JP2004317223A - Control rod driving unit for boiling water reactor - Google Patents

Control rod driving unit for boiling water reactor Download PDF

Info

Publication number
JP2004317223A
JP2004317223A JP2003109921A JP2003109921A JP2004317223A JP 2004317223 A JP2004317223 A JP 2004317223A JP 2003109921 A JP2003109921 A JP 2003109921A JP 2003109921 A JP2003109921 A JP 2003109921A JP 2004317223 A JP2004317223 A JP 2004317223A
Authority
JP
Japan
Prior art keywords
control rod
pressure vessel
new
water
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109921A
Other languages
Japanese (ja)
Other versions
JP4065919B2 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003109921A priority Critical patent/JP4065919B2/en
Publication of JP2004317223A publication Critical patent/JP2004317223A/en
Application granted granted Critical
Publication of JP4065919B2 publication Critical patent/JP4065919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce electricity cost while enhancing safety by eliminating a housing passing through the bottom of a pressure vessel, which is a reactor primary system pressure boundary, and further downward extending, with respect to a control rod driving unit for driving a control rod in a boiling water reactor. <P>SOLUTION: This new control rod driving unit 22 is built in the pressure vessel by deleting the housing 40. In a lower part of a new control-rod guide tube 25 also serving as a piston cylinder, a submergible motor 103 and a propeller 102 are installed to move the cruciform control rod 10 via a large-diameter speed limiter roundel 124 also serving as a drive piston. As a drive power source, an external power source is supplied by an electric wire 91 or by an optical fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子炉において制御棒を駆動させるための制御棒駆動装置に関する。
【0002】
【従来の技術】
図1は従来の制御棒駆動装置(21)の概略図である。中性子吸収材と構造材とからなる十字型制御棒(10)の下に制御棒支持柱(11)と円盤形の速度リミット傘(12)がある。それ等はチューブ内水(30)が充満した円筒形の制御棒ガイドチューブ(24)の中を一体となって上下に動く。制御棒ガイドチューブ(24)の下にはハウジング(40)があって、ハウジング(40)は圧力容器底(70)を貫通して原子炉外に達している。ハウジング(40)の中には水を充満させたピストンシリンダー(52)があり、上部駆動水(63)と下部駆動水(64)の水圧差により駆動ピストン(50)が動き駆動ピストン棒(51)を介して十字型制御棒(10)を上下に動かす。駆動ピストン(50)を上に動かすには、制御棒挿入水配管(61)から水を下部駆動水(64)に送り、上部駆動水(63)の水を制御棒駆動水出入口(65)から制御棒引抜水配管(62)を通して圧力容器外のタンクに抜くことにより駆動ピストン(50)下の下部駆動水(64)圧力を上の上部駆動水(63)圧力よりも高くすることにより作動させる。
チューブ外水(35)の中に制御棒ガイドチューブ(24)は正方格子状に林立している。
図2は十字型制御棒(10)の上部と、炉心を構成する燃料棒(110)とチャンネルボックス(111)の相対配置を示した縦断面図である。燃料棒(110)の間には燃料棒冷却水(113)が流れチャンネルボックス(111)の間には漏洩冷却水(114)が流れている。燃料棒(110)とチャンネルボックス(111)とを束ねている燃料下部タイプレート(112)を支持する燃料集合体支持金具は、燃料集合体支持金具上部(121)と燃料集合体支持金具胴部(122)とからなる。燃料集合体支持金具胴部(122)は制御棒ガイトチューブ(24)の内側に入っていて下端が閉じている。燃料集合体支持金具は十字型制御棒(10)が制御棒ガイトチューブ(24)から炉心に入っていく時の導入路の役目もしている。図中の実線矢印は冷却水の流れ方向を示す。燃料集合体支持金具上部(121)は制御棒ガイトチューブ(24)の上端に載っていて、燃料集合体支持金具胴部(122)を支持している。冷却水は制御棒ガイトチューブ(24)に開けられたチューブ穴(26)から燃料集合体支持金具胴部(122)に開けられた金具横穴(123)を通って燃料集合体支持金具胴部(122)内に入る。冷却水は破断面内の実線矢印方向に通過する。炉心格子板(130)は林立する制御棒ガイトチューブ(24)の間を通って漏洩流が生じないようにするためである。図3は燃料集合体支持金具上部(121)平面図である。燃料棒冷却水通路(116)と漏洩水通路(117)を通って燃料棒冷却水(113)と漏洩冷却水(114)に分かれる。
【0003】
【発明が解決しょうとする課題】
大型沸騰水型原子炉では約160本の制御棒がある。したがって、圧力容器底(70)は約160本のハウジング(40)が貫通しているため、溶接等が複雑であり製造コストが高い。更に、水圧駆動のための約320本以上の配管や蓄圧タンク等の複雑な機器装置が必要であり、製造コストが高い。
ハウジング(40)の長さは少なくとも十字型制御棒(10)と同じ長さが必要であって本数が多いため原子炉一次系圧力境界が広くなり安全性上好ましくはない。
【0004】
【課題を解決するための手段】
図4は本発明の制御棒新駆動装置(22)の概略図である。圧力容器底(70)を貫通するハウジング(40)を排除した。燃料集合体支持金具新上部(125)の上面は図5に見るような正方形にした。燃料集合体支持金具新上部(125)にした場合の十字型制御棒(10)の上部と、炉心を構成する燃料棒(110)とチャンネルボックス(111)の相対配置を示した縦断面図を図6に示した。
図4に示すように制御棒新ガイドチューブ(25)の下部に設置した水中モータ(103)によりプロペラ(102)を回転させ上昇流を作り整流格子(101)により垂直流にして、大口径速度リミッタ傘(124)の下に圧力をかける。水が充満している連通管(90)には図4に示す上部水出入口(31)と図6に示す下部水出入口(32)が付いている。図4と図6中の鎖線矢印は十字型制御棒(10)を上に動かす時の連通管(90)の上部水出入口(31)と下部水出入口(32)での水の流れ方向である。図6中の実線矢印は冷却水の流れ方向を示す。プロペラ(102)の回転により下部水出入口(32)から連通管(90)の中の水を吸い込み、大口径速度リミッタ傘(124)より上のチューブ内水(30)は上部水出入口(31)から連通管(90)の中に吸い込まれる。
制御棒位置の設定はラッチ(81)とラッチバネ(82)と吸引器(83)からなる制御棒固定装置(80)により行う。
制御棒新ガイドチューブ(25)は制御棒新ガイドチューブ支持板(71)の上に正方格子状に林立させる。制御棒新ガイドチューブ支持板(71)は圧力容器内面で支持する。
水中モータ(103)と吸引器(83)の電源及び信号は電線(91)により圧力容器外部からとる。電線(91)は給水配管または非常用冷却系配管の中を通って圧力容器内に入る。電線(91)が連通管(90)の中を通る場合を想定して破断面の中に示した。
燃料集合体支持金具新上部(125)の上面は図5に見るような正方形にすることにより、従来の制御棒ガイトチューブ(24)の間にあった炉心格子板(130)は取り除いた。燃料集合体支持金具新上部(125)に付帯された金具バネ(151)により隣接する制御棒新ガイトチューブ(25)同士の平面方向での配列を固定すると共に、間を通って漏洩流が生じないようにした。燃料集合体新支持金具は燃料集合体支持金具新上部(125)と従来と同じ燃料集合体支持金具胴部(122)とからなる。図7は隣接する燃料集合体支持金具新上部(125)同士の平面方向の様子を示したものである。
【0005】
【発明の実施の形態】
原子炉一次系圧力バウンダリーである圧力容器底(70)を貫通する配管をなくし、圧力容器内の制御棒新ガイドチューブ(25)の中に電動式の水中モータ(103)やプロペラ(102)といった制御棒駆動装置を納めた。
200度C以上の水中で電動式の水中モータ(103)を働かせるのは過酷であるが十字型制御棒(10)を動かすのは月に1度程度数秒間であるため、大部分の時間は通電がなく水中モータ(103)も止まっている状態であるから問題にならない。したがって、大電流を流したとしても水中モータ(103)部分の温度が急上昇することはないし、周囲の水温度200度C以上にはならない。
水中モータ(103)によりプロペラ(102)を回転させ下部水出入口(32)から連通管(90)の中の水を吸い込み上昇流を作り、整流格子(101)により垂直流を作る。垂直流は大口径速度リミッタ傘(124)に伝わり十字型制御棒(10)を上に動かす。大口径速度リミッタ傘(124)の上のチューブ内水(30)は上部水出入口(31)から連通管(90)の中に吸い込まれる。大口径速度リミッタ傘(124)は駆動ピストンの役割をし、制御棒新ガイドチューブ(25)はシリンダーの役割をする。
十字型制御棒(10)の高さ位置を上に設定するには、プロペラ(102)による上昇流により大口径速度リミッタ傘(124)が上に動くときの力でラッチバネ(82)が縮まり大口径速度リミッタ傘(124)が上に通過するとラッチバネ(82)が戻りラッチ(81)が大口径速度リミッタ傘(124)の下に差し込まれ大口径速度リミッタ傘(124)は下には落ちないようになる。
十字型制御棒(10)の高さ位置を下に設定するには、吸引器(83)に内蔵するモータを回転させることにより制御棒固定装置(80)内を負圧にしてラッチバネ(82)を縮めてラッチ(81)を外すことにより、十字型制御棒(10)は次のラッチ(81)まで自重落下する。プロペラ(102)を逆に回転させることによっても達成できる。
制御棒新ガイドチューブ(25)は制御棒新ガイドチューブ支持板(71)の上に正方格子状に林立しているため、圧力容器底(70)への加重負担はない。
なお、制御棒新ガイドチューブ支持板(71)の一部に小さい穴を開けておけば圧力容器底(70)の内面を内視鏡により検査することが可能である。
水の純度が高く保たれている沸騰水型原子炉では電気絶縁は十分保たれる。
【0006】
【発明の効果】
本発明の制御棒新駆動装置(22)を採用することにより、原子炉一次系圧力バウンダリーとしての圧力容器底(70)を貫通して更に下に位置していたハウジング(40)がなくなったため安全性が向上すると共に、圧力容器底(70)の加工が単純化できるため圧力容器底(70)の製造コストが下がり強いては発電コストが下がり経済性が向上する。
燃料集合体支持金具新上部(125)の採用は、炉心支持板(130)を削除することができるため炉内構造物の製造コストが低減できる。
従来は制御棒ガイドチューブ(24)外面や圧力容器底(70)内面は炉心支持板(130)の下にあったため検査するのが困難であったが、本発明では燃料集合体新支持金具を外すことにより制御棒新ガイドチューブ(25)外面や圧力容器底(70)内面を目視または内視鏡により容易に検査することができるため安全性が向上する。
制御棒新ガイドチューブ(25)は交換可能であり、圧力容器底(70)もハウジング(40)がないため交換が容易になる。したがって、原子炉の大型構造物はほぼ全て交換可能となり当該原子力発電所は寿命の心配がない。更地にする費用が不要となり、代替新規立地も不要となり発電コストの低減をもたらす。
【0007】
【その他実施例1】
本実施例では水中モータ(103)および吸引器(83)の電源として、圧力容器外部電源を変換素子により電気から光へ変換し、光ファイバにより圧力容器外部からレーザーを水中モータ(103)および吸引器(83)に導入し、光から電気への変換素子によりレーザーを電気に変換する。
光ファイバは電気絶縁を考慮する必要がなくかつ大きなエネルギーを輸送することができる。光から電気への変換素子効率は90%程度ある。
レーザーを電気へ変換することなく整流格子(101)の鉄板へ照射し発熱させることにより大口径速度リミッタ傘(124)下の水を蒸気化しその膨張力により大口径速度リミッタ傘(124)を押し上げることにより制御棒(10)を炉心に挿入することもできる。
【0008】
【その他実施例2】
水中モータ(103)および吸引器(83)の駆動電源として蓄電池や燃料電池とした。
これにより圧力容器を貫通する電線(91)が不要となるため安全性が高まると共に、保守点検が容易になる。
【0009】
【その他実施例3】
水中モータ(103)および吸引器(83)の電源及び電気信号として、圧力容器外部または内面で変換素子により電気から超音波に変換し、超音波を圧電セラミックまたは圧電結晶または磁歪材料からなるトランスデューサを使って電気信号に変換する。
超音波は水中を減衰することなく伝播するため電線(91)はたかだか圧力容器内面までであり長さを大幅に短縮できるる。
これにより圧力容器を貫通する電線(91)が短縮できるため安全性が高まると共に、保守点検が容易になる。
【図面の簡単な説明】
【図1】従来の制御棒駆動装置(21)概観図。
【図2】十字型制御棒(10)の上部と、炉心を構成する燃料棒(110)とチャンネルボックス(111)の相対配置を示した縦断面図。
【図3】従来の燃料集合体支持金具上部(121)平面図。
【図4】本発明の制御棒新駆動装置(22)概観図。
【図5】本発明の燃料集合体支持金具新上部(125)平面図。
【図6】燃料集合体支持金具新上部(125)にした場合の十字型制御棒(10)の上部と、炉心を構成する燃料棒(110)とチャンネルボックス(111)の相対配置を示した縦断面図。
【図7】隣接する燃料集合体支持金具新上部(125)同士の平面図。
【符号の説明】
10は十字型制御棒
11は制御棒支持柱
12は速度リミッタ傘
21は制御棒駆動装置
22は制御棒新駆動装置
24は制御棒ガイドチューブ
25は制御棒新ガイドチューブ
26はチューブ穴
30はチューブ内水
31は上部水出入口
32は下部水出入口
35はチューブ外水
40はハウジング
50は駆動ピストン
51は駆動ピストン棒
52はピストンシリンダー
61は制御棒挿入水配管
62は制御棒引抜水配管
63は上部駆動水
64は下部駆動水
65は制御棒駆動水出入口
70は圧力容器底
71は制御棒新ガイドチューブ支持板
80は制御棒固定装置
81はラッチ
82はラッチバネ
83は吸引器
90は連通管
91は電線
101は整流格子
102はプロペラ
103は水中モータ
110は燃料棒
111はチャンネルボックス
112は燃料下部タイプレート
113は燃料棒冷却水
114は漏洩冷却水
116は燃料棒冷却水通路
117は漏洩水通路
121は燃料集合体支持金具上部
122は燃料集合体支持金具胴部
123は金具横穴
124は大口径速度リミッタ傘
125は燃料集合体支持金具新上部
130は炉心支持板
151は金具バネ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control rod driving device for driving a control rod in a boiling water reactor.
[0002]
[Prior art]
FIG. 1 is a schematic view of a conventional control rod driving device (21). A control rod support column (11) and a disk-shaped speed limit umbrella (12) are provided below a cross-shaped control rod (10) composed of a neutron absorber and a structural material. They move up and down together in a cylindrical control rod guide tube (24) filled with water (30) in the tube. Below the control rod guide tube (24) is a housing (40) which extends through the pressure vessel bottom (70) and out of the reactor. In the housing (40), there is a piston cylinder (52) filled with water, and the driving piston (50) moves due to the water pressure difference between the upper driving water (63) and the lower driving water (64), thereby driving the driving piston rod (51). ) To move the cross control rod (10) up and down. To move the drive piston (50) upward, water is sent from the control rod insertion water pipe (61) to the lower drive water (64), and the water of the upper drive water (63) is sent from the control rod drive water inlet / outlet (65). It is activated by lowering the lower driving water (64) pressure below the driving piston (50) than the upper upper driving water (63) pressure by drawing the control rod withdrawing water pipe (62) to a tank outside the pressure vessel. .
The control rod guide tubes (24) stand in a square lattice in the water (35) outside the tubes.
FIG. 2 is a longitudinal sectional view showing an upper portion of the cruciform control rod (10) and a relative arrangement of a fuel rod (110) and a channel box (111) constituting a core. Fuel rod cooling water (113) flows between the fuel rods (110), and leakage cooling water (114) flows between the channel boxes (111). The fuel assembly support fitting supporting the fuel lower tie plate (112), which bundles the fuel rod (110) and the channel box (111), includes a fuel assembly support fitting upper part (121) and a fuel assembly support fitting body. (122). The fuel assembly support body (122) is inside the control rod guide tube (24) and has a lower end closed. The fuel assembly support metal also serves as an introduction path when the cross-shaped control rod (10) enters the core from the control rod guide tube (24). Solid arrows in the figure indicate the flow direction of the cooling water. The fuel assembly support bracket upper part (121) rests on the upper end of the control rod guide tube (24) and supports the fuel assembly support bracket body (122). The cooling water passes from a tube hole (26) formed in the control rod guide tube (24) to a fuel assembly support bracket body (123) through a bracket side hole (123) formed in the fuel assembly support bracket body (122). 122). The cooling water passes in the direction of the solid line arrow in the fracture surface. The core lattice plate (130) is provided to prevent a leak flow from passing between the control rod guide tubes (24) that stand in the forest. FIG. 3 is a plan view of the upper portion (121) of the fuel assembly support bracket. The fuel rod is divided into fuel rod cooling water (113) and leakage cooling water (114) through a fuel rod cooling water passage (116) and a leakage water passage (117).
[0003]
[Problems to be solved by the invention]
A large boiling water reactor has about 160 control rods. Therefore, since about 160 housings (40) penetrate the pressure vessel bottom (70), welding and the like are complicated and the production cost is high. Furthermore, complicated equipment such as about 320 pipes or a pressure storage tank for hydraulic driving is required, and the manufacturing cost is high.
The length of the housing (40) must be at least the same as that of the cruciform control rod (10), and the number of the housings (40) is large.
[0004]
[Means for Solving the Problems]
FIG. 4 is a schematic view of a new control rod driving device (22) of the present invention. The housing (40) penetrating the pressure vessel bottom (70) was eliminated. The upper surface of the fuel assembly support bracket new upper part (125) was made square as shown in FIG. FIG. 7 is a vertical cross-sectional view showing an upper portion of a cross-shaped control rod (10) in the case of a fuel assembly support bracket new upper portion (125) and a relative arrangement of a fuel rod (110) and a channel box (111) constituting a core. As shown in FIG.
As shown in FIG. 4, the propeller (102) is rotated by the submersible motor (103) installed below the control rod new guide tube (25) to create an upward flow, and the flow is made vertical by the rectifying grid (101), and the large diameter speed is increased. Apply pressure under the limiter umbrella (124). The communication pipe (90) filled with water has an upper water port (31) shown in FIG. 4 and a lower water port (32) shown in FIG. 4 and 6 indicate the flow direction of water at the upper water inlet (31) and the lower water inlet (32) of the communication pipe (90) when the cross control rod (10) is moved upward. . The solid line arrows in FIG. 6 indicate the flow direction of the cooling water. The rotation of the propeller (102) sucks the water in the communication pipe (90) from the lower water port (32), and the water in the tube (30) above the large diameter speed limiter umbrella (124) is the upper water port (31). From the communication pipe (90).
The control rod position is set by a control rod fixing device (80) including a latch (81), a latch spring (82), and a suction device (83).
The control rod new guide tube (25) is formed in a square lattice on the control rod new guide tube support plate (71). The control rod new guide tube support plate (71) is supported on the inner surface of the pressure vessel.
The power and signals of the underwater motor (103) and the suction device (83) are taken from outside the pressure vessel by the electric wire (91). The electric wire (91) enters the pressure vessel through a water supply pipe or an emergency cooling system pipe. The case where the electric wire (91) passes through the communication pipe (90) is shown in the fractured surface.
The upper surface of the fuel assembly support bracket new upper portion (125) was made square as shown in FIG. 5 to remove the core lattice plate (130) which was between the conventional control rod guide tubes (24). The arrangement of the adjacent control rod new guide tubes (25) in the planar direction is fixed by the metal spring (151) attached to the new upper part (125) of the fuel assembly support metal, and a leakage flow is generated between them. I did not. The new fuel assembly support bracket includes a new fuel assembly support bracket upper portion (125) and a fuel assembly support bracket body (122) which is the same as that of the related art. FIG. 7 shows a state in a plane direction between adjacent new upper portions (125) of the fuel assembly support bracket.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Eliminate the piping that penetrates the pressure vessel bottom (70), which is the primary system pressure boundary, and installs an electric submersible motor (103) and a propeller (102) in a new control rod guide tube (25) in the pressure vessel. Contains the control rod drive.
It is severe to operate the electric underwater motor (103) in the water of 200 ° C or more, but since the cross-shaped control rod (10) is moved once a month for several seconds, most of the time is spent. This is not a problem because the underwater motor (103) is in a stopped state without power supply. Therefore, even if a large current flows, the temperature of the underwater motor (103) does not rise rapidly, and the temperature of the surrounding water does not exceed 200 ° C.
The propeller (102) is rotated by the submersible motor (103) to draw water in the communication pipe (90) from the lower water inlet / outlet (32) to create an upward flow, and to create a vertical flow by the rectifying grid (101). The vertical flow is transmitted to the large diameter speed limiter umbrella (124) and moves the cruciform control rod (10) upward. The water in the tube (30) above the large diameter speed limiter umbrella (124) is drawn into the communication pipe (90) from the upper water port (31). The large diameter speed limiter umbrella (124) serves as a drive piston, and the control rod new guide tube (25) serves as a cylinder.
In order to set the height position of the cruciform control rod (10) upward, the latch spring (82) contracts due to the force when the large diameter speed limiter umbrella (124) moves upward due to the upward flow by the propeller (102). When the aperture speed limiter umbrella (124) passes upward, the latch spring (82) returns and the latch (81) is inserted under the large aperture speed limiter umbrella (124), and the large aperture speed limiter umbrella (124) does not fall below. Become like
In order to set the height position of the cross-shaped control rod (10) downward, a motor built in the suction device (83) is rotated to make the inside of the control rod fixing device (80) a negative pressure and the latch spring (82). Is released to release the latch (81), whereby the cross-shaped control rod (10) falls by its own weight to the next latch (81). It can also be achieved by rotating the propeller (102) in reverse.
Since the new control rod guide tube (25) stands in a square lattice on the control rod new guide tube support plate (71), there is no load on the bottom of the pressure vessel (70).
If a small hole is made in a part of the control rod new guide tube support plate (71), the inner surface of the pressure vessel bottom (70) can be inspected by an endoscope.
In a boiling water reactor where the purity of water is kept high, electrical insulation is sufficiently maintained.
[0006]
【The invention's effect】
By adopting the new control rod drive unit (22) of the present invention, there is no housing (40) located further below through the pressure vessel bottom (70) as the reactor primary system pressure boundary, so that it is safe. In addition to improving the performance, the processing of the pressure vessel bottom (70) can be simplified, so that the production cost of the pressure vessel bottom (70) is reduced, and if the production cost is reduced, the power generation cost is reduced and the economic efficiency is improved.
The use of the fuel assembly support bracket new upper portion (125) can eliminate the core support plate (130), so that the manufacturing cost of the furnace internal structure can be reduced.
Conventionally, it was difficult to inspect the outer surface of the control rod guide tube (24) and the inner surface of the pressure vessel bottom (70) under the core support plate (130). By removing, the outer surface of the new control rod guide tube (25) and the inner surface of the pressure vessel bottom (70) can be easily inspected visually or by an endoscope, so that safety is improved.
The new control rod guide tube (25) is replaceable, and the pressure vessel bottom (70) also has no housing (40), which facilitates replacement. Therefore, almost all of the large structures of the nuclear reactor can be replaced, and the nuclear power plant does not have a long life. There is no need for the cost of vacant land, and there is no need for an alternative new location, which leads to a reduction in power generation costs.
[0007]
[Other Embodiment 1]
In this embodiment, as a power source for the underwater motor (103) and the suction device (83), a power supply external to the pressure vessel is converted from electricity to light by a conversion element, and a laser is supplied from the outside of the pressure vessel to the underwater motor (103) and suction by an optical fiber. The laser is converted into electricity by the light-to-electricity conversion element.
Optical fibers can transport large amounts of energy without having to consider electrical insulation. The conversion efficiency of light to electricity is about 90%.
By irradiating the iron plate of the rectifying grid (101) with heat without converting the laser to electricity, the water under the large diameter speed limiter umbrella (124) is vaporized and the expansion force of the large diameter speed limiter umbrella (124) is pushed up. Thus, the control rod (10) can be inserted into the core.
[0008]
[Other Embodiment 2]
A storage battery or a fuel cell was used as a drive power source for the underwater motor (103) and the suction device (83).
This eliminates the need for the electric wire (91) penetrating the pressure vessel, thereby increasing safety and facilitating maintenance and inspection.
[0009]
[Other Embodiment 3]
As a power source and an electric signal of the underwater motor (103) and the aspirator (83), the transducer is converted from electricity to ultrasonic waves by a conversion element outside or inside the pressure vessel, and the ultrasonic waves are converted by a transducer made of piezoelectric ceramic, piezoelectric crystal, or magnetostrictive material. To convert to electrical signals.
Since the ultrasonic wave propagates through the water without being attenuated, the electric wire (91) extends at most to the inner surface of the pressure vessel, and the length can be greatly reduced.
Thereby, the electric wire (91) penetrating the pressure vessel can be shortened, so that the safety is enhanced and the maintenance and inspection are facilitated.
[Brief description of the drawings]
FIG. 1 is a schematic view of a conventional control rod driving device (21).
FIG. 2 is a longitudinal sectional view showing an upper portion of a cross-shaped control rod (10) and a relative arrangement of a fuel rod (110) and a channel box (111) constituting a core.
FIG. 3 is a plan view of an upper portion (121) of a conventional fuel assembly support bracket.
FIG. 4 is a schematic view of a new control rod driving device (22) of the present invention.
FIG. 5 is a plan view of a new upper portion (125) of a fuel assembly support bracket of the present invention.
FIG. 6 shows the relative arrangement of the upper part of the cross-shaped control rod (10) when the fuel assembly support bracket new upper part (125) is used, and the fuel rod (110) and the channel box (111) constituting the core. Longitudinal section.
FIG. 7 is a plan view of adjacent new upper portions (125) of the fuel assembly support bracket.
[Explanation of symbols]
10 is a cross-shaped control rod 11 is a control rod support column 12 is a speed limiter umbrella 21 is a control rod drive 22 is a new control rod drive 24 is a control rod guide tube 25 is a control rod new guide tube 26 is a tube hole 30 is a tube Inner water 31 Upper water inlet 32 Lower water inlet 35 Outer tube water 40 Housing 50 Driving piston 51 Driving piston rod 52 Piston cylinder 61 Control rod insertion water piping 62 Control rod drawing water piping 63 Upper The driving water 64 is the lower driving water 65 is the control rod driving water inlet / outlet 70 is the pressure vessel bottom 71 is the control rod new guide tube support plate 80 is the control rod fixing device 81 is the latch 82 is the latch spring 83 is the suction device 90 is the communication pipe 91. The wire 101 is a commutation grid 102, a propeller 103, a submersible motor 110, a fuel rod 111, a channel box 112, and a fuel lower type tray. 113 is fuel rod cooling water 114 is leakage cooling water 116 is fuel rod cooling water passage 117 is leakage water passage 121 is fuel assembly support fitting upper part 122 is fuel assembly support fitting body 123 is metal fitting side hole 124 is large diameter speed limiter The umbrella 125 is a fuel assembly support bracket new upper part 130 is a core support plate 151 is a bracket spring.

Claims (8)

十字型制御棒(10)を擁する沸騰水型原子炉において、圧力容器底(70)を貫通するハウジング(40)を排除し、制御棒新ガイドチューブ(25)の下部に設置した水中モータ(103)によりプロペラ(102)を回転させ下部水出入口(32)から連通管(90)の中の水を吸い込み上昇流を作り整流格子(101)により垂直流にし大口径速度リミッタ傘(124)の下に圧力をかけ、大口径速度リミッタ傘(124)より上のチューブ内水(30)は上部水出入口(31)から連通管(90)の中に吸い込み、制御棒位置の設定はラッチ(81)とラッチバネ(82)と吸引器(83)からなる制御棒固定装置(80)により行うことを特徴とする制御棒新駆動装置(22)。In a boiling water reactor having a cruciform control rod (10), the housing (40) penetrating the pressure vessel bottom (70) is eliminated, and the submersible motor (103) installed below the control rod new guide tube (25) is removed. ), The propeller (102) is rotated to suck the water in the communication pipe (90) from the lower water inlet / outlet (32) to create an ascending flow, and to make it a vertical flow by the rectifying grid (101), under the large diameter speed limiter umbrella (124). , The water (30) in the tube above the large diameter speed limiter umbrella (124) is sucked into the communication pipe (90) from the upper water port (31), and the control rod position is set by the latch (81). A new control rod driving device (22), which is performed by a control rod fixing device (80) including a latch spring (82) and a suction device (83). 沸騰水型原子炉の燃料集合体支持金具において、上面が正方形で金具バネ(151)を付帯した燃料集合体支持金具新上部(125)を持ったことを特徴とする燃料集合体新支持金具。What is claimed is: 1. A new fuel assembly support bracket for a boiling water reactor, comprising a fuel assembly support bracket new upper part (125) having a square upper surface and a metal fitting spring (151) attached thereto. 請求項1における水中モータ(103)と吸引器(83)の電源及び電気信号として、圧力容器外部から給水配管または非常用冷却系配管の中を通して圧力容器内部に導入した電線(91)により供給したことを特徴とする。The power and electric signals of the submersible motor (103) and the suction device (83) according to claim 1 are supplied from outside the pressure vessel by an electric wire (91) introduced into the inside of the pressure vessel through a water supply pipe or an emergency cooling system pipe. It is characterized by the following. 請求項1における水中モータ(103)と吸引器(83)の電源及び電気信号として、圧力容器外部での電源及び電気信号を変換素子により電気からレーザーに変換し、レーザーを給水配管または非常用冷却系配管の中を通して圧力容器内部に導入した光ファイバーにより供給し、光から電気への変換素子を使って電気または電気信号に変換したことを特徴とする。A power supply and an electric signal outside the pressure vessel are converted from electricity to a laser by a conversion element as a power supply and an electric signal of the underwater motor (103) and the suction device (83) according to claim 1, and the laser is supplied to a water supply pipe or emergency cooling. It is supplied by an optical fiber introduced into the pressure vessel through the system piping, and is converted into electricity or an electric signal using a light-to-electricity conversion element. 請求項1における水中モータ(103)と吸引器(83)の電源及び電気信号として、圧力容器外部または内面で変換素子により電気から超音波に変換し、超音波を圧電セラミックまたは圧電結晶または磁歪材料からなるトランスデューサを使って電気信号に変換したことを特徴とする。The power and electric signals of the submersible motor (103) and the suction device (83) according to claim 1 are converted from electricity to ultrasonic waves by a conversion element outside or inside the pressure vessel, and the ultrasonic waves are made of a piezoelectric ceramic, a piezoelectric crystal, or a magnetostrictive material. It is characterized by being converted into an electric signal using a transducer consisting of 請求項1における制御棒駆動法として、圧力容器外部でのレーザーを給水配管または非常用冷却系配管の中を通して圧力容器内部に導入した光ファイバーにより供給し、整流格子(101)にレーザーを照射し発熱させ生じた気泡の膨張力を利用したことを特徴とする。In the control rod driving method according to the first aspect, a laser outside the pressure vessel is supplied by an optical fiber introduced into the pressure vessel through a water supply pipe or an emergency cooling system pipe, and the laser is irradiated to the rectifying grid (101) to generate heat. It is characterized by utilizing the expansion force of the generated bubbles. 請求項1における水中モータ(103)と吸引器(83)の電源として、制御棒新ガイドチューブ(25)の下に蓄電池または燃料電池を設置することを特徴とする。A storage battery or a fuel cell is provided below the control rod new guide tube (25) as a power source for the submersible motor (103) and the suction device (83) in the first aspect. 制御棒新ガイドチューブ(25)は制御棒新ガイドチューブ支持板(71)の上に正方格子状に林立させ、制御棒新ガイドチューブ支持板(71)は圧力容器内面で支持することを特徴とする。The new control rod guide tube (25) is formed in a square lattice on the control rod new guide tube support plate (71), and the new control rod guide tube support plate (71) is supported on the inner surface of the pressure vessel. I do.
JP2003109921A 2003-04-15 2003-04-15 Boiling water reactor control rod drive Expired - Fee Related JP4065919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109921A JP4065919B2 (en) 2003-04-15 2003-04-15 Boiling water reactor control rod drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109921A JP4065919B2 (en) 2003-04-15 2003-04-15 Boiling water reactor control rod drive

Publications (2)

Publication Number Publication Date
JP2004317223A true JP2004317223A (en) 2004-11-11
JP4065919B2 JP4065919B2 (en) 2008-03-26

Family

ID=33470917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109921A Expired - Fee Related JP4065919B2 (en) 2003-04-15 2003-04-15 Boiling water reactor control rod drive

Country Status (1)

Country Link
JP (1) JP4065919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151625A (en) * 2006-12-18 2008-07-03 Toshihisa Shirakawa Control rod of self-propelled type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151625A (en) * 2006-12-18 2008-07-03 Toshihisa Shirakawa Control rod of self-propelled type

Also Published As

Publication number Publication date
JP4065919B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
US11342082B2 (en) Control rod drive mechanism (CRDM) mounting method for pressurized water reactors
CA2808425C (en) Compact nuclear reactor with integral steam generator
US20150243377A1 (en) Compact nuclear reactor
EP3133611B1 (en) Pressurized water reactor with upper vessel section providing both pressure and flow control
CA2846055A1 (en) Pressurized water reactor with compact passive safety systems
CA2995354A1 (en) Passive cooling to cold shutdown
JP5606361B2 (en) Guide device for neutron flux detector
EP2937171B1 (en) Water jet peening apparatus and water jet peening method
JP6029465B2 (en) Abutment repair method and reactor vessel
US10943705B2 (en) CRDM internal electrical connector and method of use thereof
EP2704152B1 (en) Nozzle repairing method
JP2004317223A (en) Control rod driving unit for boiling water reactor
US20130301778A1 (en) Crdm internal hydraulic connector
US9375813B2 (en) Nozzle repairing method and nuclear reactor vessel
JP5275563B2 (en) Self-propelled control rod
JP6224288B1 (en) Dismantling method and disposal method of reactor vessel lid
JP6081206B2 (en) Reactor repair monitoring device and reactor repair method
JP2017021046A (en) Disassembly method and disposal method for reactor vessel lid
JP2015102394A (en) Support device of reactor vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees