JP2008150842A - Buckling restricting brace - Google Patents

Buckling restricting brace Download PDF

Info

Publication number
JP2008150842A
JP2008150842A JP2006339350A JP2006339350A JP2008150842A JP 2008150842 A JP2008150842 A JP 2008150842A JP 2006339350 A JP2006339350 A JP 2006339350A JP 2006339350 A JP2006339350 A JP 2006339350A JP 2008150842 A JP2008150842 A JP 2008150842A
Authority
JP
Japan
Prior art keywords
buckling
core material
brace
core
restraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339350A
Other languages
Japanese (ja)
Other versions
JP4879723B2 (en
Inventor
Yuki Okamoto
勇紀 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2006339350A priority Critical patent/JP4879723B2/en
Publication of JP2008150842A publication Critical patent/JP2008150842A/en
Application granted granted Critical
Publication of JP4879723B2 publication Critical patent/JP4879723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a buckling restricting brace which can specify a restriction necessary location of a core by restriction members, achieves economical and rational buckling restriction, facilitates stiffening adjustment, optimizes a buckling mode, and exerts an excellent vibration control function that does not depend on the adhesiveness of a viscoelastic body. <P>SOLUTION: The buckling restricting brace 1 has the core 2 and the pairing restriction members 3 arranged on both sides of the core 2. The core 2 is formed of a corrugated steel plate that has wave ridges 2a arranged along a brace longitudinal direction. Then gaps between the core 2 and the restriction members 3 are filled with a viscoelastic material 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、鉄骨造建物等に制振構造等として使用される座屈拘束ブレースに関する。   The present invention relates to a buckling restrained brace used as a vibration damping structure or the like in a steel structure building or the like.

座屈拘束ブレースは、塑性化させる芯材を拘束材で座屈補強し、かつ芯材と拘束材を軸力方向には絶縁することによって、芯材の圧縮降伏を引っ張り降伏と同等の性状とする部材であり、座屈しないブレースとして、鉄骨造建物等において、柱や梁等の主構造材の間に接合される。従来の座屈拘束ブレースは、芯材に平鋼やH形鋼などを用いている(例えば、特許文献1)。なお、制振壁としては、波形鋼板を用いたものがある(例えば、特許文献2)。
特開平10−306498号公報 実公平5−519号公報
A buckling-restrained brace reinforces the core material to be plastic by buckling with the restraining material and insulates the core material and the restraining material in the axial direction, thereby reducing the compressive yield of the core material to the same property as the tensile yield. As a brace that does not buckle, it is joined between main structural members such as columns and beams in a steel structure building or the like. Conventional buckling-restrained braces use flat steel, H-section steel, or the like as a core material (for example, Patent Document 1). In addition, there exists a thing using a corrugated steel plate as a damping wall (for example, patent document 2).
Japanese Patent Laid-Open No. 10-306498 Japanese Utility Model No. 5-519

従来の芯材に平鋼を用いた座屈拘束ブレースは、平鋼に高次の座屈モードを起こす場合に、その座屈モードの次数や波長などを予測することが難しいため、芯材全体を一様に拘束することが多く、経済性・合理性に欠ける。   Conventional buckling-restrained braces that use flat steel as the core material are difficult to predict the order and wavelength of the buckling mode when a higher-order buckling mode occurs in the flat steel. Are often restrained uniformly and lack economic efficiency and rationality.

この発明の目的は、芯材の拘束材による拘束必要箇所が特定できて、経済的・合理的な座屈拘束が可能となる座屈拘束ブレースを提供することである。
この発明の他の目的は、補剛調整が容易で、座屈モードを適正化できるものとすることである。
この発明のさらに他の目的は、粘弾性体のエネルギー吸収による制振機能を与える場合に、粘弾性体の接着性能に依存しない優れた制振機能が得られるものとすることである。
An object of the present invention is to provide a buckling-restrained brace that can specify a portion of the core member that needs to be restrained by a restraining material, and enables economical and rational buckling restraint.
Another object of the present invention is to enable easy stiffening adjustment and to optimize the buckling mode.
Still another object of the present invention is to provide an excellent vibration damping function that does not depend on the adhesion performance of the viscoelastic body when a vibration damping function by absorbing energy of the viscoelastic body is provided.

この発明の座屈拘束ブレースは、芯材と、この芯材の両面に沿って配置した一対の拘束材とを有する座屈拘束ブレースにおいて、前記芯材を、ブレース長さ方向に沿って波山が並ぶ波形鋼板としたことを特徴とする。
この構成によると、芯材を波形鋼板としたので、芯材に圧縮と引張の軸力が繰り返し入力されても、芯材から拘束材に入力される力の入力部位は、芯材の各波山部分と対応する箇所のみに特定される。したがって、拘束材は、波形鋼板からなる芯材の各波山部分に必要な拘束力を与えるものであれば良く、拘束材は全体に強い拘束力が得られるものとする必要がない。そのため、拘束材による経済的・合理的な座屈拘束が可能となる。
The buckling restraint brace of the present invention is a buckling restraint brace having a core material and a pair of restraint materials arranged along both surfaces of the core material. It is characterized by being a lined corrugated steel sheet.
According to this configuration, since the core material is a corrugated steel plate, even if the axial force of compression and tension is repeatedly input to the core material, the input portion of the force input from the core material to the restraint material is each wave peak of the core material. Only the part corresponding to the part is specified. Therefore, the constraining material only needs to give a necessary constraining force to each wave crest portion of the core made of corrugated steel, and the constraining material does not need to obtain a strong constraining force as a whole. Therefore, economical and rational buckling restraint by restraint material is possible.

この発明において、前記芯材となる波形鋼板に他の波形鋼板を重ねて互いに接合しても良い。例えば、前記芯材となる波形鋼板の端部に、他の波形鋼板を重ねても良い。芯材が波形鋼板であるため、部分的に他の波形鋼板を重ねて端部のみを補剛することができる。そのため、芯材の端部での局部座屈を防ぎ、理想的な座屈モードに近づけることができる。   In the present invention, another corrugated steel sheet may be stacked on the corrugated steel sheet serving as the core material and joined together. For example, another corrugated steel sheet may be stacked on the end of the corrugated steel sheet serving as the core material. Since the core material is a corrugated steel plate, other corrugated steel plates can be partially overlapped to stiffen only the end portion. Therefore, local buckling at the end of the core material can be prevented, and an ideal buckling mode can be achieved.

この発明において、前記芯材と拘束材との間に、粘弾性材を充填しても良い。粘弾性材を充填した場合、粘弾性材の変形によるエネルギー吸収作用が得られ、これにより制振効果が得られる。一般的な粘弾性材による制振機能では、粘弾性材のせん断抵抗によるエネルギー吸収に期待するものであるため、粘弾性材と拘束材等の母材との接着性能が悪いと、剥離が生じて十分なエネルギー吸収機能が得難いことがある。しかし、この発明は、芯材を波形鋼板としたため、芯材に圧縮と引張の軸力が繰り返し入力された場合、芯材の各波山の高さが変わるように芯材が変形し、粘弾性材は、芯材の各波部の箇所で波山高さが変化するように変形を生じる。この変形の抵抗でエネルギー吸収が得られる。そのため、粘弾性体の接着性能に依存しない優れた制振機能を得ることができる。   In the present invention, a viscoelastic material may be filled between the core material and the restraining material. When the viscoelastic material is filled, an energy absorbing action due to deformation of the viscoelastic material is obtained, thereby obtaining a vibration damping effect. The vibration damping function of a general viscoelastic material is expected to absorb energy due to the shear resistance of the viscoelastic material, so peeling occurs when the adhesion performance between the viscoelastic material and the base material such as a restraint material is poor. Therefore, it may be difficult to obtain a sufficient energy absorption function. However, in the present invention, since the core material is a corrugated steel plate, when the axial force of compression and tension is repeatedly input to the core material, the core material is deformed so that the height of each wave peak of the core material changes, and the viscoelasticity The material is deformed so that the wave height changes at each wave portion of the core material. Energy absorption is obtained by the resistance of this deformation. Therefore, an excellent vibration damping function that does not depend on the adhesion performance of the viscoelastic body can be obtained.

この発明の座屈拘束ブレースは、芯材と、この芯材の両面に沿って配置した一対の拘束材とを有する座屈拘束ブレースにおいて、前記芯材を、ブレース長さ方向に沿って波山が並ぶ波形鋼板としたため、芯材の拘束材による拘束必要箇所が特定できて、経済的・合理的な座屈拘束が可能となる。
前記芯材となる波形鋼板の端部に、他の波形鋼板を重ねて互いに接合した場合は、補剛調整が可能で、座屈モードを容易に適正化することができる。
前記芯材と拘束材との間に、粘弾性材を充填した場合は、粘弾性体のエネルギー吸収による制振機能が得れ、その場合に、芯材が波形鋼板であることから、粘弾性体の接着性能に依存しない優れた制振機能を得ることができる。
The buckling restraint brace of the present invention is a buckling restraint brace having a core material and a pair of restraint materials arranged along both surfaces of the core material. Since the corrugated steel sheets are arranged side by side, it is possible to specify the location where the core material is constrained by the constraining material, so that economical and rational buckling restraint is possible.
When another corrugated steel sheet is overlapped and joined to the end of the corrugated steel sheet as the core material, stiffening adjustment is possible and the buckling mode can be easily optimized.
When a viscoelastic material is filled between the core material and the constraining material, a vibration damping function by absorbing the energy of the viscoelastic body can be obtained, and in this case, the core material is a corrugated steel plate. An excellent vibration control function that does not depend on the bonding performance of the body can be obtained.

この発明の第1の実施形態を図1ないし図4と共に説明する。この座屈拘束ブレース1は、芯材2と、この芯材2の両面に沿って配置した一対の拘束材3,3と、これら芯材2と各拘束材3との間に充填した粘弾性体4とを有し、芯材2を、ブレース長さ方向に沿って波山2aが並ぶ波形鋼板としたものである。   A first embodiment of the present invention will be described with reference to FIGS. The buckling restraint brace 1 includes a core material 2, a pair of restraint materials 3 and 3 disposed along both surfaces of the core material 2, and a viscoelasticity filled between the core material 2 and each restraint material 3. The core material 2 is a corrugated steel sheet in which the ridges 2a are arranged along the brace length direction.

芯材2は、拘束材3よりも幅狭であり、ブレース長さ方向に両端が突出している。芯材2の両側で、両拘束材3,3の間には、図2のようにスペーサ5が介在させてある。スペーサ4は、拘束材3の長さ方向に沿って全長にわたって連続して延びるものであっても、また拘束材3の長さ方向に並んで複数設けられてものであっても良い。スペーサ5の厚さは、例えば、両側の拘束材3の間に、芯材2が僅かな隙間を介して介在可能な程度の間隔を与える厚さとされる。   The core material 2 is narrower than the restraint material 3, and both ends protrude in the brace length direction. Spacers 5 are interposed on both sides of the core material 2 between the restraining materials 3 and 3 as shown in FIG. The spacer 4 may extend continuously over the entire length along the length direction of the restraining material 3, or a plurality of spacers 4 may be provided side by side in the length direction of the restraining material 3. The thickness of the spacer 5 is, for example, a thickness that provides an interval between the constraining materials 3 on both sides so that the core material 2 can be interposed through a slight gap.

芯材2となる波形鋼板は、図1(B)に示すように、各波山部分(ここでは波の谷となる部分も波山部分と称す)2aが台形山形のものであるが、例えば図6に示すような円弧状の山形、つまりサイン波状の波形のものであっても良い。
拘束材3は、例えばコンクリート版製の拘束プレートからなる。拘束材3は、コンクリートに代えて、形鋼やその組み合わせ材等からなる鋼材を用いても良い。
粘弾性体4には、アスファルト等が用いられる。粘弾性体4の代わりに、コンクリートやセメント等の硬化性の充填材を充填しても良い。
スペーサ5の材質は、コンクリートまたは鋼材等である。
As shown in FIG. 1 (B), the corrugated steel sheet used as the core material 2 is a trapezoidal mountain shape in which each wave peak part (here, the part that becomes the wave valley is also referred to as the wave peak part) 2a. It may be an arc-shaped mountain shape as shown in FIG.
The restraining material 3 is made of a restraining plate made of a concrete plate, for example. The restraint material 3 may be a steel material made of a shape steel or a combination material thereof instead of concrete.
For the viscoelastic body 4, asphalt or the like is used. Instead of the viscoelastic body 4, a curable filler such as concrete or cement may be filled.
The material of the spacer 5 is concrete or steel.

この構成の座屈拘束ブレース1によると、図4(A)に概念図で示すように、芯材2に軸力として圧縮力FAが作用したときは、芯材2の各波山部分2aが高くなるように芯材2が変形し、同図(B)のように引張力FBが作用したときは、芯材2の各波山部分2aが偏平化するように変形する。
同図(A)のように、圧縮力FAが作用したとき、芯材2から拘束材3に入力される力f1の入力部位は、芯材2の各波山部分2aと対応する箇所のみに特定される。したがって、その入力部位のみに拘束力f2が与えられれば、力学的に成立する。このため、拘束材3は、芯材2の各波山部分2aに必要な拘束力f2を与えるものであれば良く、拘束材3は全体に強い拘束力が得られるものとする必要がない。そのため、拘束材3による経済的・合理的な座屈拘束が可能となる。
According to the buckling restrained brace 1 having this configuration, as shown in the conceptual diagram of FIG. 4A, when the compressive force FA acts on the core member 2 as an axial force, each wave crest portion 2a of the core member 2 is high. When the core material 2 is deformed and a tensile force FB is applied as shown in FIG. 5B, each wave crest portion 2a of the core material 2 is deformed so as to be flattened.
As shown in FIG. 6A, when the compressive force FA is applied, the input part of the force f1 input from the core material 2 to the restraint material 3 is specified only in the part corresponding to each wave crest portion 2a of the core material 2. Is done. Therefore, if the restraining force f2 is given only to the input part, it is established dynamically. For this reason, the restraint material 3 should just give the restraint force f2 required for each wave crest part 2a of the core material 2, and it is not necessary for the restraint material 3 to obtain a strong restraint force on the whole. Therefore, economical and rational buckling restraint by the restraining material 3 is possible.

また、芯材2と拘束材3との間に、粘弾性材4を充填したため、粘弾性材4の変形によるエネルギー吸収作用が得られ、しかも粘弾性材4の接着力に依存しない優れた制振機能を得ることができる。これにつき、従来の制振壁と対比して説明する。   In addition, since the viscoelastic material 4 is filled between the core material 2 and the restraining material 3, an energy absorbing action by deformation of the viscoelastic material 4 is obtained, and an excellent control that does not depend on the adhesive force of the viscoelastic material 4 is obtained. A vibration function can be obtained. This will be described in comparison with a conventional damping wall.

図8は、従来の制振壁を上から見た図であり、波形鋼板21,21間に粘弾性材22を介在させたものである。このような制振壁において、同図(A)に矢印で示すように、両側の波形鋼板21,21を互いにずらせる力Fが作用し、同図(B)のように波形鋼板21,21にずれを生じた場合、粘弾性材22は、これら図8(A),(B)の下部に示すように変形する。この場合、粘弾性材22は、接着面Sで接着を維持し、せん断抵抗が生じることでエネルギー吸収の作用が生じる。このような抵抗機構の場合、粘弾性材22と母材との接着性能が悪いと、その剥離で壊れてしまい、十分な制振能力が発揮できない場合がある。   FIG. 8 is a view of a conventional damping wall as viewed from above, in which a viscoelastic material 22 is interposed between the corrugated steel plates 21 and 21. In such a damping wall, as shown by an arrow in FIG. 6A, a force F that causes the corrugated steel sheets 21 and 21 on both sides to be displaced from each other acts, and the corrugated steel sheets 21 and 21 as shown in FIG. When the deviation occurs, the viscoelastic material 22 is deformed as shown in the lower part of FIGS. 8 (A) and 8 (B). In this case, the viscoelastic material 22 maintains the adhesion on the adhesion surface S, and a shear resistance is generated, so that an energy absorbing action is generated. In the case of such a resistance mechanism, if the adhesive performance between the viscoelastic material 22 and the base material is poor, the viscoelastic material 22 may be broken due to the peeling, and sufficient vibration damping capability may not be exhibited.

これに対して、この実施形態のものでは、図3に概念的に示すように、芯材2に軸力として圧縮力FAが作用したときと、引張力FBが作用したときとでは、芯材2の各波山部分2aが高さ変わるように芯材2が変形する。このとき、粘弾性材4は、同図(A),(B)の下部に示すように変形する。
このように、粘弾性材4は接着面Sに対して垂直方向に変形し、この変形の抵抗でエネルギーの吸収作用が得られる。したがって、粘弾性体4の接着性能に依存しない優れた制振機能を得ることができる。
On the other hand, in this embodiment, as shown conceptually in FIG. 3, the core material is divided between when the compressive force FA acts on the core material 2 as an axial force and when the tensile force FB acts. The core material 2 is deformed so that the heights of the wavy portions 2a of 2 change. At this time, the viscoelastic material 4 is deformed as shown in the lower part of FIGS.
In this way, the viscoelastic material 4 is deformed in the direction perpendicular to the bonding surface S, and an energy absorbing action is obtained by resistance to this deformation. Therefore, an excellent vibration damping function that does not depend on the adhesive performance of the viscoelastic body 4 can be obtained.

図5は、この発明の他の実施形態を示す。この実施形態は、芯材2となる波形鋼板の両側の端部に、他の波形鋼板2Aを重ねて互いに接合したものである。この接合は例えば溶接またはボルト等により行う。その他の構成は、図1に示す第1の実施形態と同様である。   FIG. 5 shows another embodiment of the present invention. In this embodiment, another corrugated steel sheet 2A is overlapped and joined to the end portions on both sides of the corrugated steel sheet to be the core material 2. This joining is performed by welding or bolts, for example. Other configurations are the same as those of the first embodiment shown in FIG.

この実施形態の場合、端部に波形鋼板2Aを重ねることで、芯材2の端部のみが補剛される。そのため、芯材2の端部での局部座屈が防止され、理想的な座屈モードに近づけることができる。   In the case of this embodiment, only the end portion of the core material 2 is stiffened by overlapping the corrugated steel plate 2A on the end portion. Therefore, local buckling at the end of the core material 2 is prevented, and an ideal buckling mode can be achieved.

図7(A),(B)は、それぞれ座屈拘束ブレース1を筋かいとして用いた例であり、鋼製柱12aおよび鋼製梁12bによって組まれた鉄骨構造物12に、第1の実施形態(図1)にかかる座屈拘束ブレース1を接合している。図7(C)は、鉄骨構造物12に上記座屈拘束ブレース1を方杖として接合した例を示す。
このように、鉄骨構造物12に上記実施形態の座屈拘束ブレース1を組み込むことにより、鉄骨構造物12の耐震性が強化される。なお、この座屈拘束ブレース1は、方杖に用いるような短いものから、例えば10mを超えるような長尺のものまで適用することができる。
FIGS. 7A and 7B are examples in which the buckling-restrained brace 1 is used as a brace, respectively, and the steel structure 12 assembled by the steel column 12a and the steel beam 12b is used in the first implementation. The buckling restrained brace 1 according to the form (FIG. 1) is joined. FIG. 7C shows an example in which the buckling restrained brace 1 is joined to the steel structure 12 as a cane.
In this way, by incorporating the buckling restrained brace 1 of the above embodiment into the steel structure 12, the earthquake resistance of the steel structure 12 is enhanced. The buckling restrained brace 1 can be applied from a short one used for a cane to a long one exceeding 10 m, for example.

この発明の第1の実施形態に係る座屈拘束ブレースの平面図および縦断面図である。It is the top view and longitudinal cross-sectional view of the buckling restraint brace which concern on 1st Embodiment of this invention. 同座屈拘束ブレースの横断面図である。It is a cross-sectional view of the buckling restraint brace. 同座屈拘束ブレースの粘弾性材の変形を示す説明図である。It is explanatory drawing which shows a deformation | transformation of the viscoelastic material of the buckling restraint brace. 同座屈拘束ブレースの拘束力の作用箇所を示す説明図である。It is explanatory drawing which shows the action location of the restraint force of the buckling restraint brace. この発明の他の実施形態に係る座屈拘束ブレースの縦断面図である。It is a longitudinal cross-sectional view of the buckling restraint brace which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る座屈拘束ブレースの部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the buckling restraint brace which concerns on further another embodiment of this invention. この発明の座屈拘束ブレースを用いた鉄骨構造物の各例の骨組構式を示す部分正面図である。It is a partial front view which shows the frame composition of each example of the steel structure using the buckling restraint brace of this invention. 提案例の課題を示す断面図である。It is sectional drawing which shows the subject of a proposal example.

符号の説明Explanation of symbols

1…座屈拘束ブレース
2…芯材
2A…他の波形鋼板
3…拘束材
4…粘弾性材
5…スペーサ
DESCRIPTION OF SYMBOLS 1 ... Buckling restraint brace 2 ... Core material 2A ... Other corrugated steel plate 3 ... Restraint material 4 ... Viscoelastic material 5 ... Spacer

Claims (3)

芯材と、この芯材の両面に沿って配置した一対の拘束材とを有する座屈拘束ブレースにおいて、前記芯材を、ブレース長さ方向に沿って波山が並ぶ波形鋼板としたことを特徴とする座屈拘束ブレース。   In a buckling restrained brace having a core material and a pair of constraining materials arranged along both sides of the core material, the core material is a corrugated steel sheet in which wave peaks are arranged along the brace length direction. A buckling restraint brace. 請求項1において、前記芯材となる波形鋼板の端部に、他の波形鋼板を重ねて互いに接合した座屈拘束ブレース。   The buckling restrained brace according to claim 1, wherein another corrugated steel sheet is overlapped and joined to an end of the corrugated steel sheet as the core material. 請求項1または請求項2において、前記芯材と拘束材との間に、粘弾性材を充填した座屈拘束ブレース。   The buckling restraint brace according to claim 1 or 2, wherein a viscoelastic material is filled between the core member and the restraint member.
JP2006339350A 2006-12-18 2006-12-18 Buckling restraint brace Active JP4879723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339350A JP4879723B2 (en) 2006-12-18 2006-12-18 Buckling restraint brace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339350A JP4879723B2 (en) 2006-12-18 2006-12-18 Buckling restraint brace

Publications (2)

Publication Number Publication Date
JP2008150842A true JP2008150842A (en) 2008-07-03
JP4879723B2 JP4879723B2 (en) 2012-02-22

Family

ID=39653311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339350A Active JP4879723B2 (en) 2006-12-18 2006-12-18 Buckling restraint brace

Country Status (1)

Country Link
JP (1) JP4879723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018951A (en) * 2008-07-08 2010-01-28 Daiwa House Industry Co Ltd Vibration control stud concurrently using viscoelastic damper and buckling restraining brace
CN102926479A (en) * 2012-10-25 2013-02-13 沈阳建筑大学 Waveform mild steel energy dissipation support
WO2013096390A1 (en) * 2011-12-19 2013-06-27 Hinchman Andrew Buckling restrained brace
JP2014218797A (en) * 2013-05-02 2014-11-20 新日鉄住金エンジニアリング株式会社 Member for vibration control, and core material
CN115370213A (en) * 2022-10-07 2022-11-22 北京工业大学 Composite damper for amplifying knee-brace viscoelastic shape memory alloy corrugated plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758240B (en) * 2014-01-03 2016-05-11 清华大学 A kind of anti-buckling support of separate type connecting with wave webs
CN108385832B (en) * 2018-03-07 2020-10-20 上海毅匹玺建筑科技有限公司 Assembled beam column node structure
CN109235733B (en) * 2018-10-16 2020-11-27 北京工业大学 Assembled plate-column system adopting prestressed steel bars and inner core bending type buckling-restrained brace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682218A (en) * 1979-12-10 1981-07-04 Fujitsu Ltd Continuous automatic mold molding apparatus
JP2002188243A (en) * 2000-12-21 2002-07-05 Taisei Corp Composite structural column
JP2005083136A (en) * 2003-09-10 2005-03-31 Taisei Corp Composite structure support
JP2007107280A (en) * 2005-10-13 2007-04-26 Tokai Rubber Ind Ltd Brace type viscoelastic damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682218A (en) * 1979-12-10 1981-07-04 Fujitsu Ltd Continuous automatic mold molding apparatus
JP2002188243A (en) * 2000-12-21 2002-07-05 Taisei Corp Composite structural column
JP2005083136A (en) * 2003-09-10 2005-03-31 Taisei Corp Composite structure support
JP2007107280A (en) * 2005-10-13 2007-04-26 Tokai Rubber Ind Ltd Brace type viscoelastic damper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018951A (en) * 2008-07-08 2010-01-28 Daiwa House Industry Co Ltd Vibration control stud concurrently using viscoelastic damper and buckling restraining brace
WO2013096390A1 (en) * 2011-12-19 2013-06-27 Hinchman Andrew Buckling restrained brace
CN102926479A (en) * 2012-10-25 2013-02-13 沈阳建筑大学 Waveform mild steel energy dissipation support
CN102926479B (en) * 2012-10-25 2016-01-06 沈阳建筑大学 Waveform mild steel energy dissipation support
JP2014218797A (en) * 2013-05-02 2014-11-20 新日鉄住金エンジニアリング株式会社 Member for vibration control, and core material
CN115370213A (en) * 2022-10-07 2022-11-22 北京工业大学 Composite damper for amplifying knee-brace viscoelastic shape memory alloy corrugated plate

Also Published As

Publication number Publication date
JP4879723B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4879723B2 (en) Buckling restraint brace
JP5336145B2 (en) Damping structure and building with damping structure
JP4881092B2 (en) Seismic wall or seismic control wall made of corrugated steel sheet and its manufacturing method
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP2010037868A (en) Corrugated steel plate earthquake-resisting wall
JP5176855B2 (en) Folded panel structure and building structure
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
JP5601882B2 (en) Steel seismic wall and building with the same
JP4917177B1 (en) Buckling restraint brace
JP4563872B2 (en) Seismic wall
JP2009047193A (en) Damper device and structure
JP5147007B2 (en) Damper device and structure
JP6169486B2 (en) Buckling restraint brace
JP5291330B2 (en) Corrugated steel shear wall
JP4395419B2 (en) Vibration control pillar
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP2007191988A (en) Earthquake resisting brace
JP2011017174A (en) Joint structure of members in steel panel including steel frame member and folding plate made of thin steel plate, steel panel, and building
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP7052953B2 (en) Damping structure
JP5968706B2 (en) Buckling restraint brace
JP4705759B2 (en) Damping walls and structures
JP6866228B2 (en) Buildings and wooden reinforcements
JP2007132524A (en) Structural member having hysteretic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250