JP2008160751A - Microwave circuit board - Google Patents

Microwave circuit board Download PDF

Info

Publication number
JP2008160751A
JP2008160751A JP2006350286A JP2006350286A JP2008160751A JP 2008160751 A JP2008160751 A JP 2008160751A JP 2006350286 A JP2006350286 A JP 2006350286A JP 2006350286 A JP2006350286 A JP 2006350286A JP 2008160751 A JP2008160751 A JP 2008160751A
Authority
JP
Japan
Prior art keywords
metal conductor
conductor portion
microwave
substrate
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006350286A
Other languages
Japanese (ja)
Inventor
Shinichiro Saito
晋一郎 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006350286A priority Critical patent/JP2008160751A/en
Publication of JP2008160751A publication Critical patent/JP2008160751A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave circuit board that maintains impedance matching with an electronic component without increasing the width of a metal conductor section on a microwave substrate, reduces the increase in resistance by a skin effect, while suppressing the increase in DC resistance, and can reduce the power loss, reflection energy, and electromagnetic radiation. <P>SOLUTION: The metal conductor section is formed at least on the main surface of the substrate or in the substrate and transmits microwave electrical signals. In the metal conductor section, when the height of the metal conductor section, the skin depth associated with the skin effect of the microwaves flowing in the metal conductor section, the distance between adjacent portions at a plurality of groove sections, each width of the plurality of groove sections, and each depth of the plurality of groove sections are set to ch, δ, w, t, and h, respectively, relational expressions w=2×δ, t=δ, and h=ch-2×δ (1) are satisfied, the microwave circuit board is constituted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波領域の周波数を有する電気信号を伝送するためのマイクロ波回路基板に関する。   The present invention relates to a microwave circuit board for transmitting an electrical signal having a frequency in the microwave region.

従来のマイクロ波回路基板では、通常、電気信号が流れる金属導体部を断面長方形若しくは台形の金属導体として形成し、この金属導体中に所定のマイクロ波電気信号を伝送させて使用していた。前記マイクロ波電気信号は、いわゆるマイクロ波の周波数域にある高周波の電気信号であるため、前記金属導体部中に前記マイクロ波電気信号を伝送させるといわゆる表皮効果が生じ、前記金属導体部の表面付近(表皮深さ)に電流が集中し、前記マイクロ波電気信号に対する前記金属導体部の実効抵抗が増大して、その電力損失も増大することが知られている。   In a conventional microwave circuit board, a metal conductor portion through which an electric signal flows is usually formed as a metal conductor having a rectangular or trapezoidal cross section, and a predetermined microwave electric signal is transmitted through the metal conductor. Since the microwave electrical signal is a high-frequency electrical signal in the so-called microwave frequency range, when the microwave electrical signal is transmitted into the metal conductor portion, a so-called skin effect occurs, and the surface of the metal conductor portion It is known that current concentrates in the vicinity (skin depth), the effective resistance of the metal conductor portion with respect to the microwave electrical signal increases, and the power loss also increases.

上述した表皮効果の本質は金属界面で生じる電磁誘導であって、前述のような表皮効果が発生すると、上記マイクロ波電気信号に伴って、金属導体部内に進入してくる電磁波を打ち消すように前記金属導体部表面に、前記電磁波を打ち消すように誘導電流が流れるようになる。   The essence of the skin effect described above is electromagnetic induction generated at the metal interface. When the skin effect as described above occurs, the electromagnetic wave entering the metal conductor portion is canceled with the microwave electrical signal. An induced current flows on the surface of the metal conductor portion so as to cancel the electromagnetic wave.

前記表皮効果における表皮深さとは、前記金属導体部の導電率・透磁率及び交流電気信号(マイクロ波)の周波数によって一意に定まる値であり、この値は前記金属導体部内に進入した電磁界がもとの強度の1/e ≒ 1/3に減衰距離である。これはいわゆるマックスウェルの方程式から磁界を消去して求まる電信方程式(波動方程式)から容易に導かれる。なお、表皮深さは次式で表される。

Figure 2008160751
ここで,d は表皮深さ,f は(マイクロ波の)周波数,m は金属導体部の透磁率,s は金属導体部の導電率を表す。 The skin depth in the skin effect is a value that is uniquely determined by the electric conductivity / permeability of the metal conductor portion and the frequency of the AC electric signal (microwave), and this value is an electromagnetic field that has entered the metal conductor portion. The attenuation distance is 1 / e ≒ 1/3 of the original intensity. This is easily derived from the telegraph equation (wave equation) obtained by eliminating the magnetic field from the so-called Maxwell equation. The skin depth is expressed by the following formula.
Figure 2008160751
Where d is the skin depth, f is the frequency (of the microwave), m is the permeability of the metal conductor, and s is the conductivity of the metal conductor.

上述したように、金属導体部に表皮効果が生じると、前記金属導体部を伝送するマイクロ波信号に対する実効抵抗が増大し、電力損失も増大するようになるので、特に1[GHz]程度までの比較的低周波のマイクロ波電気信号を伝送するマイクロ波回路基板においては、上記表皮効果による実効抵抗を減少させるために、金属導体部の幅を大きくして表面積を増加させている。   As described above, when the skin effect occurs in the metal conductor portion, the effective resistance to the microwave signal transmitted through the metal conductor portion increases, and the power loss also increases. In particular, up to about 1 [GHz]. In a microwave circuit board that transmits a microwave electric signal having a relatively low frequency, the surface area is increased by increasing the width of the metal conductor portion in order to reduce the effective resistance due to the skin effect.

しかしながら、この手法ではいわゆる線路の特性インピーダンスが増大し、基板によって電気的に接続される電子部品例えばICや終端抵抗といった電子部品にもインピーダンスが存在するため、線路の特性インピーダンスとこれらのインピーダンスを一致させない(より正確には、複素インピーダンスを電子部品と線路で共役複素数の関係にする)と電力輸送が効率的に行われないばかりでなく、電子部品と線路間で電磁波の反射と不必要な電磁輻射を引き起こす。なお、線路の特性インピーダンス(Zo)は次式で表される。

Figure 2008160751
ここで,L は単位長さあたりのインダクタンス,C は単位長さあたりのキャパシタンスを表す。 However, this method increases the so-called characteristic impedance of the line and impedance also exists in electronic components such as ICs and termination resistors that are electrically connected by the substrate, so the line characteristic impedance matches these impedances. If not (more precisely, the complex impedance has a conjugate complex number relationship between the electronic component and the line), not only will the power transfer be performed efficiently, but also the reflection of electromagnetic waves between the electronic component and the line and unnecessary electromagnetic waves. Causes radiation. The characteristic impedance (Z o ) of the line is expressed by the following equation.
Figure 2008160751
Where L is the inductance per unit length and C is the capacitance per unit length.

一方、例えば、基板上電子部品は高密度化実装が進み、基板も多層化やフレキシブル化が進んでいるが、こうした中で、線路幅が増大すると、高密度実装基板・多層基板・フレキシブル基板などにおいては、電子部品の実装面積が減少し、線路の配線の制約の自由度を減少させ、基板全体の小型化の制約条件となり、ひいては、これら基板を用いている今日の電子機器全般の小型化の妨げとなる。   On the other hand, for example, electronic components on boards are being mounted with higher density, and boards are also becoming more multilayered and flexible. However, when the line width increases, high-density mounted boards, multilayer boards, flexible boards, etc. , The mounting area of electronic components is reduced, the degree of freedom of restrictions on the wiring of the line is reduced, and it becomes a limiting condition for downsizing of the entire board, and in turn, downsizing of today's electronic devices using these boards in general It becomes an obstacle.

このような観点から、例えば特許文献1及び2においては、上述したような金属導体部をマイクロ波電気信号の伝送方向に沿ってストリップ状に形成し、前記金属導体部の表面積を増大させてその実効抵抗を減少させ、電力損失を抑制するようにしている。また、特許文献3においては、上述したような金属導体部の側壁部分において、マイクロ波電気信号の伝送方向に沿って溝部を設け、前記金属導体部の表面積を増大させてその実効抵抗を減少させて電力損失を抑制するようにしている。
特開平8−321706号 特開平6−283910号 特開平8−288463号
From such a viewpoint, for example, in Patent Documents 1 and 2, the metal conductor portion as described above is formed in a strip shape along the transmission direction of the microwave electric signal, and the surface area of the metal conductor portion is increased to increase the surface area. The effective resistance is reduced to suppress power loss. In Patent Document 3, a groove portion is provided in the side wall portion of the metal conductor portion as described above along the transmission direction of the microwave electric signal, and the surface area of the metal conductor portion is increased to reduce its effective resistance. To reduce power loss.
JP-A-8-321706 JP-A-6-283910 JP-A-8-288463

しかしながら、上述したいずれの方法においても十分な実効抵抗の低減は未だ実現されていない。また、特に特許文献1及び2に記載されたような金属導体部をストリップ状に形成するような技術においては、前記金属導体部自体の、マイクロ波電気信号の伝送方向に垂直な断面の面積が減少してしまい、DC抵抗が増大してしまうことにより、本来的な低周波の電気信号に対する電力損失が生じてしまうという問題が生じていた。   However, in any of the methods described above, a sufficient reduction in effective resistance has not yet been realized. In particular, in the technique for forming the metal conductor portion as described in Patent Documents 1 and 2 in a strip shape, the area of the cross section of the metal conductor portion itself is perpendicular to the transmission direction of the microwave electric signal. As a result, the DC resistance increases, causing a problem of power loss with respect to the original low-frequency electric signal.

本発明は、上述した問題に鑑み、マイクロ波基板の金属導体部の幅を拡大することなく、電子部品とのインピーダンス整合を維持し、さらにDC抵抗の増大をも抑制した状態で、表皮効果による抵抗増加を低減し、電力損失・反射エネルギー・電磁輻射を軽減することが可能なマイクロ波回路基板を提供することを目的とする。   In view of the above-described problems, the present invention is based on the skin effect while maintaining impedance matching with an electronic component and further suppressing an increase in DC resistance without increasing the width of the metal conductor portion of the microwave substrate. An object of the present invention is to provide a microwave circuit board capable of reducing an increase in resistance and reducing power loss, reflected energy, and electromagnetic radiation.

上記目的を達成すべく、本発明の一態様は、
絶縁体で構成される基板と、
前記基板上の主面上又は前記基板内の少なくとも一方に形成された、マイクロ波の電気信号を伝送するための金属導体部と、
前記基板の裏面上及び前記基板内の少なくとも一方に形成された電源層とを具備し、
前記金属導体部は、その少なくとも一部に複数の溝部を有し、前記金属導体部の高さをch、前記金属導体部中を流れる前記マイクロ波の表皮効果に伴う表皮深さをδ、前記複数の溝部の隣接間距離をw、前記複数の溝部それぞれの幅をt、前記複数の溝部それぞれの深さをhとした場合に、
w=2×δ
t=δ (4)
h=ch−2×δ
なる関係式を満足することを特徴とする、マイクロ波回路基板に関する。
In order to achieve the above object, one embodiment of the present invention provides:
A substrate made of an insulator;
A metal conductor portion for transmitting a microwave electrical signal, formed on at least one of the main surface on the substrate or in the substrate;
A power supply layer formed on at least one of the back surface of the substrate and the substrate,
The metal conductor portion has a plurality of groove portions at least in part, the height of the metal conductor portion is ch, the skin depth associated with the skin effect of the microwave flowing in the metal conductor portion is δ, When the distance between adjacent grooves is w, the width of each of the grooves is t, and the depth of each of the grooves is h,
w = 2 × δ
t = δ (4)
h = ch-2 × δ
It is related with the microwave circuit board characterized by satisfying the following relational expression.

本発明者は、上記課題を達成すべく鋭意検討を実施し、それに伴い膨大な実験を行い、それによって得た膨大な実験データを解析することにより、以下のような事実を見出すに至った。すなわち、絶縁体基板に対して金属導体部と電源層とを所定の箇所に配備してなるマイクロ波回路基板において、前記金属導体部に対して、複数の溝部を形成し、それらの溝部が上記(4)式のような関係を満足することによって、前記金属導体部のDC抵抗を低減させることなく、前記溝部形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できることを見出した。   The present inventor has intensively studied to achieve the above-mentioned problems, and accordingly, a vast amount of experiments are performed, and a vast amount of experimental data obtained thereby is analyzed to find the following facts. That is, in the microwave circuit board in which the metal conductor portion and the power supply layer are arranged at predetermined positions with respect to the insulator substrate, a plurality of groove portions are formed with respect to the metal conductor portion, and the groove portions are (4) By satisfying the relationship such as the expression, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove without reducing the DC resistance of the metal conductor. I found it.

したがって、本発明の一態様によれば、DC抵抗が増大してしまうことにより、本来的な低周波の電気信号に対する電力損失を抑制することができるとともに、マイクロ波電気信号などの高周波の電気信号に対する電力損失をも実現することができる。さらに、金属導体部の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。   Therefore, according to one embodiment of the present invention, an increase in DC resistance can suppress power loss with respect to an original low-frequency electrical signal, and a high-frequency electrical signal such as a microwave electrical signal. It is also possible to realize a power loss for Furthermore, since the width of the metal conductor portion is not enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.

なお、本発明の他の態様においては、前記複数の溝部は、前記金属導体部の前記マイクロ波の伝送方向に沿って形成する。この場合、前記金属導体部の、前記マイクロ波電気信号の伝送方向の略全体に亘って前記溝部が形成されることになるので、上述した作用効果を前記マイクロ波電気信号が前記金属導体部を伝送する間の全体において享受することができる。   In another aspect of the invention, the plurality of groove portions are formed along the transmission direction of the microwave of the metal conductor portion. In this case, since the groove portion is formed over substantially the entire transmission direction of the microwave electric signal of the metal conductor portion, the above-described effects can be achieved by the microwave electric signal passing through the metal conductor portion. It can be enjoyed throughout the transmission.

また、上記マイクロ波回路基板は種々の態様に構成することができる。例えば、前記金属導体部を、前記基板の主面上においてマイクロストリップライン(MSL)として形成することができる。また、前記金属導体部を、前記基板内においてストリップライン(SL)として形成することができる。さらには、前記金属導体部と略平行にその長さ方向に沿って、前記金属導体部を挟むようにして一対のグランド電極層を形成し、前記金属導体部及び前記グランド電極層によってコプレーナーウェーブガイド(CPW)を構成することができる。   The microwave circuit board can be configured in various ways. For example, the metal conductor portion can be formed as a microstrip line (MSL) on the main surface of the substrate. Further, the metal conductor portion can be formed as a strip line (SL) in the substrate. Further, a pair of ground electrode layers are formed so as to sandwich the metal conductor portion along the length direction thereof substantially parallel to the metal conductor portion, and a coplanar waveguide (by the metal conductor portion and the ground electrode layer). CPW) can be configured.

なお、特に例示しないものの、当業者が想到できるようなあらゆる種類の態様のマイクロ波回路基板とすることができる。   In addition, although not specifically illustrated, it can be set as the microwave circuit board of all kinds of aspects which can be conceived by those skilled in the art.

以上説明したように、本発明の上記態様によれば、マイクロ波基板の金属導体部の幅を拡大することなく、電子部品とのインピーダンス整合を維持し、さらにDC抵抗の増大をも抑制した状態で、表皮効果による抵抗増加を低減し、電力損失・反射エネルギー・電磁輻射を軽減することが可能なマイクロ波回路基板を提供することができる。   As described above, according to the above aspect of the present invention, the impedance matching with the electronic component is maintained without increasing the width of the metal conductor portion of the microwave substrate, and further the increase in the DC resistance is suppressed. Thus, it is possible to provide a microwave circuit board capable of reducing an increase in resistance due to the skin effect and reducing power loss, reflected energy, and electromagnetic radiation.

以下、本発明の実施形態について説明する。
図1は、本発明のマイクロ波回路基板の一例を示す斜視図であり、図2は、図1に示すマイクロ波回路基板の、長さ方向に垂直な面で切った場合の正面図であり、図3は、図1に示すマイクロ波回路基板の、金属導体部を拡大して示す断面図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a perspective view showing an example of the microwave circuit board of the present invention, and FIG. 2 is a front view of the microwave circuit board shown in FIG. 1 cut along a plane perpendicular to the length direction. 3 is an enlarged cross-sectional view of the metal conductor portion of the microwave circuit board shown in FIG.

図1及び2に示すマイクロ波回路基板10は、絶縁体からなる基板11と、この基板11の主面上に形成されたマイクロ波の電気信号を伝送するための金属導体部13と、基板11の裏面側に形成された電源層15とを含んでいる。この電源層15は、金属導体部13に対する参照電極としての役割を果たし、金属導体部13に対して一定の電位に維持され、前記マイクロ波電気信号が金属導体部13を良好な状態で伝送できるようにするためのものである。電源層15は接地することもできるが、マイクロ波電気信号が金属導体部13を良好に伝送できるものであれば特に限定されるものではなく、上述したように任意の電位に保持することができる。   A microwave circuit substrate 10 shown in FIGS. 1 and 2 includes a substrate 11 made of an insulator, a metal conductor portion 13 for transmitting a microwave electrical signal formed on the main surface of the substrate 11, and a substrate 11. And a power supply layer 15 formed on the back side. The power supply layer 15 serves as a reference electrode for the metal conductor portion 13, is maintained at a constant potential with respect to the metal conductor portion 13, and the microwave electrical signal can be transmitted through the metal conductor portion 13 in a good state. It is for doing so. The power supply layer 15 can be grounded, but is not particularly limited as long as the microwave electric signal can be transmitted through the metal conductor portion 13 satisfactorily, and can be held at an arbitrary potential as described above. .

なお、本例において、金属導体部13はマイクロストリップライン(MSL)として形成されている。また、金属導体部13には複数の溝部17が金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成されている。   In this example, the metal conductor portion 13 is formed as a microstrip line (MSL). A plurality of groove portions 17 are formed in the metal conductor portion 13 along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal.

図3に示すように、金属導体部13の高さをchとした場合、複数の溝部17は、互いの間隔w、幅t及び深さhが次の関係式を満足するようにする。
w=2×δ
t=δ (5)
h=ch−2×δ
As shown in FIG. 3, when the height of the metal conductor portion 13 is ch, the plurality of groove portions 17 are set such that the interval w, the width t, and the depth h satisfy the following relational expression.
w = 2 × δ
t = δ (5)
h = ch-2 × δ

これによって、金属導体部13のDC抵抗を低減させることなく、溝部17形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できる。実際、金属導体部13を銅から構成し、1GHzのマイクロ波電気信号を伝送させるとすると、その場合の表皮深さδは約2μmとなる。したがって、金属導体部13の高さch = 40[mm]とすると、(4)式よりw = 4 [mm],t = 2 [mm],h = 36 [mm]となる。実際、このような場合のDC抵抗は0.11Ωであり、1GHzのマイクロ波電気信号の伝送による電力損失は0.11dBであった。   Thus, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove portion 17 without reducing the DC resistance of the metal conductor portion 13. Actually, if the metal conductor portion 13 is made of copper and a 1 GHz microwave electric signal is transmitted, the skin depth δ in that case is about 2 μm. Therefore, assuming that the height ch = 40 [mm] of the metal conductor portion 13, w = 4 [mm], t = 2 [mm], and h = 36 [mm] from the equation (4). In fact, the DC resistance in such a case was 0.11Ω, and the power loss due to transmission of a 1 GHz microwave electrical signal was 0.11 dB.

一方、上記(4)式を満足することなく、ch = 40[mm]の場合に、w = 2 [mm],t = 87 [mm],h = 38 [mm]とした場合、DC抵抗は0.96Ωであり、1GHzのマイクロ波電気信号の伝送による電力損失は0.16dBであった。したがって、(4)式を満足することによって、DC抵抗の減少を最小限に抑えつつ、高次伝送モードを抑圧し、表皮効果による電力損失を最小限に抑えることが出来ることが分かる。   On the other hand, without satisfying the above equation (4), when ch = 40 [mm], w = 2 [mm], t = 87 [mm], h = 38 [mm], the DC resistance is The power loss due to transmission of a 1 GHz microwave electric signal was 0.16 dB. Therefore, it can be seen that satisfying the equation (4) makes it possible to suppress the high-order transmission mode and minimize the power loss due to the skin effect while minimizing the decrease in the DC resistance.

また、本例では、特に金属導体部13の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。   Further, in this example, since the width of the metal conductor portion 13 is not particularly enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.

さらに、本例では、金属導体部13に対し、複数の溝部17を金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成しているので、上述した作用効果を、金属導体部13のマイクロ波電気信号の伝送範囲全体に亘って享受することができる。   Furthermore, in this example, since the plurality of groove portions 17 are formed along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal, with respect to the metal conductor portion 13, the above-described effects are obtained. It can be enjoyed over the entire transmission range of the microwave electrical signal of the metal conductor portion 13.

基板11は所定の絶縁体から構成することができる。具体的には、紙基材(FR−1,FR−2,XXXpc,Xpc,FR−3等)、ガラス基材(FR−4,G−10,FR−5,G―11,GPY等)、エポキシ系・ポリエステル系コンポジット基材(CEM−1,CEM−3,FR−6等)、ポリエステルベース系・ポリイミドベース系・ガラスエポキシ系フレキシブル基材,ポリサルフォン系・ポリエーテルイミド系・ポリエーテル系樹脂耐熱可塑性基材やアルミナ系・窒化アルミナ系・炭素珪素系・低温焼結系セラミック基材、液晶基材を例示することができる。   The substrate 11 can be made of a predetermined insulator. Specifically, paper base materials (FR-1, FR-2, XXXpc, Xpc, FR-3, etc.), glass base materials (FR-4, G-10, FR-5, G-11, GPY, etc.) , Epoxy / polyester composite substrates (CEM-1, CEM-3, FR-6, etc.), polyester base / polyimide base / glass epoxy flexible substrate, polysulfone / polyetherimide / polyether Examples thereof include resin heat-resistant plastic substrates, alumina-based / alumina nitride-based / carbon silicon-based / low-temperature sintered ceramic substrates, and liquid crystal substrates.

金属導体部13及び電源層15は、例えば銅、銀、金、アルミニウムあるいはこれらの合金等の電気的良導体を挙げることができる。   Examples of the metal conductor portion 13 and the power supply layer 15 include a good electrical conductor such as copper, silver, gold, aluminum, or an alloy thereof.

また、マイクロ波回路基板10の全体構成としては、リジッド基板あるいはフレキシブル基板のいずれの形態とすることもできる。   Further, the overall configuration of the microwave circuit board 10 may be a rigid board or a flexible board.

図4は、図1及び2に示すマイクロ波回路基板の変形例を示す断面図である。本例では、図1及び2に示す例と、金属導体部に形成した溝部の形態が異なるのみで、その他の構成については同様である。なお、同一又は類似の構成要素に関しては同一の参照数字を用いている。   FIG. 4 is a cross-sectional view showing a modification of the microwave circuit board shown in FIGS. In this example, the configuration shown in FIGS. 1 and 2 is different from the example shown in FIGS. 1 and 2 only in the form of the groove formed in the metal conductor, and the other configurations are the same. Note that the same reference numerals are used for the same or similar components.

図1及び図2に示す例では、溝部17を金属導体部13の上側から下側へ向けて形成するようにしているが、本例では、図4に示すように、金属導体部13の側面において、その外方から中心側へ向けて形成するようにしている。この場合においても、金属導体部13の高さをchとした場合、複数の溝部17は、互いの間隔w、幅t及び深さhが上記(5)式を満足するようにする。   In the example shown in FIGS. 1 and 2, the groove portion 17 is formed from the upper side to the lower side of the metal conductor portion 13, but in this example, as shown in FIG. 4, the side surface of the metal conductor portion 13 is formed. In this case, the outer side is formed from the outside toward the center side. Also in this case, when the height of the metal conductor portion 13 is ch, the plurality of groove portions 17 are set such that the interval w, the width t, and the depth h satisfy the above formula (5).

これによって、金属導体部13のDC抵抗を低減させることなく、溝部17形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できる。また、金属導体部13の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。   Thus, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove portion 17 without reducing the DC resistance of the metal conductor portion 13. Further, since the width of the metal conductor portion 13 is not enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.

さらに、本例でも、金属導体部13に対し、複数の溝部17を金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成するようにすれば、上述した作用効果を、金属導体部13のマイクロ波電気信号の伝送範囲全体に亘って享受することができる。   Furthermore, also in this example, if the plurality of groove portions 17 are formed in the metal conductor portion 13 along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal, the above-described effects are obtained. Can be enjoyed over the entire transmission range of the microwave electrical signal of the metal conductor portion 13.

なお、基板や金属導体部の構成材料など、その他の要件については上述した具体例と同一であるので、説明を省略する。   Other requirements such as the constituent materials of the substrate and the metal conductor are the same as those in the above-described specific example, and thus the description thereof is omitted.

図5は、図1及び2に示すマイクロ波回路基板の他の変形例を示す断面図である。本例では、図1及び2に示す例と、金属導体部に形成した溝部の形態が異なるのみで、その他の構成については同様である。なお、同一又は類似の構成要素に関しては同一の参照数字を用いている。   FIG. 5 is a cross-sectional view showing another modification of the microwave circuit board shown in FIGS. In this example, the configuration shown in FIGS. 1 and 2 is different from the example shown in FIGS. 1 and 2 only in the form of the groove formed in the metal conductor, and the other configurations are the same. Note that the same reference numerals are used for the same or similar components.

図1及び図2に示す例では、溝部17を金属導体部13の上側から下側へ向けて形成するようにしているが、本例では、図5に示すように、図1及び2に示すような縦方向の溝部に加えて、金属導体部13の側面において、その外方から中心側へ向けて横方向の溝部をも追加で形成するようにしている。この場合においても、金属導体部13の高さをchとした場合、このような複数の溝部17は、互いの間隔w、幅t及び深さhが上記(5)式を満足するようにする。   In the example shown in FIGS. 1 and 2, the groove portion 17 is formed from the upper side to the lower side of the metal conductor portion 13, but in this example, as shown in FIG. In addition to such vertical grooves, lateral grooves are additionally formed on the side surfaces of the metal conductor 13 from the outside toward the center. Also in this case, when the height of the metal conductor portion 13 is ch, such a plurality of groove portions 17 are set such that the interval w, the width t, and the depth h satisfy the above formula (5). .

これによって、金属導体部13のDC抵抗を低減させることなく、溝部17形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できる。また、金属導体部13の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。
さらに、本例でも、金属導体部13に対し、複数の溝部17を金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成するようにすれば、上述した作用効果を、金属導体部13のマイクロ波電気信号の伝送範囲全体に亘って享受することができる。
Thus, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove portion 17 without reducing the DC resistance of the metal conductor portion 13. Further, since the width of the metal conductor portion 13 is not enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.
Furthermore, also in this example, if the plurality of groove portions 17 are formed in the metal conductor portion 13 along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal, the above-described effects are obtained. Can be enjoyed over the entire transmission range of the microwave electrical signal of the metal conductor portion 13.

図6は、本発明のマイクロ波回路基板の他の例を示す斜視図である。なお、同一又は類似の構成要素に関しては上記具体例と同一の参照数字を用いている。   FIG. 6 is a perspective view showing another example of the microwave circuit board of the present invention. Note that the same reference numerals as those in the above specific examples are used for the same or similar components.

図6に示すマイクロ波回路基板10は、絶縁体からなる基板11と、この基板11の厚さ方向における略中心部において、基板11の主面及び裏面と略平行に基板11の長さ方向に延在したマイクロ波の電気信号を伝送するための金属導体部13と、基板11の主面及び裏面側に形成された電源層15とを含んでいる。この電源層15は、金属導体部13に対する参照電極としての役割を果たし、金属導体部13に対して一定の電位に維持され、前記マイクロ波電気信号が金属導体部13を良好な状態で伝送できるようにするためのものである。電源層15は接地することもできるが、マイクロ波電気信号が金属導体部13を良好に伝送できるものであれば特に限定されるものではなく、上述したように任意の電位に保持することができる。   A microwave circuit board 10 shown in FIG. 6 is formed in the length direction of the substrate 11 substantially parallel to the main surface and the back surface of the substrate 11 at a substantially central portion in the thickness direction of the substrate 11 made of an insulator. It includes a metal conductor portion 13 for transmitting an extended microwave electrical signal, and a power supply layer 15 formed on the main surface and the back surface side of the substrate 11. The power supply layer 15 serves as a reference electrode for the metal conductor portion 13, is maintained at a constant potential with respect to the metal conductor portion 13, and the microwave electrical signal can be transmitted through the metal conductor portion 13 in a good state. It is for doing so. The power supply layer 15 can be grounded, but is not particularly limited as long as the microwave electric signal can be transmitted through the metal conductor portion 13 satisfactorily, and can be held at an arbitrary potential as described above. .

なお、本例において、金属導体部13はストリップライン(SL)として形成されている。また、特に図示されていないが、金属導体部13には複数の溝部が形成されている。この溝部の構成は特に限定されるものではないが、例えば図3〜5に示すような形態を採ることができる。この場合においても、金属導体部13の高さをchとした場合、複数の溝部は、互いの間隔w、幅t及び深さhが上記(5)式を満足するようにする。   In this example, the metal conductor portion 13 is formed as a strip line (SL). Although not particularly shown, the metal conductor portion 13 has a plurality of grooves. Although the structure of this groove part is not specifically limited, For example, a form as shown to FIGS. 3-5 can be taken. Also in this case, when the height of the metal conductor portion 13 is ch, the plurality of groove portions are set such that the interval w, the width t, and the depth h satisfy the above formula (5).

これによって、金属導体部13のDC抵抗を低減させることなく、溝部形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できる。また、金属導体部13の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。   Thus, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove without reducing the DC resistance of the metal conductor portion 13. Further, since the width of the metal conductor portion 13 is not enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.

さらに、本例でも、金属導体部13に対し、複数の溝部を金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成するようにすれば、上述した作用効果を、金属導体部13のマイクロ波電気信号の伝送範囲全体に亘って享受することができる。   Furthermore, also in this example, if the plurality of groove portions are formed along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal, with respect to the metal conductor portion 13, the above-described effects can be obtained. It can be enjoyed over the entire transmission range of the microwave electrical signal of the metal conductor portion 13.

なお、基板や金属導体部の構成材料など、その他の要件については上述した具体例と同一であるので、説明を省略する。   Other requirements such as the constituent materials of the substrate and the metal conductor are the same as those in the above-described specific example, and thus the description thereof is omitted.

図7は、本発明のマイクロ波回路基板のその他の例を示す斜視図である。なお、同一又は類似の構成要素に関しては上記具体例と同一の参照数字を用いている。   FIG. 7 is a perspective view showing another example of the microwave circuit board of the present invention. Note that the same reference numerals as those in the above specific examples are used for the same or similar components.

図7に示すマイクロ波回路基板10は、絶縁体からなる基板11と、この基板11の主面上に形成されたマイクロ波の電気信号を伝送するための金属導体部13と、基板11の裏面側に形成された電源層15とを含んでいる。この電源層15は、金属導体部13に対する参照電極としての役割を果たし、金属導体部13に対して一定の電位に維持され、前記マイクロ波電気信号が金属導体部13を良好な状態で伝送できるようにするためのものである。電源層15は接地することもできるが、マイクロ波電気信号が金属導体部13を良好に伝送できるものであれば特に限定されるものではなく、上述したように任意の電位に保持することができる。   A microwave circuit board 10 shown in FIG. 7 includes a substrate 11 made of an insulator, a metal conductor 13 for transmitting a microwave electrical signal formed on the main surface of the substrate 11, and a back surface of the substrate 11. And a power supply layer 15 formed on the side. The power supply layer 15 serves as a reference electrode for the metal conductor portion 13, is maintained at a constant potential with respect to the metal conductor portion 13, and the microwave electrical signal can be transmitted through the metal conductor portion 13 in a good state. It is for doing so. The power supply layer 15 can be grounded, but is not particularly limited as long as the microwave electric signal can be transmitted through the metal conductor portion 13 satisfactorily, and can be held at an arbitrary potential as described above. .

なお、本例において、金属導体部13の両側には、この金属導体部13を挟み込むようにして一対のグランド電極層19が形成されてなり、金属導体部13及びグランド電極層19によってコプレーナーウェーブガイド(CPW)を構成している。   In this example, a pair of ground electrode layers 19 are formed on both sides of the metal conductor portion 13 so as to sandwich the metal conductor portion 13, and the coplanar wave is formed by the metal conductor portion 13 and the ground electrode layer 19. It constitutes a guide (CPW).

また、特に図示されていないが、金属導体部13には複数の溝部が形成されている。この溝部の構成は特に限定されるものではないが、例えば図3〜5に示すような形態を採ることができる。この場合においても、金属導体部13の高さをchとした場合、複数の溝部は、互いの間隔w、幅t及び深さhが上記(5)式を満足するようにする。   Although not particularly shown, the metal conductor portion 13 has a plurality of grooves. Although the structure of this groove part is not specifically limited, For example, a form as shown to FIGS. 3-5 can be taken. Also in this case, when the height of the metal conductor portion 13 is ch, the plurality of groove portions are set such that the interval w, the width t, and the depth h satisfy the above formula (5).

これによって、金属導体部13のDC抵抗を低減させることなく、溝部形成による表面積増大によってマイクロ波電気信号の表皮効果による実効抵抗を十分に低減できる。また、金属導体部13の幅を拡大しないので、電子部品とのインピーダンス整合などの煩雑な設計を行う必要がない。したがって、インピーダンス不整合による電磁輻射の増大、及びそれに伴う反射エネルギー増大の問題が生じることもない。   Thus, the effective resistance due to the skin effect of the microwave electric signal can be sufficiently reduced by increasing the surface area by forming the groove without reducing the DC resistance of the metal conductor portion 13. Further, since the width of the metal conductor portion 13 is not enlarged, it is not necessary to perform complicated design such as impedance matching with the electronic component. Therefore, the problem of an increase in electromagnetic radiation due to impedance mismatching and an accompanying increase in reflected energy does not occur.

さらに、本例でも、金属導体部13に対し、複数の溝部を金属導体部13の長さ方向、すなわち前記マイクロ波電気信号の伝送方向に沿って形成するようにすれば、上述した作用効果を、金属導体部13のマイクロ波電気信号の伝送範囲全体に亘って享受することができる。   Furthermore, also in this example, if the plurality of groove portions are formed along the length direction of the metal conductor portion 13, that is, the transmission direction of the microwave electric signal, with respect to the metal conductor portion 13, the above-described effects can be obtained. It can be enjoyed over the entire transmission range of the microwave electrical signal of the metal conductor portion 13.

なお、基板や金属導体部の構成材料など、その他の要件については上述した具体例と同一であるので、説明を省略する。   Other requirements such as the constituent materials of the substrate and the metal conductor are the same as those in the above-described specific example, and thus the description thereof is omitted.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。   The present invention has been described in detail based on the above specific examples. However, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

本発明のマイクロ波回路基板の一例を示す斜視図である。It is a perspective view which shows an example of the microwave circuit board of this invention. 図1に示すマイクロ波回路基板の、長さ方向に垂直な面で切った場合の正面図である。FIG. 2 is a front view of the microwave circuit board shown in FIG. 1 when cut by a plane perpendicular to the length direction. 図1に示すマイクロ波回路基板の、金属導体部を拡大して示す断面図である。It is sectional drawing which expands and shows the metal conductor part of the microwave circuit board shown in FIG. 図1に示すマイクロ波回路基板の、金属導体部の変形例を示す断面図である。It is sectional drawing which shows the modification of the metal conductor part of the microwave circuit board shown in FIG. 図1に示すマイクロ波回路基板の、金属導体部の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the metal conductor part of the microwave circuit board shown in FIG. 本発明のマイクロ波回路基板の他の例を示す斜視図である。It is a perspective view which shows the other example of the microwave circuit board of this invention. 本発明のマイクロ波回路基板のその他の例を示す斜視図である。It is a perspective view which shows the other example of the microwave circuit board of this invention.

符号の説明Explanation of symbols

10 マイクロ波回路基板
11 (絶縁体)基板
13 金属導体部
15 電源層
17 溝部
19 グランド電極
DESCRIPTION OF SYMBOLS 10 Microwave circuit board 11 (Insulator) board | substrate 13 Metal conductor part 15 Power supply layer 17 Groove part 19 Ground electrode

Claims (5)

絶縁体で構成される基板と、
前記基板上の主面上又は前記基板内の少なくとも一方に形成された、マイクロ波の電気信号を伝送するための金属導体部と、
前記基板の裏面上及び前記基板内の少なくとも一方に形成された電源層とを具備し、
前記金属導体部は、その少なくとも一部に複数の溝部を有し、前記金属導体部の高さをch、前記金属導体部中を流れる前記マイクロ波の表皮効果に伴う表皮深さをδ、前記複数の溝部の隣接間距離をw、前記複数の溝部それぞれの幅をt、前記複数の溝部それぞれの深さをhとした場合に、
w=2×δ
t=δ (1)
h=ch−2×δ
なる関係式を満足することを特徴とする、マイクロ波回路基板。
A substrate made of an insulator;
A metal conductor portion for transmitting a microwave electrical signal, formed on at least one of the main surface on the substrate or in the substrate;
A power supply layer formed on at least one of the back surface of the substrate and the substrate,
The metal conductor portion has a plurality of groove portions at least in part, the height of the metal conductor portion is ch, the skin depth associated with the skin effect of the microwave flowing in the metal conductor portion is δ, When the distance between adjacent grooves is w, the width of each of the grooves is t, and the depth of each of the grooves is h,
w = 2 × δ
t = δ (1)
h = ch-2 × δ
A microwave circuit board characterized by satisfying the following relational expression:
前記複数の溝部は、前記金属導体部の前記マイクロ波の伝送方向に沿って形成したことを特徴とする、請求項1に記載のマイクロ波回路基板。   The microwave circuit board according to claim 1, wherein the plurality of groove portions are formed along a transmission direction of the microwave of the metal conductor portion. 前記金属導体部は、前記基板の主面上においてマイクロストリップライン(MSL)として形成したことを特徴とする、請求項1又は2に記載のマイクロ波回路基板。   The microwave circuit board according to claim 1, wherein the metal conductor portion is formed as a microstrip line (MSL) on a main surface of the substrate. 前記金属導体部は、前記基板内においてストリップライン(SL)として形成したことを特徴とする、請求項1又は2に記載のマイクロは回路基板。   3. The micro circuit board according to claim 1, wherein the metal conductor portion is formed as a strip line (SL) in the substrate. 前記金属導体部と略平行にその長さ方向に沿って、前記金属導体部を挟むようにして一対のグランド電極層が形成されてなり、前記金属導体部及び前記グランド電極層によってコプレーナーウェーブガイド(CPW)を構成することを特徴とする、請求項1又は2に記載のマイクロ波回路基板。   A pair of ground electrode layers are formed so as to sandwich the metal conductor portion along the length direction thereof substantially parallel to the metal conductor portion, and a coplanar waveguide (CPW) is formed by the metal conductor portion and the ground electrode layer. The microwave circuit board according to claim 1, wherein the microwave circuit board is configured as follows.
JP2006350286A 2006-12-26 2006-12-26 Microwave circuit board Pending JP2008160751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350286A JP2008160751A (en) 2006-12-26 2006-12-26 Microwave circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350286A JP2008160751A (en) 2006-12-26 2006-12-26 Microwave circuit board

Publications (1)

Publication Number Publication Date
JP2008160751A true JP2008160751A (en) 2008-07-10

Family

ID=39661104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350286A Pending JP2008160751A (en) 2006-12-26 2006-12-26 Microwave circuit board

Country Status (1)

Country Link
JP (1) JP2008160751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573478B1 (en) 2014-08-29 2015-12-01 광운대학교 산학협력단 Flexible cpw series resonator using phase compensation method
CN113872364A (en) * 2021-11-09 2021-12-31 宁波磁性材料应用技术创新中心有限公司 Enameled flat wire and flat wire motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227753U (en) * 1975-08-19 1977-02-26
JPH09232820A (en) * 1996-02-27 1997-09-05 Toshiba Corp Microstrip line
JPH10190324A (en) * 1996-12-27 1998-07-21 Kyocera Corp Laminated type strip line resonator and its manufacture
JP2003218610A (en) * 2002-01-17 2003-07-31 Mitsubishi Electric Corp High frequency line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227753U (en) * 1975-08-19 1977-02-26
JPH09232820A (en) * 1996-02-27 1997-09-05 Toshiba Corp Microstrip line
JPH10190324A (en) * 1996-12-27 1998-07-21 Kyocera Corp Laminated type strip line resonator and its manufacture
JP2003218610A (en) * 2002-01-17 2003-07-31 Mitsubishi Electric Corp High frequency line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573478B1 (en) 2014-08-29 2015-12-01 광운대학교 산학협력단 Flexible cpw series resonator using phase compensation method
CN113872364A (en) * 2021-11-09 2021-12-31 宁波磁性材料应用技术创新中心有限公司 Enameled flat wire and flat wire motor

Similar Documents

Publication Publication Date Title
JP6133884B2 (en) Printed circuit board with embedded electrical passive element for high frequency transmission
JP2008160750A (en) Microwave circuit board
JP4220987B2 (en) High-frequency signal transmission line with improved noise characteristics
EP1307078A3 (en) High frequency circuit module
JP2010506380A (en) Multilayer board
JP2016509391A (en) Floating connector shield
US20200112075A1 (en) Embedded Filtering in PCB Integrated Ultra High Speed Dielectric Waveguides Using Photonic Band Gap Structures
JP2009054876A (en) Printed wiring board
WO2006019596A2 (en) High frequency via
JP6211835B2 (en) High frequency transmission line
KR101577370B1 (en) Microwave filter
WO2006019594A2 (en) High frequency via with stripped semi-rigid cable
US20050190019A1 (en) Low-loss transmission line structure
JP2008160751A (en) Microwave circuit board
JP2008166357A (en) Printed circuit board
WO2006019593A2 (en) Transmission line with stripped semi-rigid cable
JP2008205099A (en) Multilayer wiring board
US7432776B2 (en) Dielectric-filled transmission lines
JP4381701B2 (en) Connection structure between coaxial connector and multilayer board
JP2006080162A (en) Printed wiring board
JPWO2009048095A1 (en) Circuit device having transmission line and printed circuit board
JP3929934B2 (en) Waveguide / stripline converter
JP2003115706A (en) High frequency circuit board
JP2008301257A (en) High-frequency circuit board, and bias circuit impedance control method of the same
JP2004135227A (en) High-frequency transmission line substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222