product, and the collision analysis conditions, In addition to the thickness distribution and strain distribution of the press-formed product calculated in the press-forming analysis, the impact is based on the shape of the member produced by spot welding the press-formed product, the impact load, the number of spot welds, and the nugget diameter. The collision analysis for calculating the energy absorption amount and the deformation mode is repeatedly performed by changing at least one of the press molding conditions and the collision analysis conditions. The iterative calculation procedure for calculating the press forming condition and the collision condition that gives the maximum value or stable region of the impact energy absorption amount, the plate thickness distribution, the number of spot welds, and the nugget diameter of the press formed product calculated by the repetitive calculation procedure And a spot welded part analysis procedure for performing spot welded part analysis based on the above and calculating spot welding welding conditions.
The welding condition setting device of the present invention is a welding condition setting device for setting welding conditions for spot welding when spot-welding a press-formed product, and as the press-forming conditions, the shape of the press-formed product, the amount of punch movement, and the wrinkle holding Press molding condition input means for inputting load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness, press molded product shape input to the press molding condition input means, punch movement Press that performs press forming analysis based on the amount, wrinkle holding load, coefficient of friction, material tensile strength, yield strength, stress-strain relationship, and plate thickness, and calculates the plate thickness distribution and strain distribution of the press molded product In addition to the plate thickness distribution and strain distribution of the press-formed product calculated by the press-forming analysis means as the forming analysis means and the collision analysis condition, Collision analysis condition input means for inputting the shape of the member to be produced, impact load, number of spot welds, and nugget diameter, and a plate of the press molded product calculated by the press molding analysis means input to the collision analysis condition input means Collision analysis based on thickness distribution and strain distribution, shape of member manufactured by spot welding of press-formed product, impact load, number of spot welds, and nugget diameter, and impact energy absorption and deformation mode are calculated. And at least one of the press molding condition and the collision analysis condition is changed and the process from the press molding condition input unit to the collision analysis unit is repeated, and the maximum value or stable region of the impact energy absorption amount Repetitive calculation control means for providing the thickness of the press-formed product calculated by repetitive calculation by the repetitive calculation control means Cloth, spot welding speed, and performs the spot weld analysis based on nugget diameter, characterized in that a spot weld analyzing means for calculating a welding condition of spot welding.
The computer program of the present invention is a computer program for setting welding conditions for spot welding when spot-welding a press-formed product, and the press-molding conditions include the shape of the press-formed product, the amount of punch movement, the wrinkle holding load, and the friction coefficient. , Press forming analysis based on the tensile strength, yield strength, stress-strain relationship, and plate thickness of the material, and calculating the plate thickness distribution and strain distribution of the press molded product, and the collision analysis conditions In addition to the thickness distribution and strain distribution of the press-formed product calculated by the press-forming analysis, the collision is based on the shape of the member manufactured by spot welding the press-formed product, the impact load, the number of spot welds, and the nugget diameter. A collision analysis for performing an analysis and calculating an impact energy absorption amount and a deformation mode, the press molding condition and the collision analysis condition It is repeatedly performed by changing at least one of them, and a repeated calculation process for calculating a press molding condition and a collision condition that gives a maximum value or a stable region of the impact energy absorption amount, and a press molded product calculated by the repeated calculation process. A spot welded portion analysis is performed based on the plate thickness distribution, the number of spot welds, and the nugget diameter, and a spot welded portion analyzing process for calculating a welding condition for spot welding is executed by a computer.

本発明によれば、部材製作時の板厚変化や加工硬化の影響を考慮しつつ、例えば自動車衝突時の座屈変形モードや衝撃エネルギ吸収量を得るためのスポット溶接の溶接条件を所望の値とし、かつ部材製作時の加工条件のばらつきがあった場合でも衝突性能が大きく変動しない設計点(プレス成形条件等)を実際にスポット溶接した際にも維持するのに必要な溶接条件を設定することが可能となる。   According to the present invention, the welding conditions for spot welding for obtaining, for example, a buckling deformation mode and an impact energy absorption amount at the time of an automobile collision are considered while taking into account the influence of plate thickness change and work hardening during member production. In addition, set the welding conditions necessary to maintain the design points (press molding conditions, etc.) that do not greatly change the collision performance even when spot welding is actually performed, even if there are variations in the processing conditions at the time of component production. It becomes possible.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、プレス成形品をスポット溶接する場合のスポット溶接の溶接条件設定方法を説明するためのフローチャートである。まず、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚をプレス成形条件1として設定し、これを入力データとして、コンピュータが成形解析プログラムによりプレス成形解析を行う(ステップS101)。このプレス成形解析では、プレス成形品の板厚分布及びひずみ分布2が算出、出力される。なお、プレス成形条件として、さらにパッド圧力を加えて設定してもよい。パッド圧力を入力することにより、割れ、しわ等成形時の不具合回避、適正な加工硬化(ひずみ)付与という効果が期待できる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a flowchart for explaining a welding condition setting method for spot welding in the case of spot welding a press-formed product. First, press-molded product shape, punch travel, wrinkle holding load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness are set as press-molding condition 1, and this is used as input data. The computer performs press forming analysis by the forming analysis program (step S101). In this press molding analysis, the plate thickness distribution and strain distribution 2 of the press molded product are calculated and output. The press molding conditions may be set by further applying pad pressure. By inputting the pad pressure, it is possible to expect the effects of avoiding defects such as cracks and wrinkles during molding and imparting appropriate work hardening (strain).

次に、前記ステップS101のプレス成形解析の出力データ(プレス成形品の板厚分布及びひずみ分布)2を、コンピュータが変換プログラムにより衝突解析の入力データに変換する(ステップS102)。なお、プレス成形解析の出力データ2に、さらにプレス成形品の応力分布を含めるようにしてもよい。プレス成形解析においてプレス成形品の応力分布を算出、出力し、これに基づいて以下の衝突解析を実施することにより、衝突時の変形や破壊現象を実現象に忠実に再現し、高精度な解析を行えるという効果が期待できる。   Next, the output data (plate thickness distribution and strain distribution of the press-formed product) 2 in step S101 is converted by the computer into input data for collision analysis using a conversion program (step S102). Note that the output data 2 of the press molding analysis may further include the stress distribution of the press molded product. By calculating and outputting the stress distribution of a press-formed product in press forming analysis, and performing the following collision analysis based on this, the deformation and fracture phenomena at the time of the collision are reproduced faithfully to the actual phenomenon, and high-precision analysis Can be expected to be effective.

次に、前記ステップS102において変換されたプレス成形品の板厚分布及びひずみ分布2(さらにプレス成形品の応力分布を含めてもよい)に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径を衝突解析条件3として設定し、これを入力データとして、コンピュータが衝突解析プログラムにより衝突解析を行う(ステップS103)。この衝突解析では、衝撃エネルギ吸収量及び座屈変形モード4が算出、出力される。   Next, in addition to the plate thickness distribution and strain distribution 2 (which may include the stress distribution of the press-formed product) converted in step S102, the member manufactured by spot welding the press-formed product. The shape, impact load, number of spot welds, and nugget diameter are set as the collision analysis condition 3, and this is used as input data, and the computer performs a collision analysis using the collision analysis program (step S103). In this collision analysis, the impact energy absorption amount and the buckling deformation mode 4 are calculated and output.

次に、前記ステップS103の衝突解析の出力データ(衝撃エネルギ吸収量及び座屈変形モード)4を評価する(ステップS104)。本発明においては、衝突解析条件に、プレス成形品をスポット溶接する際のスポット溶接数及びナゲット径を含めることにより、衝突時の座屈変形モードを所望の形態とし、衝突エネルギ吸収量を最大化するという効果が期待できる。衝突解析では、衝突エネルギ吸収量及び変形モードを計算する。変形モードとは、部材が衝撃を受けて変形する際の変形形態をいう。具体的には、提灯状に畳み込まれるような変形モードや、部材途中で折れ曲がるような変形モードが発生する。   Next, output data (impact energy absorption amount and buckling deformation mode) 4 of the collision analysis in step S103 is evaluated (step S104). In the present invention, the collision analysis condition includes the number of spot welds and the nugget diameter when spot-pressing a press-formed product, thereby setting the buckling deformation mode at the time of collision to a desired form and maximizing the amount of collision energy absorption. The effect of doing can be expected. In the collision analysis, a collision energy absorption amount and a deformation mode are calculated. The deformation mode refers to a deformation mode when a member is deformed by receiving an impact. Specifically, a deformation mode that is folded in a lantern shape or a deformation mode that is bent in the middle of the member occurs.

ステップS104において衝突性能が所望の値となっていない場合、又はステップS101〜S103の繰り返し計算が設定回数に満たない場合、プレス成形条件1及び衝突解析条件3のうちの少なくとも1種以上を変えて、コンピュータがステップS101〜S103を繰り返し行う。このように繰り返し計算を行い、衝突性能が所望の値になった時点で処理を終了する。なお、設定回数としては、衝撃エネルギ吸収量の極大点探索のためには、10回以上実行することが好ましい。一方、一連の解析時間を節約するためには、100回以下とすることが好ましい。   When the collision performance is not a desired value in step S104, or when the repeated calculation in steps S101 to S103 is less than the set number of times, at least one of the press molding condition 1 and the collision analysis condition 3 is changed. The computer repeats steps S101 to S103. The calculation is repeated in this way, and the process is terminated when the collision performance reaches a desired value. It should be noted that the set number of times is preferably executed ten times or more in order to search for the maximum point of the absorbed amount of impact energy. On the other hand, in order to save a series of analysis time, it is preferable to set it to 100 times or less.

これにより、衝突エネルギ吸収量の最大値又は安定領域を与える最適設計結果として、プレス成形条件及び衝突条件(プレス成形品の板厚分布、スポット溶接数、及びナゲット径を含む)が算出される(ステップS105)。   Thereby, as the optimum design result that gives the maximum value or stable region of the collision energy absorption amount, the press molding condition and the collision condition (including the thickness distribution of the press molded product, the number of spot welds, and the nugget diameter) are calculated ( Step S105).

続いて、以上の繰り返し計算で算出された最適設計結果のうち、プレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出する。すなわち、ステップS105で得られた最適設計結果に基づいて、スポット溶接数からスポット溶接位置(打点)がわかるので、プレス成形品の板厚分布を用いて各スポット溶接位置の板厚(溶接部板厚データ6)が得られ、同時に実際にスポット溶接で必要なナゲット径(以下、「最適ナゲット径」と称する)が得られる。   Subsequently, among the optimum design results calculated by the above repeated calculation, spot weld analysis is performed based on the plate thickness distribution, the number of spot welds, and the nugget diameter of the press-formed product, and the welding conditions for spot welding are calculated. . That is, based on the optimum design result obtained in step S105, the spot welding position (spotting point) can be determined from the number of spot welds. Thickness data 6) is obtained, and simultaneously the nugget diameter actually necessary for spot welding (hereinafter referred to as “optimum nugget diameter”) is obtained.

まず、電極形状、加圧力、溶接電流値、通電時間を含む溶接条件5と、溶接部板厚データ6と、被対象物である鋼板の降伏強さ、固有抵抗値、熱伝導率等の鋼板物性値とを与えて、コンピュータがスポット溶接部解析プログラムによりスポット溶接部解析を行う(ステップS106)。このスポット溶接部解析では、ナゲット径が算出、出力される。   First, welding conditions 5 including electrode shape, applied pressure, welding current value, energizing time, welded part thickness data 6, and steel sheet, such as yield strength, specific resistance value, thermal conductivity, etc. The physical property values are given, and the computer performs spot weld analysis by the spot weld analysis program (step S106). In this spot weld analysis, the nugget diameter is calculated and output.

次に、前記ステップS106のスポット溶接部解析の出力データ(ナゲット径)7を評価する(ステップS107)。すなわち、スポット溶接部解析の出力データ(ナゲット径)7が最適ナゲット径を満足しているかどうかを判定する。   Next, the output data (nugget diameter) 7 of the spot weld analysis in step S106 is evaluated (step S107). That is, it is determined whether or not the output data (nugget diameter) 7 of the spot weld analysis satisfies the optimum nugget diameter.

ステップS107においてナゲット径7が最適ナゲット径を満足していない場合、又はステップS106の繰り返し計算が設定回数に満たない場合、スポット溶接の溶接条件5のうち少なくとも1種以上を変えて、コンピュータがステップS106を繰り返し行う。なお、電極形状は最適ナゲット径に合わせて決定されるので、ここでは溶接電流値を変える。このように繰り返し計算を行い、ナゲット径7が最適ナゲット径を満足した時点で処理を終了する。なお、設定回数としては、この場合も10回以上実行することが望ましい一方で、一連の解析時間を節約するためには、50回以下とすることが好ましい。   If the nugget diameter 7 does not satisfy the optimum nugget diameter in step S107, or if the repetitive calculation in step S106 is less than the set number of times, at least one of the welding conditions 5 for spot welding is changed, and the computer executes step S106 is repeated. Since the electrode shape is determined in accordance with the optimum nugget diameter, the welding current value is changed here. Thus, the calculation is repeated, and the process is terminated when the nugget diameter 7 satisfies the optimum nugget diameter. In this case, the set number of times is preferably 10 times or more, but is preferably 50 times or less in order to save a series of analysis times.

なお、溶接電流値に加えて、加圧力も変化させて繰り返し計算を行うようにしてもよい。一般的に、母材引張強さが大きい鋼板ほど、同じ加圧力では溶接により実現できるナゲット径の上限が小さくなることが知られている。したがって、鋼板母材引張強さが大きくなれば、加圧力を増加させて実現できるナゲット径の上限を確保させてやる必要がある。ナゲット径の下限に関して言えば、本発明のように衝撃エネルギ吸収量の最大値又は安定領域を与える最適衝突条件として、小さいナゲット径が出力することは考えられない。   In addition to the welding current value, the applied pressure may be changed and the calculation may be repeated. In general, it is known that the upper limit of the nugget diameter that can be realized by welding with the same pressurizing force becomes smaller as the steel sheet has a higher base metal tensile strength. Therefore, if the tensile strength of the steel plate is increased, it is necessary to secure an upper limit of the nugget diameter that can be realized by increasing the pressure. With regard to the lower limit of the nugget diameter, it is unthinkable that a small nugget diameter is output as the optimum collision condition that gives the maximum value of the impact energy absorption amount or the stable region as in the present invention.

これにより、最適ナゲット径を満足する最適結果として、スポット溶接の溶接条件(溶接電流値を含む)が算出される(ステップS108)。   Thereby, the welding conditions (including the welding current value) of spot welding are calculated as the optimum result that satisfies the optimum nugget diameter (step S108).

以上述べたように、部材製作時の板厚変化や加工硬化の影響を考慮しつつ、例えば自動車衝突時の座屈変形モードや衝撃エネルギ吸収量を得るためのスポット溶接の溶接条件を所望の値とし、かつ部材製作時の加工条件のばらつきがあった場合でも衝突性能が大きく変動しない設計点(プレス成形条件等)を実際にスポット溶接した際にも維持するのに必要な溶接条件を設定することが可能となる。   As described above, the welding conditions for spot welding to obtain, for example, the buckling deformation mode and impact energy absorption amount at the time of automobile collision are considered while taking into account the effects of plate thickness change and work hardening during member production. In addition, set the welding conditions necessary to maintain the design points (press molding conditions, etc.) that do not greatly change the collision performance even when spot welding is actually performed, even if there are variations in the processing conditions at the time of component production. It becomes possible.

なお、成形解析、衝突解析、スポット溶接部解析は、有限要素法等による解析プログラムを用いて行う。また、成形解析〜衝突解析のデータ変換、衝突性能評価及び形状・加工条件変更も市販又は自製のプログラムで行う。そして、成形解析〜衝突解析の後、最適プレス成形条件及び衝突条件を得た後に、スポット溶接部解析に供するデータの抽出、データ変換も市販又は自製のプログラムで行う。   The forming analysis, the collision analysis, and the spot weld analysis are performed using an analysis program such as a finite element method. In addition, data conversion from molding analysis to collision analysis, collision performance evaluation, and shape / machining condition change are also performed by a commercially available program or a self-made program. Then, after obtaining the optimal press forming condition and the collision condition after the forming analysis to the collision analysis, data extraction and data conversion for spot welded portion analysis are also performed by a commercially available or self-made program.

図2は、本発明の溶接条件設定装置として機能するコンピュータシステムの構成例を示す図である。同図において、200はコンピュータPCである。PC200は、CPU201を備え、ROM202又はハードディスク(HD)211に記録された、或いはフレキシブルディスクドライブ(FD)212より供給されるデバイス制御ソフトウェアを実行し、システムバス204に接続される各デバイスを総括的に制御する。PC200のCPU201、ROM202又はハードディスク(HD)211に記録されたプログラムにより、本発明の各機能手段が実現される。   FIG. 2 is a diagram showing a configuration example of a computer system that functions as the welding condition setting device of the present invention. In the figure, reference numeral 200 denotes a computer PC. The PC 200 includes a CPU 201, executes device control software recorded in a ROM 202 or a hard disk (HD) 211, or supplied from a flexible disk drive (FD) 212, and collectively manages each device connected to the system bus 204. To control. Each functional unit of the present invention is realized by a program recorded in the CPU 201, the ROM 202, or the hard disk (HD) 211 of the PC 200.

203はRAMであり、CPU201の主メモリ、ワークエリア等として機能する。205はキーボードコントローラ(KBC)であり、キーボード(KB)209から入力される信号をシステム本体内に入力する制御を行う。206は表示コントローラ(CRTC)であり、表示装置(CRT)210上の表示制御を行う。207はディスクコントローラ(DKC)であり、ブートプログラム(起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラム)、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記録するハードディスク(HD)211、及びフレキシブルディスク(FD)212とのアクセスを制御する。208はネットワークインタフェースカード(NIC)であり、LAN220を介して、ネットワークプリンタ、他のネットワーク機器、或いは他のPCと双方向のデータのやり取りを行う。   Reference numeral 203 denotes a RAM that functions as a main memory, work area, and the like of the CPU 201. A keyboard controller (KBC) 205 controls to input a signal input from the keyboard (KB) 209 into the system main body. A display controller (CRTC) 206 performs display control on the display device (CRT) 210. A disk controller (DKC) 207 is a hard disk that records a boot program (startup program: a program for starting execution (operation) of hardware and software of a personal computer), a plurality of applications, editing files, user files, a network management program, and the like. Controls access to the (HD) 211 and the flexible disk (FD) 212. A network interface card (NIC) 208 performs bidirectional data exchange with a network printer, another network device, or another PC via the LAN 220.

なお、本発明の溶接条件設定装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。   Note that the welding condition setting device of the present invention may be applied to a system composed of a plurality of devices or an apparatus composed of a single device.

また、本発明の目的は前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記録媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が記録媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。この場合、記録媒体から読出しされたプログラムコード自体が前述した実施形態の機能を実現することとなり、そのプログラムコードを記録した記録媒体は本発明を構成することになる。プログラムコードを供給するための記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   Another object of the present invention is to supply a recording medium in which a program code of software realizing the functions of the above-described embodiments is recorded to a system or apparatus, and the computer (CPU or MPU) of the system or apparatus stores the recording medium in the recording medium. Needless to say, this can also be achieved by reading and executing the programmed program code. In this case, the program code itself read from the recording medium realizes the functions of the above-described embodiments, and the recording medium on which the program code is recorded constitutes the present invention. As a recording medium for supplying the program code, for example, a flexible disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, ROM, or the like can be used.

以上、本発明を種々の実施形態とともに説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。   As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.

(実施例)
本発明の実施例として、図6に示すように、ハット型断面部材に当て板をスポット溶接した部材を設計する例を説明する。図6において61がスポット溶接位置を示す。ハット型断面部材がプレス成形品である。部材は長軸方向に衝撃荷重を受けて軸圧潰するものとし、このときの衝撃エネルギ吸収量が最大になるように部材の溶接条件を最適化する。具体的には、ハット型断面部材のフランジと当て板のスポット溶接について、そのスポット溶接数及びナゲット径を最適化する。その後、その各々の溶接箇所で、ナゲット径を実現する溶接電流値を最適化する。具体的には、スポット溶接に供する電極形状、加圧力、通電時間が既知の場合に、スポット溶接位置の板厚に合わせて所望のナゲット径になるように溶接電流値を最適化する。
(Example)
As an embodiment of the present invention, an example of designing a member in which a contact plate is spot welded to a hat-shaped cross-sectional member as shown in FIG. In FIG. 6, 61 indicates a spot welding position. The hat-shaped cross-sectional member is a press-formed product. The member receives an impact load in the major axis direction and is crushed axially, and the welding conditions of the member are optimized so that the amount of impact energy absorption at this time is maximized. Specifically, the number of spot welds and the nugget diameter are optimized for spot welding of the flange of the hat-shaped cross-sectional member and the contact plate. Thereafter, the welding current value that realizes the nugget diameter is optimized at each of the welding locations. Specifically, when the electrode shape, applied pressure, and energization time used for spot welding are known, the welding current value is optimized so as to obtain a desired nugget diameter in accordance with the plate thickness at the spot welding position.

ハット型断面部材の寸法は、長さが300mm、断面幅が50mm、断面高さが50mm、フランジ幅が20mm、板厚が1.4mmである。また、当て板の寸法は、長さが300mm、幅が90mm、板厚が1.4mmである。材料は、いずれも590MPa級の高張力鋼板である。   The dimensions of the hat-shaped cross-section member are 300 mm in length, 50 mm in cross-sectional width, 50 mm in cross-sectional height, 20 mm in flange width, and 1.4 mm in plate thickness. In addition, the length of the contact plate is 300 mm in length, 90 mm in width, and 1.4 mm in thickness. The materials are all 590 MPa class high-tensile steel plates.

その他のプレス成形条件として、パンチ移動量を50mm、しわ押さえ荷重(BHF)を34kN、摩擦係数を0.15とした。   As other press molding conditions, the amount of punch movement was 50 mm, the wrinkle holding load (BHF) was 34 kN, and the friction coefficient was 0.15.

前記プレス成形条件を入力して、市販の有限要素解析プログラムHyperformを用いてプレス成形解析を行い、プレス成形品の板厚分布(図3を参照)及びひずみ分布(図4を参照)を算出した。   The press forming conditions were input, press forming analysis was performed using a commercially available finite element analysis program Hyperform, and the thickness distribution (see FIG. 3) and strain distribution (see FIG. 4) of the press-formed product were calculated. .

プレス成形解析によるプレス成形品の板厚分布及びひずみ分布の解析結果から衝突解析への入力データの変換は、FORTRANプログラムを自製・仕様して、衝突解析条件としてプレス成形品の板厚分布及びひずみ分布、及び部材形状を入力した。   Conversion of input data from analysis results of plate thickness distribution and strain distribution of press-molded products to impact analysis by press-molding analysis is made and specified by FORTRAN program, and plate thickness distribution and strain of press-molded products as collision analysis conditions. Distribution and member shape were input.

衝突解析条件として更に質量553.6kgの剛体を6.26m/sの速度で衝突させた場合と同等の衝撃荷重を入力して、市販の有限要素解析プログラムPAM-CRASHを使用して衝突解析を行った。   As a collision analysis condition, input a shock load equivalent to the case where a rigid body having a mass of 553.6 kg is further collided at a speed of 6.26 m / s, and perform a collision analysis using a commercially available finite element analysis program PAM-CRASH. went.

後述するスポット溶接数及びナゲット径を変えたときを含めて、図5(A)、(B)に示したものと同様な結果を得た。スポット溶接数が等間隔に7個、かつ、ナゲット径が7mmのときには、提灯状に折り畳まれるような良い座屈変形モードを示し、それ以外のスポット溶接数及びナゲット径のときは、部材途中で折れ曲がるような悪い座屈変形モードを示した。なお、図5において、矢印が衝撃荷重の方向で、51が規則的な座屈変形、52が不規則な座屈変形を示す。   The results similar to those shown in FIGS. 5A and 5B were obtained including the case of changing the number of spot welds and the nugget diameter described later. When the number of spot welds is 7 at regular intervals and the nugget diameter is 7 mm, it shows a good buckling deformation mode that can be folded into a lantern. It shows a bad buckling deformation mode that bends. In FIG. 5, the arrow indicates the direction of impact load, 51 indicates regular buckling deformation, and 52 indicates irregular buckling deformation.

衝突性能評価〜加工条件変更〜衝突性能再評価の手順を行うために、市販の最適化ツールi-SIGHTを使用した。衝突エネルギ吸収量が最大かつ安定となるよう、溶接条件のうちスポット溶接数を片側3〜10個の範囲で変更し、またナゲット径を3〜10mmの範囲で変更し、図1のステップS101〜S103の処理をコンピュータが16回繰り返し行い、衝突エネルギ吸収量の最大値を与える最適プレス成形条件又は最適衝突条件(プレス成形品の板厚分布、スポット溶接数、及びナゲット径を含む)を探索した。   A commercially available optimization tool i-SIGHT was used to perform the procedures of collision performance evaluation, machining condition change, and collision performance re-evaluation. Step S101 in FIG. 1 is performed by changing the number of spot welds in the range of 3-10 pieces on one side and changing the nugget diameter in the range of 3-10 mm so that the collision energy absorption amount is maximum and stable. The computer repeatedly performed the process of S103 16 times, and searched for the optimum press molding condition or the optimum collision condition (including the thickness distribution of the press molded product, the number of spot welds, and the nugget diameter) that gives the maximum collision energy absorption amount. .

図7に結果を示す。グラフは横軸1601がスポット溶接数、横軸1602がナゲット径、縦軸1603が衝撃エネルギ最大値である。この結果より、衝撃エネルギ吸収量が最大となる点1604は、スポット溶接数9個、ナゲット径10mmのときで、衝撃エネルギ吸収量7237Jである。また、スポット溶接数7個、ナゲット径7mmのときに衝撃エネルギ吸収量7125Jの極大点1605があり、スポット溶接のコストを考慮するとこちらが最適設計点の候補として挙げることができる。   The results are shown in FIG. In the graph, the horizontal axis 1601 is the number of spot welds, the horizontal axis 1602 is the nugget diameter, and the vertical axis 1603 is the impact energy maximum value. From this result, the point 1604 where the impact energy absorption amount is maximum is the impact energy absorption amount 7237J when the number of spot welds is 9 and the nugget diameter is 10 mm. Further, when the number of spot welds is 7 and the nugget diameter is 7 mm, there is a maximum point 1605 of the impact energy absorption amount 7125J, and this can be cited as a candidate for the optimum design point in consideration of the cost of spot welding.

また、図8に示すように、前記の最適溶接条件を与えた際に、プレス成形条件としてしわ押さえ荷重を変化させて前記の繰り返し計算を13回実行した場合、しわ押さえ荷重BHF=200kN〜250kNの範囲のとき、衝撃エネルギ吸収量が高位安定となり、この中間点を最適設計点として採用すればいいことが分かった。図8において、81は衝突エネルギ吸収量が最大となる点、82は衝突エネルギ吸収量が高位安定となる範囲である。   Further, as shown in FIG. 8, when the optimum welding conditions are given, the wrinkle holding load BHF = 200 kN to 250 kN when the above calculation is performed 13 times while changing the wrinkle holding load as the press forming condition. In this range, it was found that the impact energy absorption amount is highly stable, and this intermediate point should be adopted as the optimum design point. In FIG. 8, 81 is the point where the amount of collision energy absorption is maximum, and 82 is the range where the amount of collision energy absorption is highly stable.

これら最適プレス成形条件によって仕上がった板厚分布を持つ部材において、最適溶接条件のスポット溶接箇所にナゲット径を実現するために、各々の溶接箇所の鋼板板厚に応じた溶接電流値の探索が必要となる。ナゲット径予測〜溶接電流値変更〜ナゲット径再予測の手順を行うために、市販の最適化ツールi-SIGHTを使用した。また、ナゲット径の算出には、市販のスポット溶接部解析ソフトQuickspotを使用した。   In order to realize the nugget diameter at the spot welding spot under the optimum welding conditions, it is necessary to search for the welding current value according to the steel plate thickness at each welding spot in the member with the thickness distribution finished by these optimum press forming conditions. It becomes. In order to perform the procedure of nugget diameter prediction-welding current value change-nugget diameter re-prediction, a commercially available optimization tool i-SIGN was used. For calculation of the nugget diameter, commercially available spot weld analysis software Quickspot was used.

図9は、スポット溶接部解析によるナゲット径算出例を示す図である。図9において、91は電極、92はナゲットである。590MPa級鋼板で板厚1.4mmの箇所にナゲット径7mmのナゲットを作成する場合、JIS−DR型先端径8mmの電極、電極加圧力4.81kN、通電時間0.32s、では、溶接電流値が8.5kA必要であった。また、板厚1.49mmの箇所にナゲット径7mmのナゲットを作成する場合、溶接電流値が8.75kA必要であった。さらに、板厚1.31mmの箇所にナゲット径7mmのナゲットを作成する場合、溶接電流値8.3kAが必要であった。   FIG. 9 is a diagram illustrating an example of nugget diameter calculation by spot weld analysis. In FIG. 9, 91 is an electrode and 92 is a nugget. When a nugget with a thickness of 1.4 mm is made of a 590 MPa grade steel plate with a thickness of 1.4 mm, a welding current value is obtained with an electrode of JIS-DR type tip diameter of 8 mm, an electrode pressure of 4.81 kN, and a current application time of 0.32 s Was 8.5 kA. Further, when a nugget having a nugget diameter of 7 mm was formed at a location having a plate thickness of 1.49 mm, a welding current value of 8.75 kA was required. Furthermore, when a nugget having a nugget diameter of 7 mm was formed at a location having a plate thickness of 1.31 mm, a welding current value of 8.3 kA was required.

これにより、成形〜衝突解析の最適化で明らかになったしわ押さえ荷重BHF=200kN〜250kNでプレス加工した部材の経済性を考慮した衝撃エネルギ吸収量を最大にするスポット溶接数7個、7mmのナゲット径を作成するのに必要な電流値は、板厚分布の変動により8.3kA〜8.75kAとなり、所望の7mmのナゲットを作成することができた。   As a result, the number of spot welds, 7 mm, which maximizes the impact energy absorption amount considering the economics of the members pressed with the wrinkle holding load BHF = 200 kN to 250 kN, which has been clarified through optimization of the forming to collision analysis, is 7 mm. The current value required to create the nugget diameter was 8.3 kA to 8.75 kA due to fluctuations in the plate thickness distribution, and a desired 7 mm nugget could be created.

プレス成形品をスポット溶接する場合のスポット溶接の溶接条件設定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the welding condition setting method of spot welding in the case of carrying out spot welding of a press-formed product. 本発明の溶接条件設定装置として機能するコンピュータシステムの構成例を示す図である。It is a figure which shows the structural example of the computer system which functions as a welding condition setting apparatus of this invention. 実施例でのプレス成形解析によるプレス成形品の板厚分布を示す図である。It is a figure which shows the plate | board thickness distribution of the press molded product by the press molding analysis in an Example. 実施例でのプレス成形解析によるプレス成形品のひずみ分布を示す図である。It is a figure which shows the distortion distribution of the press-molded product by the press-molding analysis in an Example. 実施例での衝突解析例を示し、(A)が良い座屈変形モードを示す図、(B)が悪い座屈変形モードを示す図である。The example of a collision analysis in an Example is shown, (A) is a figure which shows a good buckling deformation mode, (B) is a figure which shows a bad buckling deformation mode. 実施例でのハット型断面部材のスポット溶接位置を示す図である。It is a figure which shows the spot welding position of the hat-shaped cross-section member in an Example. 実施例での溶接条件と衝突エネルギ吸収量との関係を示す特性図である。It is a characteristic view which shows the relationship between the welding conditions and collision energy absorption amount in an Example. 実施例でのしわ押さえ荷重と衝撃エネルギ吸収量との関係を示す特性図である。It is a characteristic view which shows the relationship between the wrinkle pressing load and impact energy absorption amount in an Example. 実施例でのスポット溶接部解析によるナゲット径算出例を示す図である。It is a figure which shows the nugget diameter calculation example by the spot weld part analysis in an Example. 従来の成形・衝突の連成解析例を説明するための図である。It is a figure for demonstrating the example of the conventional combined analysis of shaping | molding and a collision.

符号の説明Explanation of symbols

1 プレス成形解析の入力データ(プレス成形条件)
2 プレス成形解析の出力データ
3 衝突解析の入力データ(衝突解析条件)
4 衝突解析の出力データ
5 溶接条件
6 溶接部板厚データ
7 スポット溶接部解析の出力データ
201 CPU
202 ROM
203 RAM
204 システムバス
205 キーボードコントローラ
206 表示コントローラ
207 ディスクコントローラ
208 ネットワークインタフェースカード
209 キーボード
210 表示装置
211 ハードディスク
212 フレキシブルディスクドライブ
1 Input data for press forming analysis (press forming conditions)
2 Output data for press forming analysis 3 Input data for impact analysis (impact analysis conditions)
4 Collision analysis output data 5 Welding conditions 6 Weld thickness data 7 Spot weld analysis output data 201 CPU
202 ROM
203 RAM
204 System Bus 205 Keyboard Controller 206 Display Controller 207 Disk Controller 208 Network Interface Card 209 Keyboard 210 Display Device 211 Hard Disk 212 Flexible Disk Drive

Claims (4)

プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定する溶接条件設定方法であって、
プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいて、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析と、衝突解析条件として、前記プレス成形解析で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて、衝撃エネルギ吸収量及び変形モードを算出する衝突解析とを、前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与えるプレス成形条件及び衝突条件を算出する繰り返し計算手順と、
前記繰り返し計算手順で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析手順とを有することを特徴とする溶接条件設定方法。
A welding condition setting method for setting welding conditions for spot welding when spot-welding a press-formed product,
Thickness distribution of press-molded product based on press-molded product shape, punch travel, wrinkle holding load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness In addition to the press forming analysis for calculating the strain distribution and the collision analysis conditions, the shape of the member manufactured by spot welding the press formed product in addition to the plate thickness distribution and strain distribution of the press formed product calculated by the press forming analysis. The collision analysis for calculating the impact energy absorption amount and the deformation mode based on the impact load, the number of spot welds, and the nugget diameter is repeatedly performed by changing at least one of the press molding conditions and the collision analysis conditions. An iterative calculation procedure for calculating a press molding condition and a collision condition that give a maximum value or a stable region of the impact energy absorption amount;
A spot welded portion analysis procedure for performing spot welded portion analysis based on the thickness distribution, the number of spot welds, and the nugget diameter of the press-formed product calculated by the repeated calculation procedure, and calculating spot welding welding conditions. The welding condition setting method characterized by this.
前記スポット溶接部解析手順では、前記繰り返し計算手順で算出されたプレス成形品の板厚分布及びスポット溶接数から求められたスポット溶接位置に基づいて、前記繰り返し計算手順で算出されたナゲット径を実現する溶接電流値を算出することを特徴とする請求項1に記載の溶接条件設定方法。   In the spot welded part analysis procedure, the nugget diameter calculated in the iterative calculation procedure is realized based on the spot weld position obtained from the plate thickness distribution and the number of spot welds calculated in the iterative calculation procedure. The welding condition setting method according to claim 1, wherein a welding current value to be calculated is calculated. プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定する溶接条件設定装置であって、
プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚を入力するプレス成形条件入力手段と、
前記プレス成形条件入力手段に入力されたプレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析手段と、
衝突解析条件として、前記プレス成形解析手段で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径を入力する衝突解析条件入力手段と、
前記衝突解析条件入力手段に入力された前記プレス成形解析手段で算出されたプレス成形品の板厚分布及びひずみ分布、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて衝突解析を行い、衝撃エネルギ吸収量及び変形モードを算出する衝突解析手段と、
前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて前記プレス成形条件入力手段から前記衝突解析手段に至る処理を繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与える繰り返し計算制御手段と、
前記繰り返し計算制御手段による繰り返し計算で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析手段とを備えたことを特徴とする溶接条件設定装置。
A welding condition setting device for setting welding conditions for spot welding in the case of spot welding a press-formed product,
Press molding condition input means for inputting a press molded product shape, punch movement amount, wrinkle holding load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness as press molding conditions;
Press molding analysis based on press molded product shape, punch travel, wrinkle holding load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness input to the press molding condition input means Press molding analysis means for calculating the thickness distribution and strain distribution of the press molded product,
As collision analysis conditions, in addition to the thickness distribution and strain distribution of the press-formed product calculated by the press-forming analysis means, the shape of the member manufactured by spot welding the press-formed product, impact load, number of spot welds, and nugget A collision analysis condition input means for inputting a diameter;
Plate thickness distribution and strain distribution of the press-formed product calculated by the press-forming analysis means input to the collision analysis condition input means, the shape of the member manufactured by spot welding the press-formed product, impact load, number of spot welds And a collision analysis means for performing a collision analysis based on the nugget diameter and calculating a shock energy absorption amount and a deformation mode;
Repeating the process from the press molding condition input means to the collision analysis means by changing at least one of the press molding conditions and the collision analysis conditions, and giving the maximum value or stable region of the impact energy absorption amount Calculation control means;
Spot weld analysis means for performing spot weld analysis based on the thickness distribution, the number of spot welds, and the nugget diameter of the press-formed product calculated by repeated calculation by the repeat calculation control means, and calculating the welding conditions for spot welding. And a welding condition setting device.
プレス成形品をスポット溶接する場合のスポット溶接の溶接条件を設定するコンピュータプログラムであって、
プレス成形条件として、プレス成形品形状、パンチ移動量、しわ押さえ荷重、摩擦係数、材料の引張強さ、降伏強さ、応力−ひずみ関係、及び板厚に基づいて、プレス成形品の板厚分布及びひずみ分布を算出するプレス成形解析と、衝突解析条件として、前記プレス成形解析で算出されたプレス成形品の板厚分布及びひずみ分布に加え、プレス成形品をスポット溶接して製作される部材形状、衝撃荷重、スポット溶接数、及びナゲット径に基づいて、衝撃エネルギ吸収量及び変形モードを算出する衝突解析とを、前記プレス成形条件及び前記衝突解析条件のうち少なくとも1種類以上を変えて繰り返し行い、前記衝撃エネルギ吸収量の最大値又は安定領域を与えるプレス成形条件及び衝突条件を算出する繰り返し計算処理と、
前記繰り返し計算処理で算出されたプレス成形品の板厚分布、スポット溶接数、及びナゲット径に基づいてスポット溶接部解析を行い、スポット溶接の溶接条件を算出するスポット溶接部解析処理とをコンピュータに実行させることを特徴とするコンピュータプログラム。
A computer program for setting spot welding welding conditions when spot-welding a press-formed product,
Thickness distribution of press-molded product based on press-molded product shape, punch travel, wrinkle holding load, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness In addition to the press forming analysis for calculating the strain distribution and the collision analysis conditions, the shape of the member manufactured by spot welding the press formed product in addition to the plate thickness distribution and strain distribution of the press formed product calculated by the press forming analysis. The collision analysis for calculating the impact energy absorption amount and the deformation mode based on the impact load, the number of spot welds, and the nugget diameter is repeatedly performed by changing at least one of the press molding conditions and the collision analysis conditions. Repetitive calculation processing for calculating a press molding condition and a collision condition that give a maximum value or a stable region of the impact energy absorption amount;
Performs spot weld analysis based on the thickness distribution, the number of spot welds, and the nugget diameter of the press-formed product calculated in the repeated calculation process, and performs spot weld analysis processing for calculating the welding conditions for spot welding on a computer. A computer program that is executed.
JP2006352403A 2006-12-27 2006-12-27 Welding condition setting method, apparatus and computer program Withdrawn JP2008161897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352403A JP2008161897A (en) 2006-12-27 2006-12-27 Welding condition setting method, apparatus and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352403A JP2008161897A (en) 2006-12-27 2006-12-27 Welding condition setting method, apparatus and computer program

Publications (1)

Publication Number Publication Date
JP2008161897A true JP2008161897A (en) 2008-07-17

Family

ID=39692061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352403A Withdrawn JP2008161897A (en) 2006-12-27 2006-12-27 Welding condition setting method, apparatus and computer program

Country Status (1)

Country Link
JP (1) JP2008161897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073034A (en) * 2009-09-30 2011-04-14 Fuji Heavy Ind Ltd Welding condition setting apparatus and welding condition setting program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073034A (en) * 2009-09-30 2011-04-14 Fuji Heavy Ind Ltd Welding condition setting apparatus and welding condition setting program

Similar Documents

Publication Publication Date Title
JP5329087B2 (en) Member design method and apparatus, computer program, and computer-readable recording medium
Hoang et al. Self-piercing riveting connections using aluminium rivets
Chen et al. Numerical and experimental investigations of the reshaped joints with and without a rivet
JP6380536B2 (en) Model setting method, molding simulation method, program, and computer-readable recording medium recording the program
Eshtayeh et al. Multi objective optimization of clinching joints quality using Grey-based Taguchi method
JP6044191B2 (en) Springback suppression countermeasure method and analysis device for press-formed products
CN112380752B (en) Method for improving welding process of metal sheet by predicting welding heat treatment value of metal sheet
CN107590318B (en) Simulation analysis method for hot riveting process of automobile thrust rod
JPWO2019039134A1 (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
JP2009136880A (en) System for supporting forming of metal sheet
JP2008161896A (en) Welding condition setting method, apparatus and computer program
Zhang et al. Recent development of clinching tools and machines
JP2008161897A (en) Welding condition setting method, apparatus and computer program
Graff Ultrasonic metal forming: Processing
JP2004337980A (en) Channel part and method for deciding shape of the step
Partovi et al. Numerical study of mechanical behaviour of tubular structures under dynamic compression
JP6323414B2 (en) Press forming method
JP4858259B2 (en) Joining line setting method, joining line setting device, joining line setting program and recording medium in tailored blank material
Fazli Optimum tailor-welded blank design using deformation path length of boundary nodes
RU2401712C2 (en) Method of designing parts, parts designing device, computer software and computer reader of data carrier
JP2008149356A (en) Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium
Safari et al. Numerical investigation of laser bending of perforated sheets
Chen et al. Numerical and experimental investigations of the two-step clinching process with a bumped die
KR20230159612A (en) Weld bead width design method of tailored blank material, manufacturing method, manufacturing system, weld bead width design system, structural members for vehicles and tailored blank material
Shi et al. Effects of Process Parameters on Forming Accuracy for the Case of a Laser Formed Metal Plate.

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302