JP2008151696A - Method and system for controlling prevention of cathodic corrosion - Google Patents

Method and system for controlling prevention of cathodic corrosion Download PDF

Info

Publication number
JP2008151696A
JP2008151696A JP2006341163A JP2006341163A JP2008151696A JP 2008151696 A JP2008151696 A JP 2008151696A JP 2006341163 A JP2006341163 A JP 2006341163A JP 2006341163 A JP2006341163 A JP 2006341163A JP 2008151696 A JP2008151696 A JP 2008151696A
Authority
JP
Japan
Prior art keywords
applied voltage
galvanic anode
anode
current
anticorrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341163A
Other languages
Japanese (ja)
Other versions
JP4747084B2 (en
Inventor
Fumio Kajiyama
文夫 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2006341163A priority Critical patent/JP4747084B2/en
Publication of JP2008151696A publication Critical patent/JP2008151696A/en
Application granted granted Critical
Publication of JP4747084B2 publication Critical patent/JP4747084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To immediately improve a prevention state of cathodic corrosion that is deteriorated against an object to be prevented from cathodic corrosion in which cathodic corrosion is prevented by a sacrificial anode method, without large construction such as resolution construction of metal touch. <P>SOLUTION: The configuration for the method and the system for controlling the prevention of cathodic corrosion, comprises, a DC power supply system 3 that specifies a sacrificial anode 2 installed, as an anode, and an object 1 to be prevented from cathodic corrosion, as a cathode; a measuring means 4 for measuring a potential between the object and an electrolyte under in a state that a voltage from the DC power supply system 3 is applied and measuring the current of the sacrificial anode; and an operation processing means 5 for operating measurement data provided by the measuring unit 4. A potential P/S between a pipe and the earth is measured by connecting a wire W3 of which the top end is connected to a connecting section 1B, via a DC voltmeter 4A to a reference electrode (a saturated copper sulfate electrode) 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カソード防食管理方法及びカソード防食管理システムに関し、特に、流電陽極方式において悪化した防食状況を改善するためのカソード防食管理方法とそれを実行するためのカソード防食管理システムに関するものである。   The present invention relates to a cathodic protection management method and a cathodic protection management system, and more particularly, to a cathodic protection management method for improving a corrosion protection situation deteriorated in a galvanic anode method and a cathodic protection management system for executing the same. .

土壌等の電解質中に存在する金属体の腐食を防止するためには、金属体表面と電解質とを隔絶することに加えて、金属体表面に電流(防食電流)を流入させてアノード反応を起こさせないようにする(金属体表面全体にカソード反応を起こさせる)カソード防食法が最も有効な方法であることが知られている。   In order to prevent corrosion of the metal body present in the electrolyte such as soil, in addition to isolating the surface of the metal body and the electrolyte, an electric current (anticorrosive current) is caused to flow into the metal body surface to cause an anode reaction. It is known that the cathodic protection method that prevents the cathodic reaction (causing a cathodic reaction on the entire metal surface) is the most effective method.

現在、土壌埋設パイプラインに対して行われているカソード防食法には、流電陽極方式と外部電源方式がある。外部電源方式は、土壌中に設置した電極(アノード)と防食対象(カソード)との間に直流電源装置を接続して電圧を与え、電極から土壌を介して防食対象に直流電流を流入させて腐食を防止する方法であり、特に、高抵抗率塗覆装で表面を覆われたパイプラインのカソード防食に有効である。   Currently, cathodic protection methods used for soil-buried pipelines include the galvanic anode method and the external power supply method. In the external power supply method, a voltage is applied by connecting a direct current power supply device between the electrode (anode) and the anticorrosion target (cathode) installed in the soil, and a direct current flows from the electrode through the soil to the anticorrosion target. This is a method for preventing corrosion, and is particularly effective for cathodic protection of pipelines whose surfaces are covered with a high resistivity coating.

一方、流電陽極方式は、防食対象よりも腐食電位がマイナスの金属を、アノード(流電陽極)として、これを防食対象と電線で結び、流電陽極と防食対象間の異種金属電池作用によって流電陽極から発生する電流(流電陽極発生電流)を、防食電流として防食対象へ流入させて腐食を防止する方法である。この流電陽極方式は、経年変化に伴ってパイプラインの表面と電解質とが接触状態になっている歴青質塗覆装(アスファルト塗覆装など)が施されたパイプラインのカソード防食に多く採用されている。一般に、土壌に埋設された鋼製の歴青質塗覆装パイプラインに対しては流電陽極としてMg陽極が用いられることが多い。   On the other hand, in the galvanic anode method, a metal having a negative corrosion potential as compared to the anticorrosion object is used as an anode (galvanic anode), and this is connected to the anticorrosion object with an electric wire. In this method, the current generated from the galvanic anode (the galvanic anode generated current) is caused to flow into the anticorrosion target as an anticorrosive current to prevent corrosion. This galvanic anode method is often used for cathodic protection of pipelines with bituminous coating (such as asphalt coating) where the surface of the pipeline and the electrolyte are in contact with each other over time. It has been adopted. In general, Mg anodes are often used as galvanic anodes for steel bitumen-coated pipelines embedded in soil.

この流電陽極方式によるカソード防食方法では、パイプラインの金属体表面と電解質に接触する照合電極によって計測される電位差(管対地電位)を計測し、これが防食電位(例えば、飽和硫酸銅電極(CSE)基準で−1200mVCSE)以下になるように流電陽極発生電流I0を設定している。そして、材質と質量によって決定される流電陽極の有効電気容量M(mA・year)を、設定した流電陽極発生電流I0と耐用年数Yによって、M=I0×Yで設定している。 In this cathodic protection method using the galvanic anode method, a potential difference (tube-to-ground potential) measured by a reference electrode in contact with the metal surface of the pipeline and the electrolyte is measured, and this is used as a corrosion protection potential (for example, a saturated copper sulfate electrode (CSE). ) The galvanic anode generation current I 0 is set to be −1200 mV CSE ) or less. The effective electric capacity M (mA · year) of the galvanic anode determined by the material and mass is set as M = I 0 × Y by the set galvanic anode generation current I 0 and the service life Y. .

設置された流電陽極は発生電流が生じなくなったところで寿命が尽きることになり交換を余儀なくされるが、流電陽極を設置後に流電陽極発生電流をモニタリングすると共に、このモニタリング値と予め設定されている流電陽極の有効電気容量から流電陽極の消耗度を演算して残存容量を求め、この残存容量から流電陽極の残存機能日数又は時間を演算することができる(下記特許文献1参照)。   The installed current-carrying anode will end its life when the generated current ceases to be generated, so it must be replaced.However, after the current-carrying anode is installed, the current generated by the current-carrying anode is monitored and this monitoring value is set in advance. The remaining capacity is obtained by calculating the degree of wear of the flowing current anode from the effective electric capacity of the flowing current anode, and the remaining function days or time of the flowing current anode can be calculated from this remaining capacity (see Patent Document 1 below). ).

特開平7−294479号公報JP 7-294479 A

流電陽極方式によってカソード防食されている電解質中の防食対象に他の金属体が電気的に接触した場合(これをメタルタッチという)、流電陽極からの発生電流は大半が低接地の他の金属体に流入することになって、防食対象の対電解質電位が防食電位よりプラスよりの値になる事態が生じることがある。流電陽極方式によってカソード防食されている防食対象が土壌埋設パイプラインの場合には、パイプライン敷設後の経年変化でパイプラインが沈下等によって他埋設金属構造物とメタルタッチすると、流電陽極発生電流は低接地の他埋設金属構造物に流入するので、防食対象パイプラインの所要防食電流を満足しなくなる防食状況の悪化が生じることがある。   When another metal body is in electrical contact with the corrosion protection target in the electrolyte that is cathodic protected by the galvanic anode method (this is called metal touch), most of the current generated from the galvanic anode is low grounded When flowing into the metal body, there may occur a situation in which the anti-electrolytic potential of the anticorrosion target becomes a value greater than the anticorrosion potential. When the object of cathodic protection that is cathodic protected by the galvanic anode method is a soil-buried pipeline, the galvanic anode is generated when the pipeline touches another buried metal structure due to subsidence due to secular change after laying the pipeline. Since the current flows into the buried metal structure in addition to the low ground, the corrosion prevention situation that does not satisfy the required corrosion prevention current of the pipeline to be protected against corrosion may occur.

特に、埋設金属構造物が輻輳している都市部に埋設されている歴青質塗覆装パイプラインは、元々水平方向に長いというパイプライン自体の特性の上に、塗覆装に浸透した水によって、塗覆装を介した接触であっても電気的に導通してしまうので、メタルタッチによる防食電流不足リスクが高いものと言える。また、流電陽極方式は、流電陽極と防食対象の対電解質電位差を駆動力として防食対象をカソード防食するものであるから、一旦流電陽極発生電流が所要防食電流を満足しなくなると、防食対象は腐食状態の継続を余儀なくされる。   In particular, bitumen-coated pipelines buried in urban areas where buried metal structures are congested are water that has penetrated the coating due to the characteristics of the pipeline itself that is originally long in the horizontal direction. Therefore, even if the contact is through the coating, it is electrically connected, so it can be said that there is a high risk of insufficient corrosion protection current due to metal touch. In addition, the galvanic anode method cathodic protects the anticorrosion target using the potential difference between the galvanic anode and the anticorrosion target as the driving force. Once the current generated by the galvanic anode does not satisfy the required anticorrosion current, the anticorrosion Subject is forced to continue corrosive.

一方、1年に1回等の定期点検時に、防食対象の対電解質電位が防食電位よりプラスよりの値になっている防食状況の悪化が確認されたとしても、メタルタッチ等の直接的な原因は即座に解消できない場合が多い。特に、土壌埋設パイプラインを防食対象とする場合には、メタルタッチの解消には、メタルタッチ構造物所有者間及び道路管理者との協議、道路掘削後のメタルタッチ解消工事などを伴うため、即座の対応が極めて困難であるか不可能であり、計画的な対応に成らざるを得ない。したがって、即座にメタルタッチの解消工事を行わなくても、悪化した防食状況を改善することができる防食管理方法が必要になる。   On the other hand, even if it is confirmed that the anti-electrolytic potential of the anti-corrosion target is more positive than the anti-corrosion potential during periodic inspections such as once a year, even if it is confirmed that the anti-corrosion situation deteriorates, it is a direct cause such as metal touch Often cannot be resolved immediately. In particular, when soil buried pipelines are subject to anticorrosion, the cancellation of metal touch involves discussion with metal touch structure owners and with road managers, metal touch cancellation work after road excavation, etc. Immediate response is extremely difficult or impossible, and it must be planned response. Therefore, there is a need for an anticorrosion management method that can improve the deteriorated anticorrosion situation without immediately performing the metal touch elimination work.

流電陽極方式によってカソード防食された防食対象の防食状況を改善する対策としては、流電陽極と防食対象と間に負荷電源を設け、直流電源電圧の印加によって流電陽極発生電流を増大させることが考えられる。   As a measure to improve the anticorrosion situation of the anticorrosion target cathodic protected by the galvanic anode method, install a load power source between the galvanic anode and the anticorrosion target, and increase the galvanic anode generation current by applying the DC power supply voltage Can be considered.

しかしながら、闇雲に電圧を印加しただけでは防食状況を改善するために必要な最小限の印加電圧を求めることができないだけでなく、増大させた流電陽極発生電流でその後流電陽極の残存寿命がどの程度短くなるかも分からない問題がある。更に、既に残存寿命が近い流電陽極の場合には、いくら電圧を印加しても所要防食電流が得られない場合があり、単に従来技術で計算された予測寿命と埋設年数との比較だけでは、現状の流電陽極に改善能力があるか否かが分からない問題がある。また、土壌埋設パイプラインでは、定期点検で防食状況の確認を行うことが一般になされているが、単に防食状況の確認を行うだけの定期点検では、定期点検の現場で防食状況の悪化が確認された場合であっても、現場対応でその後の管理対策を速やかに計画できないという問題がある。   However, not only can the voltage applied to the dark clouds be used to determine the minimum applied voltage required to improve the anticorrosion situation, but also the remaining current of the anode There is a problem of not knowing how short it will be. Furthermore, in the case of a galvanic anode that has already a short remaining life, the required anticorrosion current may not be obtained no matter how much voltage is applied, and simply by comparing the predicted life calculated with the prior art with the buried years. There is a problem that it is not known whether or not the current galvanic anode has an improvement capability. In addition, in soil buried pipelines, it is common to check the anticorrosion status through periodic inspections, but in periodic inspections that simply check the anticorrosion status, deterioration of the anticorrosion status has been confirmed at the site of periodic inspections. Even in such a case, there is a problem that subsequent management measures cannot be promptly planned in the field response.

本発明は、このような事情に対処することを課題とするものであって、流電陽極方式によってカソード防食された防食対象に対して悪化したカソード防食状況を、メタルタッチの解消工事等の大がかりな工事を行うことなく速やかに改善すること、その改善に際して、最適な設定条件を速やかに決定できるとともに、決定された条件後の流電陽極残存寿命を速やかに把握できること、現状の設置されている流電陽極に防食状況の改善能力があるか否かの把握を速やかに行うことができること、土壌埋設パイプラインの定期点検時に現場対応でその後の管理対策を速やかに計画することができること、等が本発明の目的である。   An object of the present invention is to cope with such a situation, and the cathodic protection situation deteriorated with respect to the anticorrosion target cathodic protected by the galvanic anode method is a large-scale construction such as a metal touch elimination work. It is possible to quickly improve without performing any construction work, to determine the optimum setting conditions quickly, and to quickly grasp the remaining life of the galvanic anode after the determined conditions. The ability to promptly determine whether or not the galvanic anode has the ability to improve the anticorrosion status, the ability to promptly plan subsequent management measures at the site during periodic inspections of the soil buried pipeline, etc. It is an object of the present invention.

このような目的を達成するための本発明は、以下の特徴を有する。   The present invention for achieving such an object has the following features.

一つには、流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するためのカソード防食管理方法において、設置されている流電陽極をアノードとし防食対象をカソードとする印加電圧可変の直流電源装置を接続する接続工程と、前記直流電源装置の印加電圧を増加させながら、防食対象の対電解質電位のマイナスシフト状態を計測すると共に、流電陽極発生電流のプラスシフト状態を計測する計測工程と、前記計測工程での計測データから、印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト関係式と、印加電圧の増加に対する流電陽極発生電流のプラスシフト関係式とを求め、前記マイナスシフト関係式によって防食対象の対電解質電位が防食電位よりマイナス側になる設定印加電圧を求め、前記プラスシフト関係式によって前記設定印加電圧によって発生する流電陽極発生電流を求める演算工程と、前記演算工程で求めた流電陽極発生電流によって、前記設定印加電圧負荷後の流電陽極残存寿命を予測する残存寿命予測工程と、を有することを特徴とする。   For one, in the cathodic protection management method for improving the anticorrosion situation that has deteriorated against the anticorrosion target cathodically protected by the galvanic anode method, the installed galvanic anode is the anode and the anticorrosion target is the cathode. A connecting step of connecting a DC power supply device with variable applied voltage, and measuring the negative shift state of the anti-electrolytic potential of the anticorrosion target while increasing the applied voltage of the DC power supply device, From the measurement process for measuring the shift state, and the measurement data in the measurement process, the negative shift relational expression of the anti-electrolytic potential of the anticorrosion target with respect to the increase in the applied voltage, and the positive shift relation of the galvanic anode generation current with respect to the increase in the applied voltage The set applied voltage at which the anti-electrolytic potential of the anticorrosion target is on the negative side of the anticorrosion potential according to the negative shift relational expression. A calculation step of obtaining a flowing current generated by the set applied voltage according to the positive shift relational expression, and a remaining current of the flowing current after loading the set applied voltage according to the current generated by the flowing anode obtained in the calculation step And a remaining life prediction step for predicting the life.

また、流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するためのカソード防食管理システムにおいて、設置されている流電陽極をアノードとし防食対象をカソードとする印加電圧可変の直流電源装置と、前記直流電源装置の電圧印加状態で、防食対象の対電解質電位を計測すると共に、流電陽極発生電流を計測する計測手段と、前記計測手段による計測データを演算処理する演算処理手段と、を備え、前記演算処理手段は、前記直流電源装置による印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト関係式と、印加電圧の増加に対する流電陽極発生電流のプラスシフト関係式とを求める関係式設定手段と、前記マイナスシフト関係式によって防食対象の対電解質電位が防食電位よりマイナス側になる設定印加電圧を求める設定印加電圧演算手段と、前記プラスシフト関係式によって前記設定印加電圧によって発生する流電陽極発生電流を求める流電陽極発生電流演算手段と、前記流電陽極発生電流演算手段によって求められた流電陽極発生電流によって、前記設定印加電圧負荷後の流電陽極残存寿命を予測する残存寿命予測手段と、を備えることを特徴とする。   In addition, in the cathodic protection management system for improving the anti-corrosion situation that has been cathodic protected by the galvanic anode method, the application is made with the galvanic anode installed as the anode and the anticorrosion target as the cathode. A DC power supply device with variable voltage, a measurement means for measuring the anti-electrolytic potential of the anticorrosion target in the voltage application state of the DC power supply device, and a measurement current measured by the measurement means, and a measurement process by the measurement means And an arithmetic processing means that performs a negative shift relational expression on the anti-electrolytic potential of the anticorrosion target with respect to an increase in the applied voltage by the DC power supply and a positive current of the galvanic anode generated with respect to the increase in the applied voltage. The relational expression setting means for obtaining the shift relational expression, and the negative shift relational expression makes the anti-electrolytic potential of the anticorrosion target more A set applied voltage calculating means for obtaining a set applied voltage on the negative side, a flowing anode generating current calculating means for obtaining a flowing anode generating current generated by the set applied voltage by the plus shift relational expression, and the flowing anode generation And a remaining life prediction means for predicting a remaining life of the anode of the flowing current after the set applied voltage is loaded, based on a current generated by the current of the anode obtained by the current calculation means.

また、前記カソード防食管理方法又はシステムにおいて、下記式(1)によって前記設定印加電圧負荷後の流電陽極残存寿命LR(year)を予測することを特徴とする。 Further, in the cathode anticorrosion management method or system, the remaining galvanic anode life L R (year) after the set applied voltage load is predicted by the following equation (1).

Figure 2008151696
Figure 2008151696

また、前記カソード防食管理方法又はシステムにおいて、前記計測工程又は前記計測手段での計測データから、印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト勾配と、印加電圧の増加に対する流電陽極発生電流のプラスシフト勾配とを求め、前記マイナスシフト勾配と前記プラスシフト勾配とによって、設置されている流電陽極の防食状況改善能力を判定することを特徴とする。   Further, in the cathode anticorrosion management method or system, from the measurement data in the measurement step or the measurement means, a negative shift gradient of the anti-electrolytic potential of the anticorrosion target with respect to an increase in applied voltage and generation of a galvanic anode with respect to an increase in applied voltage The present invention is characterized in that a positive shift gradient of current is obtained, and the anti-corrosion situation improving ability of the installed electroplating anode is determined based on the negative shift gradient and the positive shift gradient.

このような特徴を有する本発明のカソード防食管理方法又はシステムによると、流電陽極方式によってカソード防食された防食対象に対して悪化したカソード防食状況を、メタルタッチの解消工事等の大がかりな工事を行うことなく速やかに改善することができる。また、その改善に際して、最適な設定条件を速やかに決定できるとともに、決定された条件後の流電陽極残存寿命を速やかに把握できることができる。そして、現状の設置されている流電陽極に防食状況の改善能力があるか否かの把握を速やかに行うことができる。更には、土壌埋設パイプラインの定期点検時に現場対応でその後の管理対策を速やかに計画することができる。   According to the cathodic protection management method or system of the present invention having such characteristics, the cathodic protection situation deteriorated against the anticorrosive object cathodic protected by the galvanic anode method can be used for large-scale construction such as metal touch elimination work. It can be improved quickly without doing. Further, in the improvement, it is possible to quickly determine the optimum setting condition and to quickly grasp the remaining life of the galvanic anode after the determined condition. Then, it is possible to quickly grasp whether or not the currently installed galvanic anode has the ability to improve the anticorrosion situation. Furthermore, it is possible to quickly plan subsequent management measures at the site during periodic inspections of the soil burial pipeline.

以下に、本発明の実施形態を図面に基づいて説明する。以下の説明では、防食対象として土壌に埋設されている歴青質塗覆装パイプラインを例に挙げて説明するが、本発明の実施形態における防食対象は、これに限定されるものではなく、土壌,海洋等の全ての電解質中に設置されて流電陽極方式によってカソード防食がなされている全ての防食対象を含むものである。しかしながら、前述したようなメタルタッチ解消工事の困難さ等を考えると、土壌埋設パイプラインを防食対象とする場合に非常に有効な発明であることは言うまでもない。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the bituminous coating pipeline that is embedded in the soil as an anticorrosion target will be described as an example, but the anticorrosion target in the embodiment of the present invention is not limited to this, This includes all anticorrosion objects that are installed in all electrolytes such as soil and ocean and are cathodically protected by the galvanic anode method. However, considering the difficulty of the metal touch elimination work as described above, it is needless to say that the invention is very effective when the soil buried pipeline is an anticorrosion target.

図1は、本発明の実施形態に係るカソード防食管理方法及びカソード防食管理システムを説明するための説明図(システム構成図)である。防食対象であるパイプライン1はアスファルト等の歴青質塗覆装1Aが表面に施されており、このパイプライン1の表面には接続部1Bが設けられている。このパイプライン1が流電陽極方式によってカソード防食されている状況というのは、接続部1Bに先端が接続された電線W1とパイプライン1の周辺に設置された流電陽極(例えば、Mg流電陽極)2に先端が接続された電線W2がターミナルボックスTB内に引き出されており、この電線W1と電線W2とを接続することで、パイプライン1の対電解質電位と流電陽極2(表面がバックフィル2Aで覆われている)の対電解質電位との電位差を駆動力として流電陽極2のアノード反応を起こさせ、流電陽極2から発生した電流(流電陽極発生電流)Iをパイプライン1の防食電流ICとしている状況である。 FIG. 1 is an explanatory diagram (system configuration diagram) for explaining a cathodic protection management method and a cathodic protection management system according to an embodiment of the present invention. The pipeline 1 that is the object of corrosion prevention is provided with a bitumen coating 1A such as asphalt on the surface, and a connection portion 1B is provided on the surface of the pipeline 1. The situation in which the pipeline 1 is cathodic protected by the galvanic anode method is that the electric wire W 1 whose tip is connected to the connecting portion 1B and the galvanic anode (for example, Mg flow) installed around the pipeline 1 conductive anode) wire W 2 whose tip is connected to the 2 have been drawn in the terminal box T B, by connecting the electric wire W 1 and the wire W 2, pairs electrolyte potential pipeline 1 and galvanic The current generated from the galvanic anode 2 (current generated by the galvanic anode) is caused by causing the anode reaction of the galvanic anode 2 using the potential difference from the potential of the anode 2 (the surface is covered with the backfill 2A) as a driving force. ) Where I is the anticorrosion current I C of the pipeline 1.

このように流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するために設けられるカソード防食システムは、設置されている流電陽極2をアノードとし防食対象のパイプライン1をカソードとする印加電圧可変の直流電源装置3と、直流電源装置3の電圧印加状態で、パイプライン1の対電解質電位(管対地電位)を計測すると共に、流電陽極発生電流を計測する計測手段4と、計測手段4による計測データを演算処理する演算処理手段5とを備える。管対地電位P/Sは接続部1Bに先端が接続された電線W3を照合電極(飽和硫酸銅電極)6に直流電圧計4Aを介して接続することによって計測される。 In this way, the cathodic protection system provided for improving the anticorrosion situation which has been deteriorated against the anticorrosion target cathodically protected by the galvanic anode method is a pipe which is an anticorrosion target using the installed galvanic anode 2 as an anode. DC power supply 3 with variable applied voltage using cathode as line 1 and the voltage applied to DC power supply 3 to measure the electrolyte potential (tube-to-ground potential) of pipeline 1 and the current flowing to anode. Measuring means 4 for performing measurement, and arithmetic processing means 5 for performing arithmetic processing on measurement data obtained by the measuring means 4. Pipe ground potential P / S is measured by connecting the wires W 3 whose tip is connected to the connecting portion 1B via the DC voltmeter 4A to reference electrode (saturated copper sulfate electrode) 6.

演算処理手段5は、直流電源装置3による印加電圧Eの増加に対する防食対象の対電解質電位のマイナスシフト関係式と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式とを求める関係式設定手段5Aと、マイナスシフト関係式によって防食対象の対電解質電位(管対地電位P/S)が防食電位よりマイナス側になる設定印加電圧ESを求める設定印加電圧演算手段5Bと、プラスシフト関係式によって設定印加電圧ESによって発生する流電陽極発生電流ISを求める流電陽極発生電流演算手段5Cと、流電陽極発生電流演算手段5Cによって求められた流電陽極発生電流ISによって、設定印加電圧負荷後の流電陽極残存寿命LRを予測する流電陽極残存寿命予測手段5Dを備える。 The arithmetic processing means 5 obtains a negative shift relational expression of the anti-electrolytic potential of the corrosion protection target with respect to the increase of the applied voltage E by the DC power supply device 3 and a positive shift relational expression of the galvanic anode generation current I with respect to the increase of the applied voltage E. a relational expression setting means 5A, the set application voltage calculating means 5B for determining the set application voltage E S versus electrolyte potential corrosion subject by negative shift relational expression (tube ground potential P / S) becomes minus side from corrosion potential, plus galvanic anode generator generated by setting the applied voltage E S by shifting relationship current I and a galvanic anode generating current calculation unit 5C for determining an S, galvanic anode generating current calculation unit galvanic anodes generated current obtained by the 5C I S by, and a galvanic anode remaining life prediction means 5D for predicting the galvanic anode remaining lifetime L R after setting the voltage applied load.

また、演算処理手段5は、必要に応じて、直流電源装置3による印加電圧Eの増加に対する防食対象の対電解質電位(管対地電位P/S)のマイナスシフト勾配と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト勾配とを求め、マイナスシフト勾配Δmとプラスシフト勾配Δpとによって、設置されている流電陽極2に防食状況改善能力があるか否かを判定する防食状況改善能力判定手段5Eを備える。   Moreover, the arithmetic processing means 5 is a negative shift gradient of the anti-electrolytic potential (tube-to-ground potential P / S) of the anticorrosion object with respect to the increase in the applied voltage E by the DC power supply device 3 and the increase in the applied voltage E as necessary. The anti-corrosion situation improvement which calculates | requires the plus shift gradient of the galvanic anode generation | occurrence | production current I, and determines whether the installed galvanic anode 2 has the anti-corrosion situation improvement capability by the minus shift gradient Δm and the plus shift gradient Δp A capability determination means 5E is provided.

直流電源装置3は、直流電池3Aと可変抵抗3B或いは交流電源と整流器,変圧器等からなるものを用いることができ、ターミナルボックスTBに引き込まれた電線W1の端部に直流電源のマイナス側、電線W2の端部に直流電源のプラス側を接続し、パイプライン1と流電陽極2間の印加電圧を可変調節することができるものである。演算処理手段5からの制御出力信号によって印加電圧Eを可変調節するようにしてもよい。 Direct-current power supply 3, a DC battery 3A and the variable resistor 3B or AC power source and the rectifier, there can be used those composed of a transformer or the like, the negative of the DC power source to an end portion of the wire W 1 drawn into the terminal box T B side, connect the positive side of the DC power source to an end portion of the wire W 2, in which the voltage applied between the pipeline 1 and the galvanic anode 2 can be variably adjusted. The applied voltage E may be variably adjusted by a control output signal from the arithmetic processing means 5.

計測手段4は、ターミナルボックスTB内に設けられ、照合電極(例えば、飽和硫酸銅電極)6とパイプライン1の接続部1Bとに接続された電線W3に直流電圧計4Aを設置し、流電陽極2と直流電源装置3とを接続する電線W2間に直流電流計4Bを接続したものである。直流電圧計4A及び直流電流計4Bの計測データは演算処理手段5に取り込むことができるようになっている。 Measuring means 4 is provided in the terminal box T B, reference electrode (e.g., saturated copper sulfate electrode) DC voltmeter 4A installed in 6 and the wire W 3 which is connected to the connecting portion 1B of the pipeline 1, the flow A DC ammeter 4 </ b > B is connected between electric wires W 2 connecting the electric anode 2 and the DC power supply device 3. The measurement data of the DC voltmeter 4A and the DC ammeter 4B can be taken into the arithmetic processing means 5.

演算処理手段5は、パーソナルコンピュータ(PC)等の演算処理装置によって構成することができ、その演算処理機能(演算処理プログラム)として、関係式設定手段5A、設定印加電圧演算手段5B、流電陽極発生電流演算手段5C、流電陽極残存寿命予測手段5Dが組み込まれている。   The arithmetic processing means 5 can be constituted by an arithmetic processing device such as a personal computer (PC), and as its arithmetic processing function (arithmetic processing program), a relational expression setting means 5A, a set applied voltage calculation means 5B, a galvanic anode The generated current calculation means 5C and the galvanic anode remaining life prediction means 5D are incorporated.

このようなシステム構成によって実行されるカソード防食管理方法を前述した演算処理手段における各機能の詳細と共に説明する。図2は、本発明の実施形態に係るカソード防食管理方法の概略フローを示した説明図である。本発明の実施形態に係るカソード防食管理方法は、防食対象のパイプライン1に対して、定期点検時に管対地電位P/Sがカソード防食基準に不合格であることが確認され、しかも管対地電位P/Sが防食電位よりプラスよりの値になっている場合に実行される。   The cathode anticorrosion management method executed by such a system configuration will be described together with details of each function in the arithmetic processing means described above. FIG. 2 is an explanatory diagram showing a schematic flow of the cathodic protection management method according to the embodiment of the present invention. In the cathodic protection management method according to the embodiment of the present invention, it is confirmed that the pipe ground potential P / S does not pass the cathodic protection standard at the regular inspection for the pipeline 1 to be protected, and the pipe ground potential This is executed when P / S is a value greater than the anticorrosion potential.

先ずは、電線W1,W2に直流電源装置3を接続する(S1:接続工程)。そして、直流電源装置3の印加電圧Eを逐次増加させながら、パイプライン1の管対地電位P/Sを直流電圧計4Aで計測し、流電陽極発生電流Iを直流電流計4Bで計測する(S2:計測工程)。この際、印加電圧Eの増加によって、管対地電位P/Sはマイナス側にシフトし、流電陽極発生電流Iはプラス側にシフトするので、逐次調節した印加電圧En1,En2,En3,…に対応して計測された管対地電位P/Sn1,P/Sn2,P/Sn3,…と流電陽極発生電流IIn1,In2,In3,…とにより、管対地電位P/Sのマイナスシフト状態と流電陽極発生電流Iのプラスシフト状態が計測されることになる。 First, the DC power supply device 3 is connected to the electric wires W 1 and W 2 (S1: connection process). Then, the pipe-to-ground potential P / S of the pipeline 1 is measured by the DC voltmeter 4A while the applied voltage E of the DC power supply device 3 is sequentially increased, and the galvanic anode generated current I is measured by the DC ammeter 4B (S2). : Measurement process). At this time, as the applied voltage E increases, the tube-to-ground potential P / S shifts to the minus side, and the galvanic anode generation current I shifts to the plus side. Therefore, the applied voltages E n1 , E n2 , En 3 that are sequentially adjusted are shifted. ,... Are measured according to the tube-to-ground potentials P / S n1 , P / S n2 , P / S n3 ,... And the galvanic anode generation currents II n1 , I n2 , I n3 ,. The negative shift state of P / S and the positive shift state of the galvanic anode generation current I are measured.

計測データ(P/Sn1,P/Sn2,P/Sn3,…),(In1,In2,In3,…)は演算処理手段5に送られ、調節された印加電圧En1,En2,En3,…と共に演算処理が行われる(S3:演算処理工程)。 Measurement data (P / S n1 , P / S n2 , P / S n3 ,...), (I n1 , I n2 , I n3 ,...) Are sent to the arithmetic processing means 5, and the adjusted applied voltage En 1 , E n2, E n3, ... arithmetic processing is carried out with (S3: processing step).

ここでは、先ず、(En1,En2,En3,…)と(P/Sn1,P/Sn2,P/Sn3,…)とから回帰直線:{P/S}=a1・{E}+b1を求め(a1は回帰係数、b1は定数項)、これを印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト関係式とする。更に、(En1,En2,En3,…)と(In1,In2,In3,…)とから回帰直線:{I}=a2・{E}+b2を求め(a2は回帰係数、b2は定数項)、これを印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式とする。印加電圧Eと管対地電位P/Sとの関係、印加電圧Eと流電陽極発生電流Iとの関係は、理論上直線関係にあるので、高い相関係数の回帰直線を得ることができる。 Here, first, a regression line: {P / S} = a 1 · from (E n1 , E n2 , E n3 ,...) And (P / S n1 , P / S n2 , P / S n3 ,...) {E} + b 1 is obtained (a 1 is a regression coefficient, b 1 is a constant term), and this is a negative shift relational expression of the tube-to-ground potential P / S with respect to an increase in the applied voltage E. Additionally, (E n1, E n2, E n3, ...) and (I n1, I n2, I n3, ...) because the regression line: {I} = a 2 · {E} + b 2 a determined (a 2 is The regression coefficient, b 2 is a constant term), and this is a positive shift relational expression of the galvanic anode generation current I with respect to the increase of the applied voltage E. Since the relationship between the applied voltage E and the tube-to-ground potential P / S and the relationship between the applied voltage E and the galvanic anode generation current I are theoretically linear, a regression line with a high correlation coefficient can be obtained.

そして、管対地電位P/Sのマイナスシフト関係式{P/S}=a1・{E}+b1にα・P/SC(P/SC:防食電位,α:安全係数)を代入し、設定電圧ESを、ES=(α・P/SC−b1)/a1によって求める。更に、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式{I}=a2・{E}+b2に、求めた設定電圧ESを代入して、設定印加電圧ESに対する流電陽極発生電流ISを、IS=a2・ES+b2によって求める。 Then, α · P / S C (P / S C : anticorrosion potential, α: safety factor) is substituted into the negative shift relational expression {P / S} = a 1 · {E} + b 1 of the pipe-to-ground potential P / S Then, the set voltage E S is obtained by E S = (α · P / S C −b 1 ) / a 1 . Further, the obtained set voltage E S is substituted into the positive shift relational expression {I} = a 2 · {E} + b 2 of the galvanic anode generation current I with respect to the increase in the applied voltage E, and the set applied voltage E S The galvanic anode generation current I S is obtained by I S = a 2 · E S + b 2 .

この際、設定印加電圧ES及び設定印加電圧ESに対する流電陽極発生電流ISを求める前に、計測データ(P/Sn1,P/Sn2,P/Sn3,…),(In1,In2,In3,…)によって、設置されている流電陽極2に防食状況改善能力があるか否かの判定を行うことができる(S5:防食状況改善能力判定工程)。 At this time, measurement data (P / S n1 , P / S n2 , P / S n3 ,...), (I) are obtained before obtaining the set application voltage E S and the galvanic anode generation current I S with respect to the set application voltage E S. n1 , In2 , In3 , ...), it is possible to determine whether or not the installed galvanic anode 2 has an anticorrosion condition improving ability (S5: anticorrosion condition improving ability determining step).

計測データ(P/Sn1,P/Sn2,P/Sn3,…),(In1,In2,In3,…)から求めた回帰直線:{P/S}=a1・{E}+b1及び{I}=a2・{E}+b2の各回帰係数a1,a2は、それぞれ、印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト勾配Δmと、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト勾配Δpになる。このマイナスシフト勾配Δmとプラスシフト勾配Δpが最低基準値Δmmin,Δpminより大きいか否かによって、設置されている流電陽極2に防食状況改善能力があるか否か、すなわち、印加電圧Eを増加させた場合に管対地電位P/Sを防食電位以下にし、流電陽極発生電流Iを所要防食電流以上にすることができるか否かを判定することができる。 Regression straight line obtained from measurement data (P / Sn1 , P / Sn2 , P / Sn3 ,...), ( In1 , In2 , In3 ,...): {P / S} = a 1. {E } + B 1 and {I} = a 2 · {E} + b 2 , the regression coefficients a 1 and a 2 are respectively the negative shift gradient Δm of the tube-to-ground potential P / S with respect to the increase of the applied voltage E and the applied voltage. The positive shift gradient Δp of the galvanic anode generation current I with respect to the increase of E is obtained. Depending on whether or not the minus shift gradient Δm and the plus shift gradient Δp are larger than the minimum reference values Δm min and Δp min, whether or not the installed galvanic anode 2 has the ability to improve the anticorrosion situation, that is, the applied voltage E It is possible to determine whether or not the tube-to-ground potential P / S can be made lower than the anticorrosion potential and the galvanic anode generation current I can be made higher than the required anticorrosion current.

ここでの最低基準値Δmmin,Δpminは、印加電圧E負荷前の管対地電位P/S1,印加電圧E負荷前の平均流電陽極発生電流I1,防食電位P/SC,印加電圧調整可能範囲F等によって設定することができる。 Here, the minimum reference values Δm min and Δp min are the tube-to-ground potential P / S 1 before the applied voltage E load, the average galvanic anode generation current I 1 before the applied voltage E load, the anticorrosion potential P / S C , the applied It can be set by the voltage adjustable range F or the like.

最後に、演算工程S3で求めた流電陽極発生電流ISによって、設定印加電圧負荷後の流電陽極残存寿命LR(year)を予測する(S4:流電陽極残存寿命予測工程)。この流電陽極残存寿命LRは下記式(1)による。 Finally, the sacrificial anode generator current I S obtained by the calculation step S3, predicted galvanic anode remaining lifetime L R after setting the applied voltage load (year) (S4: galvanic anode remaining life prediction step). This galvanic anode remaining life L R is according to the following formula (1).

Figure 2008151696
Figure 2008151696

設定印加電圧ESの負荷後に式(1)によって流電陽極残存寿命LRが予測可能な理由は、パイプライン1の表面は化学的に安定しており、設定印加電圧ESの負荷後にカソード分極が大きく進行することがないからである。歴青質塗覆装のパイプライン1は、錆び層を含む酸化層の影響で酸化還元反応が起こり難い状態になっており、印加電圧付加後に管対地電位P/Sが大きく低下することがない。よって、流電陽極発生電流ISがほぼ一定値で継続するものと考えて、式(1)により簡易に流電陽極残存寿命LRを求めることができる。 Galvanic anode remaining lifetime L R is predictable reasons later by equation (1) Load settings applied voltage E S is the surface of the pipeline 1 is chemically stable, the cathode after the load of setting the applied voltage E S This is because polarization does not progress greatly. The bitumen-coated pipeline 1 is in a state in which oxidation-reduction reaction hardly occurs due to the influence of the oxide layer including the rust layer, and the pipe-to-ground potential P / S does not greatly decrease after the applied voltage is applied. . Accordingly, it believed to galvanic anode generator current I S continues at a substantially constant value, it is possible to obtain a galvanic anode remaining lifetime L R simply by Equation (1).

このようなカソード防食管理システム及びカソード防食管理方法によると、定期点検等の現場において、防食対象であるパイプライン1のカソード防食状況が悪化していることが確認された場合には、接続工程S1,計測工程S2を実行し、得られた計測データに基づいて演算工程S3を実行することで、簡易且つ速やかに悪化した防食状況を改善できる設定印加電圧ESを求めることができる。したがって、即座にメタルタッチ解消工事等の大がかりな工事を行うことなく、確実に悪化した防食状況を改善することができる。 According to such a cathodic protection system and a cathodic protection management method, when it is confirmed that the cathodic protection status of the pipeline 1 that is the anticorrosion has deteriorated at a site such as periodic inspection, the connecting step S1. executes measurement step S2, by executing the calculation process S3, based on the obtained measurement data, it is possible to obtain the set application voltage E S can improve the corrosion situation that easily and quickly deteriorate. Accordingly, the deteriorated anticorrosion situation can be reliably improved without immediately performing a large-scale construction such as a metal touch elimination construction.

また、設定印加電圧ESを負荷することで、流電陽極発生電流の増大によって設置されている流電陽極2の寿命は当初予測寿命より短くなるが、その際の流電陽極残存寿命LRを流電陽極残存寿命予測工程S4によって速やかに求めることができるので、流電陽極2の寿命に応じたその後の対応を速やかに計画することが可能になる。 Moreover, by loading the set application voltage E S, but the life of galvanic anode 2 installed by increased galvanic anode current generated is shorter than originally expected life, galvanic anode remaining lifetime L R at that time Can be promptly determined by the remaining current predicting life step S4, so that it is possible to quickly plan the subsequent response according to the life of the current flowing anode 2.

更には、当初予測した流電陽極の寿命と埋設年数から既に寿命が近い流電陽極2の場合には、いくら印加電圧Eを増大させても所要防食電流が得られず、管対地電位P/Sを防食電位よりマイナスよりの値にシフトできない場合があり、単に従来技術の予測寿命と埋設年数との比較だけでは、現状の流電陽極に改善能力があるか否かが分からない場合があるが、防食状況改善能力判定工程S5を実行することによって、改善能力があるか否かを定量的に知ることができ、設置された流電陽極2を無駄なく有効利用することができる。また、改善能力が無いと判断された場合には速やかに取り替え等の対策を計画することができる。この際、改善能力が無いと判断された場合に、流電陽極2の接地抵抗を別途計測し、例えば1kΩ以上であれば、流電陽極はその機能を発揮できないものと判断する。   Furthermore, in the case of the galvanic anode 2 whose life is already close from the initially predicted life of the galvanic anode and the number of years of burial, the required anticorrosion current cannot be obtained no matter how much the applied voltage E is increased, and the tube ground potential P / In some cases, S cannot be shifted to a negative value from the anticorrosion potential, and simply comparing the predicted life of the prior art with the buried years may not reveal whether the current galvanic anode has an improvement capability. However, by executing the anticorrosion situation improving ability determination step S5, it is possible to quantitatively know whether or not there is an improving ability, and it is possible to effectively use the installed electroplating anode 2 without waste. In addition, if it is determined that there is no improvement capability, measures such as replacement can be planned quickly. At this time, when it is determined that there is no improvement capability, the ground resistance of the galvanic anode 2 is separately measured. If, for example, 1 kΩ or more, it is determined that the galvanic anode cannot exhibit its function.

印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト勾配Δmと、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト勾配Δpによる改善能力の判定は、既設の流電陽極2が十分に機能を発揮できるものであることを定量的に把握することができるので、異なる設置箇所の流電陽極2の能力を定量的に比較することができることになり、異なる設置箇所の流電陽極2に対しての対策優先順位付けが可能になる。   The determination of the improvement ability by the minus shift gradient Δm of the tube-to-ground potential P / S with respect to the increase of the applied voltage E and the plus shift gradient Δp of the galvanic anode generation current I with respect to the increase of the applied voltage E is determined by the existing galvanic anode 2. Since it is possible to quantitatively grasp that it can fully function, it is possible to quantitatively compare the abilities of the galvanic anodes 2 at different installation locations, and the galvanic anodes at different installation locations. It is possible to prioritize countermeasures for 2.

以下に、本発明の実施例を説明する。図3は実施例の説明図であって、前述した印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト関係式と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式の具体例を示したグラフである。   Examples of the present invention will be described below. FIG. 3 is an explanatory diagram of the embodiment, and the above-described negative shift relational expression of the tube-to-ground potential P / S with respect to the increase of the applied voltage E and the positive shift relational expression of the galvanic anode generation current I with respect to the increase of the applied voltage E. It is the graph which showed the specific example of.

流電陽極方式によりカソード防食されたパイプラインが、埋設24年経過時点で管対地電位が防食電位(ここでは、−1200mVCSEとする、なお、以下電位は飽和硫酸銅電極(CSE)基準で示す)以下にならなくなり、カソード防食基準に不合格となった場合を示している。なお、このパイプラインは直流干渉リスク及び交流腐食リスクがないことを別途確認している。 Pipeline that has been cathodic-protected by the galvanic anode method, the tube-to-ground potential at the time of 24 years of burial is the anti-corrosion potential (here, -1200 mV CSE . In addition, the potential is shown on the basis of saturated copper sulfate electrode (CSE) ) It is no longer below, and shows the case where the cathodic protection standards are not met. In addition, it has been confirmed separately that this pipeline has no DC interference risk and AC corrosion risk.

[実施例条件]
パイプ口径:300mm
塗覆装:アスファルトジュート
埋設年数:24年
流電陽極:有効電気容量2760mA・yearのMg陽極1本
[Example conditions]
Pipe diameter: 300mm
Coating: Asphalt jute Years of burial: 24 years Current anode: One Mg anode with an effective electrical capacity of 2760 mA · year

[埋設24年経過時点の計測結果]
管対地電位:−650mVCSE
Mg陽極発生電流:30mA
Mg陽極対地電位:−1500mVCSE
防食対象パイプラインの接地抵抗:0.8Ω
Mg陽極の接地抵抗:20.0Ω
[Measurement results after 24 years of burial]
Tube-to-ground potential: -650 mV CSE
Mg anode generation current: 30 mA
Mg anode to ground potential: -1500 mV CSE
Corrosion protection pipeline resistance: 0.8Ω
Ground resistance of Mg anode: 20.0Ω

埋設24年経過時点においては、管対地電位が−650mVCSEと防食電位である−1200mVCSEに550mVカソード分極量が不足していた。そこで、前述した直流電源装置によって印加電圧Eを増加させて計測工程,演算工程を実行し、印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト関係式と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式を図3に示すように求めた。 In buried 24 years elapse, tube ground potential 550mV cathodic polarization amount -1200MV CSE is -650 mV CSE and corrosion potential was insufficient. Therefore, the applied voltage E is increased by the above-described DC power supply device, and the measurement process and the calculation process are executed, and the negative shift relational expression of the tube-to-ground potential P / S with respect to the increase of the applied voltage E and the flow with respect to the increase of the applied voltage E A positive shift relational expression of the electric anode generation current I was determined as shown in FIG.

図示のように、印加電圧Eと管対地電位P/Sとの関係は、相関係数−0.999の高い負相関が得られ、印加電圧EとMg陽極発生電流Iとの関係は、相関係数1.000と理論を裏付ける結果が得られた。管対地電位P/Sが防食電位P/SCである−1200mVCSEになる設定印加電圧ESは5.8Vとなる。この設定印加電圧ES負荷時のMg陽極発生電流は238mAとなる。 As shown in the figure, the relationship between the applied voltage E and the tube-to-ground potential P / S has a high negative correlation with a correlation coefficient of −0.999, and the relationship between the applied voltage E and the Mg anode generation current I is A result supporting the theory was obtained with a relational number of 1.000. The set applied voltage E S at which the tube-to-ground potential P / S becomes −1200 mV CSE , which is the anticorrosion potential P / S C , is 5.8V. Mg anode current generated at the time of setting the applied voltage E S load becomes 238MA.

この結果から、式(1)によって流電陽極残存寿命LRを予測すると、下記式のとおりになる。 From this result, when the galvanic anode remaining life LR is predicted by the equation (1), the following equation is obtained.

Figure 2008151696
Figure 2008151696

よって、Mg陽極の残存寿命は約8年であることが分かった。8年以内にメタルタッチ等の詳細調査を行い、改善対策を講じることになる。改善対策を講じるまでは、直流電源装置によりMg陽極発生電流を増加させ、カソード防食基準に合格の状態を維持するようにする。なお、ここでは、Mg陽極が直流電源装置により所要防食電流を満足し、この状態において流電陽極がある程度の残存寿命を有していることを前提としている。直流電源装置の内蔵電池は、定期点検の周期(例えば1回/年)のタイミングで交換する設計を考える。   Therefore, it was found that the remaining life of the Mg anode was about 8 years. Detailed investigations such as metal touch will be conducted within 8 years, and improvement measures will be taken. Until the improvement measures are taken, the Mg anode generation current is increased by the DC power supply device so as to maintain a state of passing the cathodic protection standard. Here, it is assumed that the Mg anode satisfies the required anticorrosion current by the DC power supply device, and that the galvanic anode has a certain remaining life in this state. Consider a design in which the internal battery of the DC power supply is replaced at a periodic inspection cycle (for example, once / year).

図4は、パイプラインの定期点検から本発明のカソード防食管理方法を実行するための具体的な対処フロー図である。   FIG. 4 is a specific flowchart for executing the cathodic protection management method of the present invention from the periodic inspection of the pipeline.

先ず、定期点検時に管対地電位P/Sを計測し(S10)、この管対地電位P/Sがカソード防食基準に合格しているか否かの判定を行う(S11)。これがカソード防食基準に合格していれば、対策措置は不要であるから、引き続き定期点検の実施を継続する(S11A)。   First, the pipe ground potential P / S is measured during periodic inspection (S10), and it is determined whether or not this pipe ground potential P / S passes the cathodic protection standard (S11). If this passes the cathodic protection standard, no countermeasure is required, and the periodic inspection is continued (S11A).

前述の判定で、カソード防食基準に合格していない場合には、パイプラインルートの管対地電位P/Sのプロフィールにプラスよりのシフトがあるか否かの判定を行う(S12)。この判定でシフトが無い場合には、カソード防食基準に合格しない理由を究明するために詳細調査を行い、その調査結果に基づいて改善工事を行う(S12A)。   If the above-mentioned determination does not pass the cathodic protection standard, it is determined whether or not the profile of the pipe-to-ground potential P / S of the pipeline route has a shift from plus (S12). If there is no shift in this determination, a detailed survey is conducted to find out the reason for not passing the cathodic protection standard, and improvement work is performed based on the survey result (S12A).

管対地電位のプロフィールにプラスよりのシフトがあるか否かの判定でシフトがある場合には、前述の接続工程S1,計測工程S2,演算工程S3を実行し、前述した印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト関係式と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式とを求める(S13)。   If there is a shift in determining whether there is a shift from the plus in the profile of the tube-to-ground potential, the connection step S1, the measurement step S2, and the calculation step S3 are executed, and the increase in the applied voltage E described above is performed. A negative shift relational expression of the tube-to-ground potential P / S and a positive shift relational expression of the galvanic anode generation current I with respect to the increase of the applied voltage E are obtained (S13).

そして、印加電圧E負荷によって管対地電位P/Sが防食電位を達成したか、Mg陽極発生電流Iが所要防食電流に達したかを確認し(S14)、これらが達成しない場合は、流電陽極に改善能力が無いと見なして、他の改善工事を実施し(S14A)、これらが共に達成された場合には、設定印加電圧ESを決定すると共に、Mg陽極残存寿命の予測を行う(S15)。その後は、引き続き定期点検時に管対地電位を計測し、カソード防食基準との照査を行う。 Then, it is confirmed whether the tube-to-ground potential P / S has achieved the anticorrosion potential by the applied voltage E load or whether the Mg anode generation current I has reached the required anticorrosion current (S14). It considers that there is no improvement capability anode, and perform other improvements construction (S14A), if these have been achieved together with determining a set applied voltage E S, to predict the Mg anode remaining life ( S15). After that, the tube-to-ground potential is continuously measured during periodic inspections and checked against the cathodic protection standards.

本発明の実施形態に係るカソード防食管理方法及びカソード防食管理システムを説明するための説明図(システム構成図)である。It is explanatory drawing (system block diagram) for demonstrating the cathodic protection management method and cathodic protection management system which concern on embodiment of this invention. 本発明の実施形態に係るカソード防食管理方法を説明するための説明図(概略工程フロー)である。It is explanatory drawing (schematic process flow) for demonstrating the cathode anticorrosion management method which concerns on embodiment of this invention. 本発明の実施例の説明図であって、前述した印加電圧Eの増加に対する管対地電位P/Sのマイナスシフト関係式と、印加電圧Eの増加に対する流電陽極発生電流Iのプラスシフト関係式の具体例を示したグラフである。FIG. 2 is an explanatory diagram of an embodiment of the present invention, in which a negative shift relational expression of the tube-to-ground potential P / S with respect to the increase of the applied voltage E and a positive shift relational expression of the galvanic anode generation current I with respect to the increase of the applied voltage E. It is the graph which showed the specific example of. パイプラインの定期点検から本発明のカソード防食管理方法を実行するための具体的な対処フロー図である。It is a specific coping flow chart for performing the cathodic protection management method of the present invention from the periodic inspection of the pipeline.

符号の説明Explanation of symbols

1 パイプライン
1A 歴青質塗覆装
2 流電陽極
2A バックフィル
3 直流電源装置
3A 直流電池
3B 可変抵抗
4 計測手段
4A 直流電圧計
4B 直流電流計
5 演算処理手段
5A 関係式設定手段
5B 設定印加電圧演算手段
5C 流電陽極発生電流演算手段
5D 流電陽極残存寿命予測手段
5E 防食状況改善能力判定手段
6 照合電極(飽和硫酸銅電極)
1,W2,W3 電線
I 流電陽極発生電流
C 防食電流
B ターミナルボックス
DESCRIPTION OF SYMBOLS 1 Pipeline 1A Bituminous coating 2 Current-flow anode 2A Backfill 3 DC power supply 3A DC battery 3B Variable resistance 4 Measuring means 4A DC voltmeter 4B DC ammeter 5 Arithmetic processing means 5A Relational expression setting means 5B Setting applied voltage Calculation means 5C Current-flow anode generation current calculation means 5D Current-flow anode remaining life prediction means 5E Corrosion protection condition improvement ability determination means 6 Reference electrode (saturated copper sulfate electrode)
W 1, W 2, W 3 wire I galvanic anode generator current I C protection current T B terminal box

Claims (8)

流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するためのカソード防食管理方法において、
設置されている流電陽極をアノードとし防食対象をカソードとする印加電圧可変の直流電源装置を接続する接続工程と、
前記直流電源装置の印加電圧を増加させながら、防食対象の対電解質電位のマイナスシフト状態を計測すると共に、流電陽極発生電流のプラスシフト状態を計測する計測工程と、
前記計測工程での計測データから、印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト関係式と、印加電圧の増加に対する流電陽極発生電流のプラスシフト関係式とを求め、前記マイナスシフト関係式によって防食対象の対電解質電位が防食電位よりマイナス側になる設定印加電圧を求め、前記プラスシフト関係式によって前記設定印加電圧によって発生する流電陽極発生電流を求める演算工程と、
前記演算工程で求めた流電陽極発生電流によって、前記設定印加電圧負荷後の流電陽極残存寿命を予測する残存寿命予測工程と、
を有することを特徴とするカソード防食管理方法。
In the cathodic protection management method for improving the anti-corrosion situation which deteriorated against the anti-corrosion target cathodic protected by the galvanic anode method,
A connecting step of connecting a direct current power supply device having a variable applied voltage with an anode of an installed galvanic anode and a cathode of an anticorrosion target;
While increasing the applied voltage of the DC power supply, while measuring the negative shift state of the anti-electrolytic potential of the anticorrosion target, and measuring the positive shift state of the galvanic anode generation current,
From the measurement data in the measurement step, a negative shift relational expression of the anti-electrolytic potential of the anticorrosion target with respect to the increase in the applied voltage and a positive shift relational expression of the galvanic anode generation current with respect to the increase in the applied voltage are obtained, A calculation step for obtaining a set applied voltage at which the anti-electrolytic potential of the corrosion protection target is negative from the corrosion prevention potential by an equation, and obtaining a galvanic anode generation current generated by the set application voltage by the plus shift relational expression;
A remaining life prediction step of predicting a remaining life of the anode of the flowing current after the set applied voltage load, according to the current generated by the flowing current of the anode obtained in the calculation step,
A cathodic protection management method comprising:
前記残存寿命予測工程では、下記式(1)によって前記設定印加電圧負荷後の流電陽極残存寿命LR(year)を予測することを特徴とする請求項1に記載のカソード防食管理方法。
R=(Ma−I1・YE)/IS …(1)
ここで、Ma:流電陽極の有効電気容量(mA・year)
1:印加電圧負荷前の平均流電陽極発生電流(mA)
E:流電陽極設置年数(year)
S:設定印加電圧によって発生する流電陽極発生電流(mA)
2. The cathodic protection management method according to claim 1, wherein, in the remaining life prediction step, the remaining life of the galvanic anode L R (year) after the set applied voltage load is predicted by the following formula (1).
L R = (Ma−I 1 · Y E ) / I S (1)
Here, Ma: effective electric capacity of the galvanic anode (mA · year)
I 1 : Average galvanic anode generation current (mA) before applied voltage load
Y E : Number of years of galvanic anode installation (year)
I S : galvanic anode generation current (mA) generated by the set applied voltage
前記計測工程での計測データから、印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト勾配と、印加電圧の増加に対する流電陽極発生電流のプラスシフト勾配とを求め、前記マイナスシフト勾配と前記プラスシフト勾配とによって、設置されている流電陽極の防食状況改善能力を判定する判定工程を行うことを特徴とする請求項1又は2に記載のカソード防食管理方法。   From the measurement data in the measurement step, a negative shift gradient of the anti-electrolytic potential of the anticorrosion target with respect to the increase of the applied voltage, and a positive shift gradient of the galvanic anode generated current with respect to the increase of the applied voltage, the negative shift gradient and the above The cathodic protection management method according to claim 1 or 2, wherein a determination step of determining the anticorrosion condition improving ability of the installed electroplating anode is performed based on the plus shift gradient. 前記防食対象は、土壌に埋設された歴青質塗覆装パイプラインであることを特徴とする請求項1〜3のいずれかに記載のカソード防食管理方法。   The cathodic protection management method according to any one of claims 1 to 3, wherein the anticorrosion target is a bituminous coating pipeline embedded in soil. 流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するためのカソード防食管理方法において、
設置されている流電陽極をアノードとし防食対象をカソードとする印加電圧可変の直流電源装置を接続する接続工程と、
前記直流電源装置の印加電圧を増加させながら、防食対象の対電解質電位のマイナスシフト状態を計測すると共に、流電陽極発生電流のプラスシフト状態を計測する計測工程と、
前記計測工程での計測データから、印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト勾配と、印加電圧の増加に対する流電陽極発生電流のプラスシフト勾配とを求め、前記マイナスシフト勾配と前記プラスシフト勾配とによって、設置されている流電陽極の防食状況改善能力を判定する判定工程と、
を有することを特徴とするカソード防食管理方法。
In the cathodic protection management method for improving the anti-corrosion situation which deteriorated against the anti-corrosion target cathodic protected by the galvanic anode method,
A connecting step of connecting a direct current power supply device having a variable applied voltage with an anode of an installed galvanic anode and a cathode of an anticorrosion target;
While increasing the applied voltage of the DC power supply, while measuring the negative shift state of the anti-electrolytic potential of the anticorrosion target, and measuring the positive shift state of the galvanic anode generation current,
From the measurement data in the measurement step, a negative shift gradient of the anti-electrolytic potential of the anticorrosion target with respect to the increase of the applied voltage, and a positive shift gradient of the galvanic anode generation current with respect to the increase of the applied voltage, the negative shift gradient and the above Judgment process for judging the anti-corrosion situation improving ability of the installed galvanic anode by the plus shift gradient,
A cathodic protection management method comprising:
流電陽極方式によってカソード防食されている防食対象に対して、悪化した防食状況を改善するためのカソード防食管理システムにおいて、
設置されている流電陽極をアノードとし防食対象をカソードとする印加電圧可変の直流電源装置と、
前記直流電源装置の電圧印加状態で、防食対象の対電解質電位を計測すると共に、流電陽極発生電流を計測する計測手段と、
前記計測手段による計測データを演算処理する演算処理手段と、を備え、
前記演算処理手段は、
前記直流電源装置による印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト関係式と、印加電圧の増加に対する流電陽極発生電流のプラスシフト関係式とを求める関係式設定手段と、
前記マイナスシフト関係式によって防食対象の対電解質電位が防食電位よりマイナス側になる設定印加電圧を求める設定印加電圧演算手段と、
前記プラスシフト関係式によって前記設定印加電圧によって発生する流電陽極発生電流を求める流電陽極発生電流演算手段と、
前記流電陽極発生電流演算手段によって求められた流電陽極発生電流によって、前記設定印加電圧負荷後の流電陽極残存寿命を予測する残存寿命予測手段と、を備えることを特徴とするカソード防食管理システム。
In the cathodic protection management system to improve the anti-corrosion situation, which is cathodic protected by the galvanic anode method,
An applied voltage variable DC power supply device in which the installed galvanic anode is the anode and the anticorrosion target is the cathode; and
In the voltage application state of the DC power supply device, while measuring the anti-electrolytic potential of the anticorrosion target, measuring means for measuring the galvanic anode generated current,
An arithmetic processing means for arithmetically processing the measurement data by the measuring means,
The arithmetic processing means includes:
Relational expression setting means for obtaining a negative shift relational expression of the anti-electrolytic potential of the anticorrosion target with respect to an increase in the applied voltage by the DC power supply apparatus and a positive shift relational expression of the galvanic anode generated current with respect to the increase in the applied voltage;
A set applied voltage calculation means for obtaining a set applied voltage at which the anti-electrolytic potential of the anticorrosion target is on the minus side of the anticorrosion potential by the negative shift relational expression;
A galvanic anode generation current calculating means for obtaining a galvanic anode generation current generated by the set applied voltage according to the plus shift relational expression;
Cathodic anticorrosion management, comprising: a remaining life predicting means for predicting a remaining life of the flowing current anode after the set applied voltage load based on a flowing current generated by the flowing current anode generated by the flowing current anode generation current calculation means system.
前記残存寿命予測手段では、下記式(1)によって前記設定印加電圧負荷後の流電陽極残存寿命LR(year)を予測することを特徴とする請求項6に記載のカソード防食管理システム。
R=(Ma−I1・YE)/IS …(1)
ここで、Ma:流電陽極の有効電気容量(mA・year)
1:印加電圧負荷前の平均流電陽極発生電流(mA)
E:流電陽極設置年数(year)
S:設定印加電圧によって発生する流電陽極発生電流(mA)
7. The cathodic protection management system according to claim 6, wherein the remaining life predicting means predicts a galvanic anode remaining life L R (year) after the set applied voltage load by the following formula (1).
L R = (Ma−I 1 · Y E ) / I S (1)
Here, Ma: effective electric capacity of the galvanic anode (mA · year)
I 1 : Average galvanic anode generation current (mA) before applied voltage load
Y E : Number of years of galvanic anode installation (year)
I S : galvanic anode generation current (mA) generated by the set applied voltage
前記演算処理手段は、
前記直流電源装置による印加電圧の増加に対する防食対象の対電解質電位のマイナスシフト勾配と、印加電圧の増加に対する流電陽極発生電流のプラスシフト勾配とを求め、前記マイナスシフト勾配と前記プラスシフト勾配とによって、設置されている流電陽極の防食状況改善能力を判定する判定手段と、を備えることを特徴とする請求項6又は7に記載のカソード防食管理システム。
The arithmetic processing means includes:
The negative shift gradient of the anti-electrolytic potential of the anticorrosion target with respect to the increase in the applied voltage by the DC power supply device, and the positive shift gradient of the galvanic anode generated current with respect to the increase in the applied voltage are obtained, and the negative shift gradient and the positive shift gradient The cathode anticorrosion management system according to claim 6, further comprising: a determination unit that determines an anticorrosion situation improvement ability of the installed electroplating anode.
JP2006341163A 2006-12-19 2006-12-19 Cathodic protection management method and cathode protection management system Expired - Fee Related JP4747084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341163A JP4747084B2 (en) 2006-12-19 2006-12-19 Cathodic protection management method and cathode protection management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341163A JP4747084B2 (en) 2006-12-19 2006-12-19 Cathodic protection management method and cathode protection management system

Publications (2)

Publication Number Publication Date
JP2008151696A true JP2008151696A (en) 2008-07-03
JP4747084B2 JP4747084B2 (en) 2011-08-10

Family

ID=39654003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341163A Expired - Fee Related JP4747084B2 (en) 2006-12-19 2006-12-19 Cathodic protection management method and cathode protection management system

Country Status (1)

Country Link
JP (1) JP4747084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023400B1 (en) 2021-04-05 2022-02-21 日鉄エンジニアリング株式会社 Anticorrosion system and anticorrosion method
CN114556012A (en) * 2019-10-17 2022-05-27 奇秉镐 Multifunctional corrosion detection system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156095A (en) * 1988-12-07 1990-06-15 Permelec Electrode Ltd Method and device for anticorrosion
JPH03249493A (en) * 1990-02-28 1991-11-07 Sumikin Kokan Koji Kk Corrosion preventing structure for underground pipe line and method of building thereof
JPH062171A (en) * 1992-06-18 1994-01-11 Permelec Electrode Ltd Electrode system for ground embedding type corrosion protection
JPH06294770A (en) * 1993-04-09 1994-10-21 Tokyo Gas Co Ltd Estimating device for lifetime of mg electrode for electric protection
JPH07208910A (en) * 1994-01-17 1995-08-11 Nakabootec:Kk Method for measuring surface area of current-flowing anode
JPH07294479A (en) * 1994-04-26 1995-11-10 Tokyo Gas Co Ltd Service life estimating device of mg electrode for electric anticorrosion
JP2001041140A (en) * 1999-07-30 2001-02-13 Hitachi Ltd Impeller for hydraulic machinery and hydraulic machinery
JP2004250779A (en) * 2002-12-27 2004-09-09 Tokyo Gas Co Ltd Safety method and safety device for embedded structure
JP2005146351A (en) * 2003-11-14 2005-06-09 Tokiko Techno Kk External power system electric corrosion protection method and anode electrode device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156095A (en) * 1988-12-07 1990-06-15 Permelec Electrode Ltd Method and device for anticorrosion
JPH03249493A (en) * 1990-02-28 1991-11-07 Sumikin Kokan Koji Kk Corrosion preventing structure for underground pipe line and method of building thereof
JPH062171A (en) * 1992-06-18 1994-01-11 Permelec Electrode Ltd Electrode system for ground embedding type corrosion protection
JPH06294770A (en) * 1993-04-09 1994-10-21 Tokyo Gas Co Ltd Estimating device for lifetime of mg electrode for electric protection
JPH07208910A (en) * 1994-01-17 1995-08-11 Nakabootec:Kk Method for measuring surface area of current-flowing anode
JPH07294479A (en) * 1994-04-26 1995-11-10 Tokyo Gas Co Ltd Service life estimating device of mg electrode for electric anticorrosion
JP2001041140A (en) * 1999-07-30 2001-02-13 Hitachi Ltd Impeller for hydraulic machinery and hydraulic machinery
JP2004250779A (en) * 2002-12-27 2004-09-09 Tokyo Gas Co Ltd Safety method and safety device for embedded structure
JP2005146351A (en) * 2003-11-14 2005-06-09 Tokiko Techno Kk External power system electric corrosion protection method and anode electrode device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114556012A (en) * 2019-10-17 2022-05-27 奇秉镐 Multifunctional corrosion detection system
JP7023400B1 (en) 2021-04-05 2022-02-21 日鉄エンジニアリング株式会社 Anticorrosion system and anticorrosion method
JP2022159928A (en) * 2021-04-05 2022-10-18 日鉄エンジニアリング株式会社 Anti-corrosion system and anti-corrosion method

Also Published As

Publication number Publication date
JP4747084B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP4767145B2 (en) Cathodic protection system and cathodic protection method by galvanic anode method, pipeline soundness evaluation system and soundness evaluation method
KR101680798B1 (en) System of impressed current cathodic protection for realtime monitoring corrosion of coldest place pipeline, and method for the same
JP2007071712A (en) Soundness evaluation device, soundness remote evaluation system, soundness evaluation method and soundness evaluation program for anticorrosion-objective pipeline
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
JP4747084B2 (en) Cathodic protection management method and cathode protection management system
JP4854653B2 (en) Measurement and evaluation method and measurement evaluation system for cathodic protection
JP4847307B2 (en) Cathodic protection system and cathode protection method
Zakowski Studying the effectiveness of a modernized cathodic protection system for an offshore platform
JP5231899B2 (en) Cathodic protection method for pipelines
KR100717597B1 (en) protection monitoring system
JP5345795B2 (en) Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
JP2019105513A (en) Electrolytic protection status grasping system and status grasping method
US20220049363A1 (en) Methods for controling and monitoring the degree of cathodic rotection for metal structutres and burried pipelines using coupled mutielectrode sensors
KR102521624B1 (en) Electric anti-corrosion controlling system with ai managing undergrould pipelines and managing method by the same
RU2609121C2 (en) Method of underground structure steel section protection against electrochemical corrosion in aggressive environment
Lindemuth et al. Challenging AC Corrosion Mitigation System for 100-Mile Long Pipeline
Bolen et al. Corrosion Protection of Ductile Iron Pipe for a Large Diameter Transmission Main Project
McCray Extending the Life of Metallic Pipes— Designing CP Systems in Houston
JP4614804B2 (en) Corrosion location estimation method
RU2721250C1 (en) Method for determination of anode earthing repair time
JP6600487B2 (en) How to select anti-corrosion batteries
Foster et al. Long-Term Case Studies of Cathodic Protection Along the Texas Gulf Coast
Beavers Cathodic Protection–How It Works

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees