JP2008159922A - Method of manufacturing aluminum electrode foil for electrolytic capacitor - Google Patents

Method of manufacturing aluminum electrode foil for electrolytic capacitor Download PDF

Info

Publication number
JP2008159922A
JP2008159922A JP2006348180A JP2006348180A JP2008159922A JP 2008159922 A JP2008159922 A JP 2008159922A JP 2006348180 A JP2006348180 A JP 2006348180A JP 2006348180 A JP2006348180 A JP 2006348180A JP 2008159922 A JP2008159922 A JP 2008159922A
Authority
JP
Japan
Prior art keywords
shielding plate
electric shielding
foil
slit
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348180A
Other languages
Japanese (ja)
Other versions
JP4750007B2 (en
Inventor
Kaoru Hiranaka
薫 平中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2006348180A priority Critical patent/JP4750007B2/en
Publication of JP2008159922A publication Critical patent/JP2008159922A/en
Application granted granted Critical
Publication of JP4750007B2 publication Critical patent/JP4750007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing aluminum electrode foil for an electrolytic capacitor, which is hardly influenced by reactant gas generated by electrolysis and can stably control a current density and has a large capacitance and can reduce the variation. <P>SOLUTION: In the method of manufacturing the aluminum electrode foil for the electrolytic capacitor, comprising the steps of: performing etching by passing aluminum foil between a pair of electrode plates in electrolyte; arranging an electric shielding plate with a plurality of slit shape openings between the electrode plates facing the aluminum foil; and performing the etching while controlling a dc current flowing between the electric shielding plate and the aluminum foil, it is characterized in that the slit shape openings of the electric shielding plate are made to be a V shape spreading by an equal width in the end direction from one point of a width direction center section of the aluminum foil and in the upper direction of an etching bath and an angle of the V shape of the slit shape openings of the electric shielding plate is 60 degrees to 120 degrees. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気化学エッチング技術を利用した電解コンデンサ用アルミニウム電極箔の製造方法に関するものである。   The present invention relates to a method for producing an aluminum electrode foil for electrolytic capacitors using an electrochemical etching technique.

一般に、電解コンデンサ用電極箔はコンデンサの小形化を図るために、電気化学的な電解工程によりアルミニウム箔のエッチングを行い、ピットと呼ばれる孔を多数形成させることにより、有効表面積を拡大してから使用されている。
上記電極箔のエッチングは、塩酸を含む水溶液中でアルミニウム箔に電流を印加することにより電気化学的に行われているが、高密度のピットをいかに効率よく均一に生成させるかが重要なポイントとなっている(非特許文献1参照)。
In general, electrode foils for electrolytic capacitors are used after expanding the effective surface area by etching many aluminum foils by electrochemical electrolysis process to form many holes called pits in order to reduce the size of capacitors. Has been.
Etching of the electrode foil is performed electrochemically by applying an electric current to the aluminum foil in an aqueous solution containing hydrochloric acid. However, it is important to efficiently and uniformly generate high-density pits. (See Non-Patent Document 1).

上記エッチング工程は、図1に示すようなエッチング槽を複数槽用いて、アルミニウム箔を通過させて連続的にエッチングを行うのが一般的である。
電解コンデンサ用電極箔(エッチング箔)は、図1のように、アルミニウム箔1に、電流供給ローラ4aおよび4bから給電され、電解液中でアルミニウム箔1と対向する電極板2との間でエッチングされることにより、エッチングされたアルミニウム箔1を連続して得ることができる(直接給電法)。また、電極板2だけに給電してエッチングを行う方法もある(間接給電法)。
In the etching process, it is common to perform etching continuously by passing an aluminum foil using a plurality of etching tanks as shown in FIG.
As shown in FIG. 1, the electrode foil for an electrolytic capacitor (etching foil) is fed between the aluminum foil 1 from the current supply rollers 4a and 4b and etched between the electrode plate 2 facing the aluminum foil 1 in the electrolytic solution. By doing so, the etched aluminum foil 1 can be obtained continuously (direct power feeding method). There is also a method of performing etching by supplying power only to the electrode plate 2 (indirect power supply method).

高密度のピットを効率よく均一に生成させる一つの方法として、エッチング槽内での電流密度分布を制御する方法が提案されている。例えば、エッチング槽内での電流密度分布を制御する方法として、図2のようなアルミニウム箔と電極板の間に複数の孔やアルミニウム箔の進行方向に垂直な方向のスリット開口部を有する電気遮蔽板を設置する方法が提案されている(特許文献1参照)。   As one method for efficiently and uniformly generating high-density pits, a method for controlling the current density distribution in the etching bath has been proposed. For example, as a method of controlling the current density distribution in the etching tank, an electric shielding plate having a plurality of holes or slit openings in a direction perpendicular to the traveling direction of the aluminum foil is provided between the aluminum foil and the electrode plate as shown in FIG. A method of installation has been proposed (see Patent Document 1).

しかし、図2のような電気遮蔽板を設置する場合、電解によって発生する反応ガスが電気遮蔽板の孔やスリット開口部へ付着、停滞することにより、一定の開口面積を保つことができず、安定した電流密度制御が難しく、電極箔のさらなる高静電容量化やバラツキを小さくすることができない問題があった。さらに、電流密度分布制御の観点からは、電気遮蔽板に開ける個々の孔面積やスリット幅は小さい方が望ましいが、これらを小さくするほど、反応ガスが付着、停滞しやすくなり、上述した反応ガスによる影響が大きくなってしまうという問題がある。   However, when an electric shielding plate as shown in FIG. 2 is installed, the reaction gas generated by electrolysis adheres to and stagnates in the holes and slit openings of the electric shielding plate, so that a constant opening area cannot be maintained, There is a problem that stable current density control is difficult, and the capacitance of the electrode foil cannot be further increased and variation cannot be reduced. Furthermore, from the viewpoint of controlling the current density distribution, it is desirable that the individual hole area and slit width opened in the electric shielding plate are smaller. However, the smaller these are, the more easily the reactive gas adheres and stagnates. There is a problem that the influence of becomes large.

特開2001−244153号公報JP 2001-244153 A 永田伊佐也、「電解液陰極アルミニウム電解コンデンサ」、日本蓄電器工業株式会社、平成9年2月24日、第2版第1刷、P220〜241Isaya Nagata, “Electrolyte Cathode Aluminum Electrolytic Capacitor”, Nihon Denki Kogyo Kogyo Co., Ltd., February 24, 1997, Second Edition, 1st Printing, P220-241

上記のような問題があったため、電解によって発生する反応ガスによる影響も少なく、安定した電流密度制御ができ、静電容量が高くバラつきが小さい電解コンデンサ用アルミニウム電極箔の製造方法が求められていた。   Because of the above problems, there has been a demand for a method for producing an aluminum electrode foil for electrolytic capacitors that is less affected by the reaction gas generated by electrolysis, can control stable current density, and has high capacitance and low variation. .

本発明は上記課題を解決するもので、アルミニウム箔が電解液中の一対の電極板の間を通過することによりエッチングされ、かつアルミニウム箔と対向する電極板の間に、複数のスリット状開口部を有する電気遮蔽板を設置して、アルミニウム箔との間に流れる電流を制御しながらエッチングを行う電解コンデンサ用電極箔の製造方法において、
上記電気遮蔽板のスリット状開口部を、アルミニウム箔の幅方向中央部の一点から端部方向に、かつエッチング槽の上方向に広がるV字形状としたことを特徴とする電解コンデンサ用電極箔の製造方法である。
SUMMARY OF THE INVENTION The present invention solves the above-described problem, and an aluminum foil is etched by passing between a pair of electrode plates in an electrolytic solution, and an electric shield having a plurality of slit-like openings between electrode plates facing the aluminum foil. In the manufacturing method of the electrode foil for electrolytic capacitors that performs etching while controlling the current flowing between the aluminum foil and the plate,
An electrode foil for an electrolytic capacitor characterized in that the slit-shaped opening of the electric shielding plate has a V shape extending from one point to the end in the width direction of the aluminum foil and upward in the etching tank. It is a manufacturing method.

また、上記の電気遮蔽板のスリット状開口部の幅が均等であることを特徴とする電解コンデンサ用電極箔の製造方法である。   Moreover, it is a manufacturing method of the electrode foil for electrolytic capacitors characterized by equal width | variety of the slit-shaped opening part of said electric shielding board.

さらに、上記の電気遮蔽板のスリット状開口部のV字形状の角度が60〜120°であることを特徴とする電解コンデンサ用電極箔の製造方法である。   Furthermore, it is a manufacturing method of the electrode foil for electrolytic capacitors characterized by the V-shaped angle of the slit-shaped opening part of said electric shielding board being 60-120 degrees.

そして、上記の電気遮蔽板のスリット状開口部が電解液の液面から深くなるにつれて、スリット状開口部の幅を広くしたことを特徴とする電解コンデンサ用電極箔の製造方法である。   And it is the manufacturing method of the electrode foil for electrolytic capacitors characterized by making the width | variety of a slit-shaped opening part wide as the slit-shaped opening part of said electric shielding board became deep from the liquid level of electrolyte solution.

また、上記の電気遮蔽板のスリット状開口部のV字形状部の最大幅を、電気遮蔽板と、アルミニウム箔との間隔の10.0〜100%としたことを特徴とする電解コンデンサ用電極箔の製造方法である。   The electrode for an electrolytic capacitor, wherein the maximum width of the V-shaped portion of the slit-shaped opening of the electric shielding plate is 10.0 to 100% of the distance between the electric shielding plate and the aluminum foil. It is a manufacturing method of foil.

さらに、上記の電気遮蔽板とアルミニウム箔との間隔を、電解液中の電極板の浸漬長さの5.0〜30.0%としたことを特徴とする電解コンデンサ用電極箔の製造方法である。   Further, in the method for producing an electrode foil for an electrolytic capacitor, the distance between the electric shielding plate and the aluminum foil is 5.0 to 30.0% of the immersion length of the electrode plate in the electrolytic solution. is there.

そして、上記の電気遮蔽板のスリット状開口部の断面が、アルミニウム箔に向かって広くなっていることを特徴とする電解コンデンサ用電極箔の製造方法である。   And it is the manufacturing method of the electrode foil for electrolytic capacitors characterized by the cross section of the slit-shaped opening part of said electric shielding board becoming wide toward the aluminum foil.

本発明による電解コンデンサ用のアルミニウム電極箔の製造方法によれば、エッチング槽内の電流密度分布を制御するための電気遮蔽板に反応ガスが付着、停滞するのを防ぎ、また効率よく反応ガスを逃がすことができるため、エッチング槽内の電流密度分布を精度良く安定して制御することができ、静電容量大で、バラつきの小さいアルミニウム電極箔を製造することができる。   According to the method for producing an aluminum electrode foil for an electrolytic capacitor according to the present invention, the reactive gas is prevented from adhering to and stagnating on the electric shielding plate for controlling the current density distribution in the etching tank, and the reactive gas is efficiently added. Since it can be escaped, the current density distribution in the etching tank can be controlled accurately and stably, and an aluminum electrode foil having a large capacitance and a small variation can be produced.

エッチング工程において、図3のようなアルミニウム箔の幅方向中央部の一点から端部方向に、かつ、エッチング槽の上方向に均等幅で広がるV字形状のスリット開口部を複数有する電気遮蔽板をアルミニウム箔とそれに対向する陰極板の間に設置する。
また、この電気遮蔽板のスリット開口部のV字形状部の角度は、60〜120°の範囲とし、電気遮蔽板のスリット開口部のV字形状部の最大幅(d)は、電気遮蔽板とエッチングされるアルミニウム箔との間隔(D)の10.0〜100%とする。
そして、電気遮蔽板とアルミニウム箔との間隔(D)は、電解液中の陰極板の浸漬長さ(L)の5.0〜30.0%とする。また、図3に示すように、電解液の液面から深くなるにつれて電気遮蔽板のV字形スリット開口部の幅を広くすると、エッチング槽内の電流密度分布を均一にすることができる。
In the etching step, an electric shielding plate having a plurality of V-shaped slit openings extending from one point to the end in the width direction central portion of the aluminum foil as shown in FIG. It is installed between the aluminum foil and the cathode plate facing it.
The angle of the V-shaped portion of the slit opening of the electric shielding plate is in the range of 60 to 120 °, and the maximum width (d) of the V-shaped portion of the slit opening of the electric shielding plate is the electric shielding plate. And the distance (D) between the etched aluminum foil and 10.0 to 100%.
And the space | interval (D) of an electrical shielding board and aluminum foil shall be 5.0 to 30.0% of the immersion length (L) of the cathode plate in electrolyte solution. Further, as shown in FIG. 3, the current density distribution in the etching tank can be made uniform by increasing the width of the V-shaped slit opening of the electric shielding plate as it becomes deeper from the electrolyte surface.

以下、本発明によるアルミニウム電極箔の製造方法について具体的に説明する。   Hereafter, the manufacturing method of the aluminum electrode foil by this invention is demonstrated concretely.

[実施例1〜5]スリット状開口部のV字形状の角度比較
実施例1〜5において、純度99.98%で、高い立方組織を有する厚さ100μmの電解コンデンサ用の軟質アルミニウム原箔を使用し、0.2mol/Lの水酸化ナトリウム水溶液に1分間浸漬して前処理を行った。
[Examples 1 to 5] V-shaped angle comparison of slit-shaped openings In Examples 1 to 5, a soft aluminum base foil for electrolytic capacitors having a purity of 99.98% and a high cubic structure and a thickness of 100 μm is used. And pre-treated by immersing in a 0.2 mol / L sodium hydroxide aqueous solution for 1 minute.

次に、図1のエッチング槽1槽において、幅50cm、浸漬長さ(L)150cmの陰極板2に、図3に示す電気遮蔽板6を設置し、硫酸3mol/L、塩酸1mol/Lの濃度で混合した、85℃の電解液中で、電流供給ローラ5を介してアルミニウム箔1に平均電流密度0.2A/cmの直流電流を印加し、100秒間電解することによりトンネル状のピットを発生させた(第1段エッチング)。
ここで、上記の電気遮蔽板6のスリット状開口部は、表1に示すV字形状の角度を有するものとし、各々、30°、60°、90°、120°、150°で比較した。
なお、スリット状開口部のV字形状部の最大スリット幅(d)は10cm、電気遮蔽板とアルミニウム箔との間隔(D)は10cmとして固定した(d/D=100%、D/L≒7%)。
Next, in the etching tank of FIG. 1, the electric shielding plate 6 shown in FIG. 3 is installed on the cathode plate 2 having a width of 50 cm and an immersion length (L) of 150 cm, and 3 mol / L of sulfuric acid and 1 mol / L of hydrochloric acid are used. A tunnel-like pit is formed by applying a direct current with an average current density of 0.2 A / cm 2 to the aluminum foil 1 via the current supply roller 5 in an electrolytic solution mixed at a concentration of 85 ° C. and performing electrolysis for 100 seconds. (First stage etching).
Here, the slit-shaped opening of the electric shielding plate 6 has a V-shaped angle shown in Table 1, and comparison was made at 30 °, 60 °, 90 °, 120 °, and 150 °, respectively.
The maximum slit width (d) of the V-shaped portion of the slit-shaped opening was fixed to 10 cm, and the distance (D) between the electric shielding plate and the aluminum foil was set to 10 cm (d / D = 100%, D / L≈ 7%).

続いて、図1のエッチング槽4槽に各々、上記と同じ電気遮蔽板6を設置した陰極板2を用い、上記と同じ構造にて、塩酸1mol/L、70℃の電解液中で、電流供給ローラ5を介してアルミニウム箔1に平均電流密度0.05A/cmの直流電流を印加し、1槽当たり100秒間電解することにより、ピット径の拡大を行った(第2段エッチング)。 Subsequently, the cathode plate 2 provided with the same electric shielding plate 6 as described above in each of the etching tanks 4 in FIG. 1 was used, and in the same structure as described above, in a 1 mol / L hydrochloric acid, 70 ° C. electrolyte solution, A pit diameter was increased by applying a direct current with an average current density of 0.05 A / cm 2 to the aluminum foil 1 via the supply roller 5 and performing electrolysis for 100 seconds per tank (second stage etching).

上記のエッチングされたアルミニウム箔について、洗浄後、EIAJ RC―2364A(1992)に従って200Vで化成を行い、陽極箔試料を作製した。   The etched aluminum foil was washed and then subjected to chemical conversion at 200 V in accordance with EIAJ RC-2364A (1992) to prepare an anode foil sample.

[実施例3、6〜10]スリット状開口部のV字形状部の最大スリット幅(d)比較
実施例3、6〜10において、実施例1と同様のアルミニウム原箔を使用し、同様の前処理を行った後、図1のエッチング槽1槽において、実施例1と同様の条件で第1段エッチングを行った。
ここで、上記の電気遮蔽板6のスリット状開口部は、表1に示すV字形状の角度を90°で固定し、スリット状開口部のV字形状部の最大スリット幅(d)は各々、15、10、8、5、1、0.5cmで比較することとし、電気遮蔽板とアルミニウム箔との間隔(D)は10cmとして固定した(d/D=110、100、80.0、50.0、10.0、5.0%)。
続いて、図1のエッチング槽4槽に各々、上記と同じ電気遮蔽板6を設置した陰極板2を用い、上記と同じ構造にて、実施例1と同様の条件で第2段エッチングを行った。
上記のエッチングされたアルミニウム箔について、洗浄後、EIAJ RC―2364A(1992)に従って200Vで化成を行い、陽極箔試料を作製した。
[Examples 3 and 6 to 10] Comparison of maximum slit width (d) of V-shaped portion of slit-shaped opening In Examples 3 and 6 to 10, the same aluminum raw foil as in Example 1 was used, and the same After the pretreatment, the first stage etching was performed under the same conditions as in Example 1 in one etching tank of FIG.
Here, the slit-shaped opening of the electric shielding plate 6 has a V-shaped angle shown in Table 1 fixed at 90 °, and the maximum slit width (d) of the V-shaped portion of the slit-shaped opening is respectively 15, 15, 10, 8, 5, 1, 0.5 cm, and the distance (D) between the electric shielding plate and the aluminum foil was fixed as 10 cm (d / D = 110, 100, 80.0, 50.0, 10.0, 5.0%).
Subsequently, the second-stage etching was performed under the same conditions as in Example 1 using the cathode plate 2 in which the same electric shielding plate 6 as that described above was installed in each of the etching tanks 4 in FIG. It was.
The etched aluminum foil was washed and then subjected to chemical conversion at 200 V in accordance with EIAJ RC-2364A (1992) to prepare an anode foil sample.

[実施例3、11〜17]電気遮蔽板とアルミニウム箔との間隔(D)比較
実施例3、11〜17において、実施例1と同様のアルミニウム原箔を使用し、同様の前処理を行った後、図1のエッチング槽1槽において、実施例1と同様の条件で第1段エッチングを行った。
ここで、上記の電気遮蔽板6のスリット状開口部は、表1に示すV字形状の角度を90°、スリット開口部のV字形状部の最大スリット幅(d)は10cmで固定し、電気遮蔽板とアルミニウム箔との間隔(D)は各々、8、10、15、20、30、40、45、50cmで比較した(D/L=5.3、10.0、13.3、20.0、26.7、30.0、33.3%)。
続いて、図1のエッチング槽4槽に各々、上記と同じ電気遮蔽板6を設置した陰極板2を用い、上記と同じ構造にて、実施例1と同様の条件で第2段エッチングを行った。
上記のエッチングされたアルミニウム箔について、洗浄後、EIAJ RC―2364A(1992)に従って200Vで化成を行い、陽極箔試料を作製した。
また、D/Lの下限を見極めるため、d=0.5cm、D=5cm(実施例18)、d=0.5cm、D=4cm(実施例19)の陽極箔試料も上記と同様の条件にて作製した。
[Examples 3, 11 to 17] Comparison of distance (D) between electric shielding plate and aluminum foil In Examples 3 and 11 to 17, the same aluminum raw foil as in Example 1 was used, and the same pretreatment was performed. Then, the first stage etching was performed under the same conditions as in Example 1 in one etching tank of FIG.
Here, the slit-shaped opening of the electric shielding plate 6 is fixed at a V-shaped angle of 90 ° shown in Table 1, and the maximum slit width (d) of the V-shaped portion of the slit opening is 10 cm, The distance (D) between the electric shielding plate and the aluminum foil was 8, 10, 15, 20, 30, 40, 45, and 50 cm, respectively (D / L = 5.3, 10.0, 13.3, 20.0, 26.7, 30.0, 33.3%).
Subsequently, the second-stage etching was performed under the same conditions as in Example 1 using the cathode plate 2 in which the same electric shielding plate 6 as that described above was installed in each of the etching tanks 4 in FIG. It was.
The etched aluminum foil was washed and then subjected to chemical conversion at 200 V in accordance with EIAJ RC-2364A (1992) to prepare an anode foil sample.
In order to determine the lower limit of D / L, the anode foil sample of d = 0.5 cm, D = 5 cm (Example 18), d = 0.5 cm, D = 4 cm (Example 19) was also subjected to the same conditions as above. It was produced in.

(比較例)
実施例1と同様のアルミニウム原箔を使用し、同様の前処理を行った後、図1のエッチング槽1槽において、実施例1と同様の条件で第1段エッチングを行った。
ここで、上記の電気遮蔽板6は、図2のAに示すものを用い、開口部は円形で、最大径は10cmとした。
また、電気遮蔽板とアルミニウム箔との間隔(D)は10cmで比較した(D/L≒6.7%)。
続いて、図1のエッチング槽4槽に各々、上記と同じ電気遮蔽板6を設置した陰極板2を用い、上記と同じ構造にて、実施例1と同様の条件で第2段エッチングを行った。
上記のエッチングされたアルミニウム箔について、洗浄後、EIAJ RC―2364A(1992)に従って200Vで化成を行い、陽極箔試料を作製した。
(Comparative example)
The same aluminum raw foil as in Example 1 was used, and after the same pretreatment, the first stage etching was performed in the same etching tank as in Example 1 in one tank of FIG.
Here, the electric shielding plate 6 shown in FIG. 2A was used, the opening was circular, and the maximum diameter was 10 cm.
Further, the distance (D) between the electric shielding plate and the aluminum foil was 10 cm (D / L≈6.7%).
Subsequently, the second-stage etching was performed under the same conditions as in Example 1 using the cathode plate 2 in which the same electric shielding plate 6 as that described above was installed in each of the etching tanks 4 in FIG. It was.
The etched aluminum foil was washed and then subjected to chemical conversion at 200 V in accordance with EIAJ RC-2364A (1992) to prepare an anode foil sample.

上記実施例1〜19と比較例の各陽極箔試料について、20点の静電容量を測定した結果を表1に示す。なお、ここで静電容量バラツキとは、最大値と最小値の差を平均値で割った値を意味する。   Table 1 shows the results of measuring the capacitance of 20 points for each of the anode foil samples of Examples 1 to 19 and the comparative example. Here, the capacitance variation means a value obtained by dividing the difference between the maximum value and the minimum value by the average value.

Figure 2008159922
Figure 2008159922

[実施例と比較例−スリット状開口部が円形とV字形状との比較]
表1より明らかなように、本発明の実施例2〜4による、スリット状開口部がV字形状の電気遮蔽板を使用したエッチング方法によれば、スリット開口部が円形の場合の比較例と比べて、電気遮蔽板に反応ガスが付着、停滞するのが防止され、効率よく反応ガスを逃がすことができるため、エッチング槽内の電流密度分布を精度良く、安定して制御でき、静電容量が高く、バラつきの小さいアルミニウム電極箔を製造することができる。
[Examples and Comparative Examples-Comparison of slit-like opening with circular and V-shape]
As is clear from Table 1, according to the etching method using the V-shaped electric shielding plate according to Examples 2 to 4 of the present invention, the comparative example in the case where the slit opening is circular and In comparison, the reaction gas is prevented from adhering to and stagnating on the electric shielding plate, and the reaction gas can be released efficiently, so the current density distribution in the etching tank can be controlled accurately and stably, and the capacitance Can produce an aluminum electrode foil that is high and has little variation.

[スリット状開口部のV字形状の角度比較(実施例1〜5)]
スリット開口部のV字形状の角度比較では、表1より明らかなように、60〜120°の範囲が適当である(実施例2〜4)。開口部の角度が30°ではアルミニウム箔の幅方向の電流密度変化が大きくなり、充分な静電容量が得られず、バラつき大となり(実施例1)、150°では電気遮蔽板への反応ガスの付着、停滞を十分に防止できず、静電容量が低下する(実施例5)。
[V-shaped angle comparison of slit-shaped openings (Examples 1 to 5)]
In comparison of the V-shaped angle of the slit opening, as apparent from Table 1, a range of 60 to 120 ° is appropriate (Examples 2 to 4). When the angle of the opening is 30 °, the current density change in the width direction of the aluminum foil is large, sufficient capacitance cannot be obtained and the variation is large (Example 1), and at 150 °, the reaction gas to the electric shielding plate Adhesion and stagnation cannot be sufficiently prevented, and the capacitance decreases (Example 5).

[スリット状開口部の最大スリット幅(d)/電気遮蔽板とAl箔との距離(D)比較(実施例3、6〜10)]
電気遮蔽板とアルミニウム箔との間隔(D)に対するスリット状開口部の最大スリット幅(d)の比d/Dは、表1より明らかなように、10〜100%の範囲が適当である(実施例3、7〜9)。110%(d=11cm、D=10cm)では、アルミニウム箔の長さ方向での電流密度変化が大きくなり、充分な静電容量が得られず(実施例6)、5.0%(d=0.5cm、D=10cm)では、電気遮蔽板への反応ガスの付着、停滞を十分に防止できず、静電容量が低下する(実施例10)。
[Maximum slit width (d) of slit-like opening / Distance (D) comparison between electric shielding plate and Al foil (Examples 3, 6 to 10)]
As apparent from Table 1, the ratio d / D of the maximum slit width (d) of the slit-shaped opening to the distance (D) between the electric shielding plate and the aluminum foil is suitably in the range of 10 to 100% ( Example 3, 7-9). At 110% (d = 11 cm, D = 10 cm), the change in current density in the length direction of the aluminum foil becomes large, and sufficient electrostatic capacity cannot be obtained (Example 6), and 5.0% (d = (0.5 cm, D = 10 cm), the adhesion and stagnation of the reaction gas to the electric shielding plate cannot be sufficiently prevented, and the capacitance decreases (Example 10).

[電気遮蔽板とアルミニウム箔との間隔(D)/陰極板の浸漬長さ(L)比較(実施例3、11〜19)]
陰極板の浸漬長さ(L)に対する電気遮蔽板とアルミニウム箔との間隔(D)の比D/Lは、表1より明らかなように、5.0〜30.0%の範囲が適当である(実施例3、11〜16、18)。5.0%未満(D=4.0cm、L=100cm)では、アルミニウム箔の長さ方向での電流密度変化が大きくなり、充分な静電容量が得られず(実施例19)、33.3%(D=50cm、L=150cm)とすると、エッチング槽のサイズが大きくなり過ぎるので問題がある(実施例17)。
[Comparison of distance between electric shield plate and aluminum foil (D) / immersion length of cathode plate (L) (Examples 3, 11 to 19)]
As apparent from Table 1, the ratio D / L of the distance (D) between the electric shielding plate and the aluminum foil to the immersion length (L) of the cathode plate is suitably in the range of 5.0 to 30.0%. (Examples 3, 11-16, 18). If it is less than 5.0% (D = 4.0 cm, L = 100 cm), the current density change in the length direction of the aluminum foil becomes large, and sufficient electrostatic capacity cannot be obtained (Example 19). If 3% (D = 50 cm, L = 150 cm), there is a problem because the size of the etching tank becomes too large (Example 17).

上記実施例では電気遮蔽板の手段として板を用いたが、これの代わりに樹脂を電極に塗布し、上記電気遮蔽板と同様の形状としたものを用いても、上記と同様の効果が得られる。
なお、上記の実施の形態では、本発明の特徴および卓越した効果を具体的に示したが、本発明は、この実施例に限定されるものではなく、特許請求の範囲の記載に基づいて種々変更できることはいうまでもない。
In the above embodiment, a plate is used as the means of the electric shielding plate. However, the same effect as described above can be obtained even if a resin is applied to the electrode and the same shape as the electric shielding plate is used instead. It is done.
In the above-described embodiment, the features and excellent effects of the present invention have been specifically shown. However, the present invention is not limited to this embodiment, and various modifications can be made based on the description of the claims. Needless to say, it can be changed.

本発明の実施例によるエッチング槽の模式断面図である。It is a schematic cross section of the etching tank by the Example of this invention.

従来例による電気遮蔽板の模式図である。It is a schematic diagram of the electrical shielding board by a prior art example.

本発明の実施例による電気遮蔽板の模式図である。It is a schematic diagram of the electrical shielding board by the Example of this invention.

符号の説明Explanation of symbols

1 アルミニウム箔
2 電極板
3 電解液の液面
4a,4b 電流供給ローラ
5 槽内ローラ
6 電気遮蔽板
7 エッチング槽
DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Electrode plate 3 Electrolyte liquid level 4a, 4b Current supply roller 5 Tank inner roller 6 Electric shielding board 7 Etching tank

Claims (7)

アルミニウム箔が電解液中の一対の電極板の間を通過することによりエッチングされ、かつアルミニウム箔と対向する電極板の間に、複数のスリット状開口部を有する電気遮蔽板を設置して、電極とアルミニウム箔との間に流れる電流を制御しながらエッチングを行う電解コンデンサ用電極箔の製造方法において、
上記電気遮蔽板のスリット状開口部を、アルミニウム箔の幅方向中央部の一点から端部方向に、かつエッチング槽の上方向に広がるV字形状としたことを特徴とする電解コンデンサ用電極箔の製造方法。
An aluminum foil is etched by passing between a pair of electrode plates in the electrolytic solution, and an electric shielding plate having a plurality of slit-shaped openings is installed between the electrode plates facing the aluminum foil, and the electrode and the aluminum foil In the manufacturing method of electrode foil for electrolytic capacitors that performs etching while controlling the current flowing between
An electrode foil for an electrolytic capacitor characterized in that the slit-shaped opening of the electric shielding plate has a V shape extending from one point to the end in the width direction of the aluminum foil and upward in the etching tank. Production method.
請求項1記載の電気遮蔽板のスリット状開口部の幅が均等であることを特徴とする電解コンデンサ用電極箔の製造方法。   The method for producing an electrode foil for an electrolytic capacitor, wherein the slit-shaped opening of the electric shielding plate according to claim 1 has an equal width. 請求項1または2記載の電気遮蔽板のスリット状開口部のV字形状の角度が60〜120°であることを特徴とする電解コンデンサ用電極箔の製造方法。   The method for producing an electrode foil for an electrolytic capacitor, wherein the V-shaped angle of the slit-shaped opening of the electric shielding plate according to claim 1 or 2 is 60 to 120 °. 請求項1〜3記載の電気遮蔽板のスリット状開口部が電解液の液面から深くなるにつれて、スリット状開口部の幅を広くしたことを特徴とする電解コンデンサ用電極箔の製造方法。   A method for producing an electrode foil for an electrolytic capacitor, wherein the slit-like opening is made wider as the slit-like opening of the electric shielding plate according to claim 1 becomes deeper from the electrolyte surface. 請求項1〜4記載の電気遮蔽板のスリット状開口部のV字形状部の最大幅を、電気遮蔽板と、アルミニウム箔との間隔の10.0〜100%としたことを特徴とする電解コンデンサ用電極箔の製造方法。   Electrolysis characterized in that the maximum width of the V-shaped portion of the slit-like opening of the electric shielding plate according to claims 1 to 4 is 10.0 to 100% of the interval between the electric shielding plate and the aluminum foil. A method for producing an electrode foil for a capacitor. 請求項1〜5記載の電気遮蔽板とアルミニウム箔との間隔を、電解液中の電極板の浸漬長さの5.0〜30.0%としたことを特徴とする電解コンデンサ用電極箔の製造方法。   An electrode foil for an electrolytic capacitor, wherein the distance between the electric shielding plate according to claim 1 and the aluminum foil is 5.0 to 30.0% of the immersion length of the electrode plate in the electrolyte. Production method. 請求項1〜6記載の電気遮蔽板のスリット状開口部の断面が、アルミニウム箔に向かって広くなっていることを特徴とする電解コンデンサ用電極箔の製造方法。
A method for producing an electrode foil for an electrolytic capacitor, wherein a cross section of the slit-shaped opening of the electric shielding plate according to claim 1 is widened toward the aluminum foil.
JP2006348180A 2006-12-25 2006-12-25 Method for producing aluminum electrode foil for electrolytic capacitor Expired - Fee Related JP4750007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348180A JP4750007B2 (en) 2006-12-25 2006-12-25 Method for producing aluminum electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348180A JP4750007B2 (en) 2006-12-25 2006-12-25 Method for producing aluminum electrode foil for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008159922A true JP2008159922A (en) 2008-07-10
JP4750007B2 JP4750007B2 (en) 2011-08-17

Family

ID=39660495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348180A Expired - Fee Related JP4750007B2 (en) 2006-12-25 2006-12-25 Method for producing aluminum electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4750007B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355435A (en) * 2015-12-11 2016-02-24 南通海星电子股份有限公司 Current shield plate and method for manufacturing electrode foil therethrough
CN113611548A (en) * 2021-08-04 2021-11-05 广东联盈控电子科技有限公司 Current shielding plate, forming device for forming foil and forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123400A (en) * 1980-02-29 1981-09-28 Nippon Light Metal Co Ltd Transfer method of web
JPS62177200A (en) * 1986-01-29 1987-08-04 Kobe Steel Ltd Electrode structure for electrolytic cleaning device
JPH08316111A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing aluminum electrolytic capacitor
JP2001052605A (en) * 1999-08-04 2001-02-23 Toppan Printing Co Ltd Shadow mask of high definition and manufacture of the same
JP2001244153A (en) * 2000-02-28 2001-09-07 Matsushita Electric Ind Co Ltd Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2002343685A (en) * 2001-05-11 2002-11-29 Matsushita Electric Ind Co Ltd Formation method of electrode foil for aluminum electrolytic capacitor
JP2003097543A (en) * 2001-09-25 2003-04-03 Koyo Seiko Co Ltd Dynamic pressure bearing and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123400A (en) * 1980-02-29 1981-09-28 Nippon Light Metal Co Ltd Transfer method of web
JPS62177200A (en) * 1986-01-29 1987-08-04 Kobe Steel Ltd Electrode structure for electrolytic cleaning device
JPH08316111A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing aluminum electrolytic capacitor
JP2001052605A (en) * 1999-08-04 2001-02-23 Toppan Printing Co Ltd Shadow mask of high definition and manufacture of the same
JP2001244153A (en) * 2000-02-28 2001-09-07 Matsushita Electric Ind Co Ltd Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2002343685A (en) * 2001-05-11 2002-11-29 Matsushita Electric Ind Co Ltd Formation method of electrode foil for aluminum electrolytic capacitor
JP2003097543A (en) * 2001-09-25 2003-04-03 Koyo Seiko Co Ltd Dynamic pressure bearing and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355435A (en) * 2015-12-11 2016-02-24 南通海星电子股份有限公司 Current shield plate and method for manufacturing electrode foil therethrough
CN113611548A (en) * 2021-08-04 2021-11-05 广东联盈控电子科技有限公司 Current shielding plate, forming device for forming foil and forming method

Also Published As

Publication number Publication date
JP4750007B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
Zhu et al. A novel nanostructure fabricated by an improved two-step anodizing technology
TW200738913A (en) Surface treated elctrolytic copper foil and process for producing the same
CN110396704A (en) A kind of ultrathin electrolytic copper foil and preparation method
CN113628888B (en) Preparation method of corrosion aluminum foil with high consistency of hole length
US20140083843A1 (en) Preparation apparatus for porous alumina template
CN105040065B (en) A kind of preparation method of regular porous anodic alumina films
JP4750007B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
CN103938249A (en) Method for preparing ordered macrostructure unit alumina membrane
US10497945B2 (en) Process for producing a distributor plate for an electrochemical system and distributor plate for an electrochemical system
TW201510285A (en) Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
KR102126475B1 (en) Plasma electrolytic oxidation apparatus and method
CN106544704A (en) A kind of preparation method of low warpage Copper Foil
JP4815771B2 (en) Manufacturing method of electrical parts
CN108425135B (en) Production equipment of electrolytic copper foil and current adjusting and controlling device thereof
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4428074B2 (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
Ng et al. Deposition of copper in cylindrical pores by a pulse plating technique
CN112853457A (en) Corrosion hole-forming device for high-voltage aluminum electrolysis electronic aluminum foil
Živković et al. Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range
CN111441079A (en) Perforated pretreatment process for corrosion foil
EP3105369B1 (en) Method of forming metal coating
CN109023248A (en) Etched foil and preparation method thereof and electrode foil, aluminium electrolutic capacitor
JP4481680B2 (en) Etching foil manufacturing equipment for electrolytic capacitors
KR101406550B1 (en) Anode Electrode Plate for Electro-forming, Method for Preparing the Same and Method for Preparing Metal Supporting Body by Using the Same
CN107177879B (en) Manufacturing method of perforated foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4750007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees