JP2008154600A - Radiographic device - Google Patents

Radiographic device Download PDF

Info

Publication number
JP2008154600A
JP2008154600A JP2006343096A JP2006343096A JP2008154600A JP 2008154600 A JP2008154600 A JP 2008154600A JP 2006343096 A JP2006343096 A JP 2006343096A JP 2006343096 A JP2006343096 A JP 2006343096A JP 2008154600 A JP2008154600 A JP 2008154600A
Authority
JP
Japan
Prior art keywords
imaging
signal
readout
control unit
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006343096A
Other languages
Japanese (ja)
Other versions
JP4840124B2 (en
Inventor
Keiichi Goto
敬一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006343096A priority Critical patent/JP4840124B2/en
Publication of JP2008154600A publication Critical patent/JP2008154600A/en
Application granted granted Critical
Publication of JP4840124B2 publication Critical patent/JP4840124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiographic device which can avoid a trouble caused by scattered rays in one imaging system affecting the reading in other imaging systems in a type with a plurality of imaging systems. <P>SOLUTION: The device is provided with a photographing control part 5 which outputs a photographing start signal 50A to a target imaging system, for example, an X-ray irradiation part 6A of one imaging system to match the longest reading signal, for example, a reading signal 40A out of the reading signal 40A in the one imaging system and those 40B in other imaging systems. This can avoid the trouble caused by the scattered X rays in one imaging system affecting the reading in other systems even when the reading time in one imaging system is longer than that in other imaging systems while ensuring the pulse width of X rays as long as possible up to the reading scan to be started subsequently thereby keeping a higher quality. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、放射線撮影装置に係り、特に、複数の撮影系を備えた放射線撮影装置に関する。   The present invention relates to a radiation imaging apparatus, and more particularly to a radiation imaging apparatus including a plurality of imaging systems.

従来のこの種の装置について、X線撮影装置を例に挙げて説明する。
従来、X線撮影装置のX線検出器としては、イメージインテンシファイアとTVカメラとを組み合わせたものを用いるのが普通であったが、近年、小型・軽量かつ大受像面が可能なフラットパネル型X線検出器(以下、FPD)が用いられるようになってきている(例えば、特許文献1参照)。
This type of conventional apparatus will be described by taking an X-ray imaging apparatus as an example.
Conventionally, as an X-ray detector of an X-ray imaging apparatus, it has been common to use a combination of an image intensifier and a TV camera, but in recent years, a flat panel capable of being small and light and having a large image receiving surface. A type X-ray detector (hereinafter referred to as FPD) has been used (see, for example, Patent Document 1).

一方、X線撮影装置としては、被曝X線量の低減のためにX線をパルス状に出力して画像を得る手法が主流となっている。その際、画質を向上させるためにはX線の照射パルス幅をできるだけ大きくとってX線量を確保する必要がある。しかしながら、従来のFPDを用いたX線撮影装置では、読み出しスキャンの終了タイミングを1フレームの読み出し時間から大まかに割り出しているので、読み出しスキャンの終了タイミングに応じて直ちにX線照射を開始することができず、そのため十分なパルス幅を確保して画質を向上させることが難しいという問題がある。また、信号読み出しスキャンが終了しないうちにX線照射を開始してしまうこともあり得、その場合には電荷のクリアが間に合わずに帯状のアーティファクトが発生してしまう。逆に、X線照射が終了しないうちに読み出しスキャンを開始しても、X線照射が終了した時点の信号読み出し位置に帯状のアーティファクトが発生してしまう。そこで、FPDの信号読み出しスキャンの状況を捉えてX線照射制御を行い、それによってX線照射パルス幅を大きくすることができるようにし、撮影したX線画像の画質を向上させることができるように改善した撮影法が確立されている(例えば、特許文献2参照)。
特開2001−29337号公報 特開2005−27913号公報(第3頁右欄34行−第4頁左欄6行、図3)
On the other hand, as an X-ray imaging apparatus, a technique for obtaining an image by outputting X-rays in pulses to reduce the exposure X-ray dose has become mainstream. At that time, in order to improve the image quality, it is necessary to secure the X-ray dose by taking the X-ray irradiation pulse width as large as possible. However, in the conventional X-ray imaging apparatus using the FPD, the end timing of the readout scan is roughly determined from the readout time of one frame, so that X-ray irradiation can be started immediately according to the end timing of the readout scan. Therefore, there is a problem that it is difficult to improve the image quality by securing a sufficient pulse width. In addition, X-ray irradiation may be started before the signal reading scan is completed. In this case, the charge is not cleared in time, and a band-shaped artifact is generated. On the contrary, even if the readout scan is started before the X-ray irradiation is finished, a band-shaped artifact is generated at the signal readout position when the X-ray irradiation is finished. Therefore, X-ray irradiation control is performed by grasping the situation of FPD signal readout scanning, so that the X-ray irradiation pulse width can be increased, and the image quality of the photographed X-ray image can be improved. An improved imaging method has been established (for example, see Patent Document 2).
JP 2001-29337 A JP 2005-27913 A (page 3, right column, line 34-page 4, left column, line 6, line 3)

しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
X線管とX線検出器とを有する撮影系が複数あるX線撮影装置では、個々の撮影系ごとに制御しているので、各撮影系の読み出し状況が分からない。その結果、例えば、視野サイズや画像荒さによって信号読み出し時間が個々の撮影系の検出器で異なる場合、連続的に交互にX線照射を行うと、従来の方法のままでは、信号読み出し時間の短い撮影系におけるX線照射での散乱線が、他の撮影系の信号読み出しに掛かってしまうことになり、その部分は帯状のアーティファクトとして画像に現れてきてしまう。
However, the conventional example having such a configuration has the following problems.
In an X-ray imaging apparatus having a plurality of imaging systems having an X-ray tube and an X-ray detector, since the control is performed for each imaging system, the readout status of each imaging system is unknown. As a result, for example, when the signal readout time varies depending on the field-of-view size and image roughness, if the X-ray irradiation is continuously performed alternately, the signal readout time is short with the conventional method. Scattered rays due to X-ray irradiation in the imaging system will be applied to signal readout of other imaging systems, and that portion will appear in the image as a band-shaped artifact.

この発明は、このような事情に鑑みてなされたものであって、複数の撮影系を備えた放射線撮影装置において、一方の撮影系の散乱線が他方の撮影系の読み出しに掛かってしまう不都合を回避できる放射線撮影装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and in a radiation imaging apparatus having a plurality of imaging systems, there is a problem in that scattered radiation of one imaging system is applied to readout of the other imaging system. An object is to provide a radiation imaging apparatus that can be avoided.

この発明は、このような目的を達成するために、次のような構成を採る。
すなわち、請求項1に記載の発明は、撮影系を複数備えた放射線撮影装置において、前記複数の撮影系の撮影データの読み出しに関する信号に合わせて、前記複数の撮影系の中で対象となる撮影系の放射線照射に関する信号を制御する撮影制御手段を備えたことを特徴とする。
The present invention adopts the following configuration in order to achieve such an object.
That is, according to the first aspect of the present invention, in a radiation imaging apparatus including a plurality of imaging systems, imaging that is a target in the plurality of imaging systems in accordance with a signal related to readout of imaging data of the plurality of imaging systems. An imaging control means for controlling a signal related to radiation irradiation of the system is provided.

[作用・効果]
請求項1に記載された発明によれば、撮影制御手段は、複数の撮影系の撮影データの読み出しに関する信号に合わせて、複数の撮影系の中で対象となる撮影系の放射線照射に関する信号を制御することができる。したがって、複数の撮影系を備えた放射線撮影装置において、一方の撮影系の散乱線が他方の撮影系の読み出しに掛かってしまう不都合を回避できるとともに、次に開始される読み出しスキャンまでの間、可能な限り長い放射線パルス幅を確保することができて画質を良好に保つことができる。
[Action / Effect]
According to the first aspect of the present invention, the imaging control means outputs a signal related to radiation irradiation of the imaging system as a target in the plurality of imaging systems in accordance with a signal related to reading of imaging data of the plurality of imaging systems. Can be controlled. Therefore, in a radiographic apparatus equipped with a plurality of imaging systems, it is possible to avoid the inconvenience that scattered radiation from one imaging system is applied to readout of the other imaging system, and possible until the next readout scan is started. As long as the radiation pulse width is as long as possible, the image quality can be kept good.

この発明において、複数の撮影系の中で時間が最も長い読み出し信号に合わせて、前記対象となる撮影系の放射線照射信号を前記撮影制御手段は制御することを特徴とする(請求項2記載の発明)。これにより、複数の撮影系を備えた放射線撮影装置において、それぞれの撮影系の読み出し時間が異なる場合でも、ある撮影系の散乱線が他の撮影系の読み出しに掛かってしまう不都合を回避することができるとともに、次に開始される読み出しスキャンまでの間、可能な限り長い放射線パルス幅を確保することができて画質を良好に保つことができる放射線撮影装置を提供することができる。   In this invention, the imaging control means controls the radiation irradiation signal of the target imaging system in accordance with the readout signal having the longest time among a plurality of imaging systems. invention). Thereby, in a radiography apparatus having a plurality of imaging systems, even when the readout times of the respective imaging systems are different, it is possible to avoid the inconvenience that scattered rays of a certain imaging system are applied to readout of other imaging systems. In addition, it is possible to provide a radiation imaging apparatus that can ensure the longest possible radiation pulse width and maintain good image quality until the next readout scan.

この発明に係る放射線撮影装置によれば、一方の撮影系の散乱線が他方の撮影系の読み出しに掛かってしまう不都合を回避できるとともに、次に開始される読み出しスキャンまでの間、可能な限り長い放射線パルス幅を確保することができて画質を良好に保つことができる。   According to the radiation imaging apparatus of the present invention, it is possible to avoid the inconvenience that the scattered radiation of one imaging system is applied to the readout of the other imaging system, and it is as long as possible until the next readout scan. The radiation pulse width can be ensured and the image quality can be kept good.

以下、図面を参照してこの発明の実施例1を説明する。図1は、実施例1の全体構成を示すブロック図である。図2は、従来の複数の撮影系を備えたX線撮影装置における撮影制御のタイミングチャートである。図3は、実施例1の撮影制御のタイミングチャートである。図4は、実施例1の撮影制御の論理回路を表した図である。   Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating the overall configuration of the first embodiment. FIG. 2 is a timing chart of imaging control in an X-ray imaging apparatus having a plurality of conventional imaging systems. FIG. 3 is a timing chart of shooting control according to the first embodiment. FIG. 4 is a diagram illustrating a shooting control logic circuit according to the first embodiment.

実施例1の全体構成について、図1を参照しながら説明する。なお、図中でAを付した構成部分を合わせた撮影系統を撮影系Aと呼び、図中でBを付した構成部分を合わせた撮影系統を撮影系Bと呼ぶ。   The overall configuration of the first embodiment will be described with reference to FIG. In addition, the imaging system combining the components indicated by A in the drawing is called an imaging system A, and the imaging system combining the components indicated by B in the drawing is called an imaging system B.

実施例1に係わるX線撮影装置は、主に血管造影の分野でバイプレーンX線撮影装置として用いられる。このバイプレーンX線撮影装置は、2つの撮影系を備える。一方の撮影系Aは被検体の所定方向から、他方の撮影系Bは被検体の別の所定方向から被検体を交互に連続して撮影する。撮影系Aは、X線を照射するX線管2Aと、天板1を挟んで対向配備されたFPD3Aと、FPD3Aの読み出しスキャンを行う読み出し制御部4Aと、X線照射開始命令に従いX線管2Aを駆動するX線照射制御部6Aとを備える。撮影系Bは、撮影系Aと同様に、FPD3Bと、読み出し制御部4Bと、X線照射制御部6Bを備える。なお、撮影系Aと撮影系Bとは、被検体Pを載置する天板1と、読み出し制御部4Aと読み出し制御部4Bに読み出しスキャンを開始させる撮影制御部5を共有している。   The X-ray imaging apparatus according to the first embodiment is used as a biplane X-ray imaging apparatus mainly in the field of angiography. This biplane X-ray imaging apparatus includes two imaging systems. One imaging system A continuously and alternately images the subject from a predetermined direction of the subject and the other imaging system B from another predetermined direction of the subject. The imaging system A includes an X-ray tube 2 </ b> A that irradiates X-rays, an FPD 3 </ b> A that is disposed facing the top plate 1, a read control unit 4 </ b> A that performs a read scan of the FPD 3 </ b> A, and an X-ray irradiation start command And an X-ray irradiation control unit 6A for driving 2A. As with the imaging system A, the imaging system B includes an FPD 3B, a readout control unit 4B, and an X-ray irradiation control unit 6B. The imaging system A and the imaging system B share the top plate 1 on which the subject P is placed, and the imaging control unit 5 that causes the readout control unit 4A and the readout control unit 4B to start readout scanning.

FPD3Aは、入射X線強度に対応する電気信号を直接発生させる多数の小さな半導体検出エレメント(画素に対応)がフラットパネル上に二次元マトリクス配列されている。これらマトリクス上の各エレメントを順次スキャンして信号を読み出すことにより画像信号を得る。FPD3Aは、X線入射量に応じて蓄積した電荷を、TFTスイッチを介して読み出すようにしており、素子ごとのTFTスイッチを順次オンにして蓄積電荷を読み出すスキャンを行う。蓄積電荷は読み出しが終わったときクリアされる。FPD3Bも同様である。   In the FPD 3A, a large number of small semiconductor detection elements (corresponding to pixels) that directly generate an electrical signal corresponding to the incident X-ray intensity are arranged in a two-dimensional matrix on a flat panel. An image signal is obtained by sequentially scanning each element on the matrix and reading the signal. The FPD 3A reads charges accumulated according to the amount of incident X-rays via a TFT switch, and performs scanning to read accumulated charges by sequentially turning on the TFT switches for each element. The accumulated charge is cleared when reading is finished. The same applies to the FPD 3B.

読み出し制御部4Aは、FPD3Aの各検出エレメントの蓄積電荷を順次読み出すスキャンを行い、読み出し状況を示す読み出し信号40Aを出力する回路である。この読み出しスキャンは、撮影制御部5からのフレーム同期信号Fに応じて開始されるようになっている。なお、読み出された画像データは撮影制御部5を介して図示しない画像出力部に送られ、被検体PのX線撮影像が表示される。読み出し制御部4Bも同様である。なお、実施例1の読み出し信号40A、読み出し信号40Bは、この発明の読み出しに関する信号に相当する。   The read control unit 4A is a circuit that performs a scan for sequentially reading the accumulated charge of each detection element of the FPD 3A, and outputs a read signal 40A indicating the read status. This readout scan is started in response to a frame synchronization signal F from the imaging control unit 5. The read image data is sent to an image output unit (not shown) via the imaging control unit 5, and an X-ray imaging image of the subject P is displayed. The same applies to the read control unit 4B. Note that the read signal 40A and the read signal 40B in the first embodiment correspond to signals related to reading in the present invention.

撮影制御部5は、読み出し制御部4Aから読み出し信号40Aが入力されると、X線照射制御部6Aに撮影開始信号50Aを与える。また、読み出し制御部4Aにフレーム同期信号Fを与えてFPD3Aへの読み出しスキャンのタイミングを制御する。このように、撮影制御部5はこのX線撮影装置全体の制御を行っている。撮影制御部5は撮影系Bにも同様の制御を行っている。   When the readout signal 40A is input from the readout control unit 4A, the imaging control unit 5 gives an imaging start signal 50A to the X-ray irradiation control unit 6A. Further, a frame synchronization signal F is given to the read control unit 4A to control the timing of read scan to the FPD 3A. As described above, the imaging control unit 5 controls the entire X-ray imaging apparatus. The photographing control unit 5 performs similar control for the photographing system B.

X線照射制御部6Aは、撮影制御部5から撮影開始信号50Aが入力されると、X線照射信号60Aを立ち上げ、X線管2Aからのパルス状X線の照射タイミングを制御する。X線照射制御部6Bも同様である。なお、実施例1の撮影開始信号50A、50BとX線照射信号60A、60Bは、この発明の放射線照射に関する信号に相当する。   When the imaging start signal 50A is input from the imaging control unit 5, the X-ray irradiation control unit 6A activates the X-ray irradiation signal 60A and controls the irradiation timing of pulsed X-rays from the X-ray tube 2A. The same applies to the X-ray irradiation control unit 6B. Note that the imaging start signals 50A and 50B and the X-ray irradiation signals 60A and 60B in Example 1 correspond to the signals related to radiation irradiation of the present invention.

従来の複数の撮影系を備えたX線撮影装置における撮影制御のタイミングの取り方を図2のタイミングチャートを用いて説明する。なお、従来のX線撮影装置の全体構成は実施例1のX線撮影装置と同じ装置を想定しているので、符号は図1と同じものを用いる。   A method of taking the timing of imaging control in an X-ray imaging apparatus having a plurality of conventional imaging systems will be described with reference to the timing chart of FIG. Since the entire configuration of the conventional X-ray imaging apparatus is assumed to be the same as that of the X-ray imaging apparatus of the first embodiment, the same reference numerals as those in FIG. 1 are used.

タイミングT1では、撮影制御部5は、読み出し制御部4Aからの読み出し信号40Aの立下がりと同時に、X線照射信号60Aを立ち上げる。X線照射信号60Aは次のフレーム同期信号Fまで任意のパルス幅のX線を出力することができる。タイミングT2では、読み出し制御部4Aは、フレーム同期信号Fを受信したら読み出し信号40Aを立ち上げる。撮影制御部5は、FPD3Aからの画像読み出しが終了したら、読み出し信号40Aを立ち下げる。タイミングT3では、読み出し制御部4Bは、X線管2Aから照射されたX線の散乱成分をクリアするため、FPD3Bから空読み出しを行う。空読み出しが完了したら、撮影制御部5は空読み出しの読み出し信号40Bを立ち下げる。タイミングT4では、この読み出し信号40Bの立ち下がりと同時に、撮影制御部5はX線照射信号60Bを出力する。この時、読み出し信号40Aはまだ出力状態にあるので、読み出し制御部4Aは、X線管2Bからの散乱X線の影響を受ける(図中の斜線部7)。   At timing T1, the imaging control unit 5 raises the X-ray irradiation signal 60A simultaneously with the fall of the readout signal 40A from the readout control unit 4A. The X-ray irradiation signal 60A can output X-rays having an arbitrary pulse width until the next frame synchronization signal F. At timing T2, the read control unit 4A raises the read signal 40A when receiving the frame synchronization signal F. When the image reading from the FPD 3A is completed, the imaging control unit 5 causes the read signal 40A to fall. At timing T3, the readout control unit 4B performs empty readout from the FPD 3B in order to clear the scattered component of the X-rays emitted from the X-ray tube 2A. When the idle reading is completed, the imaging control unit 5 causes the idle readout signal 40B to fall. At timing T4, the imaging control unit 5 outputs an X-ray irradiation signal 60B simultaneously with the fall of the readout signal 40B. At this time, since the readout signal 40A is still in the output state, the readout controller 4A is affected by the scattered X-rays from the X-ray tube 2B (shaded portion 7 in the figure).

実施例1の複数の撮影系を備えたX線撮影装置における撮影制御のタイミングの取り方を図3のタイミングチャートを用いて説明する。   A method of timing of imaging control in the X-ray imaging apparatus including a plurality of imaging systems according to the first embodiment will be described with reference to the timing chart of FIG.

タイミングT1まで、撮影制御部5は、読み出し制御部4A、4B双方からの読み出し信号の立下がりを検出するまで待機する。双方の読み出し信号の立下りを検出したら、X線照射信号60Aを立ち上げる。X線照射制御部6Aは、次のフレーム同期信号Fまで任意のパルス幅のX線を出力することができる。タイミングT2では、読み出し制御部4Aは、フレーム同期信号Fを受信したら読み出し信号40Aを立ち上げる。撮影制御部5は、FPD3Aからの画像読み出しが終了したら、読み出し信号40Aを立ち下げる。タイミングT3では、読み出し制御部4Bは、X線管2Aから照射されたX線の散乱成分をクリアするため、FPD3Bから空読み出しを行う。空読み出しが完了したら、撮影制御部5は空読み出しの読み出し信号40Bを立ち下げる。タイミングT4まで、撮影制御部5は、読み出し制御部4A、4B双方からの読み出し信号の立下りを検出するまで待機する。双方の読み出し信号の立下りを検出したら、X線照射信号60Aを立ち上げる。X線照射制御部6Bは、次のフレーム同期信号Fまで任意のパルス幅のX線を出力することができる。この時、読み出し信号40Aは既に出力を止めているので、読み出し制御部4Aは、X線管2Bからの散乱X線の影響を受けない。タイミングT5では、読み出し制御部4Bは、フレーム同期信号Fを受信したら読み出し信号40Bを立ち上げる。撮影制御部5は、FPD3Bからの画像の読み出しが終了したら、読み出し信号40Bを立ち下げる。タイミングT6では、読み出し制御部4Aは、X線照射制御部6Bから照射されたX線の散乱線成分をクリアするため、FPD3Aから空読み出しを行う。空読み出しが完了したら、撮影制御部5は空読み出しの読み出し信号40Aを立ち下げる。以降、この手順を繰り返す。   Until timing T1, the imaging control unit 5 waits until it detects the fall of the readout signals from both readout control units 4A and 4B. When the fall of both readout signals is detected, the X-ray irradiation signal 60A is raised. The X-ray irradiation control unit 6A can output X-rays having an arbitrary pulse width until the next frame synchronization signal F. At timing T2, the read control unit 4A raises the read signal 40A when receiving the frame synchronization signal F. When the image reading from the FPD 3A is completed, the imaging control unit 5 causes the read signal 40A to fall. At timing T3, the readout control unit 4B performs empty readout from the FPD 3B in order to clear the scattered component of the X-rays emitted from the X-ray tube 2A. When the idle reading is completed, the imaging control unit 5 causes the idle readout signal 40B to fall. Until timing T4, the imaging control unit 5 waits until it detects the falling edge of the readout signal from both the readout control units 4A and 4B. When the fall of both readout signals is detected, the X-ray irradiation signal 60A is raised. The X-ray irradiation control unit 6B can output X-rays having an arbitrary pulse width until the next frame synchronization signal F. At this time, since the output of the readout signal 40A has already stopped, the readout control unit 4A is not affected by the scattered X-rays from the X-ray tube 2B. At timing T5, the read control unit 4B raises the read signal 40B when receiving the frame synchronization signal F. When the reading of the image from the FPD 3B is completed, the imaging control unit 5 causes the reading signal 40B to fall. At timing T6, the readout control unit 4A performs empty readout from the FPD 3A in order to clear the scattered radiation component of the X-rays emitted from the X-ray irradiation control unit 6B. When empty reading is completed, the imaging control unit 5 causes the read signal 40A for empty reading to fall. Thereafter, this procedure is repeated.

実施例1のバイプレーンX線撮影装置の撮影制御部5におけるタイミング制御を図4の論理回路を用いて説明する。   Timing control in the imaging control unit 5 of the biplane X-ray imaging apparatus according to the first embodiment will be described with reference to the logic circuit of FIG.

撮影制御部におけるタイミング制御回路は、AND回路8、フリップフロップ回路(FF回路)9、AND回路10AおよびAND回路10Bで構成されている。   The timing control circuit in the photographing control unit includes an AND circuit 8, a flip-flop circuit (FF circuit) 9, an AND circuit 10A, and an AND circuit 10B.

読み出し制御部4A、読み出し制御部4Bから出力された読み出し信号40A、読み出し信号40Bは、信号レベルを逆転してAND回路8に入力する。すなわち、読み出し信号40Aと読み出し信号40BとがともにLowレベルの時にのみAND回路8がHighを出力する。これにより、図3のタイミングT1において、双方の読み出し信号の立下りを検出したら、撮影開始信号50AをX線照射制御部6Aに出力することができる。このAND回路8から出力される信号は、読み出し信号40Aおよび読み出し信号40Bの立下りを検出したこと表す読み出し終了信号である。次に、フレーム同期信号FはFF回路9に入力する。このFF回路9から出力されるFF出力信号70の出力レベルは、HighとLowが交互に続く。この出力レベルがHighのときは、読み出し終了信号とともにAND回路10Aに入力する。AND回路10Aから出力される撮影開始信号50AはX線照射制御部6Aに入力して、X線照射信号60Aとして出力されてX線管2Aを駆動する。この出力レベルがLowのときは、AND回路10Bに入力する前でHighに変換されて、読み出し終了信号とともにAND回路10Bに入力する。AND回路10Bから出力される撮影開始信号50BはX線照射制御部6Bに入力して、X線照射信号60Bとして出力されてX線管2Bを駆動する。これにより、X線管2A、2Bから交互にX線を照射することができる。   The read signal 40A and the read signal 40B output from the read control unit 4A and the read control unit 4B are inverted in signal level and input to the AND circuit 8. That is, the AND circuit 8 outputs High only when both the read signal 40A and the read signal 40B are at the low level. As a result, when the fall of both readout signals is detected at the timing T1 in FIG. 3, the imaging start signal 50A can be output to the X-ray irradiation controller 6A. The signal output from the AND circuit 8 is a read end signal indicating that the fall of the read signal 40A and the read signal 40B has been detected. Next, the frame synchronization signal F is input to the FF circuit 9. The output level of the FF output signal 70 output from the FF circuit 9 is alternately High and Low. When this output level is High, it is input to the AND circuit 10A together with the read end signal. The imaging start signal 50A output from the AND circuit 10A is input to the X-ray irradiation control unit 6A and output as the X-ray irradiation signal 60A to drive the X-ray tube 2A. When this output level is Low, it is converted to High before being input to the AND circuit 10B, and is input to the AND circuit 10B together with the read end signal. The imaging start signal 50B output from the AND circuit 10B is input to the X-ray irradiation control unit 6B and output as the X-ray irradiation signal 60B to drive the X-ray tube 2B. Thereby, X-rays can be irradiated alternately from the X-ray tubes 2A and 2B.

本実施例によれば、撮影制御部5は、撮影系Aおよび撮影系Bの読み出し信号に合わせて、両撮影系の中で対象となる撮影系のX線照射信号を制御することができる。これにより、一方の撮影系の散乱X線が他方の撮影系の読み出しに掛かってしまう不都合を回避できるとともに、次に開始される読み出しスキャンまでの間、可能な限り長いX線パルス幅を確保することができて画質を良好に保つことができる。   According to the present embodiment, the imaging control unit 5 can control the X-ray irradiation signal of the imaging system as a target in both imaging systems in accordance with the readout signals of the imaging system A and the imaging system B. This avoids inconvenience that scattered X-rays of one imaging system are applied to readout of the other imaging system, and ensures the longest possible X-ray pulse width until the next readout scan. Image quality can be kept good.

本実施例によれば、撮影制御部5は、撮影系Aおよび撮影系Bの中で時間が最も長い読み出し信号40Aに合わせて、両撮影系の中で対象となる撮影系のX線照射信号60Aを制御することができる。したがって、撮影系Aの読み出し時間が撮影系Bの読み出し時間より長い場合でも、撮影系Aの散乱X線が撮影系Bの読み出しに掛かってしまう不都合を回避することができるとともに、次に開始される読み出しスキャンまでの間、可能な限り長いX線パルス幅を確保することができて画質を良好に保つことができる。   According to the present embodiment, the imaging control unit 5 matches the readout signal 40A having the longest time in the imaging system A and the imaging system B with the X-ray irradiation signal of the imaging system that is the target in both imaging systems. 60A can be controlled. Therefore, even when the readout time of the imaging system A is longer than the readout time of the imaging system B, it is possible to avoid the inconvenience that scattered X-rays of the imaging system A are applied to the readout of the imaging system B, and to start next. The X-ray pulse width as long as possible can be ensured until the readout scan is completed, and the image quality can be kept good.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上述した実施例1では、X線を例に採って説明したが、この発明は、X線以外の放射線でも構わない。   (1) In the above-described first embodiment, X-rays are taken as an example, but the present invention may be radiation other than X-rays.

(2)上述した実施例1では、2つの撮影系で説明したが、3つ以上の撮影系であっても構わない。   (2) In the above-described first embodiment, two imaging systems have been described, but three or more imaging systems may be used.

(3)上述した実施例1では、実施例1に係わるX線撮影装置は、主に血管造影の分野でバイプレーンX線撮影装置として用いられるが、他の分野に用いられるX線撮影装置でも構わない。   (3) In the above-described first embodiment, the X-ray imaging apparatus according to the first embodiment is mainly used as a biplane X-ray imaging apparatus in the field of angiography. However, the X-ray imaging apparatus used in other fields is also used. I do not care.

(4)上述した実施例1では、FPD3AとFPD3Bを直角に配置しているが、互いに斜め方向に配置するなど、配置角度は特に限定されない。   (4) In the first embodiment described above, the FPD 3A and the FPD 3B are arranged at right angles, but the arrangement angle is not particularly limited, such as being arranged obliquely to each other.

実施例1の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of Example 1. FIG. 従来の複数の撮影系を備えたX線撮影装置における撮影制御のタイミングチャートである。It is a timing chart of the imaging control in the X-ray imaging apparatus provided with the conventional some imaging system. 実施例1の撮影制御のタイミングチャートである。3 is a timing chart of shooting control according to the first exemplary embodiment. 実施例1の撮影制御の論理回路図である。FIG. 3 is a logic circuit diagram of shooting control according to the first embodiment.

符号の説明Explanation of symbols

P …被検体
1 …天板
2A、2B …X線管
3A、3B …FPD
4A、4B …読み出し制御部
5 …撮影制御部
6A、6B …X線照射制御部
7 …散乱X線の影響
8 …AND回路
9 …フリップフロップ回路(FF回路)
10A、10B …撮影系AのAND回路、撮影系BのAND回路
40A、40B …読み出し信号
50A、50B …撮影開始信号
60A、60B …X線照射信号
70 …フリップフロップ出力信号(FF出力信号)
P ... Subject 1 ... Top plate 2A, 2B ... X-ray tube 3A, 3B ... FPD
4A, 4B ... Read control unit 5 ... Imaging control unit 6A, 6B ... X-ray irradiation control unit 7 ... Influence of scattered X-rays 8 ... AND circuit 9 ... Flip-flop circuit (FF circuit)
10A, 10B ... AND circuit of imaging system A, AND circuit of imaging system B 40A, 40B ... Read signal 50A, 50B ... Imaging start signal 60A, 60B ... X-ray irradiation signal 70 ... Flip-flop output signal (FF output signal)

Claims (2)

撮影系を複数備えた放射線撮影装置において、前記複数の撮影系の撮影データの読み出しに関する信号に合わせて、前記複数の撮影系の中で対象となる撮影系の放射線照射に関する信号を制御する撮影制御手段を備えたことを特徴とする放射線撮影装置。   In a radiation imaging apparatus including a plurality of imaging systems, imaging control for controlling a signal related to radiation irradiation of a target imaging system in the plurality of imaging systems in accordance with a signal related to readout of imaging data of the plurality of imaging systems A radiation imaging apparatus comprising means. 請求項1の放射線撮影装置において、前記複数の撮影系の中で時間が最も長い読み出しに関する信号に合わせて、前記対象となる撮影系の放射線照射に関する信号を前記撮影制御手段は制御することを特徴とする放射線撮影装置。   2. The radiographic apparatus according to claim 1, wherein the radiographing control unit controls a signal related to radiation irradiation of the target radiographing system in accordance with a signal relating to readout having the longest time among the plurality of radiographing systems. Radiation imaging device.
JP2006343096A 2006-12-20 2006-12-20 Radiography equipment Active JP4840124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343096A JP4840124B2 (en) 2006-12-20 2006-12-20 Radiography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343096A JP4840124B2 (en) 2006-12-20 2006-12-20 Radiography equipment

Publications (2)

Publication Number Publication Date
JP2008154600A true JP2008154600A (en) 2008-07-10
JP4840124B2 JP4840124B2 (en) 2011-12-21

Family

ID=39656165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343096A Active JP4840124B2 (en) 2006-12-20 2006-12-20 Radiography equipment

Country Status (1)

Country Link
JP (1) JP4840124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274057A (en) * 2009-06-01 2010-12-09 Canon Inc Radiographic imaging device, radiographic imaging method, and program

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652039A (en) * 1979-09-29 1981-05-09 Shimadzu Corp Biplane photograph apparatus
JPS596037A (en) * 1982-06-30 1984-01-13 株式会社島津製作所 X-ray three-dimensional fluoroscopic apparatus
JPS5940840A (en) * 1982-08-31 1984-03-06 株式会社東芝 X-ray three-dimensional display apparatus
JPH0232700A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Input terminal board for acoustic equipment and its manufacture
JPH0642650Y2 (en) * 1989-01-31 1994-11-09 株式会社島津製作所 X-ray television device
JPH07143400A (en) * 1993-11-16 1995-06-02 Hitachi Medical Corp Method and device for x-ray photograhing
JPH09173328A (en) * 1995-12-27 1997-07-08 Toshiba Corp X-ray diagnostic system
JP2000162320A (en) * 1998-09-22 2000-06-16 Toshiba Corp Plane detector and x-ray diagnostic apparatus using it
JP2000284058A (en) * 1999-03-30 2000-10-13 Shimadzu Corp X-ray image pickup device
JP2001037750A (en) * 1999-08-03 2001-02-13 Toshiba Iyo System Engineering Kk Bi-plane x-ray diagnosing device
JP3160285B2 (en) * 1989-11-13 2001-04-25 株式会社東芝 X-ray diagnostic equipment
JP2004242873A (en) * 2003-02-13 2004-09-02 Toshiba Corp Biplane x-ray imaging method and biplane x-ray apparatus
JP2005027913A (en) * 2003-07-07 2005-02-03 Shimadzu Corp X-ray image pickup device
JP2006271721A (en) * 2005-03-29 2006-10-12 Toshiba Corp Flat x-ray detector, radiodiagnosis apparatus and control method of radiodiagnosis apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652039A (en) * 1979-09-29 1981-05-09 Shimadzu Corp Biplane photograph apparatus
JPS596037A (en) * 1982-06-30 1984-01-13 株式会社島津製作所 X-ray three-dimensional fluoroscopic apparatus
JPS5940840A (en) * 1982-08-31 1984-03-06 株式会社東芝 X-ray three-dimensional display apparatus
JPH0232700A (en) * 1988-07-22 1990-02-02 Mitsubishi Electric Corp Input terminal board for acoustic equipment and its manufacture
JPH0642650Y2 (en) * 1989-01-31 1994-11-09 株式会社島津製作所 X-ray television device
JP3160285B2 (en) * 1989-11-13 2001-04-25 株式会社東芝 X-ray diagnostic equipment
JPH07143400A (en) * 1993-11-16 1995-06-02 Hitachi Medical Corp Method and device for x-ray photograhing
JPH09173328A (en) * 1995-12-27 1997-07-08 Toshiba Corp X-ray diagnostic system
JP2000162320A (en) * 1998-09-22 2000-06-16 Toshiba Corp Plane detector and x-ray diagnostic apparatus using it
JP2000284058A (en) * 1999-03-30 2000-10-13 Shimadzu Corp X-ray image pickup device
JP2001037750A (en) * 1999-08-03 2001-02-13 Toshiba Iyo System Engineering Kk Bi-plane x-ray diagnosing device
JP2004242873A (en) * 2003-02-13 2004-09-02 Toshiba Corp Biplane x-ray imaging method and biplane x-ray apparatus
JP2005027913A (en) * 2003-07-07 2005-02-03 Shimadzu Corp X-ray image pickup device
JP2006271721A (en) * 2005-03-29 2006-10-12 Toshiba Corp Flat x-ray detector, radiodiagnosis apparatus and control method of radiodiagnosis apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274057A (en) * 2009-06-01 2010-12-09 Canon Inc Radiographic imaging device, radiographic imaging method, and program

Also Published As

Publication number Publication date
JP4840124B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4383558B2 (en) X-ray diagnostic apparatus and radiation diagnostic apparatus
US8368028B2 (en) Solid-state image pickup device
US20150245807A1 (en) Radiation image capture device and radiation image capture system
JP2011056170A (en) Radiographic system and method of controlling the same
JP5057543B2 (en) Image processing apparatus, control method therefor, and program
JP2011072605A (en) X-ray imaging apparatus, imaging method, and imaging program
US20120105665A1 (en) Digital image pickup apparatus, radiation imaging apparatus, and radiation imaging system
JP4840124B2 (en) Radiography equipment
EP1525849B1 (en) Fluoroscopic apparatus and method
US10863114B2 (en) Radiation image capturing apparatus
JP2010012024A (en) Radiation imaging apparatus
JP5306062B2 (en) Radiographic apparatus, radiographic method and program
JP2018026809A (en) Radiation image capturing apparatus
JP5121504B2 (en) Radiation imaging apparatus and image processing apparatus
JP2004236929A (en) X-ray imaging apparatus
JP2009233158A (en) Radiological diagnostic apparatus and radiography method
JP3369441B2 (en) Multi-directional X-ray fluoroscope
JP2000079111A (en) X-ray diagnostic attachment
JP2010227512A (en) Radiation detecting device and method, and radiation image photographing system
JP2010227511A (en) Radiation detecting device and method, and radiation image photographing system
JP3982242B2 (en) X-ray fluoroscopic equipment
JP2017217171A (en) Radiographic imaging apparatus and radiographic imaging system
JP2005027913A (en) X-ray image pickup device
JP2010227510A (en) Radiation detecting device and method, and radiation image photographing system
WO2018030490A1 (en) Solid-state image capturing device, radiation image capturing system, and method of controlling solid-state image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4840124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3