JP2008159403A - Wire conductor, and insulated wire - Google Patents

Wire conductor, and insulated wire Download PDF

Info

Publication number
JP2008159403A
JP2008159403A JP2006346860A JP2006346860A JP2008159403A JP 2008159403 A JP2008159403 A JP 2008159403A JP 2006346860 A JP2006346860 A JP 2006346860A JP 2006346860 A JP2006346860 A JP 2006346860A JP 2008159403 A JP2008159403 A JP 2008159403A
Authority
JP
Japan
Prior art keywords
strand
wire
wire conductor
conductor
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006346860A
Other languages
Japanese (ja)
Inventor
Jun Yoshimoto
潤 吉本
Shinji Kamei
伸司 亀井
Koji Morikawa
孝司 森川
Soichiro Tsukamoto
宗一郎 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2006346860A priority Critical patent/JP2008159403A/en
Priority to PCT/JP2007/065495 priority patent/WO2008078430A1/en
Publication of JP2008159403A publication Critical patent/JP2008159403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/104Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of metallic wires, e.g. steel wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight wire conductor capable of improving strength degradation caused by diameter reduction, and of suppressing heat generation in carrying a current even if severance occurs in wires by any chance. <P>SOLUTION: This wire conductor 10a is formed by intertwining seven copper element wires 12 with one stainless steel element wire 14. The stainless steel element wire 12 is small in a coefficient of elongation smaller than that of the copper element wire 12, and formed to increase a cross-sectional area. The wire conductor 10a may be circularly compressed. It is preferable that the cross-sectional area of the wire conductor 10a is ≤0.3 mm<SP>2</SP>. This insulated wire is composed by covering the outer periphery of the wire conductor 10a with an insulating material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電線導体および絶縁電線に関し、さらに詳しくは、自動車用電線に好適に用いられる電線導体および絶縁電線に関するものである。   The present invention relates to a wire conductor and an insulated wire, and more particularly to a wire conductor and an insulated wire that are suitably used for an automotive wire.

従来、自動車などの車両や電気・電子機器などの配線に用いられる絶縁電線としては、タフピッチ銅などの銅からなる素線を複数本撚り合わせた電線導体を用いた絶縁電線が多く使用されている。   Conventionally, as an insulated wire used for wiring of vehicles such as automobiles and electric / electronic devices, an insulated wire using a wire conductor in which a plurality of wires made of copper such as tough pitch copper are twisted is often used. .

近年、自動車などの車両や電気・電子機器などの高性能化が進められており、各種制御回路等の増加に伴って、使用される絶縁電線の数は増加する傾向にある。   In recent years, performance of vehicles such as automobiles and electrical / electronic devices has been improved, and the number of insulated wires used tends to increase with an increase in various control circuits.

ここで、自動車分野においては、省エネルギーなどの観点から車両重量の軽量化が望まれている。そこで、車両重量の軽量化を図る一環として、絶縁電線の重量を軽量化する試みがなされている。例えば、従来の絶縁電線では、通電容量に余裕があるので、電線導体を細径化することにより絶縁電線を軽量にすることが行なわれている。   Here, in the automobile field, a reduction in vehicle weight is desired from the viewpoint of energy saving and the like. Therefore, as part of reducing the vehicle weight, attempts have been made to reduce the weight of the insulated wires. For example, in a conventional insulated wire, since there is a surplus in current carrying capacity, the insulated wire is made lighter by reducing the diameter of the wire conductor.

ところが、電線導体を細径化すると、絶縁電線の強度が低下するという問題があった。そこで、細径化された電線導体を有する絶縁電線の強度を改善する試みがなされている。   However, when the diameter of the wire conductor is reduced, there is a problem that the strength of the insulated wire is reduced. Thus, attempts have been made to improve the strength of insulated wires having a thin wire conductor.

例えば特許文献1には、ステンレスからなる素線を複数本と、銅からなる素線とを組み合わせて構成される自動車用の電線導体が開示されている。   For example, Patent Document 1 discloses a wire conductor for an automobile configured by combining a plurality of strands made of stainless steel and a strand made of copper.

特開2004−207079号公報JP 2004-207079 A

しかしながら、ステンレスは銅よりも導電率が低いので、ステンレスからなる素線は銅からなる素線よりも導体抵抗が大きい。そのため、例えば電線導体に引張りや繰返し屈曲などが生じて銅からなる素線が先に断線すると、通電時に電線が発熱しやすくなるという問題があった。   However, since stainless steel has a lower conductivity than copper, the strand made of stainless steel has a higher conductor resistance than the strand made of copper. For this reason, for example, if the wire conductor is pulled or repeatedly bent and the copper wire is disconnected first, the wire is likely to generate heat during energization.

本発明が解決しようとする課題は、軽量・細径化に伴う強度低下を改善するとともに、万一断線しても通電時の発熱を抑止することが可能な電線導体および絶縁電線を提供することにある。   The problem to be solved by the present invention is to provide a wire conductor and an insulated wire that can improve strength reduction due to reduction in weight and diameter, and can suppress heat generation during energization even if it is disconnected. It is in.

本発明に係る電線導体は、導電材料よりなる第一素線と、第一素線よりも低導電性で強度の高い導電材料よりなる第二素線とを撚り合わせてなる電線導体であって、前記第二素線は、前記第一素線よりも伸び率が小さく、かつ断面積が大きいことを要旨とするものである。   The electric wire conductor according to the present invention is an electric wire conductor formed by twisting a first strand made of a conductive material and a second strand made of a conductive material having lower conductivity and higher strength than the first strand. The second wire has a smaller elongation and a larger cross-sectional area than the first wire.

この場合、前記第一素線は、銅、銅合金、アルミニウムおよびアルミニウム合金から選択される1種または2種以上の材料よりなり、前記第二素線は、鉄、ニッケルおよびステンレスから選択される1種または2種以上の材料よりなるものを好適に示すことができる。   In this case, the first strand is made of one or more materials selected from copper, copper alloy, aluminum and aluminum alloy, and the second strand is selected from iron, nickel and stainless steel. What consists of 1 type or 2 or more types of materials can be shown suitably.

このとき、上記電線導体は、その伸び率が15%以上であることが望ましい。   At this time, it is desirable that the wire conductor has an elongation of 15% or more.

そして、前記第二素線の伸び率は、前記第一素線の伸び率の50〜95%の範囲内にあることが望ましい。   And it is desirable for the elongation rate of said 2nd strand to exist in the range of 50 to 95% of the elongation rate of said 1st strand.

さらに、当該電線導体の断面積に対して、前記第二素線全体の断面積が10〜90%の範囲内にあることが望ましい。   Furthermore, it is desirable that the entire cross-sectional area of the second strand is in the range of 10 to 90% with respect to the cross-sectional area of the wire conductor.

そして、上記電線導体は、その断面積が0.3mm以下の細径電線に特に好適に用いることができる。 And the said wire conductor can be used especially suitably for the thin diameter electric wire whose cross-sectional area is 0.3 mm < 2 > or less.

さらに、上記電線導体は、円形圧縮されていても良い。   Furthermore, the electric wire conductor may be circularly compressed.

一方、本発明に係る絶縁電線は、上記電線導体を用いてなることを要旨とするものである。   On the other hand, the gist of the insulated wire according to the present invention is that it uses the wire conductor.

本発明に係る電線導体は、第一素線と第一素線よりも強度の高い第二素線とを撚り合わせて構成されているので、第一素線のみからなる電線導体よりも導体強度が高くなる。これにより、例えば、電線導体を細径にして軽量化する場合にも、電線導体の強度が低下しにくいので、軽量・細径化に伴う強度低下を改善することができる。   Since the electric wire conductor according to the present invention is formed by twisting the first element wire and the second element wire having higher strength than the first element wire, the conductor strength is higher than that of the electric wire conductor made of only the first element wire. Becomes higher. Thereby, for example, even when the wire conductor is made thin and lightened, the strength of the wire conductor is not easily lowered, so that the strength reduction accompanying the reduction in weight and diameter can be improved.

そして、第二素線は、第一素線よりも伸び率が小さく、かつ断面積が大きいので、電線導体に引張り力が加わったときや、電線導体が繰返し屈曲されたときに、第一素線よりも先に第二素線が断線するようになる。これにより、第一素線が断線するときには第二素線は断線しているので、通電時に第一素線が万一断線しても、低導電率で導体抵抗の高い第二素線に電流が流れやすくなって第二素線が発熱するのを抑止することができる。   Since the second strand has a smaller elongation and a larger cross-sectional area than the first strand, the first strand is applied when a tensile force is applied to the wire conductor or when the wire conductor is repeatedly bent. The second strand breaks before the line. As a result, when the first element wire is disconnected, the second element wire is disconnected. Therefore, even if the first element wire is disconnected during energization, a current is applied to the second element wire with low conductivity and high conductor resistance. It is possible to prevent the second strand from generating heat due to easy flow.

この場合、前記第一素線が、銅、銅合金、アルミニウムおよびアルミニウム合金から1種または2種以上選択され、前記第二素線が、鉄、ニッケルおよびステンレスから1種または2種以上選択されることにより、確実に上記効果を奏する。   In this case, the first strand is selected from one or more of copper, copper alloy, aluminum and aluminum alloy, and the second strand is selected from one, two or more of iron, nickel and stainless steel. By doing so, the above-described effects are surely achieved.

このとき、上記電線導体の伸び率が15%以上であると、例えば、自動車用電線に好適に用いることができる。   At this time, when the elongation percentage of the wire conductor is 15% or more, for example, the wire conductor can be suitably used for an automobile wire.

そして、前記第二素線の伸び率が、前記第一素線の伸び率の50〜95%の範囲内にあると、電線導体に引張り力が加わったときに、確実に第二素線から断線する。   And when the elongation rate of said 2nd strand exists in the range of 50 to 95% of the elongation rate of said 1st strand, when tensile force is added to an electric wire conductor, it is reliably from a 2nd strand. Disconnect.

さらに、当該電線導体の断面積に対して、前記第二素線全体の断面積が10〜90%の範囲内にあると、導体強度が一層優れる。   Furthermore, when the cross-sectional area of the entire second strand is in the range of 10 to 90% with respect to the cross-sectional area of the wire conductor, the conductor strength is further improved.

そして、電線導体の断面積が0.3mm以下の細径電線に用いることができるので、例えば自動車分野などで、絶縁電線の軽量化を図ることができる。 And since it can use for the thin diameter electric wire whose cross-sectional area of an electric wire conductor is 0.3 mm < 2 > or less, the weight reduction of an insulated wire can be achieved in the automotive field etc., for example.

さらに、上記電線導体が円形圧縮されれば、素線間の隙間が少なくなるので、同じ断面積で見たときに、電線導体の細径化を図ることができる。   Furthermore, if the wire conductor is circularly compressed, the gap between the strands is reduced, so that the diameter of the wire conductor can be reduced when viewed with the same cross-sectional area.

一方、本発明に係る絶縁電線は、上記電線導体を用いているので、電線導体を細径化しても電線強度が高い。また、通電時に第一素線が万一断線しても、先に第二素線が断線しているので、電線の発熱が抑止される。そして、電線強度が高いことから、例えば、電線導体の断面積が0.3mm以下の細径電線にも好適に用いることができる。また、上記絶縁電線を例えば自動車分野に用いれば、車両重量の軽量化に貢献することができる。 On the other hand, since the insulated wire according to the present invention uses the wire conductor, the wire strength is high even if the wire conductor is made thinner. Moreover, even if the first strand breaks during energization, the second strand is broken first, so that heat generation of the wire is suppressed. And since electric wire intensity | strength is high, it can use suitably also for the thin diameter electric wire whose cross-sectional area of an electric wire conductor is 0.3 mm < 2 > or less. Moreover, if the said insulated wire is used for the automotive field, for example, it can contribute to the weight reduction of a vehicle weight.

次に、本発明の実施形態について詳細に説明する。   Next, an embodiment of the present invention will be described in detail.

本発明に係る電線導体は、導電体となる第一素線と電線導体の強度を高める補強体となる第二素線とを撚り合わせてなる。電線導体は、1本以上の第一素線と、1本以上の第二素線とで構成される。   The electric wire conductor according to the present invention is formed by twisting together a first element wire serving as a conductor and a second element wire serving as a reinforcing body that increases the strength of the electric wire conductor. The electric wire conductor is composed of one or more first strands and one or more second strands.

第一素線は、導電材料により形成される。導電材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金などの通常電線導体として用いられる材料を例示することができる。これらは、軟質・硬質のいずれでも良い。第一素線の伸び率は、特に限定されるものではないが、例えば、自動車用電線に用いる場合には、15%以上であることが好ましい。なお、伸び率は、JIS C3002に基づいて測定することができる。   The first strand is made of a conductive material. Examples of the conductive material include materials normally used as electric wire conductors such as copper, copper alloy, aluminum, and aluminum alloy. These may be either soft or hard. Although the elongation rate of a 1st strand is not specifically limited, For example, when using for the electric wire for motor vehicles, it is preferable that it is 15% or more. The elongation can be measured based on JIS C3002.

第一素線の断面積は、特に限定されるものではないが、断面積が小さいほど電線重量を軽量にすることができる。よって、通電容量を考慮しつつ、例えば、0.02mm以下とすることが好ましい。また、第一素線の本数も、特に限定されるものではなく、1本の第一素線の断面積と通電量とを考慮して定めると良い。 The cross-sectional area of the first strand is not particularly limited, but the weight of the electric wire can be reduced as the cross-sectional area is smaller. Therefore, for example, it is preferable to set it to 0.02 mm 2 or less in consideration of the energization capacity. Further, the number of the first strands is not particularly limited, and may be determined in consideration of the cross-sectional area of one first strand and the energization amount.

第二素線は、電線導体の強度を高める補強体となるものであり、第一素線よりも強度の高い材料により形成される。強度の高い材料とは、弾性係数が大きく、かつ降伏点応力が高い材料をいい、これらが第一素線よりも大きい(高い)ため、同じ径・同じ本数において、第一素線のみからなる電線導体よりも第一素線と第二素線とからなる電線導体のほうが強度が高くなる。   The second strand is a reinforcement that increases the strength of the electric wire conductor, and is formed of a material having a higher strength than the first strand. High-strength material means a material with a large elastic modulus and a high yield point stress. These are larger (higher) than the first strand, and therefore consist of only the first strand with the same diameter and number. The strength of the wire conductor composed of the first strand and the second strand is higher than that of the wire conductor.

このような材料としては、例えば、鉄、ニッケル、ステンレスなどを例示することができる。これらの材料は、上記第一素線よりも導電性が低いため、導体抵抗が高くなっている。これらの材料は、軟質・硬質のいずれでも良いが、一般に熱処理温度が高いため、熱処理している軟質のものを用いると、第二素線の熱処理工程が省略できるので、好ましい。   Examples of such materials include iron, nickel, and stainless steel. Since these materials have lower conductivity than the first strand, the conductor resistance is high. These materials may be either soft or hard. However, since the heat treatment temperature is generally high, it is preferable to use a soft heat-treated material because the heat treatment step of the second strand can be omitted.

より好ましい材料としては、ステンレスである。腐食しにくく、長期間の使用において信頼性に優れるからである。ステンレスとしては、例えば、SUS304、SUS316などを例示することができる。   A more preferable material is stainless steel. This is because it is difficult to corrode and has excellent reliability in long-term use. Examples of stainless steel include SUS304 and SUS316.

第二素線は、第一素線よりも伸び率が小さいものが良い。例えば電線導体に引張り力が加わり、電線導体全体で引張り応力を受けたときに、第一素線よりも先に断線しやすくなるからである。第二素線の伸び率は、特に限定されないが、第一素線よりも先に確実に断線されやすくするには、第一素線の伸び率の50〜95%の範囲内にあることが好ましい。なお、自動車用電線に用いる場合には、第二素線の伸び率は、15%以上であることが好ましい。   The second strand preferably has a smaller elongation than the first strand. This is because, for example, when a tensile force is applied to the wire conductor and a tensile stress is applied to the entire wire conductor, it becomes easier to break the wire earlier than the first strand. The elongation rate of the second strand is not particularly limited, but may be within a range of 50 to 95% of the elongation rate of the first strand in order to be surely broken before the first strand. preferable. In addition, when using for the electric wire for motor vehicles, it is preferable that the elongation rate of a 2nd strand is 15% or more.

また、第二素線は、第一素線よりも断面積が大きいものが良い。例えば電線導体が繰返し屈曲され、電線導体全体で曲げ応力を受けたときに、第一素線よりも先に断線しやすくなるからである。なお、電線導体全体が円形圧縮されずに、各素線が断面円形を保っている場合には、断面積でなく素線径で比較しても良い。第二素線の本数は、特に限定されるものではない。電線導体の強度を高めるのに十分な量であれば良い。   The second strand preferably has a larger cross-sectional area than the first strand. For example, when the electric wire conductor is repeatedly bent and subjected to bending stress throughout the electric wire conductor, it is easy to break the wire earlier than the first strand. In addition, when each strand maintains the circular cross section without circular compression of the whole electric wire conductor, you may compare not with a cross-sectional area but with a strand diameter. The number of second strands is not particularly limited. It is sufficient if the amount is sufficient to increase the strength of the wire conductor.

電線導体は、上記第一素線と上記第二素線とを組み合わせて構成される。組み合わせとしては、特に限定されないが、第一素線の割合が多くなると、強度は低下しやすいが、導電性が向上しやすくなる。一方、第二素線の割合が多くなると、導電性は低下しやすいが、強度が向上しやすくなる。そのため、導電性と強度向上効果とを考慮して、素線を組み合わせると良い。   The electric wire conductor is configured by combining the first strand and the second strand. Although it does not specifically limit as a combination, When the ratio of a 1st strand increases, intensity | strength will fall easily, but it will become easy to improve electroconductivity. On the other hand, when the proportion of the second strand increases, the conductivity tends to decrease, but the strength tends to improve. Therefore, it is preferable to combine the wires in consideration of conductivity and strength improvement effect.

第一素線(第二素線)の割合は、当該電線導体の断面積に対する第一素線(第二素線)の断面積で表される。第一素線(第二素線)の断面積は、1本以上の第一素線(第二素線)全体の断面積で表される。   The ratio of the first strand (second strand) is represented by the cross-sectional area of the first strand (second strand) with respect to the cross-sectional area of the wire conductor. The cross-sectional area of the first strand (second strand) is represented by the cross-sectional area of the entire one or more first strands (second strand).

電線導体の導電性と強度とを考慮すると、第二素線の割合は、10〜90%の範囲内にあることが好ましい。より好ましくは、10%〜50%の範囲内である。さらに好ましくは、20%〜30%の範囲内である。10%未満では、電線導体の強度向上効果が低下しやすいからである。一方、90%を超えると、導体抵抗が増大しやすいので、電線の許容電流が低下しやすくなり、また、50%を超えると、端子との圧着時に第二素線との接触面が増え、接触抵抗が増大しやすいので、発熱しやすくなり、電源線として用いにくくなるからである。   Considering the conductivity and strength of the wire conductor, the ratio of the second strand is preferably in the range of 10 to 90%. More preferably, it is in the range of 10% to 50%. More preferably, it is in the range of 20% to 30%. This is because if it is less than 10%, the effect of improving the strength of the electric wire conductor tends to decrease. On the other hand, if it exceeds 90%, the conductor resistance tends to increase, so the allowable current of the wire tends to decrease, and if it exceeds 50%, the contact surface with the second strand increases when crimping with the terminal, This is because the contact resistance is likely to increase, so that heat is likely to be generated, making it difficult to use as a power line.

電線導体全体の断面積としては、特に限定されるものではないが、0.3mm以下であることが好ましい。電線導体の細径化により電線重量の軽量化を図ることができるからである。また、このように電線導体が細径化されても、強度向上効果により強度維持が可能だからである。なお、0.3mm以下とは、公称の断面積であり、実際の断面積が0.08〜0.38mmの範囲内にあるものを含む。 Although it does not specifically limit as a cross-sectional area of the whole electric wire conductor, It is preferable that it is 0.3 mm < 2 > or less. This is because the wire weight can be reduced by reducing the diameter of the wire conductor. Further, even if the diameter of the electric wire conductor is reduced in this way, the strength can be maintained by the strength improvement effect. Note that the 0.3 mm 2 or less, the cross-sectional area of the nominal, including those actual cross-sectional area is within the range of 0.08~0.38mm 2.

電線導体は、円形圧縮されていても良い。円形圧縮は、例えば電線導体を撚り合わせた状態で圧縮ダイスに通過させるなどして行なうことができる。上記電線導体が円形圧縮されると、素線間の隙間が少なくなるので、同じ断面積で見たときに、電線導体の細径化を図ることができる。また、被覆の量を少なくすることができる。   The wire conductor may be circularly compressed. Circular compression can be performed, for example, by passing the wire conductor through a compression die in a twisted state. When the electric wire conductor is circularly compressed, gaps between the strands are reduced, so that the diameter of the electric wire conductor can be reduced when viewed with the same cross-sectional area. In addition, the amount of coating can be reduced.

次に、より具体的な電線導体の構成について、図1〜図2を参照して説明する。   Next, a more specific configuration of the electric wire conductor will be described with reference to FIGS.

図1には、8本の素線で構成される電線導体を示す。図1(a)に示す電線導体10aは、7本の第一素線12と1本の第二素線14との組み合わせ例である。中心に第二素線14が配置され、この第二素線14を囲むように7本の第一素線12が配置されている。第二素線14は、第一素線12よりも断面積が大きく形成されている。図1(b)に示す電線導体10bは、図1(a)に示す電線導体10aを円形圧縮したものである。電線導体10aと比較して、第一素線12と第一素線12と間や第一素線12と第二素線14との間の隙間が少なくなっているので、電線導体10bは電線導体10aよりも細径になっている。第二素線14は、第一素線12よりも硬いので、第一素線12よりも潰れにくく、ほぼ円形を保っている。   In FIG. 1, the electric wire conductor comprised by eight strands is shown. A wire conductor 10a shown in FIG. 1A is a combination example of seven first strands 12 and one second strand 14. A second strand 14 is disposed at the center, and seven first strands 12 are disposed so as to surround the second strand 14. The second strand 14 has a larger cross-sectional area than the first strand 12. An electric wire conductor 10b shown in FIG. 1B is obtained by circularly compressing the electric wire conductor 10a shown in FIG. Since the gap between the first strand 12 and the first strand 12 and between the first strand 12 and the second strand 14 is smaller than that of the wire conductor 10a, the wire conductor 10b is an electric wire. The diameter is smaller than that of the conductor 10a. Since the 2nd strand 14 is harder than the 1st strand 12, it is hard to be crushed rather than the 1st strand 12, and is maintaining the substantially circular shape.

図2には、9本の素線で構成される電線導体を示す。図2(a)に示す電線導体20aは、8本の第一素線12と1本の第二素線14との組み合わせ例である。中心に第二素線14が配置され、この第二素線14を囲むように8本の第一素線12が配置されている。第二素線14は、第一素線12よりも断面積が大きく形成されている。図2(b)に示す電線導体20bは、図1(a)に示す電線導体20aを円形圧縮したものである。電線導体20aと比較して、第一素線12と第一素線12と間や第一素線12と第二素線14との間の隙間が少なくなっているので、電線導体20bは電線導体20aよりも細径になっている。第二素線14は、第一素線12よりも硬いので、第一素線12よりも潰れにくく、ほぼ円形を保っている。   In FIG. 2, the electric wire conductor comprised by nine strands is shown. A wire conductor 20a shown in FIG. 2A is a combination example of eight first strands 12 and one second strand 14. A second strand 14 is disposed at the center, and eight first strands 12 are disposed so as to surround the second strand 14. The second strand 14 has a larger cross-sectional area than the first strand 12. An electric wire conductor 20b shown in FIG. 2B is obtained by circularly compressing the electric wire conductor 20a shown in FIG. Since the gap between the first strand 12 and the first strand 12 and between the first strand 12 and the second strand 14 is reduced as compared with the wire conductor 20a, the wire conductor 20b is an electric wire. The diameter is smaller than that of the conductor 20a. Since the 2nd strand 14 is harder than the 1st strand 12, it is hard to be crushed rather than the 1st strand 12, and is maintaining the substantially circular shape.

上記電線導体を作製するには、例えば、所望の本数の第一素線と第二素線とをそれぞれ用意して撚り合わせると良い。このとき、撚り合わせ前や撚り合わせ後において、伸線・圧縮などの冷間加工や熱処理を行なっても良い。   In order to produce the wire conductor, for example, a desired number of first strands and second strands may be prepared and twisted together. At this time, cold processing such as wire drawing / compression or heat treatment may be performed before twisting or after twisting.

第一素線および第二素線の伸び率は、伸線・圧縮などの冷間加工や熱処理、材料の組成などにより調整可能である。冷間加工により加工硬化するので、素線の伸びを下げることができ、熱処理により素線の伸びを高めることができる。また、断面積は、伸線・圧縮などの冷間加工などにより調整可能である。   The elongation of the first and second strands can be adjusted by cold working such as wire drawing / compression, heat treatment, material composition, and the like. Since work hardening is performed by cold working, the elongation of the strands can be reduced, and the elongation of the strands can be increased by heat treatment. The cross-sectional area can be adjusted by cold working such as wire drawing and compression.

第一素線および第二素線は、撚り合わされる前に目的とする伸び率および断面積に調整されていても良いし、伸線、圧縮、熱処理などによる伸び率および断面積の変化を見込んで材料の選択をし、撚り合わせた後の伸線、圧縮、熱処理などにより目的とする伸び率および断面積に調整されても良い。   The first strand and the second strand may be adjusted to the intended elongation and cross-sectional area before being twisted, and the elongation and cross-sectional area are expected to change due to wire drawing, compression, heat treatment, etc. The material may be selected by (1) and may be adjusted to the desired elongation and cross-sectional area by wire drawing, compression, heat treatment, and the like after twisting.

すなわち、あらかじめ目的とする伸び率および断面積にそれぞれ調整された第一素線および第二素線とを撚り合わせて電線導体を形成しても良いし、第一素線と第二素線とを撚り合わせた後、伸線・圧縮などの冷間加工や熱処理などを施すことにより、目的とする伸び率および断面積に調整しても良い。   That is, a wire conductor may be formed by twisting a first strand and a second strand that have been adjusted in advance to the desired elongation and cross-sectional area, respectively, and the first strand and the second strand After twisting together, it may be adjusted to the desired elongation and cross-sectional area by performing cold working such as wire drawing / compression or heat treatment.

撚り合わせ後に伸び率および断面積を調整する例としては、例えば、銅素線を第一素線とし、ステンレス素線を第二素線として具体的に説明すると、目的とする伸び率および断面積に調整された1本の軟質のステンレス素線と、熱処理されていない7本の硬質の銅素線とを撚り合わせた後、銅素線の伸び率がステンレス素線の伸び率よりも高くなるように熱処理を施すことを示すことができる。   As an example of adjusting the elongation and the cross-sectional area after twisting, for example, a copper element wire is a first element wire and a stainless steel element wire is a second element wire. After twisting one soft stainless steel wire adjusted to 7 and seven hard copper wires that have not been heat-treated, the elongation rate of the copper strand becomes higher than the elongation rate of the stainless steel wire It can be shown that heat treatment is performed.

熱処理温度は、300〜500℃の範囲内が好ましい。300℃未満では、冷間加工による加工硬化が除去されにくいので、伸びの向上効果が得られにくいからである。一方、500℃を超えると、引張強度の向上効果が得られにくいからである。   The heat treatment temperature is preferably in the range of 300 to 500 ° C. This is because if the temperature is lower than 300 ° C., work hardening due to cold working is difficult to remove, and thus it is difficult to obtain an effect of improving elongation. On the other hand, if the temperature exceeds 500 ° C., it is difficult to obtain an effect of improving the tensile strength.

熱処理は、各種軟化炉を用いて行なうことができる。軟化炉の様式は、電線導体に所望の特性が得られれば、特に限定はされない。バッチ式軟化炉であっても良いし、連続式軟化炉であっても良い。バッチ式軟化炉としては、例えばベル型軟化炉などを例示することができる。一方、連続式軟化炉としては、例えば通電連続軟化炉、パイプ連続軟化炉、高周波連続軟化炉などを例示することができる。   The heat treatment can be performed using various softening furnaces. The mode of the softening furnace is not particularly limited as long as desired characteristics are obtained for the wire conductor. It may be a batch type softening furnace or a continuous softening furnace. As a batch type softening furnace, a bell type softening furnace etc. can be illustrated, for example. On the other hand, examples of the continuous softening furnace include an energization continuous softening furnace, a pipe continuous softening furnace, and a high-frequency continuous softening furnace.

次に、本発明に係る絶縁電線について説明する。   Next, the insulated wire according to the present invention will be described.

本発明に係る絶縁電線は、上記電線導体の外周を絶縁体で被覆してなる。絶縁体は、1層としても良いし、2層以上としても良い。2層以上とする場合、各層は同種であっても良いし、異種であっても良い。   The insulated wire according to the present invention is formed by covering the outer periphery of the wire conductor with an insulator. The insulator may be a single layer or two or more layers. When two or more layers are used, each layer may be the same or different.

絶縁体としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、PFA樹脂、ETFE(エチレン四フッ化エチレン共重合体)樹脂、FEP(フッ化エチレンプロピレン)樹脂等のフッ素樹脂などを例示することができる。被覆の厚さは、特に制限はないが、例えば電線重量を軽量化するには、0.2mmまでの範囲内が好ましい。   Examples of the insulator include fluorine resins such as polyvinyl chloride, polyethylene, polypropylene, PFA resin, ETFE (ethylene tetrafluoroethylene copolymer) resin, and FEP (fluorinated ethylene propylene) resin. . The thickness of the coating is not particularly limited, but is preferably within a range of up to 0.2 mm, for example, to reduce the weight of the electric wire.

絶縁体には、必要に応じて、各種添加剤が配合されていても良い。このような添加剤としては、例えば、酸化防止剤、金属不活性化剤、加工助剤(滑剤、ワックス等)などを例示することができる。   Various additives may be blended in the insulator as necessary. Examples of such additives include antioxidants, metal deactivators, processing aids (lubricants, waxes, etc.) and the like.

上記絶縁電線は、例えば、押出機(単軸、二軸)、バンバリミキサー、加圧ニーダー、ロールなどの通常用いられる混練機を用いて混練した絶縁体材料を、通常の押出成形機などを用いて電線導体の外周に押出被覆するなどして製造することができる。   The insulated wire is, for example, an insulator material kneaded using a kneader that is usually used, such as an extruder (single axis, biaxial), a Banbury mixer, a pressure kneader, or a roll. The outer periphery of the electric wire conductor can be manufactured by extrusion coating.

以下に本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

(実施例1)
伸び率20〜25%、素線径0.13mmの軟質銅素線7本と、伸び率15〜18%、素線径0.21mmの軟質ステンレス素線(SUS304)1本とを撚り合わせて電線導体を作製し、電線導体の外周を厚さ0.2mmでポリオレフィン混和物により被覆して絶縁電線を作製した。
(Example 1)
7 soft copper strands with an elongation of 20-25% and strand diameter of 0.13 mm and a soft stainless steel strand (SUS304) with an elongation of 15-18% and strand diameter of 0.21 mm are twisted together An electric wire conductor was produced, and the outer circumference of the electric wire conductor was coated with a polyolefin blend with a thickness of 0.2 mm to produce an insulated electric wire.

(実施例2)
軟質銅素線8本とした以外、実施例1と同様にして、電線導体および絶縁電線を作製した。
(Example 2)
A wire conductor and an insulated wire were produced in the same manner as in Example 1 except that the number of the soft copper wires was eight.

以上のように作製した各絶縁電線について、引張試験および屈曲試験を行った。その結果を表1に示す。また、以下に各試験方法および評価方法について説明する。   A tensile test and a bending test were performed on each insulated wire manufactured as described above. The results are shown in Table 1. In addition, each test method and evaluation method will be described below.

(評価方法)
電線引張試験
JIS C 3002に準拠して行なった。すなわち、絶縁電線を400mmの長さに切り出し、23℃にて試験片の両端を引張試験機のチャックに取り付けた後、引っ張り速度200mm/分で引っ張り、素線が断線した時の荷重および先に断線した素線を調べた。
(Evaluation methods)
Electric wire tensile test It was performed according to JIS C 3002. That is, an insulated wire is cut into a length of 400 mm, and both ends of a test piece are attached to a chuck of a tensile tester at 23 ° C., and then pulled at a pulling speed of 200 mm / min. The broken wire was examined.

導体引張試験
絶縁電線に変えて、絶縁電線内の電線導体のみについて、上記電線引張試験と同様の引張試験を行なった。
Conductor tensile test In place of the insulated wire, only the wire conductor in the insulated wire was subjected to a tensile test similar to the above-described wire tensile test.

屈曲試験
図3に示した試験方法にて行なった。すなわち、絶縁電線を300mmの長さに切り出し、23℃にて試験片32の一端に500gの錘34を吊り下げ、他端を、屈曲半径R=6mm、屈曲角度±90°、屈曲速度1往復/sec.で繰返し屈曲させた。1往復を1回とし、電線導体の導通がなくなった(素線が全部断線した)ときの屈曲回数を測定した。また、先に断線した素線を調べるために、屈曲回数100回ごとに試験を停止し、電線被覆を剥がして素線切れの有無を調べた。
Bending test The bending test was performed by the test method shown in FIG. That is, an insulated wire is cut to a length of 300 mm, a 500 g weight 34 is suspended at one end of the test piece 32 at 23 ° C., and the other end is bent at a bending radius R = 6 mm, a bending angle ± 90 °, and a bending speed is 1 round trip. / Sec. And repeatedly bent. One reciprocation was taken as one time, and the number of bendings was measured when the electrical conductor was no longer conducting (the wires were all disconnected). Moreover, in order to investigate the element | wire which disconnected previously, the test was stopped for every 100 times of bending | flexion, the electric wire coating | coated was peeled, and the presence or absence of the element | wire break was investigated.

Figure 2008159403
Figure 2008159403

実施例1および実施例2では、引張試験および屈曲試験において、それぞれステンレス素線が先に断線した。すなわち、本実施例に係る電線導体および絶縁電線によれば、電線導体に引張り力が加わったときや、電線導体が繰返し屈曲されたときに、ステンレス素線が先に断線する。よって、銅素線が断線したときにはステンレス素線はすでに断線しているので、導体抵抗の高いステンレス素線に電流が流れやすくなってこのステンレス素線が発熱するのを抑止できることを確認した。   In Example 1 and Example 2, in the tensile test and the bending test, the stainless steel wire was disconnected first. That is, according to the wire conductor and the insulated wire according to the present embodiment, when a tensile force is applied to the wire conductor or when the wire conductor is repeatedly bent, the stainless steel wire is disconnected first. Therefore, since the stainless steel wire was already disconnected when the copper wire was disconnected, it was confirmed that current can easily flow through the stainless steel wire having a high conductor resistance and the stainless steel wire can be prevented from generating heat.

また、本実施例に係る電線導体の断面積は0.14mmであり、導体引張試験での破断荷重は、両実施例とも60N以上であった。これにより、公称断面積が0.3mm以下の細径電線にも適用可能な強度を有していることを確認し、軽量・細径化に伴う強度低下を改善できることを確認した。 Moreover, the cross-sectional area of the electric wire conductor which concerns on a present Example was 0.14 mm < 2 >, and the breaking load in the conductor tensile test was 60 N or more in both Examples. As a result, it was confirmed that the wire has a strength applicable to a thin wire having a nominal cross-sectional area of 0.3 mm 2 or less, and it was confirmed that the strength reduction due to light weight and thinning can be improved.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、実施例では、あらかじめ目的とする伸び率を有する素線を用いて電線導体を形成しているが、これ以外にも、例えば硬質の銅素線と軟質のステンレス素線とを組み合わせ、撚った後に熱処理して銅素線を所望の伸び率にしても同様の結果が得られることは言うまでもない。また、実施例では、第一素線が銅で第二素線がステンレスについて示しているが、第一素線が銅合金、アルミニウム、またはアルミニウム合金よりなり、第二素線が鉄、ニッケルまたはSUS304以外のステンレスよりなる場合であっても同様の結果が得られることは勿論である。   For example, in the embodiment, the wire conductor is formed in advance using a strand having a target elongation, but other than this, for example, a hard copper strand and a soft stainless strand are combined and twisted. It goes without saying that the same result can be obtained even if the copper wire is made to have a desired elongation by heat treatment. In the embodiment, the first strand is copper and the second strand is stainless. However, the first strand is made of a copper alloy, aluminum, or an aluminum alloy, and the second strand is iron, nickel, or Of course, the same result can be obtained even when it is made of stainless steel other than SUS304.

本発明の一実施形態に係る電線導体を表す断面図であり、素線8本で構成される電線導体である。It is sectional drawing showing the electric wire conductor which concerns on one Embodiment of this invention, and is an electric wire conductor comprised by eight strands. 本発明の一実施形態に係る電線導体を表す断面図であり、素線9本で構成される電線導体である。It is sectional drawing showing the electric wire conductor which concerns on one Embodiment of this invention, and is an electric wire conductor comprised by nine strands. 屈曲試験方法を説明する図である。It is a figure explaining a bending test method.

符号の説明Explanation of symbols

10a、10b 電線導体
20a、20b 電線導体
12 第一素線(銅素線)
14 第二素線(ステンレス素線)
10a, 10b Wire conductor 20a, 20b Wire conductor 12 First strand (copper strand)
14 Second strand (stainless steel strand)

Claims (8)

導電材料よりなる第一素線と、第一素線よりも低導電性で強度の高い導電材料よりなる第二素線とを撚り合わせてなる電線導体であって、
前記第二素線は、前記第一素線よりも伸び率が小さく、かつ断面積が大きいことを特徴とする電線導体。
A wire conductor formed by twisting a first strand made of a conductive material and a second strand made of a conductive material having lower conductivity and higher strength than the first strand,
The electric wire conductor, wherein the second strand has a smaller elongation and a larger cross-sectional area than the first strand.
前記第一素線は、銅、銅合金、アルミニウムおよびアルミニウム合金から選択される1種または2種以上の材料よりなり、前記第二素線は、鉄、ニッケルおよびステンレスから選択される1種または2種以上の材料よりなることを特徴とする請求項1に記載の電線導体。   The first strand is made of one or more materials selected from copper, copper alloy, aluminum and aluminum alloy, and the second strand is one or more selected from iron, nickel and stainless steel. It consists of 2 or more types of materials, The electric wire conductor of Claim 1 characterized by the above-mentioned. その伸び率が15%以上であることを特徴とする請求項1または2に記載の電線導体。   The wire conductor according to claim 1 or 2, wherein the elongation is 15% or more. 前記第二素線の伸び率は、前記第一素線の伸び率の50〜95%の範囲内にあることを特徴とする請求項1から3のいずれかに記載の電線導体。   The wire conductor according to any one of claims 1 to 3, wherein the elongation rate of the second strand is in a range of 50 to 95% of the elongation rate of the first strand. 当該電線導体の断面積に対して、前記第二素線全体の断面積が10〜90%の範囲内にあることを特徴とする請求項1から4のいずれかに記載の電線導体。   The electric wire conductor according to any one of claims 1 to 4, wherein a cross-sectional area of the entire second strand is in a range of 10 to 90% with respect to a cross-sectional area of the electric wire conductor. その断面積が0.3mm以下であることを特徴とする請求項1から5のいずれかに記載の電線導体。 The electric wire conductor according to any one of claims 1 to 5, wherein the cross-sectional area is 0.3 mm 2 or less. 円形圧縮されていることを特徴とする請求項1から6のいずれかに記載の特徴とする電線導体。   The wire conductor according to any one of claims 1 to 6, wherein the wire conductor is circularly compressed. 請求項1から7のいずれかに記載の電線導体を用いてなることを特徴とする絶縁電線。   An insulated wire comprising the wire conductor according to any one of claims 1 to 7.
JP2006346860A 2006-12-25 2006-12-25 Wire conductor, and insulated wire Pending JP2008159403A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006346860A JP2008159403A (en) 2006-12-25 2006-12-25 Wire conductor, and insulated wire
PCT/JP2007/065495 WO2008078430A1 (en) 2006-12-25 2007-08-08 Wire conductor and insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346860A JP2008159403A (en) 2006-12-25 2006-12-25 Wire conductor, and insulated wire

Publications (1)

Publication Number Publication Date
JP2008159403A true JP2008159403A (en) 2008-07-10

Family

ID=39562225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346860A Pending JP2008159403A (en) 2006-12-25 2006-12-25 Wire conductor, and insulated wire

Country Status (2)

Country Link
JP (1) JP2008159403A (en)
WO (1) WO2008078430A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238478A (en) * 2009-03-31 2010-10-21 Mitsubishi Cable Ind Ltd Manufacturing method of wire conductor, wire conductor and insulated wire
JP2010257687A (en) * 2009-04-23 2010-11-11 Junkosha Co Ltd Coiled electric wire
JP2012184521A (en) * 2011-03-04 2012-09-27 Toyota Boshoku Corp Cloth material
KR20130115732A (en) * 2012-04-13 2013-10-22 엘에스전선 주식회사 Conductor, cable including the same and manufacturing method thereof
US8928449B2 (en) 2008-05-28 2015-01-06 Flextronics Ap, Llc AC/DC planar transformer
WO2015129081A1 (en) * 2014-02-26 2015-09-03 株式会社オートネットワーク技術研究所 Stranded conductor and insulated wire
CN107430910A (en) * 2015-03-31 2017-12-01 株式会社自动网络技术研究所 Insulated electric conductor
KR101914790B1 (en) * 2012-03-08 2018-11-02 엘에스전선 주식회사 copper clad aluminum wire, compressed conductor and cable including the same, manufacturing method of compressed conductor
JP7378321B2 (en) 2020-03-06 2023-11-13 株式会社クラベ Heater wire and sheet heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128629B (en) * 2016-08-04 2018-01-09 四川九洲线缆有限责任公司 A kind of photoelectric hybrid transmission thermal balance cable

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288625A (en) * 2003-03-06 2004-10-14 Auto Network Gijutsu Kenkyusho:Kk Electric wire for automobile
JP4182850B2 (en) * 2003-09-18 2008-11-19 住友電装株式会社 Automotive wire
JP2005158450A (en) * 2003-11-25 2005-06-16 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2006032084A (en) * 2004-07-15 2006-02-02 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2006032081A (en) * 2004-07-15 2006-02-02 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2006032076A (en) * 2004-07-15 2006-02-02 Sumitomo Wiring Syst Ltd Electric wire for automobile
JP2006185683A (en) * 2004-12-27 2006-07-13 Auto Network Gijutsu Kenkyusho:Kk Electric wire for automobile
JP2007059113A (en) * 2005-08-23 2007-03-08 Sumitomo Wiring Syst Ltd Electric wire for automobile

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928449B2 (en) 2008-05-28 2015-01-06 Flextronics Ap, Llc AC/DC planar transformer
US8975523B2 (en) 2008-05-28 2015-03-10 Flextronics Ap, Llc Optimized litz wire
JP2010238478A (en) * 2009-03-31 2010-10-21 Mitsubishi Cable Ind Ltd Manufacturing method of wire conductor, wire conductor and insulated wire
JP2010257687A (en) * 2009-04-23 2010-11-11 Junkosha Co Ltd Coiled electric wire
JP2012184521A (en) * 2011-03-04 2012-09-27 Toyota Boshoku Corp Cloth material
KR101914790B1 (en) * 2012-03-08 2018-11-02 엘에스전선 주식회사 copper clad aluminum wire, compressed conductor and cable including the same, manufacturing method of compressed conductor
KR20130115732A (en) * 2012-04-13 2013-10-22 엘에스전선 주식회사 Conductor, cable including the same and manufacturing method thereof
KR101938007B1 (en) * 2012-04-13 2019-04-11 엘에스전선 주식회사 conductor, cable including the same and manufacturing method thereof
CN105981112A (en) * 2014-02-26 2016-09-28 株式会社自动网络技术研究所 Stranded conductor and insulated wire
US20160351299A1 (en) * 2014-02-26 2016-12-01 Autonetworks Technologies, Ltd. Stranded wire conductor and insulated wire
JP2015162268A (en) * 2014-02-26 2015-09-07 株式会社オートネットワーク技術研究所 Twisted wire conductor and insulated electric wire
US10147518B2 (en) 2014-02-26 2018-12-04 Autonetworks Technologies, Ltd. Stranded wire conductor and insulated wire
WO2015129081A1 (en) * 2014-02-26 2015-09-03 株式会社オートネットワーク技術研究所 Stranded conductor and insulated wire
CN107430910A (en) * 2015-03-31 2017-12-01 株式会社自动网络技术研究所 Insulated electric conductor
US20180061526A1 (en) * 2015-03-31 2018-03-01 Autoneworks Technologies, Ltd. Insulated wire
DE112016001506T5 (en) 2015-03-31 2018-04-19 Autonetworks Technologies, Ltd. Insulated wire
US10199142B2 (en) 2015-03-31 2019-02-05 Autonetworks Technologies, Ltd. Insulated wire
CN107430910B (en) * 2015-03-31 2019-07-09 株式会社自动网络技术研究所 Insulated electric conductor
JP7378321B2 (en) 2020-03-06 2023-11-13 株式会社クラベ Heater wire and sheet heater

Also Published As

Publication number Publication date
WO2008078430A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP2008159403A (en) Wire conductor, and insulated wire
JP2008166141A (en) Electric wire conductor, and insulation wire
JP2012146431A (en) Electric wire conductor and insulated electric wire
WO2006008981A1 (en) Electric wire for automobile
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
JP2008016284A (en) Electric wire conductor for automobile
EP1783784A1 (en) Electric wire for automobile
JP2007042475A (en) Electric wire for automobile
JP2017199457A (en) High flex insulation wire and wire harness
JP5708846B1 (en) Stranded conductor and insulated wire
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JP4735127B2 (en) Automotive wire
JP4182850B2 (en) Automotive wire
WO2018235368A1 (en) Insulated wire, and wire harness
JP6662004B2 (en) Power transmission cable manufacturing method
JP2006253093A (en) Electric wire for automobile
JP6406098B2 (en) Insulated wire
JP2018045855A (en) Flat cable
JP2008027640A (en) Electric wire for automobile using highly strengthened copper alloy wire
JPWO2009154239A1 (en) Wire conductor for wiring, wire for wiring, and method for manufacturing wire conductor for wiring
JP2006253076A (en) Electric wire for automobile
EP2856473A1 (en) Insulated electric wire
JP2006032081A (en) Electric wire for automobile
JP2010218927A (en) Vehicular electric wire conductor for automobile, and vehicular electric wire
JP2019091670A (en) Power distribution line improving arc fusion characteristics