JP2008150072A - Manufacturing process of double hull fuel tank - Google Patents

Manufacturing process of double hull fuel tank Download PDF

Info

Publication number
JP2008150072A
JP2008150072A JP2006339507A JP2006339507A JP2008150072A JP 2008150072 A JP2008150072 A JP 2008150072A JP 2006339507 A JP2006339507 A JP 2006339507A JP 2006339507 A JP2006339507 A JP 2006339507A JP 2008150072 A JP2008150072 A JP 2008150072A
Authority
JP
Japan
Prior art keywords
resin sheet
resin
inner shell
shell
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339507A
Other languages
Japanese (ja)
Other versions
JP4593553B2 (en
Inventor
Fumio Nenui
文雄 根縫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP2006339507A priority Critical patent/JP4593553B2/en
Publication of JP2008150072A publication Critical patent/JP2008150072A/en
Application granted granted Critical
Publication of JP4593553B2 publication Critical patent/JP4593553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of double-hull fuel tank capable of uniformly assuring a detection space and preventing a deformation or breakage of the tank caused by an external pressure and the like. <P>SOLUTION: This invention relates to a manufacturing process of double-hull fuel tank in which a detection space 3 is arranged between an inner hull 2 and an outer hull 1 enclosing the inner hull 2. This process comprises the step of preparing a resin sheet 4 molded into a shape having many protrusions 40 protruded toward the inner hull 2 and cavities 41 formed between the protrusions 40 to communicate with each other, enclosing the outer surface 21 of the inner hull 2 by the resin sheet 4 under the state in which the protruding ends 40a of the protrusions 40 in the resin sheet 4 so as to keep contact with the outer surface 21 of the inner hull 2, and forming the supporting part 11 where resin fills the cavities 43 formed at the opposite surfaces of the protrusions 40 and comes into contact with the inner hull 2 through the resin sheet 4 by forming the outer hull 1 composed of a resin layer at the outer surface 4c of the resin sheet 4 while resin coats the outer surface 4c of the resin sheet 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二重殻燃料タンクの製造方法に関する。   The present invention relates to a method for manufacturing a double shell fuel tank.

従来より、給油所などに用いる地下埋設用の燃料タンクとして、該タンクの破損による燃料漏れを検知することの可能な二重殻燃料タンクが提案されている(特許文献6,7参照)。この二重殻燃料タンクは、図1に示すように、鉄または樹脂等からなる内殻2と、樹脂からなる外殻1とを備え、内殻2と外殻1との間には、タンク内のオイル漏れを検知するための検知空間3が形成されている。前記検知空間には、予め検知液が封入されており、該検知液の体積変化を、図示しないセンサを用いて監視することにより、タンクの内殻または外殻の異常を検知している。   2. Description of the Related Art Conventionally, as a fuel tank for underground use used in a gas station or the like, a double shell fuel tank capable of detecting a fuel leak due to damage of the tank has been proposed (see Patent Documents 6 and 7). As shown in FIG. 1, the double shell fuel tank includes an inner shell 2 made of iron or resin and an outer shell 1 made of resin, and the tank is placed between the inner shell 2 and the outer shell 1. A detection space 3 for detecting oil leakage inside is formed. A detection liquid is sealed in the detection space in advance, and an abnormality in the inner shell or outer shell of the tank is detected by monitoring a volume change of the detection liquid using a sensor (not shown).

前記二重殻燃料タンクとしては、内殻と外殻との間にフィルムを取り付け、前記フィルムと内殻との間に0.1mm〜0.2mm程度の隙間を設け検知空間を形成することが考えられる。
しかし、この構造では、フィルムで前記検知空間を確保しているので、地下にタンクを設置するときに外部からの力(土圧)により内殻に向って外殻が押し付けられる。特に、タンク底部は内殻タンク内の燃料の荷重および上載土による荷重で下方(基礎面)に向って押し付けられた状態になる。そのため、部分的にフィルムと内殻外面とが密着することがあり、均一な空間の検知層を設けることができない。よって、漏洩検知に時間を要したり、タンクに生じた亀裂等が小さな孔であれば、外圧によりフィルムが押し付けられて孔を塞いでしまいタンクの破損の発見が遅れるおそれがある。
As the double shell fuel tank, a film is attached between the inner shell and the outer shell, and a detection space is formed by providing a gap of about 0.1 mm to 0.2 mm between the film and the inner shell. Conceivable.
However, in this structure, since the detection space is secured by a film, the outer shell is pressed toward the inner shell by external force (earth pressure) when the tank is installed underground. In particular, the bottom of the tank is pressed downward (foundation surface) by the load of the fuel in the inner shell tank and the load from the overburden soil. Therefore, the film and the outer surface of the inner shell may be in close contact with each other, and a uniform space detection layer cannot be provided. Therefore, if it takes time to detect leakage or if a crack or the like generated in the tank is a small hole, there is a possibility that the film is pressed by the external pressure to close the hole and delay the discovery of the tank damage.

そこで、外殻と内殻との間を支持することで、検知空間を一定に保つ必要がある。
たとえば、表面を凹凸形状に成型したプラスチック製シートを内殻と外殻との間に取り付け、検知層となる隙間を3〜4mm程度確保する方法が提案されている(特許文献1および2参照)。
また、硬質のインサート板を内殻と外殻との間に間隔を設けて取り付け、隙間を確保する方法が提案されている(特許文献3参照)。
さらには、粒子を所定の間隔で取り付けて、内殻と外殻との隙間を確保する方法が提案されている(特許文献4参照)。
Therefore, it is necessary to keep the detection space constant by supporting between the outer shell and the inner shell.
For example, a method has been proposed in which a plastic sheet whose surface is formed into a concavo-convex shape is attached between an inner shell and an outer shell, and a gap of about 3 to 4 mm is secured as a detection layer (see Patent Documents 1 and 2). .
In addition, a method has been proposed in which a hard insert plate is attached with an interval between an inner shell and an outer shell to ensure a gap (see Patent Document 3).
Furthermore, a method for securing a gap between the inner shell and the outer shell by attaching particles at a predetermined interval has been proposed (see Patent Document 4).

しかし、前述の特許文献1〜4の各方法では、外部から外殻に加わる圧力を内殻との間で支えるシートや、インサート板、粒子の支持面積が小さく、外圧やタンクの自重などによる外殻の変形が全体に均一にならず、部分的な変形部分が発生する。
また、インサート板や粒子を用いる場合には、隣り合うインサート板間や粒子間の間隔が外圧により変形し、前記インサート板や粒子が支点となって、外殻と内殻との間の隙間の均一化が保てない。
さらに、外殻には、耐腐食性の高い、たとえば、ポリエステル樹脂などが用いられるが、このポリエステル樹脂は脆いので、衝撃荷重が負荷されるとガラスのように割れ易い。そのため、外圧が集中的に加わった場合には、外殻の破損に継がるおそれがある。特に、土中に含まれる岩石やその他の固形物により、前記外圧が外殻の一部に集中した場合、鋭角な先で突いたような状態となり外殻が損傷するおそれがある。
However, in each of the methods described in Patent Documents 1 to 4 described above, the sheet, insert plate, and particle support area for supporting the pressure applied to the outer shell from the outside with the inner shell is small, and the outer pressure due to the external pressure, the tank's own weight, etc. The deformation of the shell is not uniform throughout, and partial deformation occurs.
Also, when using insert plates or particles, the distance between adjacent insert plates or between particles is deformed by external pressure, and the insert plate or particles serve as a fulcrum, and the gap between the outer shell and the inner shell Uniformity cannot be maintained.
Further, for example, a polyester resin having high corrosion resistance is used for the outer shell. However, since this polyester resin is brittle, it is easily broken like glass when an impact load is applied. Therefore, when the external pressure is applied intensively, there is a risk that the outer shell may be damaged. In particular, when the external pressure is concentrated on a part of the outer shell due to rocks or other solids contained in the soil, the outer shell may be damaged by a sharp tip.

一方、三次元ガラス繊維を用いて内殻と外殻との隙間を確保し、内殻と外殻とを前記ガラス繊維で継いで一体化を図る方法が提案されている(特許文献5参照)。
しかし、この方法では、三次元ガラス繊維で空間を成形する工程において、樹脂をガラス繊維に含浸させて形成するときに空間が均一にできない部分や外殻と内殻との継ぎ部分(柱に相当する部分)の含浸量が均一化されにくく、部分的に継ぎ部分に太さの違いが発生し易い。そのため、強度にバラツキが生じ、その強度の弱い部分に外圧や集中荷重が加わった場合には、隙間の均一化が損なわれるおそれがある。
実用新案登録第3022356号 特開平10−35784号 特開平8−230975号 特開平11−193087号 特開2006−117255 特開昭63−281986号 特開昭63−203581号
On the other hand, a method has been proposed in which a gap between the inner shell and the outer shell is secured using a three-dimensional glass fiber, and the inner shell and the outer shell are joined by the glass fiber to achieve integration (see Patent Document 5). .
However, in this method, in the process of forming the space with the three-dimensional glass fiber, when the resin is impregnated with the glass fiber, the space cannot be made uniform, or the joint portion between the outer shell and the inner shell (corresponding to a column) The impregnation amount of the portion) is difficult to be made uniform, and a difference in thickness is likely to occur partially at the joint portion. For this reason, the strength varies, and when an external pressure or concentrated load is applied to the weak portion, the uniformity of the gap may be impaired.
Utility model registration No. 3022356 JP-A-10-35784 JP-A-8-230975 JP-A-11-193087 JP 2006-117255 A JP 63-281986 JP-A 63-203581

したがって、本発明の目的は、検知空間を均一に確保すると共に、外圧などによるタンクの変形や破損を防止し得る二重殻燃料タンクの製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for manufacturing a double-shell fuel tank capable of ensuring a uniform detection space and preventing deformation or damage of the tank due to external pressure or the like.

前記目的を達成するために、本発明の二重殻燃料タンクの製造方法は、内殻と該内殻を包む外殻との間に検知空間を設けた二重殻燃料タンクの製造方法において、前記内殻側に向かって突出する多数の凸部と、該凸部の間に形成され互いに連なる凹溝とを有する形状に成型された樹脂シートを予め用意する工程と、前記樹脂シートの凸部の突出端が前記内殻の外面に接する状態で、前記樹脂シートにより前記内殻の外面を包む工程と、前記樹脂シートの外表面に樹脂を塗布して前記樹脂シートの前記外表面に樹脂層からなる外殻を形成することで、前記凸部の反対側の面に形成された凹所に前記樹脂が充填されて前記樹脂シートを介して前記内殻に接する支持部を形成する工程とを備えている。   In order to achieve the above object, a method for manufacturing a double-shell fuel tank according to the present invention is a method for manufacturing a double-shell fuel tank in which a detection space is provided between an inner shell and an outer shell that wraps the inner shell. Preparing in advance a resin sheet molded into a shape having a number of convex portions projecting toward the inner shell side and concave grooves formed between the convex portions and connected to each other; and the convex portions of the resin sheet A step of wrapping the outer surface of the inner shell with the resin sheet in a state where the projecting end of the resin sheet is in contact with the outer surface of the inner shell, and applying a resin to the outer surface of the resin sheet to form a resin layer on the outer surface of the resin sheet Forming a support portion in contact with the inner shell through the resin sheet by filling the recess into a recess formed on the opposite surface of the convex portion. I have.

従来の方法では、タンクを埋設した場合に外部からの圧力や集中応力が加わったときに、強度の弱い部分が生じるので力の分散がうまくいかず、外殻を破損する原因にもなる。しかし、本発明によれば、樹脂シートの凹所に樹脂を充填することで、支持部を形成するから、外殻の支持面積を大きくすることができるので、外圧による応力が均一となり外殻を破損するおそれがない。
また、検知空間の隙間が狭い場合には、外部からの圧力により内殻と外殻とが密着する部分が発生し、検知能力(スピード)が低下する場合があるが、本発明では、凹溝により、一定の検知空間の隙間が確保できるので検知能力の低下がない。
さらに、検知空間に液を入れた検知方法において、従来の検知空間の成形方法では外殻が変形することにより検知空間の体積が変化して誤警報が発生することになるが、本発明では検知空間の体積が安定しており、また、前記支持面積を大きくすることで、検知液の量を少なくできるので誤作動を防止することができる。
In the conventional method, when an external pressure or concentrated stress is applied when a tank is buried, a weak portion is generated, so that the force is not well distributed and the outer shell is damaged. However, according to the present invention, since the support portion is formed by filling the resin in the recess of the resin sheet, the support area of the outer shell can be increased, so that the stress due to the external pressure becomes uniform and the outer shell is removed. There is no risk of damage.
In addition, when the gap between the detection spaces is narrow, a portion where the inner shell and the outer shell are brought into close contact with each other due to pressure from the outside is generated, and the detection capability (speed) may be reduced. As a result, a gap in a certain detection space can be secured, so that the detection capability does not deteriorate.
Furthermore, in the detection method in which liquid is put into the detection space, the conventional detection space molding method causes a deformation of the outer shell to change the volume of the detection space and generate a false alarm. Since the volume of the space is stable, and the amount of the detection liquid can be reduced by increasing the support area, malfunction can be prevented.

本発明において、前記樹脂を塗布する前に、前記樹脂シートの外周面に網状のネットを巻いて前記樹脂シートの凸部を前記内殻の外面に密に接触させる工程を更に備えているのが好ましい。
かかる態様によれば、網状のネットを用いることにより樹脂シートを内殻の外面に密に接触させることで、樹脂の塗布工程において、該樹脂の重量による樹脂シートのズレや歪みを防止して、検知空間を均一に確保することができるから、検知精度をより一層向上させることができる。
In the present invention, before applying the resin, the method further comprises a step of winding a net-like net around the outer peripheral surface of the resin sheet to bring the convex portion of the resin sheet into close contact with the outer surface of the inner shell. preferable.
According to this aspect, by using the net-like net to bring the resin sheet into close contact with the outer surface of the inner shell, in the resin application process, the resin sheet is prevented from being displaced or distorted by the weight of the resin. Since the detection space can be ensured uniformly, the detection accuracy can be further improved.

一方、二重殻燃料タンクの他の製造方法としては、内殻と、該内殻を包む外殻との間に検知空間を設けた二重殻燃料タンクの製造方法において、前記検知空間が形成されるように、直径約1〜5mmの多数の球が互いに接した状態で第1の面に接着された弾性を有する樹脂シートを用意して、前記球が前記内殻に向かう状態としながら、前記樹脂シートに張力を加えながら当該シートで前記内殻を包む工程と、前記内殻を包んだ前記シートの第2の面上に樹脂を塗布して外殻を形成する工程とを備えている。   On the other hand, as another manufacturing method of the double shell fuel tank, the detection space is formed in the manufacturing method of the double shell fuel tank in which the detection space is provided between the inner shell and the outer shell that wraps the inner shell. As described above, preparing a resin sheet having elasticity bonded to the first surface in a state where a large number of spheres having a diameter of about 1 to 5 mm are in contact with each other, while the sphere is directed to the inner shell, A step of wrapping the inner shell with the sheet while applying tension to the resin sheet; and a step of forming an outer shell by applying a resin on the second surface of the sheet surrounding the inner shell. .

かかる方法によれば、多数の球が互いに接した状態で内殻に接することにより、球を密に配置することができるので、外殻に負荷された応力が均一に分散されて、タンクの変形や破損を防止することができる。
ここで、樹脂シートは弾性を有しているので、多数の球が密接した状態で樹脂シートを内殻の周に沿って巻き付ける際に、樹脂シートが伸びるので、該樹脂シートを内殻に巻くことが可能となる。
また、各球の間に検知空間が形成されることにより、漏洩検知の精度や信頼性が向上する。
According to this method, since the spheres can be arranged densely by contacting the inner shell in a state where a large number of spheres are in contact with each other, the stress applied to the outer shell is uniformly distributed, and the deformation of the tank And damage can be prevented.
Here, since the resin sheet has elasticity, when the resin sheet is wound along the circumference of the inner shell in a state where a large number of balls are in close contact with each other, the resin sheet is stretched, so that the resin sheet is wound around the inner shell. It becomes possible.
In addition, since the detection space is formed between the spheres, the accuracy and reliability of leakage detection are improved.

この製造方法においても、前記樹脂を塗布する前に、前記樹脂シートの外周面に網状のネットを巻いて前記球を前記内殻の外面に圧接させる工程を更に備えているのが好ましい。   In this manufacturing method, it is preferable that the method further includes a step of winding a net-like net around the outer peripheral surface of the resin sheet to press the sphere against the outer surface of the inner shell before applying the resin.

以下、本発明の一実施例を図面にしたがって説明する。
図1〜図3は実施例1を示す。
図1に示すように二重殻燃料タンクは、内殻2と該内殻2を包む外殻1との間に検知空間3を設けている。
内殻2内には、ガソリンや、軽油、灯油等が貯留される。検知空間3内には、検知液が封入される場合、図示しないセンサにより、前記検知液の体積変化を監視することにより、タンクの外殻1および/または内殻2の破損等の異常を検出している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment.
As shown in FIG. 1, the double-shell fuel tank has a detection space 3 between an inner shell 2 and an outer shell 1 that encloses the inner shell 2.
In the inner shell 2, gasoline, light oil, kerosene and the like are stored. When the detection liquid is sealed in the detection space 3, an abnormality such as damage to the outer shell 1 and / or the inner shell 2 of the tank is detected by monitoring the volume change of the detection liquid by a sensor (not shown). is doing.

図2Bに示すように、前記タンクは、内殻2、樹脂シート4、外殻1の順に積層されてなる。外殻1内には、網状のネット5が埋設されている。
前記樹脂シート4は、内殻2の外面21に接する凸部40と、内殻2と外殻1との間に検知空間3を形成する凹溝41とを有している。図2Aに示すように、樹脂シート4の凹溝41は、隣り合う凸部40(図2Aの網点部分)同士の間に格子状に、互いに連なって形成されている。
前記外殻1を構成する樹脂は、樹脂シート4の凸部(凹所)40内に充填されており、支持部11を構成している。
As shown in FIG. 2B, the tank is formed by laminating the inner shell 2, the resin sheet 4, and the outer shell 1 in this order. A net-like net 5 is embedded in the outer shell 1.
The resin sheet 4 has a convex portion 40 that contacts the outer surface 21 of the inner shell 2 and a concave groove 41 that forms a detection space 3 between the inner shell 2 and the outer shell 1. As shown in FIG. 2A, the concave grooves 41 of the resin sheet 4 are formed in a lattice pattern between adjacent convex portions 40 (halftone dot portions in FIG. 2A).
The resin constituting the outer shell 1 is filled in the convex portion (concave portion) 40 of the resin sheet 4 and constitutes the support portion 11.

製造方法:
まず、内殻2側に向って突出する多数の凸部40と、該凸部40の間に形成され互いに連なる凹溝41とを有する形状に樹脂シート4を成形する。
Production method:
First, the resin sheet 4 is molded into a shape having a large number of convex portions 40 projecting toward the inner shell 2 side and concave grooves 41 formed between the convex portions 40 and continuous with each other.

前記樹脂シート4は樹脂の溶剤に溶けず、かつ、樹脂を浸透させない性質の樹脂からなり、樹脂シート4としては、たとえば、ポリスチレンや、ポリ塩化ビニル、ポリメタクリル樹脂など公知の熱可塑性樹脂を用いることができる。   The resin sheet 4 is made of a resin that does not dissolve in the resin solvent and does not penetrate the resin. As the resin sheet 4, for example, a known thermoplastic resin such as polystyrene, polyvinyl chloride, or polymethacrylic resin is used. be able to.

つぎに、図3Aに示す、たとえばスチール製の内殻2に、図3Bに示すように、樹脂シート4の凸部40の突出端40aが前記内殻2の外面21に接する状態で樹脂シート4により内殻2の外面21を包み込む。すなわち、樹脂シート4の凸部40の突出端40aが内殻2の外面21に接するように樹脂シート4に張力を加えながら内殻2を包むように巻き付ける。樹脂シート4と樹脂シート4との重ね部分は粘着テープ等で互いに貼付する。
したがって、樹脂シート4の凸部40が内殻2の外面21に接すると共に、凹溝41が内殻2に接しない状態で、内殻2を樹脂シート4で包み込む。
Next, in the inner shell 2 made of, for example, steel shown in FIG. 3A, the resin sheet 4 in a state where the protruding end 40 a of the convex portion 40 of the resin sheet 4 is in contact with the outer surface 21 of the inner shell 2 as shown in FIG. 3B. Wraps the outer surface 21 of the inner shell 2. That is, the resin sheet 4 is wound so as to wrap the inner shell 2 while applying tension to the protruding end 40 a of the convex portion 40 of the resin sheet 4 so as to contact the outer surface 21 of the inner shell 2. The overlapping portions of the resin sheet 4 and the resin sheet 4 are attached to each other with an adhesive tape or the like.
Accordingly, the convex portion 40 of the resin sheet 4 is in contact with the outer surface 21 of the inner shell 2, and the inner shell 2 is wrapped with the resin sheet 4 in a state where the concave groove 41 is not in contact with the inner shell 2.

その後、図3Cに示すように、樹脂シート4の凹溝41の一部を構成する外周面4bに、たとえば樹脂製の網状のネット5を巻き付け、内殻2に向って樹脂シート4を押し付ける。ネット5を樹脂シート4に巻回することにより、樹脂シート4の凸部40が内殻2の外面21に密着する。   Thereafter, as shown in FIG. 3C, a net-like net 5 made of, for example, resin is wound around the outer peripheral surface 4 b constituting a part of the groove 41 of the resin sheet 4, and the resin sheet 4 is pressed toward the inner shell 2. By winding the net 5 around the resin sheet 4, the convex portion 40 of the resin sheet 4 is in close contact with the outer surface 21 of the inner shell 2.

その後、樹脂シート4の外表面4cに樹脂を塗布して、樹脂シート4の外表面4cに樹脂層からなる外殻1を形成する。この樹脂の塗布により、樹脂シート4の凸部40の反対側の面に形成された凹所43に、ネット5を介して前記樹脂が充填される。凹所43に樹脂が充填されることにより、樹脂シート4を介して内殻2に接する支持部11が形成されると共に、凹溝41により検知空間3が形成される。
ここで、ネット5により樹脂シート4が内殻2に向って押し付けられ、樹脂シート4が内殻2に密着されているので、樹脂の重さにより樹脂シート4と内殻2とがズレたり、樹脂シート4が変形したり、皺が生じるなどの不具合を防止することができる。
Thereafter, resin is applied to the outer surface 4 c of the resin sheet 4 to form the outer shell 1 made of a resin layer on the outer surface 4 c of the resin sheet 4. By application of this resin, the resin 43 is filled through the net 5 into the recess 43 formed on the surface of the resin sheet 4 opposite to the convex portion 40. By filling the recess 43 with the resin, the support portion 11 in contact with the inner shell 2 through the resin sheet 4 is formed, and the detection space 3 is formed by the concave groove 41.
Here, since the resin sheet 4 is pressed toward the inner shell 2 by the net 5 and the resin sheet 4 is in close contact with the inner shell 2, the resin sheet 4 and the inner shell 2 are displaced due to the weight of the resin, Problems such as deformation of the resin sheet 4 and wrinkles can be prevented.

前記外殻1を成形するための樹脂は、公知の熱硬化性の樹脂であれば特に制限されないが、好ましくは、不飽和ポリエステル樹脂、ビニエステル樹脂、フェノール樹脂などが用いられる。なかでも、耐腐食性の点から、イソフタル酸系や、ビスフェノール系の不飽和ポリエステル樹脂が用いられる。
また、前記樹脂には、強化繊維を混入するのが好ましく、前記強化繊維としては、ガラス繊維、カーボン繊維、アラミド繊維など公知の強化繊維が用いられる。なかでもガラス繊維が好ましく、樹脂中のガラス含有量は、特に制限はないが、たとえば、30〜60重量%の範囲が好ましい。なお、ガラス繊維は、チョップドストランド法を併用してもよい。
The resin for forming the outer shell 1 is not particularly limited as long as it is a known thermosetting resin, but preferably, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or the like is used. Of these, isophthalic acid-based and bisphenol-based unsaturated polyester resins are used from the viewpoint of corrosion resistance.
In addition, it is preferable to mix reinforcing fibers into the resin, and known reinforcing fibers such as glass fibers, carbon fibers, and aramid fibers are used as the reinforcing fibers. Among them, glass fiber is preferable, and the glass content in the resin is not particularly limited, but for example, a range of 30 to 60% by weight is preferable. The glass fiber may be used in combination with the chopped strand method.

外殻1の成形方法としては、フィラメントワインディング法や、ハンドレイアップ法、スプレーアップ法、レジンインジェクション法など公知の成形方法を用いることができ、好ましくは、スプレーアップ法による。   As a molding method of the outer shell 1, a known molding method such as a filament winding method, a hand lay-up method, a spray-up method, or a resin injection method can be used, and preferably a spray-up method.

前記樹脂の充填を行った後、所定時間自然乾燥させることにより、樹脂の硬化を図る。外殻1の硬化により、支持部11を構成する樹脂シート4の凸部40と、内殻2との間に0.1mm〜0.2mmの隙間が生じて、内殻2の周囲全体に検知空間3を構成することができる。このことにより、タンク全体に均一な検知空間3を形成することができ、外圧による検知空間3の空間体積の変化が少なくなると共に、検知液の空間容積が小さいので検知液が少なくて済むので、誤作動の少ない漏洩検知をすることができる。   After filling the resin, the resin is naturally dried for a predetermined time to cure the resin. Due to the hardening of the outer shell 1, a gap of 0.1 mm to 0.2 mm is generated between the convex portion 40 of the resin sheet 4 constituting the support portion 11 and the inner shell 2, and the entire periphery of the inner shell 2 is detected. The space 3 can be configured. As a result, a uniform detection space 3 can be formed in the entire tank, the change in the spatial volume of the detection space 3 due to external pressure is reduced, and the detection liquid can be reduced because the spatial volume of the detection liquid is small. Leak detection with few malfunctions can be performed.

以上説明した方法で製造された二重殻燃料タンクは、樹脂シート4の凹所43内に樹脂が充填されるので、従来とは異なり、外圧によって樹脂シート4が押し潰されるおそれがなく、検知空間3を確実に設けることができる。また、支持部11と内殻2との支持面積を大きく設定できるので、外圧の集中荷重を分散して受けることができる。
また、樹脂シート4の凸部40の大きさを変更することにより、検知空間3の体積を任意に設定できる。さらに、凸部40を均一に作成することで、検知空間3を均一に作成することができる。また、凸部40を大きく作成し、検知液が封入される空間を従来よりも小さくすることで、検知液の体積変化を少なくすることにより、検知センサーの精度を高めることができる。
Since the double-shell fuel tank manufactured by the method described above is filled with the resin in the recess 43 of the resin sheet 4, unlike the conventional case, there is no possibility that the resin sheet 4 is crushed by external pressure. The space 3 can be provided reliably. Moreover, since the support area of the support part 11 and the inner shell 2 can be set large, the concentrated load of the external pressure can be received in a distributed manner.
Moreover, the volume of the detection space 3 can be arbitrarily set by changing the size of the convex portion 40 of the resin sheet 4. Furthermore, the detection space 3 can be created uniformly by creating the projections 40 uniformly. Moreover, the accuracy of the detection sensor can be increased by making the convex portion 40 large and making the space in which the detection liquid is enclosed smaller than before, thereby reducing the volume change of the detection liquid.

変形例:
前記樹脂シートの形状としては、樹脂シート4の凹溝41が互いに連なるように形成されていればよく、種々の形状を採用することができるが、たとえば、図4Aおよび図4Bに示すように、半球状の凸部40が形成された樹脂シート4Aを採用してもよい。この場合、樹脂シート4Aの半球状の凸部40が内殻2の外面21に接するように配置する。半球状の凸部40間には、凹溝41により検知空間3が形成される。
Variation:
As the shape of the resin sheet, it is sufficient that the concave grooves 41 of the resin sheet 4 are formed to be continuous with each other, and various shapes can be adopted. For example, as shown in FIGS. 4A and 4B, You may employ | adopt resin sheet 4A in which the hemispherical convex part 40 was formed. In this case, it arrange | positions so that the hemispherical convex part 40 of 4 A of resin sheets may contact the outer surface 21 of the inner shell 2. As shown in FIG. A detection space 3 is formed by the concave groove 41 between the hemispherical convex portions 40.

図5および図6は実施例2を示す。
図5Bに示すように、本実施例2の二重殻燃料タンクは、内殻2、球6、樹脂シート4B、外殻1の順に積層されてなる。外殻1内には、網状のネット5が埋設されている。
図5Aに示すように、前記球6は、多数の球6が互いに接した状態で設けられており、球6の間には検知空間3が形成されている。前記球6は、直径1mmから5mmの間の同一直径のものが用いられる。
その他の構成は、実施例1と同様であり、その説明を省略する。
5 and 6 show the second embodiment.
As shown in FIG. 5B, the double-shell fuel tank of the second embodiment is formed by laminating the inner shell 2, the sphere 6, the resin sheet 4B, and the outer shell 1 in this order. A net-like net 5 is embedded in the outer shell 1.
As shown in FIG. 5A, the sphere 6 is provided in a state where a large number of spheres 6 are in contact with each other, and a detection space 3 is formed between the spheres 6. The spheres 6 having the same diameter between 1 mm and 5 mm are used.
Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

製造方法:
まず、第1の面S1(図6B)に多数の球6が互いに接した状態に接着された樹脂シート4Bを作成する。前記樹脂シート4Bを作成するには、たとえば、特開平11−193087号公報に記載された方法などを用いることができる。
Production method:
First, a resin sheet 4B is produced in which a large number of spheres 6 are bonded to the first surface S1 (FIG. 6B). In order to produce the resin sheet 4B, for example, a method described in JP-A-11-193087 can be used.

つぎに、図6Aに示す、たとえばスチール製の内殻2に、図6Bに示すように、多数の球6が接着された前記樹脂シート4Bを、前記球6が内殻2に向かう状態としながら巻き付ける。前記巻き付けは、樹脂シート4Bに張力を加えながら内殻2を包み込むように巻き付ける。   Next, as shown in FIG. 6B, the resin sheet 4B in which a large number of balls 6 are bonded to the inner shell 2 made of steel, for example, shown in FIG. Wrap. The winding is performed so as to wrap the inner shell 2 while applying tension to the resin sheet 4B.

その後、図6Cに示すように、樹脂シート4Bの前記第1の面S1とは逆側の第2の面(外周面)S2に網状のネット5を巻き付け、前記球6を内殻2の外面21に圧接させる。
前記ネット5を巻き付けた後、図6Dに示すように、内殻2を包んだ樹脂シート4Bの第2の面S2上に樹脂などの強化プラスチックからなる外殻1を成形する。外殻1の成形は、前述の実施例1の外殻1と同様の樹脂を用いた同様の方法や、樹脂シートを巻回するシート工法等により成形する。
Thereafter, as shown in FIG. 6C, a net-like net 5 is wound around a second surface (outer peripheral surface) S2 opposite to the first surface S1 of the resin sheet 4B, and the ball 6 is attached to the outer surface of the inner shell 2. 21.
After winding the net 5, as shown in FIG. 6D, the outer shell 1 made of a reinforced plastic such as a resin is formed on the second surface S2 of the resin sheet 4B enclosing the inner shell 2. The outer shell 1 is molded by the same method using the same resin as that of the outer shell 1 of Example 1 described above, the sheet method of winding a resin sheet, or the like.

以上説明した方法で製造された二重殻燃料タンクは、球6が互いに接しているので、隣り合う球6が一点で接触しているため、各球6の間に均一な検知空間3を確実に形成することができる。
また、隣り合う球6同士が互いに接しているため、土圧等の外力が負荷された場合でも前記外力を受ける点が多いので、荷重を分散することができるから、外殻の破損や局部的な変形を不防ぐことができる。
In the double-shell fuel tank manufactured by the method described above, since the spheres 6 are in contact with each other, the adjacent spheres 6 are in contact at a single point, so that a uniform detection space 3 is reliably formed between the spheres 6. Can be formed.
In addition, since the adjacent spheres 6 are in contact with each other, even when an external force such as earth pressure is applied, there are many points that receive the external force. Can be prevented.

なお、前述の両実施例では、内殻をスチール製としたが、内殻を外殻と同じ樹脂で作成してもよい。   In both the above-described embodiments, the inner shell is made of steel, but the inner shell may be made of the same resin as the outer shell.

本発明は、たとえば給油所などの地下に埋設される燃料タンク等に適用することができる。   The present invention can be applied to, for example, a fuel tank buried underground such as a gas station.

本発明の実施例にかかる二重殻燃料タンクを示す概略横断面図である。1 is a schematic cross-sectional view showing a double shell fuel tank according to an embodiment of the present invention. 図2Aは本発明の実施例1にかかる樹脂シートの概略平面図、図2Bは二重殻燃料タンクの概略縦断面図である。FIG. 2A is a schematic plan view of a resin sheet according to Example 1 of the present invention, and FIG. 2B is a schematic longitudinal sectional view of a double shell fuel tank. 二重殻燃料タンクの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a double shell fuel tank. 図4Aは変形例を示す樹脂シートの概略平面図、図4Bは同二重殻燃料タンクの概略縦断面図である。FIG. 4A is a schematic plan view of a resin sheet showing a modification, and FIG. 4B is a schematic longitudinal sectional view of the double-shell fuel tank. 図5Aは本発明の実施例2にかかる樹脂シートの概略平面図、図5Bは同二重殻燃料タンクの概略縦断面図である。FIG. 5A is a schematic plan view of a resin sheet according to Example 2 of the present invention, and FIG. 5B is a schematic longitudinal sectional view of the double-shell fuel tank. 二重殻燃料タンクの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a double shell fuel tank.

符号の説明Explanation of symbols

1:外殻
2:内殻
3:検知空間
4,4A,4B:樹脂シート
4c:(樹脂シートの)外表面
5:ネット
6:球
11:支持部
21:(内殻の)外面
40:凸部
40a:突出端
41:凹溝
43:凹所
S1:第1の面
1: Outer shell 2: Inner shell 3: Detection space 4, 4A, 4B: Resin sheet 4c: Outer surface (of resin sheet) 5: Net 6: Ball 11: Support portion 21: Outer surface of (inner shell) 40: Convex Portion 40a: protruding end 41: recessed groove 43: recessed portion S1: first surface

Claims (4)

内殻と該内殻を包む外殻との間に検知空間を設けた二重殻燃料タンクの製造方法において、
前記内殻側に向かって突出する多数の凸部と、該凸部の間に形成され互いに連なる凹溝とを有する形状に成型された樹脂シートを予め用意する工程と、
前記樹脂シートの凸部の突出端が前記内殻の外面に接する状態で、前記樹脂シートにより前記内殻の外面を包む工程と、
前記樹脂シートの外表面に樹脂を塗布して前記樹脂シートの前記外表面に樹脂層からなる外殻を形成することで、前記凸部の反対側の面に形成された凹所に前記樹脂が充填されて前記樹脂シートを介して前記内殻に接する支持部を形成する工程とを備えた二重殻燃料タンクの製造方法。
In the method of manufacturing a double-shell fuel tank in which a detection space is provided between the inner shell and the outer shell that wraps the inner shell,
Preparing in advance a resin sheet molded into a shape having a number of convex portions projecting toward the inner shell side and concave grooves formed between the convex portions and connected to each other;
Wrapping the outer surface of the inner shell with the resin sheet in a state where the protruding end of the convex portion of the resin sheet is in contact with the outer surface of the inner shell;
By applying a resin to the outer surface of the resin sheet to form an outer shell made of a resin layer on the outer surface of the resin sheet, the resin is placed in a recess formed on the surface opposite to the convex portion. And a step of forming a support portion in contact with the inner shell through the resin sheet.
請求項1において、
前記樹脂を塗布する前に、前記樹脂シートの外周面に網状のネットを巻いて前記樹脂シートの凸部を前記内殻の外面に密に接触させる工程を更に備えた二重殻燃料タンクの製造方法。
In claim 1,
Manufacturing a double-shell fuel tank further comprising a step of winding a net-like net around the outer peripheral surface of the resin sheet and bringing the convex portion of the resin sheet into close contact with the outer surface of the inner shell before applying the resin. Method.
内殻と、該内殻を包む外殻との間に検知空間を設けた二重殻燃料タンクの製造方法において、
前記検知空間が形成されるように、直径約1〜5mmの多数の球が互いに接した状態で第1の面に接着された弾性を有する樹脂シートを用意して、前記球が前記内殻に向かう状態としながら、前記樹脂シートに張力を加えながら当該シートで前記内殻を包む工程と、
前記内殻を包んだ前記シートの第2の面上に樹脂を塗布して外殻を形成する工程とを備えた二重殻燃料タンクの製造方法。
In the method of manufacturing a double shell fuel tank in which a detection space is provided between the inner shell and the outer shell that wraps the inner shell,
In order to form the detection space, an elastic resin sheet bonded to the first surface in a state where a large number of spheres having a diameter of about 1 to 5 mm are in contact with each other is prepared. Wrapping the inner shell with the sheet while applying tension to the resin sheet,
And a step of forming an outer shell by applying a resin on the second surface of the sheet enclosing the inner shell.
請求項3において、
前記樹脂を塗布する前に、前記樹脂シートの外周面に網状のネットを巻いて前記球を前記内殻の外面に圧接させる工程を更に備えた二重殻燃料タンクの製造方法。
In claim 3,
A method for manufacturing a double-shell fuel tank, further comprising a step of winding a net-like net around the outer peripheral surface of the resin sheet and press-contacting the sphere against the outer surface of the inner shell before applying the resin.
JP2006339507A 2006-12-18 2006-12-18 Manufacturing method of double shell fuel tank Expired - Fee Related JP4593553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339507A JP4593553B2 (en) 2006-12-18 2006-12-18 Manufacturing method of double shell fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339507A JP4593553B2 (en) 2006-12-18 2006-12-18 Manufacturing method of double shell fuel tank

Publications (2)

Publication Number Publication Date
JP2008150072A true JP2008150072A (en) 2008-07-03
JP4593553B2 JP4593553B2 (en) 2010-12-08

Family

ID=39652695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339507A Expired - Fee Related JP4593553B2 (en) 2006-12-18 2006-12-18 Manufacturing method of double shell fuel tank

Country Status (1)

Country Link
JP (1) JP4593553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224673A (en) * 2013-05-16 2014-12-04 株式會社 コベア Portable burner
CN109305488A (en) * 2017-08-09 2019-02-05 中国石油化工股份有限公司 Single layer sunken tankers transformation clearance layer and the double-deck sunken tankers
CN114275386A (en) * 2021-12-25 2022-04-05 沈阳工业安装工程股份有限公司 Spherical storage tank with uniformly stressed shell
JP7512411B2 (en) 2021-07-16 2024-07-08 シェンツェン・ショックス・カンパニー・リミテッド Sensor Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711536B (en) * 2020-04-14 2020-12-01 何建智 Liquid storage container and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856323A (en) * 1955-11-09 1958-10-14 Jack C Gordon Indented resilient matted fibrous pad
US3142599A (en) * 1959-11-27 1964-07-28 Sealed Air Corp Method for making laminated cushioning material
JPS57114480A (en) * 1981-01-07 1982-07-16 Kyokuto Kaihatsu Kogyo Co Heat insulating tank
US4561292A (en) * 1984-01-19 1985-12-31 Owens-Corning Fiberglas Corporation Double-wall underground container for storing liquids and leak detecting means therefor
JPS62503024A (en) * 1985-05-28 1987-12-03 オウエンス コ−ニング フアイバ−グラス コ−ポレ−シヨン Double wall underground tank and its manufacturing method
US4927050A (en) * 1985-09-12 1990-05-22 Palazzo David T Method of making double wall storage tank for liquids from a metal tank having a patterned surface
JPH07310896A (en) * 1994-05-20 1995-11-28 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature liquid storage tank
JPH1035784A (en) * 1996-07-25 1998-02-10 Imaharu Kasei Kk Double shell tank made of frp and its production
JPH11193087A (en) * 1998-01-08 1999-07-21 Imaharu Kasei Kk Frp-made double-shell tank and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856323A (en) * 1955-11-09 1958-10-14 Jack C Gordon Indented resilient matted fibrous pad
US3142599A (en) * 1959-11-27 1964-07-28 Sealed Air Corp Method for making laminated cushioning material
JPS57114480A (en) * 1981-01-07 1982-07-16 Kyokuto Kaihatsu Kogyo Co Heat insulating tank
US4561292A (en) * 1984-01-19 1985-12-31 Owens-Corning Fiberglas Corporation Double-wall underground container for storing liquids and leak detecting means therefor
JPS62503024A (en) * 1985-05-28 1987-12-03 オウエンス コ−ニング フアイバ−グラス コ−ポレ−シヨン Double wall underground tank and its manufacturing method
US4927050A (en) * 1985-09-12 1990-05-22 Palazzo David T Method of making double wall storage tank for liquids from a metal tank having a patterned surface
JPH07310896A (en) * 1994-05-20 1995-11-28 Ishikawajima Harima Heavy Ind Co Ltd Low-temperature liquid storage tank
JPH1035784A (en) * 1996-07-25 1998-02-10 Imaharu Kasei Kk Double shell tank made of frp and its production
JPH11193087A (en) * 1998-01-08 1999-07-21 Imaharu Kasei Kk Frp-made double-shell tank and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224673A (en) * 2013-05-16 2014-12-04 株式會社 コベア Portable burner
CN109305488A (en) * 2017-08-09 2019-02-05 中国石油化工股份有限公司 Single layer sunken tankers transformation clearance layer and the double-deck sunken tankers
JP7512411B2 (en) 2021-07-16 2024-07-08 シェンツェン・ショックス・カンパニー・リミテッド Sensor Device
CN114275386A (en) * 2021-12-25 2022-04-05 沈阳工业安装工程股份有限公司 Spherical storage tank with uniformly stressed shell

Also Published As

Publication number Publication date
JP4593553B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
CN103620291B (en) High-pressure gas tank and manufacturing method of the high-pressure gas tank
JP5210432B2 (en) Pressure vessel structure and manufacturing method
JP5103871B2 (en) Gas cartridge
JP2008150072A (en) Manufacturing process of double hull fuel tank
AU2020200292B2 (en) Pressure vessel liner venting via nanotextured surface
JP5711154B2 (en) Shear boss and shell interface element of pressure vessel
US20160076700A1 (en) High pressure tank
ES2898305T3 (en) Dome Shaped Gas Vent Outlets for Pressure Vessel
US11226068B2 (en) High-pressure tank and manufacturing method of high-pressure tank
JP2008169893A (en) Pressure vessel, and its manufacturing method
WO2007107851A3 (en) Tank for high pressure fluids
US20140295323A1 (en) Method and apparatus for forming a matrix liner for a pressure vessel
JP2017173035A (en) Magnet structure and rotation angle detector
JP6713920B2 (en) High pressure tank
JP2005214271A (en) Fiber reinforced pressure vessel
JP5274082B2 (en) Fiber reinforced resin core
JP2010249146A (en) Gas tank and method of manufacturing the same
JP2010038216A (en) Pressure vessel
JP2006300138A (en) High-pressure gas storage vessel
JP2012096381A (en) Method for manufacturing high-pressure tank
JP2017089849A (en) Manufacturing method of pressure vessel
KR20130011633A (en) Sleeve for preventing end-mark of steel plate
CN202281033U (en) Cylinder with fixing structure
JP2009257355A (en) Pressure container and method for manufacturing the same
JP7474147B2 (en) Protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees