JP2008156570A - Method of manufacturing latent hardening agent particle, method of manufacturing adhesive, and method of manufacturing adhesive film - Google Patents
Method of manufacturing latent hardening agent particle, method of manufacturing adhesive, and method of manufacturing adhesive film Download PDFInfo
- Publication number
- JP2008156570A JP2008156570A JP2006349933A JP2006349933A JP2008156570A JP 2008156570 A JP2008156570 A JP 2008156570A JP 2006349933 A JP2006349933 A JP 2006349933A JP 2006349933 A JP2006349933 A JP 2006349933A JP 2008156570 A JP2008156570 A JP 2008156570A
- Authority
- JP
- Japan
- Prior art keywords
- curing agent
- particles
- main
- resin
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 352
- 239000002245 particle Substances 0.000 title claims abstract description 269
- 239000000853 adhesive Substances 0.000 title claims abstract description 115
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 239000002313 adhesive film Substances 0.000 title description 4
- 229920005989 resin Polymers 0.000 claims abstract description 157
- 239000011347 resin Substances 0.000 claims abstract description 157
- 239000007788 liquid Substances 0.000 claims abstract description 128
- 239000011230 binding agent Substances 0.000 claims abstract description 28
- 239000000178 monomer Substances 0.000 claims description 71
- -1 silane compound Chemical class 0.000 claims description 35
- 239000003960 organic solvent Substances 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 23
- 238000005470 impregnation Methods 0.000 claims description 21
- 229910000077 silane Inorganic materials 0.000 claims description 21
- 238000004140 cleaning Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 239000013522 chelant Substances 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 17
- 239000012948 isocyanate Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 238000006116 polymerization reaction Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 229920002396 Polyurea Polymers 0.000 claims description 11
- 239000004849 latent hardener Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 239000007795 chemical reaction product Substances 0.000 claims description 10
- 150000002513 isocyanates Chemical group 0.000 claims description 10
- 239000002798 polar solvent Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- 239000012454 non-polar solvent Substances 0.000 claims description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 7
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 38
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 22
- 229910052782 aluminium Inorganic materials 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 21
- 239000000203 mixture Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 19
- 239000006087 Silane Coupling Agent Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 238000012695 Interfacial polymerization Methods 0.000 description 14
- 239000008346 aqueous phase Substances 0.000 description 13
- 238000000113 differential scanning calorimetry Methods 0.000 description 13
- 229920001187 thermosetting polymer Polymers 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 238000009835 boiling Methods 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 6
- 125000003700 epoxy group Chemical group 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- 239000004848 polyfunctional curative Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 3
- 229940093858 ethyl acetoacetate Drugs 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical group C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- XSCLFFBWRKTMTE-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCCC(CN=C=O)C1 XSCLFFBWRKTMTE-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- COPLXRFZXQINJM-UHFFFAOYSA-N isocyanic acid;hydrate Chemical compound O.N=C=O COPLXRFZXQINJM-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- QCTJRYGLPAFRMS-UHFFFAOYSA-N prop-2-enoic acid;1,3,5-triazine-2,4,6-triamine Chemical compound OC(=O)C=C.NC1=NC(N)=NC(N)=N1 QCTJRYGLPAFRMS-UHFFFAOYSA-N 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
本発明は接着剤の製造方法と、該接着剤に用いられる潜在性硬化剤粒子の製造方法に関する。 The present invention relates to a method for producing an adhesive and a method for producing latent curing agent particles used in the adhesive.
一般に、接着剤には熱硬化性樹脂を硬化させる硬化剤が添加されており、接着剤の保存性を高めるために、従来より硬化剤をカプセル化した潜在性硬化剤粒子が用いられている。
潜在性硬化剤粒子としては、例えばポリウレア樹脂粒子内にアルミニウムキレートのような硬化剤が保持されたものが公知である(例えば、特許文献3を参照)。
Generally, a curing agent for curing a thermosetting resin is added to the adhesive, and latent curing agent particles encapsulating the curing agent are conventionally used to improve the storage stability of the adhesive.
As latent curing agent particles, for example, those in which a curing agent such as aluminum chelate is held in polyurea resin particles are known (see, for example, Patent Document 3).
しかし、ポリウレア樹脂粒子は接着剤中の有機溶剤や、低分子の熱硬化性樹脂が粒子内に浸透しやすいため、上記潜在性硬化剤粒子を用いる場合には、有機溶剤の種類や添加量、熱硬化性樹脂の種類に制限があった。
また、ポリウレア樹脂粒子は熱応答性が大きいため、接着剤を熱硬化させる際に効率が良い反面、多量の硬化剤を保持させることができないという問題もあった。
In addition, since the polyurea resin particles have high thermal responsiveness, the polyurea resin particles are efficient when thermally curing the adhesive, but there is also a problem that a large amount of the curing agent cannot be retained.
本発明は上記課題を解決するためになされたものであり、その目的は接着剤を硬化させる時の反応性が高く、かつ保存性に優れた潜在性硬化剤粒子と接着剤を提供することである。 The present invention has been made to solve the above-mentioned problems, and its purpose is to provide latent curing agent particles and an adhesive that are highly reactive when curing an adhesive and have excellent storage stability. is there.
上記課題を解決するために本発明は、接着剤に分散されるべき潜在性硬化剤粒子であって、補助硬化剤との反応生成物が前記接着剤を硬化させる主硬化剤を含有する潜在性硬化剤粒子を製造する潜在性硬化剤粒子の製造方法であって、重合反応可能な反応性樹脂と、前記主硬化剤とを有する原料液を製造する原料液製造工程と、前記原料液を加熱して前記反応性樹脂を重合させ、前記主硬化剤を含有する樹脂粒子を製造する樹脂粒子製造工程と、前記樹脂粒子を、前記主硬化剤が添加された含浸液に接触させて、前記主硬化剤を前記樹脂粒子に含浸させ、前記樹脂粒子中の前記主硬化剤の含有量を増加させる含浸工程とを有する潜在性硬化剤粒子の製造方法である。
本発明は、潜在性硬化剤粒子の製造方法であって、前記補助硬化剤は前記反応性樹脂の重合を阻害する物質であり、前記含浸液は前記補助硬化剤を含有する潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記原料液製造工程は、前記反応性樹脂と前記主硬化剤を、前記主硬化剤を分解する主溶媒に分散させる分散工程を有する潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記反応性樹脂として、前記主溶媒と反応して重合可能な反応性モノマーと、前記主溶媒中で液滴を形成する熱重合性モノマーを用い、前記主硬化剤と共に前記主溶媒に分散させる潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記補助硬化剤は前記反応性モノマーの重合反応を阻害する潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記主溶媒として水を主成分とするものを用いる潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記反応性モノマーはイソシアネートである潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記熱重合性モノマーは、ビニルモノマーとアクリルモノマーのいずれか一方又は両方である潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記主硬化剤は金属キレートであり、前記補助硬化剤はシラン化合物である潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記潜在性硬化剤粒子を、前記主硬化剤を溶解し、かつ、前記樹脂粒子内に浸透しない洗浄液に浸漬させる洗浄工程が、前記含浸工程の後に設けられた潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記反応性モノマーの重合物は極性樹脂であり、前記洗浄液は非極性溶剤である潜在性硬化剤粒子の製造方法である。
本発明は潜在性硬化剤粒子の製造方法であって、前記反応性モノマーの重合物はポリウレア樹脂であり、前記洗浄液には、シクロヘキサンと、ヘキサンと、トルエンとからなる群より選択される1種類以上の極性溶剤を含有させる潜在性硬化剤粒子の製造方法である。
本発明は接着剤の製造方法であって、前記潜在性硬化剤粒子を、樹脂と、有機溶剤とを含有するバインダーに分散させる接着剤の製造方法である。
本発明は接着剤の製造方法であって、前記バインダーに前記補助硬化剤を含有させる接着剤の製造方法である。
本発明は接着剤フィルムの製造方法であって、前記接着剤の塗布層を形成した後、前記塗布層から前記有機溶剤を除去し、前記塗布層をフィルム化する接着フィルムの製造方法である。
In order to solve the above problems, the present invention is a latent curing agent particle to be dispersed in an adhesive, wherein the reaction product with an auxiliary curing agent contains a main curing agent that cures the adhesive. A method for producing latent curing agent particles for producing curing agent particles, a raw material liquid production step for producing a raw material liquid having a reactive resin capable of polymerization reaction and the main curing agent, and heating the raw material liquid A resin particle production step of polymerizing the reactive resin to produce resin particles containing the main curing agent, and bringing the resin particles into contact with an impregnating liquid to which the main curing agent is added. A method for producing latent curing agent particles, comprising impregnating the resin particles with a curing agent and increasing the content of the main curing agent in the resin particles.
The present invention is a method for producing latent curing agent particles, wherein the auxiliary curing agent is a substance that inhibits polymerization of the reactive resin, and the impregnating liquid contains latent auxiliary curing agent particles. It is a manufacturing method.
The present invention is a method for producing latent curing agent particles, wherein the raw material liquid production step includes a dispersion step in which the reactive resin and the main curing agent are dispersed in a main solvent that decomposes the main curing agent. This is a method for producing a conductive curing agent particle.
The present invention is a method for producing latent curing agent particles, wherein the reactive resin is a reactive monomer that can be polymerized by reacting with the main solvent, and a thermally polymerizable monomer that forms droplets in the main solvent. The latent curing agent particles are dispersed in the main solvent together with the main curing agent.
The present invention is a method for producing latent curing agent particles, wherein the auxiliary curing agent is a method for producing latent curing agent particles that inhibits a polymerization reaction of the reactive monomer.
This invention is a manufacturing method of latent hardener particle | grains, Comprising: It is a manufacturing method of latent hardener particle | grains using what has water as a main component as said main solvent.
The present invention is a method for producing latent curing agent particles, wherein the reactive monomer is an isocyanate.
This invention is a manufacturing method of latent hardener particle | grains, Comprising: The said thermopolymerizable monomer is a manufacturing method of latent hardener particle | grains which are any one or both of a vinyl monomer and an acrylic monomer.
The present invention is a method for producing latent curing agent particles, wherein the main curing agent is a metal chelate and the auxiliary curing agent is a silane compound.
The present invention is a method for producing latent curing agent particles, wherein the latent curing agent particles are immersed in a cleaning solution that dissolves the main curing agent and does not penetrate into the resin particles. It is a manufacturing method of the latent hardener particle | grains provided after the process.
The present invention is a method for producing latent curing agent particles, wherein the polymer of the reactive monomer is a polar resin, and the cleaning liquid is a nonpolar solvent.
The present invention is a method for producing latent curing agent particles, wherein the polymer of the reactive monomer is a polyurea resin, and the cleaning liquid is one kind selected from the group consisting of cyclohexane, hexane, and toluene. This is a method for producing latent curing agent particles containing the above polar solvent.
The present invention is a method for producing an adhesive, wherein the latent curing agent particles are dispersed in a binder containing a resin and an organic solvent.
The present invention is a method for producing an adhesive, wherein the binder contains the auxiliary curing agent.
This invention is a manufacturing method of an adhesive film, Comprising: After forming the coating layer of the said adhesive agent, the said organic solvent is removed from the said coating layer, and it is a manufacturing method of the adhesive film which makes the said coating layer into a film.
尚、本発明で潜在性の低下とは、加熱や物理的衝撃により潜在性硬化剤粒子が溶解、膨潤、又は破壊されることで、潜在性硬化剤粒子中に含まれる硬化成分が、接着剤に含有される成分と接触可能となり、接着剤の硬化反応が開始されることである。 In the present invention, the decrease in latency means that the latent curing agent particles are dissolved, swollen, or destroyed by heating or physical impact, so that the curing component contained in the latent curing agent particles is an adhesive. It becomes possible to come into contact with the component contained in the adhesive, and the curing reaction of the adhesive is started.
潜在性粒子中の硬化成分とは、潜在性硬化剤粒子中に主硬化剤だけが含有される場合は主硬化剤であり、潜在性硬化剤粒子中に主硬化剤と補助硬化剤の両方が含有される場合は、主硬化剤と、補助硬化剤と、主硬化剤と補助硬化剤の反応生成物である。 The curing component in the latent particle is a main curing agent when only the main curing agent is contained in the latent curing agent particle, and both the main curing agent and the auxiliary curing agent are contained in the latent curing agent particle. When contained, they are a main curing agent, an auxiliary curing agent, and a reaction product of the main curing agent and the auxiliary curing agent.
本発明は上記のように構成されており、反応性樹脂(モノマー)と、主硬化剤の混合物、又は反応性樹脂と主硬化剤を別々に主溶媒に入れて、反応性樹脂と主硬化剤とを有する原料液の液滴が、主溶媒に分散された液滴を形成する。加熱によって該液滴中の反応性樹脂を重合させると、液滴が硬化して主硬化剤を含有する樹脂粒子が製造される。 The present invention is configured as described above. A reactive resin (monomer) and a mixture of a main curing agent, or a reactive resin and a main curing agent are separately put in a main solvent, and the reactive resin and the main curing agent are mixed. The droplets of the raw material liquid having the above form droplets dispersed in the main solvent. When the reactive resin in the droplets is polymerized by heating, the droplets are cured to produce resin particles containing the main curing agent.
主硬化剤が金属キレートのように加水分解性物質の場合には、主硬化剤単独、又は主硬化剤を水を含まない溶剤に溶解した含浸液を作成し、該含浸液を樹脂粒子に含浸させて潜在性硬化剤粒子を作成すれば、主硬化剤は加水分解されずに樹脂粒子内部に含浸される。 If the main curing agent is a hydrolyzable material such as a metal chelate, create an impregnation solution in which the main curing agent is dissolved alone or in a solvent that does not contain water, and impregnate the resin particles with the impregnation solution. If the latent curing agent particles are prepared, the main curing agent is impregnated inside the resin particles without being hydrolyzed.
また、樹脂粒子の製造工程で油相液を水相液に分散させる時に、油相液中の主硬化剤の一部は水相液の水と反応して加水分解されてしまうが、本発明では樹脂粒子の製造工程の後に樹脂粒子に主硬化剤を含浸させるので、潜在性硬化剤粒子は加水分解されていない主硬化剤を含有する。 Further, when the oil phase liquid is dispersed in the aqueous phase liquid in the production process of the resin particles, a part of the main curing agent in the oil phase liquid reacts with the water of the aqueous phase liquid and is hydrolyzed. Then, since the resin particles are impregnated with the main curing agent after the production process of the resin particles, the latent curing agent particles contain an unhydrolyzed main curing agent.
主硬化剤は樹脂粒子の内部に保持されているため、潜在性硬化剤粒子を接着剤に添加したときに、主硬化剤は接着剤中の樹脂(例えば熱硬化性樹脂)や、水分と接触しないため、接着剤が硬化しないだけではなく、主硬化剤は加水分解されずに残る。
従って、本発明により製造された潜在性硬化剤粒子は、貯蔵中の接着剤を硬化させず、使用の際に加熱されると加水分解されていない主硬化剤の潜在性が低下する。
Since the main curing agent is held inside the resin particles, when the latent curing agent particles are added to the adhesive, the main curing agent comes into contact with the resin in the adhesive (for example, thermosetting resin) or moisture. Thus, not only does the adhesive not cure, but the main curing agent remains unhydrolyzed.
Therefore, the latent curing agent particles produced according to the present invention do not cure the adhesive during storage and reduce the potential of the unhydrolyzed main curing agent when heated during use.
主硬化剤と補助硬化剤との反応生成物が樹脂を重合させる場合、主硬化剤が加水分解されていると反応生成物が生成されないが、接着剤中の樹脂粒子内部の主硬化剤は加水分解されていないので、補助硬化剤との反応生成物が生成され、樹脂の重合反応が進行する。 When the reaction product of the main curing agent and the auxiliary curing agent polymerizes the resin, the reaction product is not generated if the main curing agent is hydrolyzed, but the main curing agent inside the resin particles in the adhesive is not hydrolyzed. Since it is not decomposed, a reaction product with the auxiliary curing agent is generated, and the polymerization reaction of the resin proceeds.
主硬化剤を含有しない樹脂粒子に含浸液を含浸させると、樹脂粒子内部に主硬化剤が保持された潜在性硬化剤粒子が得られる。しかし、含浸液を含浸させるだけでは樹脂粒子内部に多量の主硬化剤を含有させることが困難なので、主硬化剤の含有量を多くするためには、樹脂粒子を製造する工程で樹脂粒子に主硬化剤を含有させることが望ましい。 When the resin particles not containing the main curing agent are impregnated with the impregnating liquid, latent curing agent particles in which the main curing agent is held inside the resin particles are obtained. However, since it is difficult to contain a large amount of the main curing agent inside the resin particles only by impregnating the impregnating solution, in order to increase the content of the main curing agent, the resin particles are mainly used in the process of producing the resin particles. It is desirable to include a curing agent.
本発明により製造された潜在性硬化剤粒子は、主硬化剤の含有量が多いので、接着剤を硬化させるときの効果速度が速い。補助硬化剤を含有する含浸液を用いて作成された潜在性硬化剤粒子は、その内部に補助硬化剤を有し、そのような潜在性硬化剤粒子を用いれば、接着剤に補助硬化剤を添加する必要が無いので、接着剤の組成を自由に設計して、粘着性等の特性を制御することができる。含浸液を含浸させた後の潜在性硬化剤粒子を洗浄すれば、表面から主硬化剤が除去されるので、接着剤に用いた時の接着剤保存性が高くなる。 Since the latent curing agent particles produced according to the present invention have a large content of the main curing agent, the effect speed when curing the adhesive is fast. The latent curing agent particles prepared using the impregnating liquid containing the auxiliary curing agent have an auxiliary curing agent in the inside thereof, and if such latent curing agent particles are used, the auxiliary curing agent is added to the adhesive. Since it is not necessary to add, the composition of the adhesive can be freely designed, and the properties such as tackiness can be controlled. If the latent curing agent particles impregnated with the impregnating liquid are washed, the main curing agent is removed from the surface, so that the storage stability of the adhesive when used as an adhesive is enhanced.
本発明の製造方法により、異方導電性フィルムを製造する工程について説明する。
異方導電性フィルムを製造する場合には、樹脂が有機溶剤に溶解され、導電性粒子が分散された液状のバインダーに、後述するように樹脂を重合させる潜在性硬化剤粒子を分散させて液状接着剤を作成する。
A process for producing an anisotropic conductive film by the production method of the present invention will be described.
In the case of producing an anisotropic conductive film, the latent curing agent particles for polymerizing the resin are dispersed in a liquid binder in which the resin is dissolved in an organic solvent and the conductive particles are dispersed, as described later. Create an adhesive.
潜在性硬化剤粒子は樹脂粒子の内部に主硬化剤を含有しており、その主硬化剤と反応して樹脂を重合させる補助硬化剤がバインダーに添加されていたとしても、室温では潜在性硬化剤粒子内の主硬化剤の潜在性は低下しないので、液状接着剤は硬化しない。
液状接着剤を剥離フィルム表面に塗布して塗布層を形成後、乾燥して有機溶剤を蒸発除去させると塗布層がフィルム化し、異方導電性フィルムが得られる。
The latent curing agent particles contain a main curing agent inside the resin particles, and even if an auxiliary curing agent that reacts with the main curing agent to polymerize the resin is added to the binder, it is latent curing at room temperature. Since the potential of the main curing agent in the agent particles does not decrease, the liquid adhesive does not cure.
A liquid adhesive is applied to the surface of the release film to form a coating layer, and then dried to evaporate and remove the organic solvent, whereby the coating layer becomes a film and an anisotropic conductive film is obtained.
塗布層がフィルム化するときには潜在性硬化剤粒子の濃度が高くなるが、上述したように室温では潜在性硬化剤粒子内の主硬化剤の潜在性は低下しないので、異方導電性フィルムも室温では硬化しない。
使用の際に、この異方導電性フィルムを加熱すると、潜在性硬化剤粒子内の主硬化剤の潜在性が低下し、主硬化剤と補助硬化剤とが反応して反応生成物が生成され、該反応生成物によってバインダー中の樹脂が重合する。
When the coating layer is formed into a film, the concentration of the latent curing agent particles increases. However, as described above, the latent curing agent particles in the latent curing agent particles do not have a lower potential at room temperature. Does not cure.
When this anisotropically conductive film is heated during use, the latent curing agent in the latent curing agent particles has a reduced potential, and the primary curing agent and the auxiliary curing agent react to produce a reaction product. The resin in the binder is polymerized by the reaction product.
次に、上記潜在性硬化剤粒子を形成する工程について説明する。
上述した主硬化剤と、水と接触して分解する水反応性モノマー(反応性モノマー)と、加熱により重合する親油性モノマー(熱重合性モノマー)、水難溶性の有機溶剤とを混合して油相液(原料液)を作成する。
水に、分散剤と、界面活性剤とが添加された水相液(主溶媒)を作成し、上記油相液を、該油相液よりも多量の水相液に添加し、攪拌する。
Next, the process of forming the latent curing agent particles will be described.
An oil obtained by mixing the main curing agent described above, a water-reactive monomer (reactive monomer) that decomposes upon contact with water, a lipophilic monomer (thermopolymerizable monomer) that polymerizes by heating, and a poorly water-soluble organic solvent. A phase liquid (raw material liquid) is prepared.
An aqueous phase liquid (main solvent) in which a dispersant and a surfactant are added to water is prepared, and the oil phase liquid is added to a larger amount of the aqueous phase liquid than the oil phase liquid and stirred.
主硬化剤は加水分解性物質であり、主硬化剤が油相液に多量に添加された場合には、主硬化剤の発熱分解によって油相液がゲル化してしまうが、主硬化剤は油相液中の親油性モノマー及び有機溶剤により加水分解が抑制され、油相液はゲル化せずに液滴となって水相液中に均一に分散する。 The main curing agent is a hydrolyzable substance, and when a large amount of the main curing agent is added to the oil phase liquid, the oil phase liquid gels due to the exothermic decomposition of the main curing agent. Hydrolysis is suppressed by the lipophilic monomer and the organic solvent in the phase liquid, and the oil phase liquid is not gelled but becomes droplets and is uniformly dispersed in the aqueous phase liquid.
液滴の表面では水反応性モノマーが水と接触しているため、水反応性モノマーの加水分解して中間生成物が生成され、該中間生成物が加水分解前の水反応性モノマーと反応し、液滴表面に水反応性モノマーの重合物が生成される(界面重合)。 Since the water-reactive monomer is in contact with water on the surface of the droplet, the water-reactive monomer is hydrolyzed to produce an intermediate product, which reacts with the water-reactive monomer before hydrolysis. Then, a polymer of a water reactive monomer is generated on the surface of the droplet (interfacial polymerization).
縣濁液を加熱すると液滴の内部で親油性モノマーが重合すると共に、水反応性モノマーの重合が促進され、内部に主硬化剤を保持したまま液滴が硬化する。
このとき、縣濁液の加熱温度を油相液に添加した有機溶剤の沸点以上に設定すると(例えば酢酸エチルの沸点77℃に対し、加熱温度が80℃)、液滴中から有機溶剤が蒸発除去され、表面に生成された水反応性モノマーの重合物と、内部に生成された親油性モノマーの重合物とからなり、内部に主硬化剤が保持された樹脂粒子が得られる。
When the suspension is heated, the lipophilic monomer is polymerized inside the droplet, and the polymerization of the water-reactive monomer is promoted, and the droplet is cured while the main curing agent is held inside.
At this time, if the heating temperature of the suspension is set to be higher than the boiling point of the organic solvent added to the oil phase liquid (for example, the heating temperature is 80 ° C. with respect to the boiling point of ethyl acetate of 77 ° C.), the organic solvent evaporates from the droplets. Resin particles are obtained which are composed of a polymer of water-reactive monomer which is removed and generated on the surface and a polymer of lipophilic monomer generated inside, and in which the main curing agent is retained.
縣濁液中の液滴を硬化させて樹脂粒子を形成する界面重合法では、油相液の分散性が悪いと液滴の粒径を小さくすることができず、その結果樹脂粒子の粒径も大きくなる。上述したように、本願では油相液は水相液に均一に分散されるので、樹脂粒子の粒径を数μm単位と小さくすることができる。
その樹脂粒子に蒸留水を加水し、洗浄、ろ別して蒸留水から分離し、表面に付着した水相液を除去する(前洗浄工程)。
In the interfacial polymerization method in which the droplets in the suspension are cured to form resin particles, the particle size of the droplets cannot be reduced if the oil phase liquid has poor dispersibility. Also grows. As described above, in the present application, since the oil phase liquid is uniformly dispersed in the aqueous phase liquid, the particle size of the resin particles can be reduced to a few μm unit.
Distilled water is added to the resin particles, washed and filtered to separate from the distilled water, and the aqueous liquid adhering to the surface is removed (pre-cleaning step).
主硬化剤を溶解可能な極性溶剤に主硬化剤を溶解して含浸液を作成し、水相液を除去した後の樹脂粒子を該含浸液に浸漬し、樹脂粒子が溶解しない温度で加熱しながら攪拌する。
本発明では、水反応性モノマーとして重合物が極性樹脂になるものが選択されている。例えば、水反応性モノマーがイソシアネートの場合、その重合物はポリウレアであり、ポリウレアは極性樹脂である。
Dissolve the main curing agent in a polar solvent that can dissolve the main curing agent to create an impregnation liquid, immerse the resin particles after removing the aqueous phase liquid in the impregnation liquid, and heat at a temperature at which the resin particles do not dissolve. Stir while stirring.
In the present invention, the water-reactive monomer is selected such that the polymer becomes a polar resin. For example, when the water-reactive monomer is isocyanate, the polymer is polyurea, and polyurea is a polar resin.
上述したように水反応性モノマーは樹脂粒子の表面部分にあるから、樹脂粒子が含浸液に浸漬すると、主硬化剤が極性溶剤と一緒に樹脂粒子の表面を通過して内部に侵入し、樹脂粒子が含浸液で膨潤した状態になる。
従って、含浸液から樹脂粒子をろ別すると、樹脂粒子の内部に、含浸液に浸漬する前よりも多量な主硬化剤が保持された潜在性硬化剤粒子が得られる。含浸液からろ別した状態では、潜在硬化剤の樹脂粒子表面には含浸液が付着している。
As described above, since the water-reactive monomer is on the surface portion of the resin particle, when the resin particle is immersed in the impregnating liquid, the main curing agent passes through the surface of the resin particle together with the polar solvent and enters the inside. The particles are swollen with the impregnation liquid.
Therefore, when the resin particles are separated from the impregnating liquid, latent curing agent particles in which a larger amount of the main curing agent is retained inside the resin particles than before being immersed in the impregnating liquid are obtained. In a state separated from the impregnating liquid, the impregnating liquid adheres to the surface of the latent curing agent resin particles.
含浸液中の主硬化剤の濃度が高く、潜在性硬化剤粒子をそのまま接着剤に添加するとバインダー中の樹脂が加熱しなくても重合する恐れがある場合は、接着剤に添加する前に、潜在性硬化剤粒子を主硬化剤を溶解可能な溶剤で洗浄しておく。
具体的には、主硬化剤を溶解可能な非極性溶剤を洗浄液として用意し、潜在性硬化剤粒子を該洗浄液に浸漬すると、潜在性硬化剤粒子の樹脂粒子表面に付着する主硬化剤は洗浄液に溶解し、除去される。
If the concentration of the main curing agent in the impregnating liquid is high and the latent curing agent particles are added to the adhesive as they are, there is a risk that the resin in the binder will polymerize without heating, before adding to the adhesive, The latent curing agent particles are washed with a solvent capable of dissolving the main curing agent.
Specifically, when a nonpolar solvent capable of dissolving the main curing agent is prepared as a cleaning liquid, and the latent curing agent particles are immersed in the cleaning liquid, the main curing agent adhering to the resin particle surface of the latent curing agent particles is the cleaning liquid. Dissolved in and removed.
上述したように樹脂粒子の表面には極性樹脂があり、極性樹脂は非極性溶剤を浸透しないので、樹脂粒子の内部に洗浄液が浸透しない。従って、樹脂粒子内部の主硬化剤は洗浄液に溶出されずに残る。
潜在性硬化剤粒子を洗浄液からろ別し、乾燥すると、樹脂粒子の表面に付着する洗浄液と、樹脂粒子の内部に含浸された含浸液の極性溶剤が蒸発除去される。
As described above, there is a polar resin on the surface of the resin particles, and the polar resin does not permeate the nonpolar solvent, so that the cleaning liquid does not permeate the resin particles. Therefore, the main curing agent inside the resin particles remains without being eluted in the cleaning liquid.
When the latent curing agent particles are filtered off from the cleaning liquid and dried, the cleaning liquid adhering to the surface of the resin particles and the polar solvent of the impregnating liquid impregnated inside the resin particles are removed by evaporation.
洗浄後の潜在性硬化剤粒子は上述したように樹脂粒子表面から含浸液が除去されているから、樹脂粒子の表面には主硬化剤が残留しておらず、主硬化剤は樹脂粒子の内部だけに含有されている。
従って、洗浄後の潜在性硬化剤粒子を接着剤に添加した時には、加熱しない限り主硬化剤が補助硬化剤や樹脂と接触しないので、接着剤の保存性がより向上する。
Since the latent curing agent particles after washing have the impregnating liquid removed from the surface of the resin particles as described above, no main curing agent remains on the surface of the resin particles, and the main curing agent is contained inside the resin particles. Only contained.
Therefore, when the latent curing agent particles after washing are added to the adhesive, the main curing agent does not come into contact with the auxiliary curing agent or the resin unless it is heated, so that the storage stability of the adhesive is further improved.
以上は、主硬化剤と極性溶剤とからなる含浸液を樹脂粒子に含浸させる場合について説明したが、本発明はこれに限定されるものではない。
例えば、補助硬化剤が液状であって、化学構造中に極性基を有する極性化合物の場合には、補助硬化剤を極性溶媒の代わり、又は極性溶媒と一緒に含浸液に含有させる。この含浸液に樹脂粒子を浸漬すると、補助硬化剤が樹脂粒子の内部に入り込み、主硬化剤と補助硬化剤を含有する潜在性硬化剤粒子が得られる。
The above describes the case where the resin particles are impregnated with the impregnating liquid composed of the main curing agent and the polar solvent, but the present invention is not limited to this.
For example, when the auxiliary curing agent is a liquid and is a polar compound having a polar group in the chemical structure, the auxiliary curing agent is contained in the impregnation liquid instead of the polar solvent or together with the polar solvent. When the resin particles are immersed in the impregnating solution, the auxiliary curing agent enters the resin particles, and latent curing agent particles containing the main curing agent and the auxiliary curing agent are obtained.
この潜在性硬化剤粒子はそのまま接着剤に添加することもできるが、主硬化剤と補助硬化剤とを溶解可能な非極性溶剤を洗浄液とし、該洗浄液に潜在性硬化剤粒子を浸漬して洗浄すれば、樹脂粒子の表面に付着する主硬化剤と補助硬化剤は除去されるので、接着剤の保存性が向上する。上述したように非極性溶剤は樹脂粒子の内部に入り込まないので、樹脂粒子内部の主硬化剤と補助硬化剤は除去されずに残る。
尚、補助硬化剤を潜在性硬化剤粒子に高濃度で含有させたい場合には、含浸液に有機溶剤を添加せずに、含浸液を主硬化剤と補助硬化剤とだけで構成すればよい。
The latent curing agent particles can be added to the adhesive as they are, but the non-polar solvent capable of dissolving the main curing agent and the auxiliary curing agent is used as a cleaning liquid, and the latent curing agent particles are immersed in the cleaning liquid for cleaning. Then, the main curing agent and auxiliary curing agent adhering to the surface of the resin particles are removed, so that the storage stability of the adhesive is improved. As described above, since the nonpolar solvent does not enter the resin particles, the main curing agent and the auxiliary curing agent inside the resin particles remain without being removed.
In addition, when it is desired to contain the auxiliary curing agent in the latent curing agent particles at a high concentration, the impregnation liquid may be composed of only the main curing agent and the auxiliary curing agent without adding an organic solvent to the impregnation liquid. .
主硬化剤と補助硬化剤の両方を含有する潜在性硬化剤粒子は、接着剤中に補助硬化剤が添加されていなくても接着剤を硬化可能である。例えば、主硬化剤が金属キレート又は金属アルコラート、補助硬化剤がシランカップリング剤等のシラン化合物の場合、シラン化合物をバインダーに多量に含有させると、接着剤の粘着性が減少し取り扱いが困難になるという問題があったが、潜在性硬化剤粒子にシラン化合物を添加すれば、バインダーにシラン化合物を添加する必要が無いので、接着剤の組成を自由に設計して、粘着性等の特性を制御することができる。 The latent curing agent particles containing both the main curing agent and the auxiliary curing agent can cure the adhesive even when no auxiliary curing agent is added to the adhesive. For example, when the main curing agent is a metal chelate or metal alcoholate and the auxiliary curing agent is a silane compound such as a silane coupling agent, if a silane compound is contained in a large amount in a binder, the tackiness of the adhesive decreases and handling becomes difficult. However, if a silane compound is added to the latent curing agent particles, there is no need to add a silane compound to the binder. Can be controlled.
シラン化合物は金属キレートや金属アルコラートと反応してエポキシ樹脂のような樹脂を重合させるだけでなく、無機物(例えばガラス基板)に対して高い親和性を有するので、シラン化合物を潜在性硬化剤粒子に含有させることで接着剤の接着性も向上する。 Silane compounds not only react with metal chelates and metal alcoholates to polymerize resins such as epoxy resins, but also have a high affinity for inorganic substances (eg glass substrates), so silane compounds can be used as latent curing agent particles. By containing, the adhesiveness of the adhesive is also improved.
補助硬化剤を予め油相液に含有させておき、上述した方法で縣濁液を作成し、液滴を硬化させても、樹脂粒子の内部に補助硬化剤と主硬化剤とを含有する潜在性硬化剤粒子が得られる。 Even if the auxiliary curing agent is preliminarily contained in the oil phase liquid, the suspension containing the auxiliary curing agent and the main curing agent is contained inside the resin particles even if the suspension is prepared by the above-described method and the droplets are cured. Hardener particles are obtained.
しかし、補助硬化剤に加水分解性があり、加水分解の生成物が水反応性モノマーや親油性モノマーの重合を阻害する場合は、油相液に補助硬化剤を添加すると樹脂粒子の機械強度が弱くなる。具体的には、補助硬化剤がシラン化合物であり、水反応性モノマーがイソシアネートの場合、加水分解の生成物として水酸基を放出し、該水酸基によってイソシアネートの重合が阻害される。
本発明では、樹脂粒子を製造後に補助硬化剤を含浸させるので、樹脂粒子の機械強度が弱くならず、補助硬化剤も劣化しない。
However, if the auxiliary curing agent is hydrolyzable and the hydrolysis product inhibits the polymerization of the water-reactive monomer or lipophilic monomer, the mechanical strength of the resin particles can be increased by adding the auxiliary curing agent to the oil phase liquid. become weak. Specifically, when the auxiliary curing agent is a silane compound and the water-reactive monomer is an isocyanate, a hydroxyl group is released as a hydrolysis product, and the polymerization of the isocyanate is inhibited by the hydroxyl group.
In the present invention, since the auxiliary curing agent is impregnated after the resin particles are manufactured, the mechanical strength of the resin particles is not weakened, and the auxiliary curing agent is not deteriorated.
以上は、主硬化剤を含有する樹脂粒子に含浸液を含浸させる場合について説明したが本発明はこれに限定されるものではない。
例えば、主硬化剤を含有せず、水反応性モノマーの重合物、又は水反応性モノマーの重合物と親油性モノマーの重合物からなる樹脂粒子を、主硬化剤と補助硬化剤とを含有する含浸液に浸漬して、樹脂粒子に主硬化剤と補助硬化剤の両方が保持された潜在性硬化剤粒子を製造することもできる。
The case where the resin particles containing the main curing agent are impregnated with the impregnating liquid has been described above, but the present invention is not limited to this.
For example, it contains no main curing agent, water-reactive monomer polymer, or resin particles composed of water-reactive monomer polymer and lipophilic monomer polymer, and contains main curing agent and auxiliary curing agent. It is also possible to produce latent curing agent particles in which both the main curing agent and the auxiliary curing agent are held on the resin particles by dipping in the impregnation liquid.
尚、樹脂粒子に含浸液を含浸させる方法は、樹脂粒子を含浸液に浸漬する方法に限定されず、樹脂粒子に含浸液を吹き付けてもよい。
この場合も、含浸液から分離した潜在性硬化剤粒子は、樹脂粒子表面に主硬化剤と補助硬化剤が付着しているので、含浸液から分離した後、上述した洗浄液に浸漬して洗浄すれば、樹脂粒子表面から主硬化剤と補助硬化剤が除去されるので、接着剤に添加した時に、接着剤の保存性が向上する。
洗浄液に用いる極性溶剤は特に限定されないが、例えば、シクロヘキサンと、ヘキサンと、トルエンを単独又は2種類以上を混合して用いることができる。
The method of impregnating the resin particles with the impregnating liquid is not limited to the method of immersing the resin particles in the impregnating liquid, and the impregnating liquid may be sprayed onto the resin particles.
In this case as well, the latent curing agent particles separated from the impregnating liquid have the main curing agent and the auxiliary curing agent attached to the surface of the resin particles. For example, since the main curing agent and the auxiliary curing agent are removed from the surface of the resin particles, the storage stability of the adhesive is improved when added to the adhesive.
Although the polar solvent used for a washing | cleaning liquid is not specifically limited, For example, cyclohexane, hexane, and toluene can be used individually or in mixture of 2 or more types.
含浸液に主硬化剤を分解しない溶剤を用いるか、主硬化剤が液状の場合は溶剤を全く含有させずに含浸液を作成すれば、含浸液を樹脂粒子に含浸させる工程で、含浸液中の主硬化剤も、樹脂粒子中の主硬化剤も分解されない。
含浸液に用いる極性溶剤も特に限定されないが、例えば、エタノールと、イソプロピルアルコールと、酢酸エチルと、メチルエチルケトンを単独又は2種類以上混合して用いることができる。
In the impregnating solution, if the solvent that does not decompose the main curing agent is used, or if the main curing agent is liquid, the impregnating solution is prepared without containing any solvent, the impregnating solution is impregnated with resin particles. Neither the main curing agent nor the main curing agent in the resin particles is decomposed.
The polar solvent used for the impregnation liquid is not particularly limited, and for example, ethanol, isopropyl alcohol, ethyl acetate, and methyl ethyl ketone can be used alone or in combination of two or more.
本発明に用いる親油性モノマーは水反応性モノマーと反応性が無く、加熱によって単独又は重合開始剤の存在下で重合するものであれば特に限定されない。具体的には、水反応性モノマーがイソシアネートの場合は、イソシアネートと反応性がなく(例えば化学構造中にヒドロキシル基等を持つ)、2官能以上で親油性があるモノマーを広く用いることができる。 The lipophilic monomer used in the present invention is not particularly limited as long as it is not reactive with a water-reactive monomer and polymerizes by heating alone or in the presence of a polymerization initiator. Specifically, when the water-reactive monomer is an isocyanate, a bifunctional or more lipophilic monomer having no reactivity with the isocyanate (for example, having a hydroxyl group or the like in the chemical structure) can be widely used.
このような親油性モノマーの例としては、ジビニルベンゼン、アジピン酸ジビニル、ビニルエステル、酢酸ビニルのようなビニルモノマーや、エポキシアクリレート、メラミンアクリレート、ウレタンアクリレート、エステルアクリレート等のアクリルモノマーがある。親油性モノマーとしてビニルモノマーやアクリルモノマーを用いる場合には、加熱によって該モノマーをラジカル重合させるラジカル重合開始剤を油相液に添加することが望ましい。 Examples of such lipophilic monomers include vinyl monomers such as divinylbenzene, divinyl adipate, vinyl esters and vinyl acetate, and acrylic monomers such as epoxy acrylate, melamine acrylate, urethane acrylate and ester acrylate. When a vinyl monomer or an acrylic monomer is used as the lipophilic monomer, it is desirable to add to the oil phase liquid a radical polymerization initiator that radically polymerizes the monomer by heating.
潜在性硬化剤粒子の樹脂粒子を界面重合法で製造すれば、その形状は球状になる。樹脂粒子の粒子径は硬化性及び分散性の点から、好ましくは0.5μm以上100μm以下である。
潜在性硬化剤粒子は、その界面重合時に使用する有機溶剤を実質的に含有していないこと、具体的には、該有機溶剤の残留量が1ppm以下であることが、硬化安定性の点で好ましい。
If resin particles of latent curing agent particles are produced by an interfacial polymerization method, the shape becomes spherical. The particle diameter of the resin particles is preferably 0.5 μm or more and 100 μm or less from the viewpoint of curability and dispersibility.
In terms of curing stability, the latent curing agent particles are substantially free of the organic solvent used during the interfacial polymerization, and specifically, the residual amount of the organic solvent is 1 ppm or less. preferable.
本発明に用いる主硬化剤は特に限定されない。例えば、補助硬化剤としてシラン化合物を用いる場合には、主硬化剤としては金属キレート又は金属アルコラートを用いる。
金属キレートと金属アルコラートの中心金属は特に限定されず、中心金属がアルミニウム、ジルコニウム、チタニウム等種々のものを用いることができるが、これらのなかでも特に反応性の高いアルミニウムキレートを用いることが好ましい。
主硬化剤に用いるアルミニウムキレート剤としては、下記一般式(1)に表される、3つのβ−ケトエノラート陰イオンがアルミニウムに配位した錯体化合物が挙げられる。
The main curing agent used in the present invention is not particularly limited. For example, when a silane compound is used as the auxiliary curing agent, a metal chelate or a metal alcoholate is used as the main curing agent.
The central metal of the metal chelate and the metal alcoholate is not particularly limited, and various metals such as aluminum, zirconium, and titanium can be used as the central metal, and among these, it is preferable to use an aluminum chelate with particularly high reactivity.
Examples of the aluminum chelating agent used for the main curing agent include complex compounds in which three β-keto enolate anions are represented by the following general formula (1) and coordinated to aluminum.
ここで、R1、R2及びR3は、それぞれ独立的にアルキル基又はアルコキシル基である。アルキル基としては、メチル基、エチル基等が挙げられる。アルコキシル基としては、メトキシ基、エトキシ基、オレイルオキシ基が挙げられる。 Here, R 1 , R 2 and R 3 are each independently an alkyl group or an alkoxyl group. Examples of the alkyl group include a methyl group and an ethyl group. Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an oleyloxy group.
化学式(1)で表されるアルミニウムキレート剤の具体例としては、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビスオレイルアセトアセテート、エチルアセトアセテートアルミニウムジイソプロピレート、アルキルアセトアセテートアルミニウムジイソプロピレート等が挙げられる。 Specific examples of the aluminum chelating agent represented by the chemical formula (1) include aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), aluminum monoacetylacetonate bis (ethylacetoacetate), and aluminum monoacetylacetonate. Examples thereof include bisoleyl acetoacetate, ethyl acetoacetate aluminum diisopropylate, and alkyl acetoacetate aluminum diisopropylate.
樹脂粒子に予め含有させる主硬化剤と、含浸液に含有させる主硬化剤は同じ種類であってもいいし、異なる種類であってもよい。また、樹脂粒子と、含浸液には主硬化剤を1種類ずつ含有させてもよいし、2種類以上含有させてもよい。 The main curing agent contained in the resin particles in advance and the main curing agent contained in the impregnation liquid may be the same type or different types. The resin particles and the impregnation liquid may contain one type of main curing agent, or two or more types of main curing agents.
水反応性モノマーは水と反応して液滴表面で界面重合するものであれば特に限定されないが、具体的にはイソシアネート化合物が用いられる。イソシアネート化合物は液滴表面で水と反応して中間生成物であるアミンを生成し、該アミンがイソシアネートと反応して重合し、ポリウレアが生成される。従って、油相液にイソシアネートを用いた場合には、樹脂粒子表面にはポリウレアが生成される。
イソシアネート化合物の中でも、特に、一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する多官能イソシアネート化合物が好ましい。
The water-reactive monomer is not particularly limited as long as it reacts with water and undergoes interfacial polymerization on the surface of the droplet, but specifically, an isocyanate compound is used. The isocyanate compound reacts with water on the droplet surface to produce an intermediate amine, and the amine reacts with the isocyanate to polymerize to produce polyurea. Therefore, when an isocyanate is used for the oil phase liquid, polyurea is generated on the surface of the resin particles.
Among the isocyanate compounds, a polyfunctional isocyanate compound having 2 or more isocyanate groups, preferably 3 isocyanate groups in one molecule is particularly preferable.
3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン(TMP)1モルにジイソシアネート化合物3モルを反応させた下記化学式(1)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた化学式(2)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した化学式(3)のビュウレット体が挙げられる。 More preferable examples of the trifunctional isocyanate compound include a TMP adduct of the following chemical formula (1) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane (TMP), and a chemical formula (2 ) And an isocyanurate body of 3), and a biuret body of the chemical formula (3) obtained by condensing the remaining 1 mole of diisocyanate with diisocyanate urea obtained from 2 moles of 3 moles of the diisocyanate compound.
上記化学式(1)〜(3)において、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4−ジイソシアネート、トルエン2,6−ジイソシアネート、m−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ−m−キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル−4,4’−ジイソシアネートが挙げられる。
In the chemical formulas (1) to (3), the substituent R is a portion excluding the isocyanate group of the diisocyanate compound. Specific examples of such diisocyanate compounds include
このような多官能イソシアネート化合物を界面重合させて得られる樹脂は、界面重合の間にイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基とイソシアネート基とが反応して尿素結合を生成してポリマー化するポリウレア樹脂である。 A resin obtained by interfacial polymerization of such a polyfunctional isocyanate compound is a part of the isocyanate group that undergoes hydrolysis during the interfacial polymerization to become an amino group, which reacts with the amino group to react with the urea bond. It is a polyurea resin that forms a polymer by forming.
水反応性モノマーの重合物と親油性モノマーの重合物からなる樹脂粒子は内部は均一な相を形成しており、このような樹脂粒子と、その相に保持された主硬化剤とからなる潜在性硬化剤粒子は、硬化のために加熱されると、明確な理由は不明であるが、保持されている主硬化剤の潜在性が低下し、補助硬化剤と反応して樹脂の重合反応を進行させることができる。 The resin particles composed of a polymer of a water-reactive monomer and a polymer of a lipophilic monomer form a uniform phase inside, and a latent phase composed of such resin particles and a main curing agent held in the phase. When the hardener particles are heated for curing, the clear reason is unknown, but the potential of the retained main curing agent decreases and reacts with the auxiliary curing agent to cause the polymerization reaction of the resin. Can be advanced.
尚、本発明により製造された潜在性硬化剤粒子は、その構造上最表面にも主硬化剤が存在することになると思われるが、最表面に存在する主硬化剤は界面重合の際に系内に存在する水により活性が弱くなっていると考えられる。従って、洗浄前の潜在性硬化剤粒子もある程度は潜在性を有すると考えられるが、接着剤の保存性をより高めるためには、上述したように潜在性硬化剤粒子を接着剤に添加する前に洗浄液で洗浄することが好ましい。 The latent curing agent particles produced according to the present invention are considered to have a main curing agent also on the outermost surface due to the structure thereof, but the main curing agent present on the outermost surface is a system during interfacial polymerization. It is thought that the activity is weakened by the water present inside. Therefore, the latent hardener particles before washing are considered to have some potential, but in order to further improve the storage stability of the adhesive, before adding the latent hardener particles to the adhesive as described above. It is preferable to wash with a washing solution.
油相液には必要に応じて有機溶剤を添加することができる。有機溶剤は沸点が低い揮発性有機溶剤が好ましい。ここで、揮発性有機溶剤を使用する理由は以下の通りである。即ち、通常の界面重合法で使用するような沸点が300℃を超える高沸点溶剤を用いた場合、界面重合の間に有機溶剤が揮発しないために、イソシアネート−水との接触確率が増大せず、それらの間での界面重合の進行度合いが不十分となるからである。 An organic solvent can be added to the oil phase liquid as necessary. The organic solvent is preferably a volatile organic solvent having a low boiling point. Here, the reason for using the volatile organic solvent is as follows. That is, when a high boiling point solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability with isocyanate-water does not increase. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
そのため、界面重合させても良好な保形性の重合物が得られ難く、また、得られた場合でも重合物に高沸点溶剤が取り込まれたままとなり、接着剤に配合した場合に、高沸点溶剤が接着剤の硬化物の物性に悪影響を与えるからである。このため、この製造方法においては、油相を調製する際に使用する有機溶剤として、揮発性のものを使用する。 Therefore, it is difficult to obtain a polymer having good shape retention even when interfacial polymerization is performed, and even when it is obtained, a high boiling point solvent is still taken into the polymer, and when blended in an adhesive, it has a high boiling point. This is because the solvent adversely affects the physical properties of the cured product of the adhesive. For this reason, in this manufacturing method, a volatile thing is used as an organic solvent used when preparing an oil phase.
このような揮発性有機溶剤としては、主硬化剤と水反応性モノマーと親油性モノマーにとって良溶媒(それぞれの溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶剤)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような揮発性有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルが好ましい。 Such a volatile organic solvent is a good solvent for each of the main curing agent, the water-reactive monomer, and the lipophilic monomer (the solubility of each is preferably 0.1 g / ml (organic solvent) or more), In particular, it is preferable that it does not substantially dissolve (the solubility of water is 0.5 g / ml (organic solvent) or less) and has a boiling point of 100 ° C. or less under atmospheric pressure. Specific examples of such volatile organic solvents include alcohols, acetate esters, ketones and the like. Among these, ethyl acetate is preferable in terms of high polarity, low boiling point, and poor water solubility.
揮発性有機溶剤の使用量は特に限定されないが、多すぎると作業環境に悪影響を与えるだけでなく、最終的に粒子内主硬化剤量が小さくなるので、揮発性有機溶剤の配合量は水反応性モノマーの倍量以下(重量部)とすることが望ましい。
このような揮発性有機溶剤の他にも、界面活性剤や老化防止剤等の添加剤を油相液に添加することもできる。
The amount of the volatile organic solvent used is not particularly limited, but if it is too much, not only will the work environment be adversely affected, but the amount of the main curing agent in the particle will eventually become smaller. It is desirable that the amount be less than the double amount (part by weight) of the functional monomer.
In addition to such a volatile organic solvent, additives such as a surfactant and an antioxidant can be added to the oil phase liquid.
水相液に用いる分散剤はポリビニルアルコール以外にも、カルボキシメチルセルロース、ゼラチン等の通常の界面重合法において使用されるものを使用することができる。分散剤の使用量は、通常、水相の0.1質量%以上10.0質量%以下である。 As the dispersant used in the aqueous phase liquid, in addition to polyvinyl alcohol, those used in usual interfacial polymerization methods such as carboxymethyl cellulose and gelatin can be used. The amount of the dispersant used is usually 0.1% by mass or more and 10.0% by mass or less of the aqueous phase.
縣濁液を作成する乳化条件はとしては、例えば、油相の大きさが好ましくは0.5μm以上100μm以下となるような撹拌条件(撹拌装置ホモジナイザー;撹拌速度8000rpm以上)で、通常、大気圧下、温度30℃以上80℃以下、撹拌時間2時間以上12時間以下、加熱撹拌する条件を挙げることができる。 The emulsification conditions for preparing the suspension are, for example, stirring conditions (stirring device homogenizer; stirring speed of 8000 rpm or more) such that the size of the oil phase is preferably 0.5 μm or more and 100 μm or less. Below, the temperature is 30 ° C. or more and 80 ° C. or less, and the stirring time is 2 hours or more and 12 hours or less.
本発明により製造された潜在性硬化剤粒子は、従来のイミダゾール系潜在性硬化剤粒子と同様の用途に使用することができ、上述したように、補助硬化剤であるシラン化合物と、主硬化剤と補助硬化剤との反応生成物によって重合する樹脂と併用することにより、低温速硬化性の接着剤を与えることができる。 The latent curing agent particles produced according to the present invention can be used in the same applications as conventional imidazole-based latent curing agent particles. As described above, the auxiliary curing agent, the silane compound, and the main curing agent When used in combination with a resin that is polymerized by the reaction product of the auxiliary curing agent, a low-temperature fast-curing adhesive can be provided.
補助硬化剤であるシラン化合物は、特開2002−212537号公報の段落0007〜0010に記載されているように、アルミニウムキレート剤と共働して樹脂(例えば、エポキシ樹脂のような熱硬化性樹脂)のカチオン重合を開始させる機能を有する。 As described in paragraphs 0007 to 0010 of JP-A No. 2002-212537, a silane compound that is an auxiliary curing agent is a resin (for example, a thermosetting resin such as an epoxy resin) in cooperation with an aluminum chelating agent. ) To initiate cationic polymerization.
このようなシラン化合物としては、分子中に1つ以上3つ以下の低級アルコキシ基を有するものであり、分子中にバインダー中の樹脂の官能基に対して反応性を有する基、例えば、ビニル基、スチリル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、アミノ基、メルカプト基等を有していてもよい。 Such a silane compound has one or more and three or less lower alkoxy groups in the molecule, and a group having reactivity in the molecule with respect to the functional group of the resin in the binder, for example, a vinyl group , Styryl group, acryloyloxy group, methacryloyloxy group, epoxy group, amino group, mercapto group and the like.
なお、アミノ基やメルカプト基を有するカップリング剤は、上記潜在性硬化剤粒子がカチオン型主硬化剤であるため、そのアミノ基やメルカプト基が発生カチオン種を実質的に捕捉しない場合に使用することができる。 A coupling agent having an amino group or a mercapto group is used when the latent curing agent particle is a cationic main curing agent, so that the amino group or mercapto group does not substantially trap the generated cationic species. be able to.
このようなシラン化合物の具体例としては、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−スチリルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン等を挙げることができる。 Specific examples of such silane compounds include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-styryltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-acryloxy. Propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β- (aminoethyl)- γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltri Methoxysilane , Γ-chloropropyltrimethoxysilane and the like.
接着剤のバインダーに用いる樹脂としては、熱硬化性樹脂、特に熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等を使用することができる。これらの樹脂は全て反応生成物であるカチオンによってカチオン重合する。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂を好ましく使用することができる。 As the resin used for the binder of the adhesive, a thermosetting resin, particularly a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like can be used. All of these resins are cationically polymerized by cations that are reaction products. Among these, a thermosetting epoxy resin can be preferably used in consideration of a good adhesive strength after curing.
このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100以上4000以下であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。 Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually 100 or more and 4000 or less and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.
接着剤には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤などを含有させることができる。また、接着剤には、数μmオーダーの粒径の導電性粒子、例えば、金属粒子、樹脂コア表面を金属メッキ層で被覆したもの、それらの表面を絶縁薄膜で更に被覆したもの等を、全体の1質量%以上10質量%以下の配合量で配合することが好ましい。これにより、本発明の製造方法で製造された接着剤を異方導電性接着ペースト、異方導電性フィルムとして使用することが可能となる。
また、導電性粒子を含有しない接着剤や接着フィルムに本発明により製造された潜在性硬化剤粒子を添加することもできる。
The adhesive can contain a filler such as silica and mica, a pigment, an antistatic agent, and the like as necessary. In addition, the adhesive includes conductive particles having a particle size on the order of several μm, such as metal particles, a resin core surface coated with a metal plating layer, a surface further coated with an insulating thin film, etc. It is preferable to mix | blend with the compounding quantity of 1 mass% or more and 10 mass% or less. Thereby, it becomes possible to use the adhesive manufactured by the manufacturing method of the present invention as an anisotropic conductive adhesive paste and an anisotropic conductive film.
Moreover, the latent hardener particle | grains manufactured by this invention can also be added to the adhesive agent and adhesive film which do not contain electroconductive particle.
<親油性モノマーの配合量>
後述する表5に示したように親油性モノマーの配合量を変えて3種類の油相液を作成し、各油相液を水相液にそれぞれ分散させた3種類の縣濁液を80℃に加熱しながら攪拌し、3種類の樹脂粒子を得た。尚、樹脂粒子の粒径は5μm以下(モード径2.3μm程度)になるようにした。油相液と水相液の組成をそれぞれ下記表1、2に記載する。
<Amount of lipophilic monomer>
As shown in Table 5 to be described later, three types of oil phase liquids were prepared by changing the blending amount of the lipophilic monomer, and three types of suspensions in which the respective oil phase liquids were dispersed in the aqueous phase liquids were 80 ° C. The mixture was stirred while heating to obtain three types of resin particles. The resin particles had a particle size of 5 μm or less (mode diameter of about 2.3 μm). The compositions of the oil phase liquid and the aqueous phase liquid are shown in Tables 1 and 2 below.
樹脂粒子を水相液から分離した後、下記表3に示す組成の含浸液に3種類の樹脂粒子をそれぞれ浸漬し、30℃で6時間加熱攪拌し、含浸液を樹脂粒子に含浸させて実施例1〜3の潜在性硬化剤粒子を得た。 After separating the resin particles from the aqueous phase liquid, each of the three types of resin particles was immersed in an impregnating liquid having the composition shown in Table 3 below, and heated and stirred at 30 ° C. for 6 hours to impregnate the resin particles with the impregnating liquid. The latent curing agent particles of Examples 1 to 3 were obtained.
潜在性硬化剤粒子を含浸液から分離し、非極性溶剤であるシクロヘキサンに浸漬して洗浄した後、潜在性硬化剤粒子を非極性溶剤から分離し、乾燥して有機溶剤を除去した。乾燥後の実施例1〜3の潜在性硬化剤粒子を用いて下記表4の配合比率で3種類の接着剤を作成した。 The latent curing agent particles were separated from the impregnating solution, immersed in cyclohexane, which is a nonpolar solvent, and washed, and then the latent curing agent particles were separated from the nonpolar solvent and dried to remove the organic solvent. Using the latent curing agent particles of Examples 1 to 3 after drying, three types of adhesives were prepared at the blending ratios shown in Table 4 below.
次に、実施例1〜3の潜在性硬化剤粒子を含浸液に含浸させる前の3種類の樹脂粒子をそれぞれ比較例1〜3の潜在性硬化剤粒子とし、比較例1〜3の潜在性硬化剤粒子を用い、上記表4の組成のうち、補助硬化剤配合量のみを12重量部として3種類の接着剤を作成した。
これら6種類の接着剤について、昇温速度5℃/分の条件でDSC分析(Differential scanning calorimetry、示差走査熱分析)を行った。
Next, the three types of resin particles before impregnating the latent curing agent particles of Examples 1 to 3 with the impregnating liquid were used as latent curing agent particles of Comparative Examples 1 to 3, respectively. Using the curing agent particles, among the compositions in Table 4 above, only 3 parts by weight of the auxiliary curing agent was used to prepare three types of adhesives.
About these 6 types of adhesive agents, DSC analysis (Differential scanning calorimetry, differential scanning calorimetry) was performed on the conditions of the temperature increase rate of 5 degree-C / min.
比較例1〜3の潜在性硬化剤粒子を用いた接着剤のDSCチャートを図1に、実施例1〜3の潜在性硬化剤粒子を用いた接着剤のDSCチャートを図2にそれぞれ占めず。尚、図1中の符号符号C1、C2、C3はそれぞれ比較例1〜3の潜在性硬化剤粒子を用いた場合のDSCチャートであり、図2の符号E1、E2、E3はそれぞれ実施例1〜3の潜在性硬化剤粒子を用いた場合のDSCチャートである。 The DSC chart of the adhesive using the latent curing agent particles of Comparative Examples 1 to 3 is not shown in FIG. 1, and the DSC chart of the adhesive using the latent curing agent particles of Examples 1 to 3 is not occupied in FIG. . Incidentally, reference numerals C 1, C 2, C 3 in Figure 1 is a DSC chart of the case of using a latent curing agent particles of Comparative Examples 1 to 3 respectively, the sign of FIG. 2 E 1, E 2, E 3 is a DSC chart when the latent curing agent particles of Examples 1 to 3 are used, respectively.
DSCチャートの立ち上がりは樹脂の重合反応が開始したことを示し、DSCチャートのピークは該重合反応がピークに達したことを示している。
DSCチャートが立ち上がる温度(硬化開始温度)と、チャートがピークに達する温度(発熱ピーク温度)と、DSCチャートの最大強度(発熱ピーク強度)をDVB置換率と共に下記表5に記載する。
The rise of the DSC chart indicates that the polymerization reaction of the resin has started, and the peak of the DSC chart indicates that the polymerization reaction has reached the peak.
Table 5 below shows the temperature at which the DSC chart rises (curing start temperature), the temperature at which the chart reaches a peak (exothermic peak temperature), and the maximum intensity (exothermic peak intensity) of the DSC chart together with the DVB substitution rate.
DVB置換率とはDVB(ジビニルベンゼン)の配合量(重量)を、DVBの配合量とイソシアネートの配合量との合計で除した値に100を乗じた値であり、DVB置換率は実施例1、比較例1が0%、実施例2、比較例2が30%、実施例3、比較例3が40%である。 The DVB substitution rate is a value obtained by dividing the blending amount (weight) of DVB (divinylbenzene) by the sum of the blending amount of DVB and the blending amount of isocyanate by 100, and the DVB substitution rate is that of Example 1. Comparative Example 1 is 0%, Example 2 and Comparative Example 2 are 30%, Example 3 and Comparative Example 3 are 40%.
上記図1、2から明らかなように、比較例1〜3に比べて実施例1〜3の潜在性硬化剤粒子を用いた場合には、DSCチャートがシャープで発熱ピーク強度が高くなっている。DSCチャートの発熱ピーク強度が高くなる程接着剤の硬化速度が速いことを示すので、樹脂粒子に主硬化剤を含浸させることで、接着剤の硬化速度が速くなることが分かる。 As is clear from FIGS. 1 and 2 above, when the latent curing agent particles of Examples 1 to 3 are used, the DSC chart is sharp and the exothermic peak intensity is high compared to Comparative Examples 1 to 3. . The higher the exothermic peak intensity of the DSC chart, the faster the curing rate of the adhesive. It can be seen that the curing rate of the adhesive is increased by impregnating the resin particles with the main curing agent.
含浸液に含浸させる前の樹脂粒子は、ジビニルベンゼン含有量が多い程、硬化開始温度、発熱ピーク温度が高くなる傾向があったが、含浸液に含浸させることで硬化開始温度、発熱ピーク温度のばらつきがなくなった。これは、予め主硬化剤を含有する樹脂粒子に、更に主硬化剤を含浸させることで、樹脂粒子の中心部分と表面部分で均一な主硬化剤の分布が形成されたのではないかと考えられる。 The resin particles before impregnating the impregnating liquid had a tendency to increase the curing start temperature and the exothermic peak temperature as the divinylbenzene content increased. The variation is gone. This is probably because the resin particles containing the main curing agent are impregnated with the main curing agent in advance, so that a uniform distribution of the main curing agent is formed at the center portion and the surface portion of the resin particles. .
また、実施例1〜3の硬化開始温度を見ると、硬化開始温度はそれぞれ室温よりは高いが比較的低温領域にあり、室温では保存性を有するが、加熱したときには比較的低温で硬化することがわかる。 Moreover, when the curing start temperature of Examples 1 to 3 is seen, the curing start temperature is higher than room temperature, but is in a relatively low temperature region, and has storage stability at room temperature, but is cured at a relatively low temperature when heated. I understand.
本発明により製造された潜在性硬化剤粒子は加水分解していない主硬化剤を樹脂粒子内部に含有するので、接着剤に添加する補助硬化剤の量が少なくても樹脂を重合させることができる。
例えば、上述したように、上記実施例1〜3の潜在性硬化剤粒子2重量部に対し1重量部の補助硬化剤で接着剤は低温硬化したが、含浸処理しない樹脂粒子を低温硬化させるには、該樹脂粒子2重量部に対し12重量部の補助硬化剤を必要とした。
Since the latent curing agent particles produced according to the present invention contain a main curing agent that is not hydrolyzed inside the resin particles, the resin can be polymerized even if the amount of the auxiliary curing agent added to the adhesive is small. .
For example, as described above, the adhesive was cured at a low temperature with 1 part by weight of the auxiliary curing agent with respect to 2 parts by weight of the latent curing agent particles in Examples 1 to 3, but the resin particles not impregnated were cured at a low temperature. Required 12 parts by weight of auxiliary curing agent for 2 parts by weight of the resin particles.
<主硬化剤濃度>
含浸液中のアルミニウムキレート濃度を30重量%から20重量%と40重量%に変えた以外は、上記実施例2(DVB置換率30%)と同じ条件で実施例4、5の潜在性硬化剤粒子を作成した。
<Main curing agent concentration>
The latent curing agent of Examples 4 and 5 under the same conditions as in Example 2 (DVB substitution rate 30%) except that the aluminum chelate concentration in the impregnation liquid was changed from 30% by weight to 20% by weight and 40% by weight. Particles were created.
実施例4、5の潜在性硬化剤粒子を用いて上記表4の組成で2種類の接着剤を作成し、これら接着剤について上記実施例1〜3の潜在性硬化剤粒子を用いた場合と同じ条件でDSC分析を行った。DSCチャートを図3に、「硬化開始温度」と「発熱ピーク温度」と「発熱ピーク強度」を、実施例2の測定結果と共に下記表6に記載する。 Using the latent curing agent particles of Examples 4 and 5, two types of adhesives were prepared with the composition shown in Table 4 above, and the latent curing agent particles of Examples 1 to 3 were used for these adhesives. DSC analysis was performed under the same conditions. The DSC chart is shown in FIG. 3, and “curing start temperature”, “exothermic peak temperature”, and “exothermic peak intensity” are shown in Table 6 below together with the measurement results of Example 2.
図3と上記表6から明らかなように、主硬化剤の濃度を増やすことで硬化開始温度と発熱ピーク温度が低下し、接着剤の低温硬化性が進んでいる。これらのことから、含浸液中の主硬化剤濃度を変えることで、接着剤の硬化温度を制御可能なことがわかる。 As is clear from FIG. 3 and Table 6 above, increasing the concentration of the main curing agent decreases the curing start temperature and the exothermic peak temperature, and the low temperature curability of the adhesive is advanced. From these facts, it is understood that the curing temperature of the adhesive can be controlled by changing the main curing agent concentration in the impregnating liquid.
<補助硬化剤含有潜在性硬化剤粒子>
下記表7に記載する組成の含浸液の、補助硬化剤の含有量を変えて4種類の含浸液を作成し、含浸液をこれら4種類の含浸液にそれぞれ変えた以外は実施例2と同じ条件で実施例6〜9の潜在性硬化剤粒子を作成した。
<Auxiliary curing agent-containing latent curing agent particles>
The same as in Example 2 except that four types of impregnating liquids were prepared by changing the content of the auxiliary curing agent in the impregnating liquid having the composition described in Table 7 below, and the impregnating liquids were respectively changed to these four types of impregnating liquids. Under the conditions, the latent curing agent particles of Examples 6 to 9 were prepared.
実施例6〜9と上記実施例2の潜在性硬化剤粒子を用いて、上記表4に記載した組成と、下記表8に記載した組成で計10種類の接着剤を作成した。 Using the latent curing agent particles of Examples 6 to 9 and Example 2 above, a total of 10 types of adhesives were prepared with the compositions described in Table 4 and the compositions described in Table 8 below.
これら10種類の接着剤を用いてDSC分析を行った。バインダーに補助硬化剤を添加した接着剤(表4の組成)のDSCチャートを図4に、バインダーに補助硬化剤を添加しない接着剤(表8の組成)のDSCチャートを図5にそれぞれ示し、各接着剤の「硬化開始温度」と「発熱ピーク温度」と「発熱ピーク強度」を含浸液中の補助硬化剤の含有量と共に下記表9に記載する。 DSC analysis was performed using these 10 types of adhesives. FIG. 4 shows a DSC chart of an adhesive (composition of Table 4) in which an auxiliary curing agent is added to the binder, and FIG. 5 shows a DSC chart of an adhesive (composition of Table 8) in which no auxiliary curing agent is added to the binder. The “curing start temperature”, “exothermic peak temperature”, and “exothermic peak intensity” of each adhesive are shown in Table 9 below together with the content of the auxiliary curing agent in the impregnating liquid.
尚、上記表9中の「硬化開始温度」と「発熱ピーク温度」と「発熱ピーク強度」の欄の、括弧外の数値はバインダーに補助硬化剤を添加した接着剤の数値であり、括弧内の数値はバインダーに補助硬化剤を添加しなかった接着剤の数値である。 In Table 9, the “curing start temperature”, “exothermic peak temperature”, and “exothermic peak intensity” columns are the values outside the parentheses, which are values of the adhesive in which an auxiliary curing agent is added to the binder. The numerical value of is the value of the adhesive in which no auxiliary curing agent was added to the binder.
上記表9と図4、5から分かるように、含浸液中の補助硬化剤の含有量が多くなる程、硬化開始温度、発熱ピーク温度共に低温化しており、その低温化の効果は図5に示すようにバインダーに補助硬化剤を含有させない場合顕著であった。 As can be seen from Table 9 and FIGS. 4 and 5, as the content of the auxiliary curing agent in the impregnating solution increases, both the curing start temperature and the exothermic peak temperature are lowered, and the effect of the lowering is shown in FIG. 5. As shown, it was remarkable when an auxiliary curing agent was not contained in the binder.
表7に示した希釈溶剤を含浸液に添加せず、主硬化剤と、主硬化剤製品に元々添加されている希釈溶剤と、補助硬化剤とからなる含浸液を用いた実施例9の潜在性硬化剤粒子は、補助硬化剤を含有しないバインダーにおいても硬化開始温度61℃という低温化を実現することができた。 The potential of Example 9 using the impregnating liquid consisting of the main curing agent, the diluting solvent originally added to the main curing agent product, and the auxiliary curing agent without adding the diluting solvent shown in Table 7 to the impregnating liquid. The functional hardener particles were able to achieve a low temperature of 61 ° C. as a curing start temperature even in a binder containing no auxiliary hardener.
逆に、含浸液に補助硬化剤を添加しなかった実施例2は、バインダーに補助硬化剤を添加しない場合に接着剤が硬化しなかった。この結果から、含浸液に補助硬化剤を添加することで、バインダーに補助硬化剤を添加しなくても接着剤の硬化反応が起こることが確認された。
また、上記実施例9の潜在性硬化剤粒子の電子顕微鏡写真には、樹脂粒子の異形化や凝集が見られず、含浸液浸漬処理後の粒子状態は良好であることが確認された。
On the contrary, in Example 2 in which the auxiliary curing agent was not added to the impregnation liquid, the adhesive was not cured when the auxiliary curing agent was not added to the binder. From this result, it was confirmed that by adding an auxiliary curing agent to the impregnating solution, a curing reaction of the adhesive occurs without adding an auxiliary curing agent to the binder.
Further, in the electron micrograph of the latent curing agent particles of Example 9 above, the resin particles were not deformed or aggregated, and it was confirmed that the particle state after the impregnation liquid immersion treatment was good.
<補助硬化剤の種類>
上記表7に記載した含浸液の補助硬化剤の種類を変えて4種類の含浸液を作成し、これら4種類の含浸液を用いた以外は実施例9と同じ条件で実施例10〜13の潜在性硬化剤粒子を作成した。補助硬化剤(シラン化合物)の製品名と官能基の種類を下記表10に記載する。
<Type of auxiliary curing agent>
Four types of impregnating solutions were prepared by changing the type of the auxiliary curing agent of the impregnating solution described in Table 7 above, and Examples 10 to 13 were performed under the same conditions as in Example 9 except that these four types of impregnating solutions were used. Latent curing agent particles were made. The product name of the auxiliary curing agent (silane compound) and the type of functional group are shown in Table 10 below.
上記表10に記載した各シラン化合物は、それぞれ信越化学工業(株)社の製品である。 Each silane compound described in Table 10 is a product of Shin-Etsu Chemical Co., Ltd.
実施例10〜13と、上記実施例9の潜在性硬化剤粒子を用いて、上記表4、8の組成で計10種類の接着剤を作成し、各接着剤についてDSC分析を行った。
これら10種類の接着剤を用いてDSC分析を行った。バインダーに補助硬化剤を添加した接着剤(表4の組成)のDSCチャートを図6に、バインダーに補助硬化剤を添加しない接着剤(表8の組成)のDSCチャートを図7にそれぞれ示し、各接着剤の「硬化開始温度」と「発熱ピーク温度」と「発熱ピーク強度」を含浸液中の補助硬化剤の種類と共に上記表10に記載した。
Using Examples 10 to 13 and the latent curing agent particles of Example 9, a total of 10 types of adhesives having the compositions shown in Tables 4 and 8 were prepared, and DSC analysis was performed on each adhesive.
DSC analysis was performed using these 10 types of adhesives. FIG. 6 shows a DSC chart of an adhesive (composition of Table 4) in which an auxiliary curing agent is added to the binder, and FIG. 7 shows a DSC chart of an adhesive (composition of Table 8) in which no auxiliary curing agent is added to the binder. The “curing start temperature”, “exothermic peak temperature”, and “exothermic peak intensity” of each adhesive are shown in Table 10 above together with the type of auxiliary curing agent in the impregnating liquid.
尚、上記表10中の「硬化開始温度」と「発熱ピーク温度」と「発熱ピーク強度」の欄の、括弧外の数値はバインダーに補助硬化剤を添加した接着剤の数値であり、括弧内の数値はバインダーに補助硬化剤を添加しなかった接着剤の数値である。 In Table 10, the “curing start temperature”, “exothermic peak temperature”, and “exothermic peak intensity” columns are the values outside the parentheses, which are values of the adhesive obtained by adding an auxiliary curing agent to the binder. The numerical value of is the value of the adhesive in which no auxiliary curing agent was added to the binder.
図7に示すように、グリシジル基を持つシラン化合物を用いた実施例11の場合、硬化開始温度53℃、発熱ピーク温度86℃の低温硬化性を達成することができた。これについては、反応性のエポキシ基を有するシラン化合物を主硬化剤であるアルミニウムキレートと同時に潜在化したことにより、エポキシの重合効率が上がったためと考えている。 As shown in FIG. 7, in the case of Example 11 using a silane compound having a glycidyl group, low temperature curability having a curing start temperature of 53 ° C. and an exothermic peak temperature of 86 ° C. could be achieved. This is thought to be due to the fact that the epoxy polymerization efficiency was increased by making the silane compound having a reactive epoxy group latent with the aluminum chelate as the main curing agent.
同様に、脂環式エポキシ基であるシクロヘキセンオキシド基を持つシラン化合物を用いた実施例13も低温硬化の傾向があった。シクロヘキセンオキシド基とグリシジル基は共にエポキシ基であり、これらエポキシ基を有するシラン化合物を含浸させた潜在性硬化剤粒子は非常に活性が高いため、バインダーに少量のシラン化合物を配合した接着剤では、図6に示すように、硬化開始温度は40℃台まで低下した。 Similarly, Example 13 using a silane compound having a cyclohexene oxide group which is an alicyclic epoxy group also had a tendency to cure at low temperature. Since both the cyclohexene oxide group and the glycidyl group are epoxy groups, and the latent curing agent particles impregnated with the silane compound having these epoxy groups are very active, an adhesive containing a small amount of the silane compound in the binder, As shown in FIG. 6, the curing start temperature decreased to the 40 ° C. range.
また、ビニルタイプのシラン化合物を用いた場合に、発熱ピークがダブルピークとなったのは、シラン化合物によるアルミキレート剤の配位子置換量の差が影響しているのではないかと考えている。即ち、立体障害の小さいビニル型のシラン化合物では、配位子置換が生じやすく、アルミニウムキレートとの反応によって、反応性の異なる2タイプのカチオン種が生成される可能性が考えられる。 In addition, when a vinyl type silane compound is used, the exothermic peak becomes a double peak because the difference in the ligand substitution amount of the aluminum chelating agent by the silane compound may have an effect. . That is, in a vinyl-type silane compound with small steric hindrance, ligand substitution is likely to occur, and two types of cationic species with different reactivity may be generated by reaction with an aluminum chelate.
<参考試験1>
アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)の24%イソプロパノール溶液(川研ファインケミカル(株)社製の商品名「アルミニウムキレートD」)11重量部と、メチレンジフェニル−4,4’−ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(三井武田ケミカル(株)社製の商品名「D−109」)を11重量部とを、有機溶剤である酢酸エチル30重量部に溶解して油相液とした。
<
11 parts by weight of a 24% isopropanol solution of aluminum monoacetylacetonate bis (ethyl acetoacetate) (trade name “aluminum chelate D” manufactured by Kawaken Fine Chemical Co., Ltd.) and methylenediphenyl-4,4′-diisocyanate (3 Mole) of trimethylolpropane (1 mol) adduct (trade name “D-109” manufactured by Mitsui Takeda Chemical Co., Ltd.) was dissolved in 11 parts by weight of 30 parts by weight of ethyl acetate as an organic solvent. An oil phase solution was obtained.
この油相液と、上記表1に記載した水相液と混合して、ホモジナイザー(11000rpm/10分)で乳化混合後、60℃で1晩界面重合させた。反応終了後、重合反応液を室温まで放冷し、界面重合粒子をろ過によりろ別し、自然乾燥することにより粒径10μm程度の球状の樹脂粒子を得た。 This oil phase liquid was mixed with the aqueous phase liquid described in Table 1 above, emulsified and mixed with a homogenizer (11000 rpm / 10 minutes), and then subjected to interfacial polymerization at 60 ° C. overnight. After the completion of the reaction, the polymerization reaction solution was allowed to cool to room temperature, and the interfacially polymerized particles were separated by filtration and naturally dried to obtain spherical resin particles having a particle size of about 10 μm.
この樹脂粒子を、上記表3に記載した含浸液に含浸させて実施例14の潜在性硬化剤粒子を作成した。
また、比較対照として、油相液にアルミニウムキレートを含有させなかった以外は、上記実施例14と同じ条件で比較例4の潜在性硬化剤粒子を作成した。
The resin particles were impregnated in the impregnation liquid described in Table 3 above to prepare the latent curing agent particles of Example 14.
As a comparative control, the latent curing agent particles of Comparative Example 4 were prepared under the same conditions as in Example 14 except that the oil phase liquid did not contain aluminum chelate.
実施例14と比較例4の潜在性硬化剤粒子を用いて表4の組成で接着剤を作成し、その接着剤について、昇温速度5℃/分、測定量10mgの条件でDSC分析を行った。DSC分析の結果、得られたDSCチャートを図8に示し、DSCチャートから読み取った硬化開始温度と発熱ピーク温度と発熱ピーク強度の値を下記表11に示す。 Using the latent curing agent particles of Example 14 and Comparative Example 4, an adhesive was prepared with the composition of Table 4, and the DSC analysis was performed on the adhesive under the conditions of a heating rate of 5 ° C./min and a measurement amount of 10 mg. It was. As a result of DSC analysis, the obtained DSC chart is shown in FIG. 8, and the values of the curing start temperature, exothermic peak temperature and exothermic peak intensity read from the DSC chart are shown in Table 11 below.
図8の符号E14は実施例14の潜在性硬化剤粒子を用いた場合のDSCチャートを、同図の符号C4は比較例4の潜在性硬化剤粒子を用いた場合のDSCチャートをそれぞれ示している。 8 indicates a DSC chart when the latent hardener particles of Example 14 are used, and C4 in FIG. 8 indicates a DSC chart when the latent hardener particles of Comparative Example 4 are used. Yes.
上記表11と、図8のチャートを見れば明らかなように、比較例4は実施例14に比べて発熱開始温度も熱硬化温度も高く、接着剤の低温硬化性に劣る。これは、アルミニウムキレートを含有しない樹脂粒子を、後からアルミニウムキレートを含浸させても、アルミニウムキレートが含浸される量に限界があり、実施例14に比べて比較例4の潜在性硬化剤粒子のアルミニウムキレート含有量が小さくなったためと推測される。 As is clear from Table 11 and the chart of FIG. 8, Comparative Example 4 has a higher heat generation start temperature and a higher thermosetting temperature than Example 14, and is inferior in the low-temperature curability of the adhesive. This is because there is a limit to the amount of the aluminum chelate impregnated even if the resin chelate containing no aluminum chelate is impregnated later, and compared with Example 14, the latent curing agent particles of Comparative Example 4 It is presumed that the aluminum chelate content was reduced.
<参考試験2>
上記表7に記載した組成で、シランカップリング剤の配合量を変えて5種類の含浸液を作成した。シランカップリング剤の配合量を下記表12に示す。
<
Five types of impregnating liquids having the compositions shown in Table 7 were prepared by changing the amount of the silane coupling agent. The blending amount of the silane coupling agent is shown in Table 12 below.
上記5種類の含浸液に、実施例14と同じ条件で製造した樹脂粒子を浸漬して、実施例15〜19の潜在性硬化剤粒子を製造した。
尚、実施例14で用いた油相液には親油性モノマーが添加されておらず、実施例14の潜在性硬化剤粒子はDVB置換率がゼロであるから、実施例15〜19の潜在性硬化剤粒子のDVB置換率もゼロになる。
The latent curing agent particles of Examples 15 to 19 were produced by immersing the resin particles produced under the same conditions as in Example 14 in the five types of impregnation liquids.
In addition, since the lipophilic monomer is not added to the oil phase liquid used in Example 14, and the latent curing agent particles of Example 14 have a DVB substitution rate of zero, the potentials of Examples 15 to 19 are eliminated. The DVB substitution rate of the curing agent particles is also zero.
実施例15〜19の潜在性硬化剤粒子を用いて、上記表4の組成で接着剤を製造し、その接着剤のDSC分析を行った。DSC分析の結果、得られたDSCチャートを図9に示し、DSCチャートから読み取った硬化開始温度と発熱ピーク温度と発熱ピーク強度の値を上記表12に記載した。 Using the latent curing agent particles of Examples 15 to 19, an adhesive was produced with the composition shown in Table 4 above, and DSC analysis of the adhesive was performed. As a result of the DSC analysis, the obtained DSC chart is shown in FIG. 9, and the curing start temperature, exothermic peak temperature, and exothermic peak intensity values read from the DSC chart are shown in Table 12 above.
図9の符号E15〜E19は、それぞれ実施例15〜19の潜在性硬化剤粒子を用いた場合のDSCチャートを示している。
図9と表12から分かるように、シランカップリング剤の配合量が20重量部までは、シランカップリング剤の配合量が増える程、硬化開始温度と発熱ピーク温度は低温化したが、配合量が20重量部を超えると、硬化開始温度と発熱ピーク温度は高温側にシフトした。
Symbols E 15 to E 19 in FIG. 9 show DSC charts when the latent curing agent particles of Examples 15 to 19 are used, respectively.
As can be seen from FIG. 9 and Table 12, when the amount of the silane coupling agent is up to 20 parts by weight, the curing start temperature and the exothermic peak temperature are lowered as the amount of the silane coupling agent is increased. When the amount exceeds 20 parts by weight, the curing start temperature and the exothermic peak temperature shifted to the high temperature side.
これに対し、親油性モノマーを油相液に含有させた場合(実施例2〜6、表9、図4)は、シランカップリング剤の配合量が20重量部を超えても硬化開始温度と発熱ピーク温度は低温化している。 On the other hand, when the lipophilic monomer is contained in the oil phase liquid (Examples 2 to 6, Table 9, and FIG. 4), the curing start temperature is set even when the amount of the silane coupling agent exceeds 20 parts by weight. The exothermic peak temperature is decreasing.
これは、油相液に親油性モノマーを含有させずに樹脂粒子を製造すると、親油性モノマーを含有させた場合と比べて、ポリウレア−ウレタン結合の架橋密度が高くなりすぎ、シランカップリング剤が樹脂粒子に含浸可能な量が小さくなるためと推測される。 This is because when the resin particles are produced without containing the lipophilic monomer in the oil phase liquid, the crosslink density of the polyurea-urethane bond is too high compared to the case where the lipophilic monomer is contained, and the silane coupling agent is This is presumably because the amount of resin particles that can be impregnated becomes small.
<参考試験3>
上記実施例15〜19の潜在性硬化剤粒子と、シランカップリング剤を含有しないバインダーとを、上記表8の組成で配合して5種類の接着剤を製造した。
これらの接着剤を用いてDSC分析を行った。DSC分析の結果、得られたDSCチャートを図10に示し、図10のDSCチャートから読み取った硬化開始温度と、発熱ピーク温度と、発熱ピーク強度を、含浸液中のシランカップリング剤配合量と共に、下記表13に記載する。
<
The latent curing agent particles of Examples 15 to 19 and a binder not containing a silane coupling agent were blended with the composition shown in Table 8 to prepare five types of adhesives.
DSC analysis was performed using these adhesives. As a result of DSC analysis, the obtained DSC chart is shown in FIG. 10, and the curing start temperature, exothermic peak temperature, and exothermic peak intensity read from the DSC chart of FIG. 10 are shown together with the amount of the silane coupling agent in the impregnating liquid. Are listed in Table 13 below.
尚、図10の符号E15〜E19はそれぞれ実施例15〜19の潜在性硬化剤粒子を用いた接着剤のDSCチャートを示している。 Incidentally, it shows a DSC chart of the adhesive using the latent curing agent particles of the code E 15 to E 19 are examples 15 to 19 in FIG. 10.
上記表13と図10から分かるように、含浸液中のシランカップリング剤の配合量が多くなるほど、硬化開始温度と、発熱ピーク温度が低くなっている。また、実施例15の潜在性硬化剤粒子はシランカップリング剤を含有しないため、バインダー中にもシランカップリング剤が添加されていない接着剤では、硬化反応が起こらなかった。 As can be seen from Table 13 and FIG. 10, the curing start temperature and the exothermic peak temperature are lower as the amount of the silane coupling agent in the impregnating solution is increased. In addition, since the latent curing agent particles of Example 15 did not contain a silane coupling agent, the curing reaction did not occur with an adhesive to which no silane coupling agent was added even in the binder.
また、樹脂粒子を製造する工程で油相液に親油性モノマーを添加しなかった場合の測定結果(表12、13)と、樹脂粒子を製造する工程で油相液に親油性モノマーを添加した場合の結果(表9)とを比べると、含浸液中のシランカップリング剤の配合量が同じ場合であっても、親油性モノマーを油相液に添加した方が、添加しない場合に比べて発熱ピーク強度が高い傾向があった。 In addition, the measurement results (Tables 12 and 13) when the lipophilic monomer was not added to the oil phase liquid in the process of producing the resin particles, and the lipophilic monomer were added to the oil phase liquid in the process of producing the resin particles. In comparison with the case results (Table 9), even when the compounding amount of the silane coupling agent in the impregnating liquid is the same, the case where the lipophilic monomer is added to the oil phase liquid is compared with the case where it is not added. The exothermic peak intensity tended to be high.
発熱ピーク強度が高い程、接着剤の硬化速度が早いことになるので、樹脂粒子を製造する工程で、油相液に親油性モノマーを添加した方が、接着剤の硬化速度が速いことがわかる。 The higher the exothermic peak strength is, the faster the curing rate of the adhesive is. Therefore, it can be seen that the curing rate of the adhesive is faster when the lipophilic monomer is added to the oil phase liquid in the process of producing the resin particles. .
シランカップリング剤の含有量が多い程、硬化速度が速くなるから、樹脂粒子を製造する工程で、油相液に親油性モノマーを添加した方が、シランカップリング剤を浸透、保持する能力が高い樹脂粒子が得られることが分かる。 The higher the content of the silane coupling agent, the faster the curing speed. Therefore, in the process of producing resin particles, adding lipophilic monomer to the oil phase liquid has the ability to penetrate and retain the silane coupling agent. It can be seen that high resin particles can be obtained.
以上のことから、低温短時間硬化可能な接着剤を製造するためには、親油性モノマーを油相液に添加する方が好ましいことが分かる。 From the above, it can be seen that it is preferable to add a lipophilic monomer to the oil phase liquid in order to produce an adhesive that can be cured at a low temperature for a short time.
Claims (15)
重合反応可能な反応性樹脂と、前記主硬化剤とを有する原料液を製造する原料液製造工程と、
前記原料液を加熱して前記反応性樹脂を重合させ、前記主硬化剤を含有する樹脂粒子を製造する樹脂粒子製造工程と、
前記樹脂粒子を、前記主硬化剤が添加された含浸液に接触させて、前記主硬化剤を前記樹脂粒子に含浸させ、前記樹脂粒子中の前記主硬化剤の含有量を増加させる含浸工程とを有する潜在性硬化剤粒子の製造方法。 Latent curing agent particles for producing latent curing agent particles to be dispersed in an adhesive, wherein the reaction product with an auxiliary curing agent contains a main curing agent that cures the adhesive A manufacturing method of
A raw material liquid production process for producing a raw material liquid having a reactive resin capable of polymerization reaction and the main curing agent;
Resin particle production step of producing the resin particles containing the main curing agent by heating the raw material liquid to polymerize the reactive resin;
An impregnation step of bringing the resin particles into contact with an impregnation liquid to which the main curing agent is added, impregnating the resin particles with the main curing agent, and increasing the content of the main curing agent in the resin particles; A process for producing latent curing agent particles having
前記含浸液は前記補助硬化剤を含有する請求項1記載の潜在性硬化剤粒子の製造方法。 The auxiliary curing agent is a substance that inhibits polymerization of the reactive resin,
The method for producing latent curing agent particles according to claim 1, wherein the impregnation liquid contains the auxiliary curing agent.
前記補助硬化剤はシラン化合物である請求項1乃至請求項8のいずれか1項記載の潜在性硬化剤粒子の製造方法。 The main curing agent is a metal chelate;
The method for producing latent curing agent particles according to any one of claims 1 to 8, wherein the auxiliary curing agent is a silane compound.
前記洗浄液には、シクロヘキサンと、ヘキサンと、トルエンとからなる群より選択される1種類以上の極性溶剤を含有させる請求項11記載の潜在性硬化剤粒子の製造方法。 The polymer of the reactive monomer is a polyurea resin,
The method for producing latent curing agent particles according to claim 11, wherein the cleaning liquid contains one or more polar solvents selected from the group consisting of cyclohexane, hexane, and toluene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006349933A JP5481013B2 (en) | 2006-12-26 | 2006-12-26 | Method for producing latent curing agent particle, method for producing adhesive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006349933A JP5481013B2 (en) | 2006-12-26 | 2006-12-26 | Method for producing latent curing agent particle, method for producing adhesive |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008156570A true JP2008156570A (en) | 2008-07-10 |
JP5481013B2 JP5481013B2 (en) | 2014-04-23 |
Family
ID=39657851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006349933A Active JP5481013B2 (en) | 2006-12-26 | 2006-12-26 | Method for producing latent curing agent particle, method for producing adhesive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5481013B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009221465A (en) * | 2008-02-18 | 2009-10-01 | Sony Chemical & Information Device Corp | Aluminum chelate-based latent curing agent, its production method, and thermosetting epoxy resin composition |
JP2017105949A (en) * | 2015-12-11 | 2017-06-15 | デクセリアルズ株式会社 | Method for producing aluminium chelate-based latent curing agent and thermosetting epoxy resin composition |
KR20180030117A (en) | 2015-12-17 | 2018-03-21 | 데쿠세리아루즈 가부시키가이샤 | Process for producing an aluminum chelating latent curing agent and thermosetting epoxy resin composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6670688B2 (en) | 2016-06-15 | 2020-03-25 | デクセリアルズ株式会社 | Latent curing agent, method for producing the same, and thermosetting epoxy resin composition |
JP7117166B2 (en) | 2018-06-13 | 2022-08-12 | デクセリアルズ株式会社 | Cationic curable composition and method for producing cured product |
JP7221075B2 (en) | 2019-02-15 | 2023-02-13 | デクセリアルズ株式会社 | Latent curing agent, method for producing the same, and cationic curable composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6060173A (en) * | 1983-09-14 | 1985-04-06 | Kureha Chem Ind Co Ltd | Microencapsulated adhesive |
JPH06238158A (en) * | 1993-02-17 | 1994-08-30 | Nitto Denko Corp | Production of combined-wall microcupsle |
JP2002212537A (en) * | 2001-01-24 | 2002-07-31 | Sony Chem Corp | Adhesive and electric device |
JP2003238656A (en) * | 2002-02-18 | 2003-08-27 | Sony Chem Corp | Latent curing agent, method for producing the same and adhesive |
-
2006
- 2006-12-26 JP JP2006349933A patent/JP5481013B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6060173A (en) * | 1983-09-14 | 1985-04-06 | Kureha Chem Ind Co Ltd | Microencapsulated adhesive |
JPH06238158A (en) * | 1993-02-17 | 1994-08-30 | Nitto Denko Corp | Production of combined-wall microcupsle |
JP2002212537A (en) * | 2001-01-24 | 2002-07-31 | Sony Chem Corp | Adhesive and electric device |
JP2003238656A (en) * | 2002-02-18 | 2003-08-27 | Sony Chem Corp | Latent curing agent, method for producing the same and adhesive |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009221465A (en) * | 2008-02-18 | 2009-10-01 | Sony Chemical & Information Device Corp | Aluminum chelate-based latent curing agent, its production method, and thermosetting epoxy resin composition |
JP2014015631A (en) * | 2008-02-18 | 2014-01-30 | Dexerials Corp | Aluminum chelate-based latent curing agent, production method thereof, and thermo-curing epoxy resin composition |
JP2017105949A (en) * | 2015-12-11 | 2017-06-15 | デクセリアルズ株式会社 | Method for producing aluminium chelate-based latent curing agent and thermosetting epoxy resin composition |
JP7097665B2 (en) | 2015-12-11 | 2022-07-08 | デクセリアルズ株式会社 | Method for Producing Aluminum Chelate Latent Curing Agent and Thermosetting Epoxy Resin Composition |
KR20180030117A (en) | 2015-12-17 | 2018-03-21 | 데쿠세리아루즈 가부시키가이샤 | Process for producing an aluminum chelating latent curing agent and thermosetting epoxy resin composition |
CN109071781A (en) * | 2015-12-17 | 2018-12-21 | 迪睿合株式会社 | The manufacturing method and thermosetting epoxy resin composition of aluminium chelate compound system latent curing agent |
KR102036751B1 (en) * | 2015-12-17 | 2019-10-25 | 데쿠세리아루즈 가부시키가이샤 | Method for producing aluminum chelate latent curing agent and thermosetting epoxy resin composition |
US10626215B2 (en) | 2015-12-17 | 2020-04-21 | Dexerials Corporation | Process for producing aluminum-chelate-based latent curing agent, and thermosetting epoxy resin composition |
CN109071781B (en) * | 2015-12-17 | 2020-10-27 | 迪睿合株式会社 | Method for producing aluminum chelate-based latent curing agent and thermosetting epoxy resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP5481013B2 (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146645B2 (en) | Microcapsule type latent curing agent | |
TWI288169B (en) | Latent curing agent | |
JP5707662B2 (en) | Thermosetting epoxy resin composition | |
KR101162782B1 (en) | Latent hardener | |
JP5429337B2 (en) | Thermosetting epoxy resin composition | |
TWI709586B (en) | Manufacturing method of aluminum chelate latent hardener and thermosetting epoxy resin composition | |
JP5481013B2 (en) | Method for producing latent curing agent particle, method for producing adhesive | |
WO2016039193A1 (en) | Aluminum chelate-based latent curing agent, method for producing same, and thermosetting epoxy resin composition | |
JP5664366B2 (en) | Thermal latent curing agent, method for producing the same, and thermosetting epoxy resin composition | |
JP7403695B2 (en) | Latent curing agent film forming composition and latent curing agent film forming method | |
TW201829527A (en) | Latent curing agent, method for producing the same, and thermosetting epoxy resin composition | |
JP2011026383A (en) | Heat curing type thermally conductive adhesive composition | |
JP2009203477A (en) | Latent curing agent | |
JP5360378B2 (en) | Method for producing latent curing agent and method for producing adhesive | |
JP5212597B2 (en) | Latent curing agent | |
JP5285841B2 (en) | Method for producing film adhesive | |
JP5354192B2 (en) | Thermosetting conductive paste composition | |
JP7028280B2 (en) | Method for Producing Aluminum Chelate Latent Curing Agent and Thermosetting Epoxy Resin Composition | |
JP7097665B2 (en) | Method for Producing Aluminum Chelate Latent Curing Agent and Thermosetting Epoxy Resin Composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120730 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130621 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5481013 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |