JP2008151625A - Control rod of self-propelled type - Google Patents

Control rod of self-propelled type Download PDF

Info

Publication number
JP2008151625A
JP2008151625A JP2006339375A JP2006339375A JP2008151625A JP 2008151625 A JP2008151625 A JP 2008151625A JP 2006339375 A JP2006339375 A JP 2006339375A JP 2006339375 A JP2006339375 A JP 2006339375A JP 2008151625 A JP2008151625 A JP 2008151625A
Authority
JP
Japan
Prior art keywords
control rod
water
pipe
self
central cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339375A
Other languages
Japanese (ja)
Other versions
JP5275563B2 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006339375A priority Critical patent/JP5275563B2/en
Publication of JP2008151625A publication Critical patent/JP2008151625A/en
Application granted granted Critical
Publication of JP5275563B2 publication Critical patent/JP5275563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce construction costs and decrease power generation costs by shortening the lower parts of reactor structural materials though they are required to be about three times as long as nuclear fuel assemblies because they need a space for accommodating control rods below a core, further below which a space for a control rod drive mechanism is required. <P>SOLUTION: A control rod 400 of a self-propelled type consists of support rods 420 made of titanium alloy or stainless steel incorporating a driving part, a propelling part, a fixing part and a receiver 440 and battery-cum-control-rod-blades 410 which incorporate as a power source silver-cadmium batteries functioning also as a neutron absorber. The control rod 400 can move vertically by driving a screw 412 coupled directly to a drive motor 411 by the receiver 440 which receives signals from outside with the silver-cadmium batteries, sucking water from a tapered water inlet 419 and spouting the water from a fountain nozzle 413 and can stay in a fixed position for a long period owing to a round-bar notch 424. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子炉の制御棒に関する。   The present invention relates to a control rod for a nuclear reactor.

図1は沸騰水型原子炉(BWR)の原子炉内の構造を示した概観図である(非特許文献1)。原子炉の出力は核燃料物質を内蔵せる核燃料集合体の間を上下に動く制御棒により制御される。制御棒は原子炉圧力容器の下に配置せる制御棒駆動機構ハウジングの制御棒駆動装置により上下に動くことができる。
図2はBWRの炉心構造図である(非特許文献2)。核燃料物質を内包している核燃料集合体(30)の下端は炉心支持板(1)に装着されている着脱可能な核燃料支持金具(2)により支持され、上端はチャンネルボックス(35)を介して上部格子板(3)にもたれかけさせている。上部格子板(3)の格子の間の4体の核燃料集合体(30)の中央には上下に操作できる制御棒(100)があり原子炉を制御する。
核燃料集合体(30)と制御棒翼(110)を配置せる炉心平面部分図を図3に示した。制御棒翼(110)及び制御棒翼(110)を支持する支持構造材(120)は、図2の制御棒(100)の原子炉炉心内を上下する部分である。原子炉では、核燃料集合体(30)は制御棒側漏洩水通路(51)と制御棒と反対側漏洩水通路(52)を挟んで格子状に配列されている。核燃料棒(31)の間は冷却水通路(49)となっている。数本の核燃料棒(31)の代わりに水棒(36)を配する場合がある。
:原子力安全研究協会(編)、平成4年「軽水炉発電所のあらまし」。 :原子力安全研究協会(編)、1998年「軽水炉燃料のふるまい」。
FIG. 1 is an overview diagram showing the structure of a boiling water reactor (BWR) (Non-Patent Document 1). Reactor power is controlled by control rods that move up and down between nuclear fuel assemblies containing nuclear fuel material. The control rod can be moved up and down by means of a control rod drive in a control rod drive mechanism housing located under the reactor pressure vessel.
Fig. 2 is a BWR core structure diagram (Non-patent Document 2). The lower end of the nuclear fuel assembly (30) containing the nuclear fuel material is supported by a detachable nuclear fuel support fitting (2) attached to the core support plate (1), and the upper end via a channel box (35). It leans against the upper grid plate (3). At the center of the four nuclear fuel assemblies (30) between the lattices of the upper lattice plate (3), there is a control rod (100) that can be operated up and down to control the nuclear reactor.
Fig. 3 shows a partial plan view of the core in which the nuclear fuel assembly (30) and control rod blades (110) are arranged. The control rod blade (110) and the support structure material (120) that supports the control rod blade (110) are portions that move up and down in the reactor core of the control rod (100) of FIG. In the nuclear reactor, the nuclear fuel assemblies (30) are arranged in a lattice pattern with the control rod side leakage water passage (51) and the leakage water passage (52) opposite to the control rod interposed therebetween. A cooling water passage (49) is provided between the nuclear fuel rods (31). A water rod (36) may be arranged instead of several nuclear fuel rods (31).
: Nuclear Safety Research Association (ed.), 1992 "Summary of light water reactor power plant". : Nuclear Safety Research Association (ed.), 1998 “Light Water Reactor Fuel Behavior”.

近年、電力料金の低減が求められている。したがって、BWRによる発電コストの低減が求められている。
図1を見て分かるように、原子炉内の構造材のうち下部は制御棒を動かすための装置により、核燃料集合体(30)の約3倍の長さが必要である。この下部の部分を短くして建設コストを低減させて発電コストを低減したい。
In recent years, there has been a demand for a reduction in power charges. Therefore, reduction of power generation cost by BWR is required.
As can be seen from FIG. 1, the lower part of the structural material in the nuclear reactor is about three times as long as the nuclear fuel assembly (30) due to the device for moving the control rod. We want to shorten this lower part to reduce construction costs and power generation costs.

制御棒(100)に、水中スクータのようにスクリューと駆動モータと動力源と制御信号受信器を装着することにより、制御棒(100)が自力で動けるようにする。
制御棒作動状況は中性子を監視するLPRM(局所出力領域モニタ)等の炉内計装系の表示で掴める。
By attaching a screw, a drive motor, a power source, and a control signal receiver to the control rod (100) like an underwater scooter, the control rod (100) can move by itself.
The operating status of the control rod can be grasped by the display of the in-core instrumentation system such as LPRM (Local Power Range Monitor) that monitors neutrons.

核燃料集合体の設計が進み線出力密度が低減される傾向にある。その結果、制御棒に精緻な作動が要求されることが少なくなりつつある。本発明の制御系を使えば原子炉容器下部にあった制御棒駆動機構ハウジング等が除去できるため原子炉内の構造材の下部長さを短くすることができる。コスト低減ができる。   As the design of nuclear fuel assemblies progresses, the line power density tends to be reduced. As a result, it is becoming less necessary for the control rod to be operated precisely. If the control system of the present invention is used, the control rod drive mechanism housing or the like that has been in the lower part of the reactor vessel can be removed, so that the lower part length of the structural material in the reactor can be shortened. Cost can be reduced.

建設コストが安くその結果、発電コストの安いBWRが提供できた。   As a result, construction costs were low, and as a result, BWRs with low power generation costs could be provided.

図4は本発明の自走式制御棒を配置した原子炉の炉心平面部分図である。従来の制御棒翼(110)を電池兼用制御棒翼(410)に代え、支持構造材(120)を支持棒(420)に代えた。
図5は本発明の自走式制御棒(400)の概観図である。自走式制御棒(400)は駆動部、推進部、固定部、受信機を内蔵しているチタン合金またはステンレス製の支持棒(420)と中性子吸収材でもある銀-カドミウム電池を電源として内蔵している電池兼用制御棒翼(410)からなる。電源としての銀-カドミウム電池により駆動モータ(411)に直結せるスクリュー(412)を駆動させ先細吸水口(419)から水を吸い込み噴水ノズル(413)から水を噴出させ自走式制御棒(400)を上昇させる。丸棒ノッチ(424)は自走式制御棒(400)を長期間固定位置に留めるためにある。外部からの信号を受信する受信機(440)により自走式制御棒(400)は上下する。
図6は自走式制御棒(400)が上下する仕組みを詳しく説明するための図である。自走式制御棒(400)がチャンネルボックス(35)に固定されているストッパ(431)にぶつかり上昇を終了すると先端の丸い丸棒ノッチ(424)がチャンネルボックス(35)に固定されている固定爪(432)に引っかかり、自走式制御棒(400)はその高さに留まる。丸棒ノッチ(424)は、支持棒(420)内に固定されている固定駆動源(425)の静電気によるクーロン力またはソレノイドによる電磁力により可動子(422)を外向きに動かしバネ(423)を伸ばし丸棒ノッチ(424)を固定爪(432)の上に着座させる。自走式制御棒(400)が下から上昇する時に丸棒ノッチ(424)が固定爪(432)を下から通過する際に、丸棒ノッチ(424)の先端が固定爪(432)により擦られることによりバネ(423)が縮み丸棒ノッチ(424)が縮むため固定爪(432)を通過できる。全引き上げ状態から全挿入するには、電源としての銀-カドミウム電池から固定駆動源(425)へのスイッチを切ることにより可動子(422)はバネ(423)により丸棒ノッチ先端部諸共に支持棒(420)の中に格納され固定爪(432)を離れるため自走式制御棒(400)が落下する。更に、スクリュー(412)を逆回転させ噴水ノズル(413)から水を吸い先細吸水口(419)から水を噴出させ下向きの力を加えれば丸棒ノッチ(424)はバネ(423)が曲がって内側に曲がり強制的に落下する。冷却材喪失状態では浮力が減少するため自走式制御棒(400)の自重によりバネ(423)が曲がって丸棒ノッチ(424)は内側に曲がり落下する。固定爪(432)は融点が286℃を若干上回る低融点金属またはキュリー点が286℃を若干上回る永久磁石でチャンネルボックス(35)に固着されていて、事故時に高温になれば固定爪(432)が外れて自走式制御棒(400)は落下し全挿入される。固定爪(432)表面にテフロン(登録商標)加工(圧力が加わると摩擦が小さくなる)を施せば丸棒ノッチ(424)が外れ易くなり安全性が一層向上する。
近年のBWRの核燃料集合体(30)の線出力密度は低減されているため、従来のように高さ方向の出力分布を調節する必要がない。したがって、自走式制御棒(400)は全挿入か全引き上げで充分である。その他、燃焼反応度も小さくなっているため中性子吸収材料は少なくてすむため制御棒は軽量のもので充分である。
自走式制御棒(400)の操作は外部からの信号を受信機(440)で受信して操作される。各装置への信号を送る電線は耐熱被覆の銅線または導電性セラミックスからなる。
電源である銀-カドミウム電池の銀もカドミウムも中性子吸収材であるため銀-カドミウム電池は中性子吸収体の役目もする。
電源としては燃料電池や熱電半導体(高温側に微小のウラン235を敷設し、低温側は冷却材)も考えられる。中性子吸収体として軽量の炭化ホウ素(B4C)の焼結物薄板も考えられる。その他、外部電源線を上部格子板(3)に這わせて本発明の自走式制御棒(400)に導けば長期高出力の電源が得られるため固定爪(432)を除去し通常運転時にスクリュー(412)を回転させ自走式制御棒(400)を上部に浮かせておけば、事故時には外部電源を切れば自走式制御棒(400)は落下し制御棒挿入が確実に達成できる。
推進部として駆動モータ(411)とスクリュー(412)を用いたが、多数本の電熱コイルにより急激に発熱させれば水の蒸発による蒸気がジェット噴射となって噴水ノズル(413)から噴射される。可動部分のない推進装置であるため信頼性が高い。
FIG. 4 is a partial plan view of the core of a nuclear reactor in which the self-propelled control rod of the present invention is arranged. The conventional control rod wing (110) was replaced with a battery combined control rod wing (410), and the support structural member (120) was replaced with a support rod (420).
FIG. 5 is an overview of the self-propelled control rod (400) of the present invention. The self-propelled control rod (400) incorporates a titanium alloy or stainless steel support rod (420) with built-in drive unit, propulsion unit, fixed unit and receiver, and a silver-cadmium battery, which is also a neutron absorber, as a power source. Battery control rod wing (410). A self-propelled control rod (400) that drives a screw (412) directly connected to a drive motor (411) by a silver-cadmium battery as a power source, sucks water from a tapered water inlet (419), and jets water from a fountain nozzle (413). ). The round bar notch (424) is for holding the self-propelled control rod (400) in a fixed position for a long time. The self-propelled control rod (400) is moved up and down by a receiver (440) that receives an external signal.
FIG. 6 is a diagram for explaining in detail how the self-propelled control rod (400) moves up and down. When the self-propelled control rod (400) hits the stopper (431) fixed to the channel box (35) and finishes rising, the round bar notch (424) with a rounded tip is fixed to the channel box (35). The nail (432) gets caught and the self-propelled control rod (400) stays at that height. The round bar notch (424) moves the mover (422) outward by the Coulomb force due to static electricity of the fixed drive source (425) fixed in the support bar (420) or electromagnetic force by the solenoid, and the spring (423) The round bar notch (424) is seated on the fixed claw (432). When the round bar notch (424) passes through the fixed claw (432) from below when the self-propelled control rod (400) rises from below, the tip of the round bar notch (424) rubs against the fixed claw (432). As a result, the spring (423) is shrunk and the round bar notch (424) is shrunk so that it can pass through the fixed claw (432). To fully insert from the fully pulled up state, the mover (422) is supported by the spring (423) at the tip of the round bar notch by switching off the silver-cadmium battery as the power source to the fixed drive source (425). The self-propelled control rod (400) falls because it is stored in the rod (420) and leaves the fixed claw (432). Furthermore, if the screw (412) is rotated in the reverse direction to suck water from the fountain nozzle (413) and squirt water from the tapered water inlet (419) and apply a downward force, the round bar notch (424) bends the spring (423). Bend inward and forcefully fall. When the coolant is lost, the buoyancy is reduced, so that the spring (423) bends due to the weight of the self-propelled control rod (400) and the round bar notch (424) bends and falls inside. The fixed claw (432) is fixed to the channel box (35) with a low melting point metal whose melting point is slightly higher than 286 ° C or a permanent magnet whose Curie point is slightly higher than 286 ° C. The self-propelled control rod (400) drops and is fully inserted. If Teflon (registered trademark) processing is applied to the surface of the fixed claw (432) (the friction is reduced when pressure is applied), the round bar notch (424) is easily detached and the safety is further improved.
Since the linear power density of BWR nuclear fuel assemblies (30) in recent years has been reduced, it is not necessary to adjust the power distribution in the height direction as in the past. Therefore, it is sufficient that the self-propelled control rod (400) is fully inserted or lifted. In addition, since the combustion reactivity is also small, the amount of neutron absorbing material is small, so that a light control rod is sufficient.
The self-propelled control rod (400) is operated by receiving a signal from the outside by the receiver (440). The electric wires that send signals to each device are made of heat-resistant coated copper wires or conductive ceramics.
Since silver and cadmium of the silver-cadmium battery that is the power source are neutron absorbers, the silver-cadmium battery also serves as a neutron absorber.
As the power source, a fuel cell or a thermoelectric semiconductor (a small uranium 235 is laid on the high temperature side and a coolant is on the low temperature side) can be considered. A lightweight boron carbide (B4C) sintered thin plate may be considered as a neutron absorber. In addition, if the external power line is routed to the upper grid plate (3) and led to the self-propelled control rod (400) of the present invention, a long-term high-output power source can be obtained. If the screw (412) is rotated and the self-propelled control rod (400) is floated to the top, the self-propelled control rod (400) will drop and the control rod can be reliably inserted if the external power is turned off in the event of an accident.
The drive motor (411) and the screw (412) were used as the propulsion unit, but if the heat is rapidly generated by a large number of electric heating coils, the vapor generated by the water evaporation becomes jet injection and is injected from the fountain nozzle (413). . The propulsion device has no moving parts and is highly reliable.

図7は本発明の外部水圧駆動自走CR系(500)の概観図である。軽量制御棒翼(510)は炭化ホウ素(B4C)の焼結物薄板をチタン合金またはステンレスまたは炭素繊維で被覆した中性子吸収体である。軽量制御棒翼(510)はチタン合金製またはステンレスの中心円筒管(520)に支持されている。中心円筒管(520)の中にCR側排給水管(530)がある。CR側排給水管(530)への排給水は外部から排給水管(540)を通って排水あるいは給水される。排給水管(540)は管接続口(541)部で着脱可能になっている。本図は、軽量制御棒翼(510)が炉心に全挿入されていた下部から上部に全引き抜きする状態を示した図である。外部からの水が排給水管(540)を通ってCR側排給水管(530)に給水されると水が排給水ノズル(531)から中心円筒管(520)に矢印の向きに放水される。すると、CR側排給水管(530)下部に固着されている下部ストッパ(533)に支えられていた中心円筒管(520)諸共に軽量制御棒翼(510)が上昇する。中心円筒管(520)に固着されている上部ストッパ(521)が排給水ノズル(531)の下端部に接触して軽量制御棒翼(510)の上昇は止まる。CR側排給水管(530)と中心円筒管(520)との間にあった蛇腹ノッチ(532)が図8に見るように中心円筒管(520) の外側に出て中心円筒管(520)を支える。ただし、水の流れはないため、水の流れを示す矢印はない。
図8は軽量制御棒翼(510)が炉心から全引き抜きされていた上部から下部に全挿入する状態を説明する図である。中心円筒管(520)内の水を矢印の向きに排給水ノズル(531)からCR側排給水管(530)に吸引した水を排給水管(540)を通って外部へ水を排水する。すると、中心円筒管(520)を支えていたCR側排給水管(530)上部に付いている蛇腹ノッチ(532)の蛇腹内の圧力が下がり蛇腹が縮まりノッチがCR側排給水管(530)内に引き込まれるため中心円筒管(520)諸共に軽量制御棒翼(510)が落下する。中心円筒管(520)下端が、CR側排給水管(530)下部に付いている下部ストッパ(533)に接触して、中心円筒管(520)諸共に軽量制御棒翼(510)の落下は止まる。図7に見る状態になる。ただし、水の流れはないため、水の流れを示す矢印はない。
なお、蛇腹ノッチ(532)は除去し、通常運転時にはCR側排給水管(530)には原子炉内水圧よりも若干高い水圧をかけておき、大部分の軽量制御棒翼(510)を炉心から全引き抜き状態にしておけば、万一、CR側排給水管(530)内の水圧が下がる事故が生じた場合でも中心円筒管(520)諸共に軽量制御棒翼(510)は炉心内に落下する。安全性は更に高まる。
駆動源として水圧を用いたが、水蒸気やヘリウムの気体でも同様である。
図9は外部水圧駆動自走CR系(500)を上から見た概観図である。外部から水を給水したり、外部に水を排出するための排給水管(540)は、上部格子板(3)の上または下を這って当該外部水圧駆動自走CR系(500)のCR側排給水管(530)に接続される。図7,8では省略した核燃料集合体(30)とチャンネルボックス(35)との位置関係を示した。
冷却材喪失事故では非常用冷却水の注入に使える。ホウ酸水や5ホウ酸ナトリウム混入水を注入すれば後備制御棒系も兼ねる。
FIG. 7 is a schematic view of the external water pressure driven self-propelled CR system (500) of the present invention. The lightweight control rod blade (510) is a neutron absorber in which a sintered thin plate of boron carbide (B4C) is coated with a titanium alloy, stainless steel, or carbon fiber. The lightweight control rod blade (510) is supported by a central cylindrical tube (520) made of titanium alloy or stainless steel. There is a CR side drainage pipe (530) in the central cylindrical pipe (520). The drain water supplied to the CR side drain pipe (530) is drained or supplied from the outside through the drain pipe (540). The drainage water pipe (540) is detachable at the pipe connection port (541). This figure is a view showing a state in which the lightweight control rod blade (510) is fully pulled out from the lower part where it has been fully inserted into the core. When water from the outside is supplied to the CR side drainage pipe (530) through the drainage pipe (540), the water is discharged from the drainage nozzle (531) to the central cylindrical pipe (520) in the direction of the arrow. . Then, the lightweight control rod blade (510) rises in the central cylindrical pipe (520) supported by the lower stopper (533) fixed to the lower part of the CR side drainage pipe (530). The upper stopper (521) fixed to the central cylindrical pipe (520) comes into contact with the lower end of the drainage water nozzle (531), and the lightweight control rod wing (510) stops rising. The bellows notch (532) between the CR side drainage pipe (530) and the central cylindrical pipe (520) comes out of the central cylindrical pipe (520) and supports the central cylindrical pipe (520) as shown in FIG. . However, since there is no flow of water, there is no arrow indicating the flow of water.
FIG. 8 is a view for explaining a state in which the light weight control rod blade (510) is fully inserted from the upper part to the lower part where it has been fully extracted from the core. The water sucked in the central cylindrical pipe (520) from the drain water nozzle (531) into the CR side drain pipe (530) in the direction of the arrow is drained to the outside through the drain pipe (540). Then, the pressure inside the bellows of the bellows notch (532) attached to the upper part of the CR side drainage pipe (530) supporting the central cylindrical pipe (520) decreases, the bellows contracts, and the notch becomes the CR side drainage pipe (530). The lightweight control rod wings (510) fall down in the central cylindrical tube (520) because they are drawn in. The lower end of the central cylindrical pipe (520) is in contact with the lower stopper (533) attached to the lower part of the CR-side drainage pipe (530), and the lightweight control rod blade (510) is dropped in the central cylindrical pipe (520). Stop. The state shown in FIG. 7 is obtained. However, since there is no flow of water, there is no arrow indicating the flow of water.
The bellows notch (532) is removed, and during normal operation, the CR side drainage pipe (530) is subjected to a slightly higher water pressure than the reactor water pressure, and most of the lightweight control rod blades (510) are placed in the core. In the event of an accident where the water pressure in the CR side drainage pipe (530) drops, the lightweight control rod blades (510) of both the central cylindrical pipe (520) are placed in the core. Fall. Safety is further enhanced.
Although water pressure is used as a driving source, the same applies to water vapor or helium gas.
FIG. 9 is an overview of the external hydraulic drive self-propelled CR system (500) as seen from above. The drainage water pipe (540) for supplying water from the outside and discharging water to the outside goes up or down the upper grid plate (3), and the CR of the external water pressure driven self-propelled CR system (500). It is connected to the side drain water pipe (530). 7 and 8 show the positional relationship between the omitted nuclear fuel assembly (30) and the channel box (35).
Can be used to inject emergency cooling water in case of loss of coolant. If boric acid water or sodium pentaborate mixed water is injected, it can also serve as a back-up control rod system.

図10は本発明の外部水圧駆動液体CR系(600)の概観図である。中実中心構造材(620)に支持された中空のジルコニウム合金製矩形容器であるジルカロイ中空翼(613)の中にホウ酸水や5ホウ酸ナトリウム含有水といった液体中性子吸収材(612)が充填され、その液位により原子炉出力が調節される。液体中性子吸収材(612)は外部から吸収材管(610)を通って各翼放水管(611)から供給または排出される。
ジルカロイ中空翼(613)の上にはB4Cの様な固体の中性子吸収材からなる薄板数枚が畳まれた固体毒物スダレ(650)が格納されている。通常時には286℃を若干上回るキュリー点温度を持つ磁石または融点が286℃を若干上回る低融点金属で留められ畳まれた状態を維持しているが、事故時に高温になると留めが外れてスダレが開いた状態になり中性子を強く吸収する。
固体毒物スダレ(650)に浮きを敷設しておきジルカロイ中空翼(613)の中に純水を充填することにより固体毒物スダレ(650)の開き度合いを調節することにより原子炉出力を制御することもできる。事故時には外部に水を排出すれば固体毒物スダレ(650)は全開となり中性子を強く吸収し原子炉を緊急停止させることができる。
吸収材管(610)は、上部格子板(3)の上または下を這って当該外部水圧駆動液体CR系(600)の各翼放水管(611)に接続される。なお、吸収材管(610)は、図1の頂部スプレイ・ノズル近傍から当該外部水圧駆動液体CR系(600)の真上から持ってきてもよい。その場合は、蒸気乾燥器は外すか位置をずらす必要がある。気水分離器も外すか位置をずらすか、或いは気水分離器の中を吸収材管(610)が通過するようにする。
FIG. 10 is an overview of the external hydraulically driven liquid CR system (600) of the present invention. Liquid neutron absorber (612) such as borate water or water containing sodium borate is filled in zircaloy hollow blade (613), which is a rectangular container made of a hollow zirconium alloy supported by solid central structural material (620) The reactor power is adjusted according to the liquid level. The liquid neutron absorber (612) is supplied or discharged from each blade discharge pipe (611) through the absorber pipe (610) from the outside.
On the Zircaloy hollow wing (613) is stored a solid poison sudare (650) in which several thin plates made of a solid neutron absorber such as B4C are folded. Normally, the magnet has a Curie point temperature slightly higher than 286 ° C or a low melting point metal with a melting point slightly higher than 286 ° C and is kept in a folded state. Neutrons are absorbed strongly.
Reactor power is controlled by adjusting the degree of opening of the solid poison sudare (650) by laying a float on the solid poison sudare (650) and filling the zircaloy hollow blade (613) with pure water. You can also. If water is discharged to the outside in the event of an accident, the solid poison sudare (650) will be fully opened and neutrons will be strongly absorbed and the reactor can be shut down urgently.
The absorbent material pipe (610) is connected to each blade water discharge pipe (611) of the external hydraulic pressure driving liquid CR system (600) over or under the upper lattice plate (3). The absorbent tube (610) may be brought from the vicinity of the top spray nozzle in FIG. 1 from directly above the external hydraulically driven liquid CR system (600). In that case, it is necessary to remove or shift the position of the steam dryer. The steam separator is also removed or displaced, or the absorbent tube (610) passes through the steam separator.

近年、炭酸ガスによる地球温暖化抑止と石油高騰の抑止対策として原子力が注目されだしている。構造が簡単であるため現行炉へのバックフィットが可能であり早期実現が期待できる。   In recent years, nuclear power has begun to attract attention as a measure to prevent global warming caused by carbon dioxide gas and oil prices. Since the structure is simple, it can be backfitted to the current furnace and can be realized early.

従来の沸騰水型原子炉(BWR)の原子炉内の構造の概観図。An overview of the structure of a conventional boiling water reactor (BWR) reactor. BWRの炉心構造図。BWR core structure diagram. 核燃料集合体(30)と制御棒翼(110)を配置せる炉心平面部分図。FIG. 3 is a partial plan view of a core in which a nuclear fuel assembly (30) and control rod blades (110) are arranged. 本発明の自走式制御棒を配置せる炉心平面部分図。The core plane fragmentary figure which arrange | positions the self-propelled control rod of this invention. 本発明の自走式制御棒(400)の概観図。FIG. 3 is an overview of the self-propelled control rod (400) of the present invention. 自走式制御棒(400)が上下する仕組みを示した図。The figure which showed the mechanism in which a self-propelled control rod (400) moves up and down. 本発明の外部水圧駆動自走CR系(500)の概観図。FIG. 3 is an overview of an external water pressure driven self-propelled CR system (500) of the present invention. 軽量制御棒翼(510)が上部から下部に全挿入する状態を説明する図。The figure explaining the state which the light-weight control rod wing | blade (510) inserts from the upper part to the lower part. 外部水圧駆動自走CR系(500)を上から見た概観図。An overview of the external water pressure driven self-propelled CR system (500) as seen from above. 本発明の外部水圧駆動液体CR系(600)の概観図。1 is an overview of an external hydraulically driven liquid CR system (600) of the present invention.

符号の説明Explanation of symbols

1は炉心支持板。
2は核燃料支持金具。
3は上部格子板。
30は核燃料集合体。
31は核燃料棒。
35はチャンネルボックス。
36は水棒。
49は冷却水通路。
51は制御棒側漏洩水通路。
52は制御棒と反対側漏洩水通路。
100は制御棒。
110は制御棒翼。
120は支持構造材。
400は本発明の自走式制御棒(400)の概観図。
410は電池兼用制御棒翼。
411は駆動モータ。
412はスクリュー。
413は噴水ノズル。
419は先細吸水口。
420は支持棒。
422は可動子。
423はバネ。
424は丸棒ノッチ。
425は固定駆動源。
431はストッパ。
432は固定爪。
440は受信機。
500は本発明の外部水圧駆動自走CR系(500)の概観図。
510は軽量制御棒翼。
520は中心円筒管。
521は上部ストッパ。
530はCR側排給水管。
531は排給水ノズル。
532は蛇腹ノッチ。
533は下部ストッパ。
540は排給水管。
541は管接続口。
600は本発明の外部水圧駆動液体CR系(600)の概観図。
610は吸収材管。
611は各翼放水管。
612は液体中性子吸収材。
613はジルカロイ中空翼。
620は中実中心構造材。
650は固体毒物スダレ。
1 is a core support plate.
2 is a nuclear fuel support bracket.
3 is the upper grid plate.
30 is a nuclear fuel assembly.
31 is a nuclear fuel rod.
35 is a channel box.
36 is a water rod.
49 is a cooling water passage.
51 is a control rod side leakage water passage.
52 is the leaking water passage opposite to the control rod.
100 is a control rod.
110 is the control rod wing.
120 is a support structure.
400 is an overview of the self-propelled control rod (400) of the present invention.
410 is a battery control rod.
Reference numeral 411 denotes a drive motor.
412 is a screw.
413 is a fountain nozzle.
419 is a tapered water inlet.
420 is a support rod.
422 is a mover.
423 is a spring.
424 is a round bar notch.
425 is a fixed drive source.
431 is a stopper.
432 is a fixed nail.
440 is a receiver.
500 is an overview of the external water pressure driven self-propelled CR system (500) of the present invention.
510 is a lightweight control rod wing.
520 is a central cylindrical tube.
521 is the upper stopper.
530 is the CR side drainage pipe.
531 is a drainage nozzle.
532 is a bellows notch.
533 is a lower stopper.
540 is a drainage pipe.
541 is a pipe connection port.
600 is an overview of the external water pressure driven liquid CR system (600) of the present invention.
610 is an absorbent tube.
611 is each wing drainage pipe.
612 is a liquid neutron absorber.
613 is a Zircaloy hollow wing.
620 is a solid central structural material.
650 is a solid poison sudare.

Claims (3)

駆動部、推進部、固定部、受信機を内蔵しているチタン合金またはステンレス製の支持棒(420)と中性子吸収材でもある銀-カドミウム電池を電源として内蔵している電池兼用制御棒翼(410)からなり、銀-カドミウム電池により駆動モータ(411)に直結せるスクリュー(412)を外部からの信号を受信する受信機(440)により駆動させ先細吸水口(419)から水を吸い込み噴水ノズル(413)から水を噴出して上下に動き、丸棒ノッチ(424) により長期間固定位置に留まれることを特徴とする自走式制御棒(400)。 Battery control rod with built-in drive unit, propulsion unit, fixed unit, titanium alloy or stainless steel support rod (420) and neutron absorber silver-cadmium battery as power source 410), a screw (412) that is directly connected to the drive motor (411) by a silver-cadmium battery is driven by a receiver (440) that receives a signal from the outside, and water is sucked from the tapered water intake (419) and a fountain nozzle (413) A self-propelled control rod (400) which is moved up and down by jetting water and stays in a fixed position for a long time by a round bar notch (424). 外部から上部格子板(3)の上または下を這って炉心に至る排給水管(540) が、中心円筒管(520)の内側に行きCR側排給水管(530)となり、CR側排給水管(530)に給水され排給水ノズル(531)からチタン合金製またはステンレスの中心円筒管(520)に放水し、中心円筒管(520)に支持されている炭化ホウ素(B4C)の焼結物薄板をチタン合金またはステンレスまたは炭素繊維で被覆した中性子吸収体である軽量制御棒翼(510)を中心円筒管(520)諸共に上昇させ、CR側排給水管(530)と中心円筒管(520)との間にある蛇腹ノッチ(532) により長期間固定位置に留まれることを特徴とする外部水圧駆動自走CR系(500)。 The drainage water pipe (540) that reaches the core from above or below the upper grid plate (3) goes to the inside of the central cylindrical pipe (520) and becomes the CR side drainage pipe (530). Sintered boron carbide (B4C) that is supplied to the pipe (530) and discharged from the discharge nozzle (531) to the titanium alloy or stainless steel central cylindrical pipe (520) and supported by the central cylindrical pipe (520) A lightweight control rod blade (510), which is a neutron absorber coated with a titanium alloy or stainless steel or carbon fiber on a thin plate, is raised together with the central cylindrical pipe (520), and the CR side drainage pipe (530) and the central cylindrical pipe (520 An external water pressure driven self-propelled CR system (500) characterized by being held in a fixed position for a long time by an accordion notch (532) between them. 中実中心構造材(620)に支持された中空のジルコニウム合金製矩形容器であるジルカロイ中空翼(613)の中にホウ酸水や5ホウ酸ナトリウム含有水といった液体中性子吸収材(612)が外部から吸収材管(610)を通って各翼放水管(611)から供給または排出し原子炉出力を調節することを特徴とする外部水圧駆動液体CR系(600)。 A liquid neutron absorber (612) such as boric acid water or sodium pentaborate containing water is externally placed in the zircaloy hollow blade (613), which is a rectangular container made of a hollow zirconium alloy supported by the solid central structural material (620). An external water pressure driven liquid CR system (600) characterized in that the reactor power is adjusted by supplying or discharging from each blade discharge pipe (611) through the absorber pipe (610) from the outside.
JP2006339375A 2006-12-18 2006-12-18 Self-propelled control rod Expired - Fee Related JP5275563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339375A JP5275563B2 (en) 2006-12-18 2006-12-18 Self-propelled control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339375A JP5275563B2 (en) 2006-12-18 2006-12-18 Self-propelled control rod

Publications (2)

Publication Number Publication Date
JP2008151625A true JP2008151625A (en) 2008-07-03
JP5275563B2 JP5275563B2 (en) 2013-08-28

Family

ID=39653940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339375A Expired - Fee Related JP5275563B2 (en) 2006-12-18 2006-12-18 Self-propelled control rod

Country Status (1)

Country Link
JP (1) JP5275563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299214A (en) * 2019-07-04 2019-10-01 中国原子能科学研究院 A kind of nuclear reactor reactivity control mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317223A (en) * 2003-04-15 2004-11-11 Toshihisa Shirakawa Control rod driving unit for boiling water reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317223A (en) * 2003-04-15 2004-11-11 Toshihisa Shirakawa Control rod driving unit for boiling water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299214A (en) * 2019-07-04 2019-10-01 中国原子能科学研究院 A kind of nuclear reactor reactivity control mechanism

Also Published As

Publication number Publication date
JP5275563B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US8867690B2 (en) Pressurized water reactor with compact passive safety systems
KR101940197B1 (en) Heat removal system and method for use with a nuclear reactor
CN101587755A (en) Nuclear core component hold-down assembly
KR20110044267A (en) Mixed oxide fuel assembly
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
US20120051485A1 (en) Corium cooling promoting apparatus and containment
EP2682946A1 (en) Guide device for neutron flux detector
JP5275563B2 (en) Self-propelled control rod
KR101389840B1 (en) Inherent safety water cooled reactor system for producing electricity
JP2018084558A (en) Control rod unit, reactor, fuel position determination system, and fuel position determination method
JPS6275375A (en) Nuclear reactor and usage thereof
JP6756470B2 (en) Reactors and nuclear plants
JP2013108772A (en) Melt collector
JP5571314B2 (en) Cold stop device for sodium cooling furnace
US10176897B2 (en) Floating filter screen in a lower tie plate box of a nuclear fuel assembly
Kim et al. Reactor shutdown mechanism by top-mounted hydraulic system
JP6087660B2 (en) Reactor vessel lid structure
RU2730170C2 (en) Nuclear reactor with control and disconnection rods outer relative to active zone and its supporting structures
JP4341876B2 (en) Solid cooled reactor
JP4065919B2 (en) Boiling water reactor control rod drive
JP3888476B2 (en) Hydrodynamic reactivity control method
KR20140028537A (en) Inherent safety water cooled reactor system for thermal desalination
JP2007240284A (en) Boiling water type nuclear power facility
JP4800659B2 (en) ABWR core with high conversion ratio that can be a breeding reactor
JP5038050B2 (en) Spacers in nuclear fuel assemblies for nuclear reactors.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees