JP2008149287A - Material classification apparatus and method - Google Patents

Material classification apparatus and method Download PDF

Info

Publication number
JP2008149287A
JP2008149287A JP2006341676A JP2006341676A JP2008149287A JP 2008149287 A JP2008149287 A JP 2008149287A JP 2006341676 A JP2006341676 A JP 2006341676A JP 2006341676 A JP2006341676 A JP 2006341676A JP 2008149287 A JP2008149287 A JP 2008149287A
Authority
JP
Japan
Prior art keywords
flow path
substance
size
plate
cover glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341676A
Other languages
Japanese (ja)
Other versions
JP4876891B2 (en
Inventor
Norifumi Ikeda
憲文 池田
Koichi Morita
公一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006341676A priority Critical patent/JP4876891B2/en
Publication of JP2008149287A publication Critical patent/JP2008149287A/en
Application granted granted Critical
Publication of JP4876891B2 publication Critical patent/JP4876891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material classification apparatus and method, which have a simple constitution, and enable a size classification with a high precision. <P>SOLUTION: A passage 2 becoming gradually shallower toward the downstream side while inclining the bottom is formed on a glass plate (passage substrate) 1. A cover glass 3 covers so as to occlude a part of the passage 2 in the passage direction. Scale marks m<SB>1</SB>-m<SB>5</SB>are attached to the cover glass 3 at a predetermined interval along the passage. When a sample solution is flowed from the upstream side end (passage starting edge 2b) of the passage 2, a collection is carried out from what has a big size in turn, and the collection of what has a smaller size is carried out at the downstream side. The size of the collected material s can be discriminated from the scale mark of the cover glass 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶液中の微粒子や不純物の捕集又は検出に用いられ、特に細胞やバクテリア、生体高分子(例えば、タンパクやDNA)等の生体物質をサイズ分級するのに好適な物質分級装置及び物質分級方法に関する。   The present invention is used for collecting or detecting fine particles and impurities in a solution, and particularly suitable for classifying biological materials such as cells, bacteria, biopolymers (for example, proteins and DNA) and the like. It relates to a substance classification method.

溶液中の物質を分級するための技術として、例えば特許文献1〜3に示す技術が知られている。特許文献1では、マイクロ流路中に収容したサイズの異なる粒子に、交流電場を与えることにより粒子を選別している。また、特許文献2には、マイクロ流路に電極を配列し、粒子の電荷特性により粒子を選別する方法が記載されている。また、特許文献3には、サイズの異なる粒子を含む溶液の流路に、粒子のサイズに応じて異なる層流を形成することで、粒子を分級する方法が記載されている。
特開2004−243238号公報 特開平5−126796号公報 特開2005−205387号公報
As a technique for classifying substances in a solution, for example, techniques shown in Patent Documents 1 to 3 are known. In Patent Document 1, particles are selected by applying an alternating electric field to particles of different sizes accommodated in a microchannel. Patent Document 2 describes a method in which electrodes are arranged in microchannels and particles are selected based on the charge characteristics of the particles. Patent Document 3 describes a method of classifying particles by forming different laminar flows according to the size of particles in a flow path of a solution containing particles of different sizes.
JP 2004-243238 A JP-A-5-126696 JP 2005-205387 A

しかしながら、電界を利用する特許文献1及び2の方法では、流路に電界を形成するための電極を設ける必要がある他、分級が粒子の電荷特性に依存して行われるため、サイズによる分級を目的とする場合は精度の良い結果が得られなかった。また、分級できる物質が荷電粒子に限定されるという問題もあった。   However, in the methods of Patent Documents 1 and 2 that use an electric field, it is necessary to provide an electrode for forming an electric field in the flow path, and classification is performed depending on the charge characteristics of the particles. When intended, accurate results could not be obtained. There is also a problem that substances that can be classified are limited to charged particles.

また、特許文献3に開示されているような方法では、流路構造が複雑になるほか、送流を形成させるため流体の供給源(ポンプ)が2系統必要であり、かつ、流速や流量の厳密な制御を行う必要がある。
本発明は、上述のような問題点に鑑みてなされたものであり、簡便な構成でかつ精度の高いサイズ分級が可能な物質分級装置及び物質分級方法を提供することをその目的とする。
In addition, the method disclosed in Patent Document 3 complicates the flow path structure, requires two systems of fluid supply sources (pumps) to form a flow, and has a flow rate and flow rate. Strict control is required.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a substance classification apparatus and a substance classification method capable of size classification with a simple configuration and high accuracy.

上記課題を解決するために、本発明の請求項1による物質分級装置は、表面に沿って延びる凹状の流路を形成した流路基板と、前記流路基板に重ねられ、前記流路の流路方向の一部を覆う板と、を備え、前記流路は下流側に向うに従って浅くなっており、前記板と前記流路の底面との間に前記流路中を流れる物質の捕集空間を形成する物質分級装置であって、流路方向に沿って付され、前記物質が捕集される流路方向の位置に対応して当該物質のサイズを特定可能な目盛を備えることを特徴とする。   In order to solve the above-described problem, a substance classification apparatus according to claim 1 of the present invention includes a flow path substrate in which a concave flow path extending along a surface is formed, and is superimposed on the flow path substrate. A plate that covers a part of the path direction, and the flow path becomes shallower toward the downstream side, and a collection space for the substance flowing in the flow path between the plate and the bottom surface of the flow path A material classifying device for forming a material, comprising a scale that is attached along a flow path direction and that can specify a size of the material corresponding to a position in the flow path direction where the substance is collected. To do.

このような構成の物質分級装置においては、溶液中の物質の径が、板と流路の底面との間の距離(以下、「ギャップ」と記す。)とほぼ同等の大きさであると捕集される。ギャップは、流路方向の位置に応じた大きさとなることから、物質が捕集された流路方向の位置によって捕集される物質のサイズを特定できる。物質のサイズに直接相関するのはギャップの大きさであるが、流路方向に沿って目盛を付す方が、流路基板を水平に配置する場合に見やすくなり、また、多くの場合、ギャップの大きさよりも捕集空間の流路方向の長さの方が大きくなるので、サイズを判別する精度が高くなる。   In the substance classifier having such a configuration, the diameter of the substance in the solution is approximately equal to the distance between the plate and the bottom surface of the channel (hereinafter referred to as “gap”). Be collected. Since the gap has a size corresponding to the position in the flow path direction, the size of the substance to be collected can be specified by the position in the flow path direction where the substance is collected. It is the size of the gap that directly correlates with the size of the substance, but the scale along the channel direction is easier to see when the channel substrate is placed horizontally, and in many cases the gap Since the length of the collection space in the flow path direction is larger than the size, the accuracy of determining the size is increased.

本発明の請求項2による物質分級装置は、請求項1において、前記流路は、底面が前記流路基板の基板面に対し傾斜面として形成されていることを特徴とする。
本発明の請求項3による物質分級装置は、請求項1又は2において、前記目盛は、前記流路の下流側端部を基準とした流路方向の任意の位置に付されていることを特徴とする。
本発明の請求項4による物質分級装置は、請求項1〜3のいずれかにおいて、前記目盛を前記板又は前記流路基板に付したことを特徴とする。
A substance classification apparatus according to claim 2 of the present invention is characterized in that, in claim 1, the flow path has a bottom surface formed as an inclined surface with respect to the substrate surface of the flow path substrate.
The substance classification apparatus according to claim 3 of the present invention is the substance classification apparatus according to claim 1 or 2, wherein the scale is attached at an arbitrary position in the flow path direction with reference to the downstream end of the flow path. And
A substance classification apparatus according to a fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the scale is attached to the plate or the flow path substrate.

本発明の請求項5による物質分級装置は、請求項1〜4のいずれかにおいて、前記板を流路方向に沿ってスライド可能にするスライド機構を備えることを特徴とする。
本発明の請求項6による物質分級装置は、請求項5において、前記スライド機構は、前記流路方向に沿って前記板を駆動する駆動装置を備えることを特徴とする。
本発明の請求項7による物質分級装置は、請求項5又は6において、前記スライド機構は、前記流路方向に沿って前記板を案内する案内部を備えることを特徴とする。
A substance classification device according to a fifth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, a slide mechanism that enables the plate to slide along the flow path direction is provided.
The substance classification apparatus according to a sixth aspect of the present invention is the substance classification apparatus according to the fifth aspect, wherein the slide mechanism includes a drive device that drives the plate along the flow path direction.
A substance classification apparatus according to a seventh aspect of the present invention is characterized in that, in the fifth or sixth aspect, the slide mechanism includes a guide portion that guides the plate along the flow path direction.

本発明の請求項8による物質分級方法は、表面に沿って延びる凹状の流路を形成した流路基板と、前記流路基板に重ねられ、前記流路の流路方向の一部を覆う板と、を備え、前記流路は下流側に向うに従って浅くなっており、前記板と前記流路の底面との間に前記流路中を流れる物質の捕集空間を形成する物質分級装置を用いた物質分級方法であって、前記物質が捕集された流路方向の位置に基づいて、その捕集された物質のサイズを特定することを特徴とする。
本発明の請求項9による物質分級方法は、請求項8において、前記捕集空間に物質を捕集後、捕集された目的の物質を解放する位置まで前記板を上流側にスライドさせて、前記目的の物質を回収することを特徴とする。
A substance classification method according to an eighth aspect of the present invention includes a flow path substrate in which a concave flow path extending along a surface is formed, and a plate that is superimposed on the flow path substrate and covers a part of the flow path in the flow path direction. The flow path is shallower toward the downstream side, and a substance classifying device that forms a collection space for the substance flowing in the flow path between the plate and the bottom surface of the flow path is used. The method for classifying substances is characterized in that the size of the collected substance is specified based on the position in the flow path direction where the substance is collected.
The substance classification method according to claim 9 of the present invention is the substance classification method according to claim 8, wherein after collecting the substance in the collection space, the plate is slid upstream to a position where the collected target substance is released, The target substance is recovered.

本発明によれば、簡便な装置によって、精度の高いサイズ分級を行うことができる。   According to the present invention, highly accurate size classification can be performed with a simple apparatus.

次に、図面を参照して本発明の実施の形態である実施例1〜実施例3について説明する。
[第1実施例]
(構成)
図1(a)は第1実施例の物質捕集装置Aの側面図、(b)は平面図であり、図2は物質捕集装置Aに流路2を形成する方法を示す図、図3は流路2の構造を説明するための図である。
Next, Examples 1 to 3 which are embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
(Constitution)
FIG. 1A is a side view of the substance collection device A of the first embodiment, FIG. 1B is a plan view, and FIG. 2 is a diagram showing a method for forming the flow path 2 in the substance collection device A. 3 is a diagram for explaining the structure of the flow path 2.

図1に示す物質捕集装置Aは、流路2を形成したガラス板(10×20mm、厚さ1mm)1に、カバーガラス3を重ねて形成した。このガラス板1が本発明の流路基板に相当し、カバーガラス3が本発明の板に相当する。
流路2は、図2に示すようにして作製した。まず、ガラス板1の長手方向片側端部の裏面側に厚さ500μmのSiウエハを敷き、ガラス板1を水平面に対して傾斜させた状態で固定した。このとき、ガラス板1は約1.43°(=Tan(0.5/20))の傾斜勾配で固定されていることになる。この後、ダイシングソーを用いて、Siウエハを敷いた側から300μmの切り込み量でガラスの長手方向へ幅100μmの直線の溝を形成した。これにより、ガラス板1表面に、底面が流路方向に沿って約1.43°傾斜した直線溝状の流路2が約12mmの長さで形成される。
The substance collection apparatus A shown in FIG. 1 is formed by overlapping a cover glass 3 on a glass plate (10 × 20 mm, thickness 1 mm) 1 on which a flow path 2 is formed. The glass plate 1 corresponds to the flow path substrate of the present invention, and the cover glass 3 corresponds to the plate of the present invention.
The flow path 2 was produced as shown in FIG. First, a Si wafer having a thickness of 500 μm was laid on the back side of one end portion in the longitudinal direction of the glass plate 1, and the glass plate 1 was fixed while being inclined with respect to the horizontal plane. At this time, the glass plate 1 is fixed at an inclination of about 1.43 ° (= Tan (0.5 / 20)). Thereafter, using a dicing saw, a straight groove having a width of 100 μm was formed in the longitudinal direction of the glass with a cutting amount of 300 μm from the side on which the Si wafer was laid. As a result, a straight groove-like channel 2 having a bottom surface inclined by about 1.43 ° along the channel direction is formed on the surface of the glass plate 1 with a length of about 12 mm.

カバーガラス3には、市販のカバーガラス(8×12mm、厚さ0.12〜0.17mm)を用い、流路2の流路終端2a(流路2の底が浅くなる方の端部)から上流側に0.2mmの位置で固定した。流路2底面の傾斜が約1.43°の場合、流路2の深さと流路終端2aからの距離とは表1に示す関係にある。このため、流路2の底面とカバーガラス3の下流側端部間のギャップGは、約5μm(=0.2×(Tan1.43°))となる(図3参照)。また、このカバーガラス3には、流路方向に沿って所定間隔(例えば、1.5mm間隔)で目盛線m〜mを付した。 A commercially available cover glass (8 × 12 mm, thickness 0.12 to 0.17 mm) is used for the cover glass 3, and the channel end 2 a of the channel 2 (the end of the channel 2 whose bottom is shallower) And fixed upstream at a position of 0.2 mm. When the inclination of the bottom surface of the flow path 2 is about 1.43 °, the depth of the flow path 2 and the distance from the flow path end 2a are in the relationship shown in Table 1. For this reason, the gap G between the bottom face of the flow path 2 and the downstream end of the cover glass 3 is about 5 μm (= 0.2 × (Tan1.43 °)) (see FIG. 3). In addition, scale lines m 1 to m 5 were attached to the cover glass 3 at predetermined intervals (for example, 1.5 mm intervals) along the flow path direction.

Figure 2008149287
Figure 2008149287

流路始端2b側へ、サンプル溶液を導入するためのチューブ5(外径約300μm)を固定し、サンプル溶液が漏れない様、チューブ5の周辺をPDMS(polydimethylsiloxane)でシールした。また、ガラス板1上の流路終端2a側に、流路終端2aをPDMSにより作製した側壁4aで取り囲み、廃液を回収する回収用チャンバ4を形成した。   A tube 5 (outside diameter of about 300 μm) for introducing the sample solution was fixed to the flow path start end 2b side, and the periphery of the tube 5 was sealed with PDMS (polydimethylsiloxane) so that the sample solution did not leak. Further, on the side of the flow path end 2a on the glass plate 1, the flow path end 2a is surrounded by a side wall 4a made of PDMS, thereby forming a recovery chamber 4 for recovering waste liquid.

(作用及び効果)
次に、上記構成の物質捕集装置Aの使用方法や作用効果について説明する。
物質捕集装置Aの使用時には、流路始端2bからポンプによってサンプル溶液を流路2に送り出す。流路2の途中、カバーガラス3の固定部分では、サンプル溶液中の物質のうち、カバーガラス3と流路2の底面間のギャップGと略同径の物質が挟まれ、捕集される。ギャップGの大きさは、流路2の深さに相当し、流路2底面の傾斜により下流側に向かうに従って小さくなっているため、サイズの小さな物質ほど下流側で捕集されることとなり、表1に示すように流路方向の位置と捕集物質のサイズが相関する。したがって、図1(a)及び(b)に示すように種々のサイズの物質を流した場合には、捕集物質sがそのサイズに応じて流路方向に分布し、その物質のサイズは、流路方向に沿って所定間隔に付されたカバーガラス3の目盛線によって知ることができる。例えば、表1に示す関係にある場合、流路終端2aから3.2mmの位置に付された目盛線m付近にある物質は、外径が80μm前後であることが確認できる。
(Function and effect)
Next, the usage method and effect of the substance collection apparatus A having the above configuration will be described.
When the substance collection device A is used, the sample solution is sent out from the flow path start end 2b to the flow path 2 by a pump. In the middle of the flow path 2, among the substances in the sample solution, a substance having substantially the same diameter as the gap G between the cover glass 3 and the bottom surface of the flow path 2 is sandwiched and collected. The size of the gap G corresponds to the depth of the flow path 2 and becomes smaller toward the downstream side due to the inclination of the bottom surface of the flow path 2, so that a substance having a smaller size is collected on the downstream side, As shown in Table 1, the position in the flow path direction correlates with the size of the collected substance. Accordingly, as shown in FIGS. 1A and 1B, when substances of various sizes are flowed, the trapping substance s is distributed in the flow direction according to the size, and the size of the substance is It can be known from the scale lines of the cover glass 3 attached at predetermined intervals along the flow path direction. For example, in the case of the relationship shown in Table 1, it can be confirmed that the substance in the vicinity of the graduation line m 2 provided at a position of 3.2 mm from the channel end 2a has an outer diameter of about 80 μm.

サンプル溶液を流し終わった後は、ガラス板1やカバーガラス3が透明部材であるので、ガラス板1にカバーガラス3を被せたまま目的のサイズの物質を顕微鏡で観察することもできるし、捕集物質sの中から目的のサイズの物質sを取り出してもよい。目的の物質sを取り出す場合には、ポンプからの送液を停止し、カバーガラス3を取り外す。このとき、ガラス板1とカバーガラス3の間に残った溶液を下流側からスポイトなどで吸い取り、除去した後に、カバーガラス3を取り外すと、取り外し時に下流側の捕集物質sが上流側に流れ出したりするのを防止でき、捕集時の状態を保存したまま、目的の物質を取り出すことができる。また、ガラス板1を裏返すなどして残液を除去すると、図1(c)に示すように捕集時の状態を維持して、目盛線mが付されたカバーガラス3の側に捕集物質sを取り出すことができるので、サイズを正確に特定した状態で取り出すことができる。   After flowing the sample solution, the glass plate 1 and the cover glass 3 are transparent members, so that the target size substance can be observed with a microscope while the glass plate 1 is covered with the cover glass 3. You may take out the substance s of the target size from the collection material s. When taking out the target substance s, the liquid feeding from a pump is stopped and the cover glass 3 is removed. At this time, if the solution remaining between the glass plate 1 and the cover glass 3 is sucked and removed from the downstream side with a dropper or the like and then removed, when the cover glass 3 is removed, the downstream collection substance s flows out to the upstream side at the time of removal. The target substance can be taken out while preserving the state at the time of collection. Moreover, when the residual liquid is removed by turning the glass plate 1 upside down, the state at the time of collection is maintained as shown in FIG. 1 (c), and the collection is performed on the cover glass 3 side with the graduation line m attached. Since the substance s can be taken out, it can be taken out in a state where the size is specified accurately.

なお、ギャップGよりも外径が小さな物質は、流路終端2aまで流されて、回収用チャンバ4内に回収される。
以上のように、カバーガラス3の流路方向に沿って流路方向の位置に応じた目盛線を付すことで、捕集物質のサイズを特定できるので、種々の物質の混合溶液をサイズ分級したり、目的の物質のサイズを特定したり、目的サイズの物質を分離したりすることができる。物質のサイズに直接相関するのはギャップの大きさであるが、このように、流路方向に沿って目盛を付す方が、流路基板を水平に配置するので見やすく、また、ギャップの大きさよりも捕集空間の流路方向の長さの方が大きいので、サイズを判別する精度が高くなる。
Note that a substance having an outer diameter smaller than the gap G flows to the flow path end 2 a and is collected in the collection chamber 4.
As described above, since the size of the collected substance can be specified by attaching a scale line corresponding to the position in the flow path direction along the flow path direction of the cover glass 3, the mixed solution of various substances is classified. Or the size of the target substance can be specified, or the target size substance can be separated. It is the size of the gap that directly correlates with the size of the material, but it is easier to see the scale along the flow path direction because the flow path substrate is placed horizontally, as compared to the size of the gap. In addition, since the length of the collection space in the flow path direction is larger, the accuracy of determining the size becomes higher.

なお、第1実施例では、流路方向に沿って所定間隔で目盛線m〜mを付したが、これに限らず、例えば、目的の物質のサイズに応じた流路方向位置にのみ目盛線を付してもよい。また、第1実施例では、目盛線を付しているだけだが、目盛線と併せて、当該目盛線の位置により特定される物質の外径サイズの数値を付したりしてもよい。 In the first embodiment, the scale lines m 1 to m 5 are attached at predetermined intervals along the flow path direction. However, the present invention is not limited to this, and for example, only the position in the flow path direction according to the size of the target substance. A scale line may be attached. In the first embodiment, only the scale line is attached, but a numerical value of the outer diameter size of the substance specified by the position of the scale line may be attached together with the scale line.

[第2実施例]
次に、第2実施例について説明する。
図4に、第2実施例の物質捕集装置Aを示す(図4(a)は側面図、(b)は(a)の物質捕集装置Aのカバーガラス3を上流側へスライドさせた場合の平面図である)。第2実施例の物質捕集装置Aは、第1実施例とほぼ同様の構成であるが、本発明の駆動装置である圧電素子をカバーガラス3に接続し、カバーガラス3を流路方向に沿ってスライド可能にした点が異なっている。以下、この異なる点を中心に説明し、その他の部分は説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described.
FIG. 4 shows a substance collection apparatus A of the second embodiment (FIG. 4A is a side view, and FIG. 4B is a slide of the cover glass 3 of the substance collection apparatus A of FIG. 4A to the upstream side. Is a plan view of the case). The substance collection device A of the second embodiment has substantially the same configuration as that of the first embodiment, but the piezoelectric element which is the driving device of the present invention is connected to the cover glass 3 and the cover glass 3 is directed in the flow path direction. It is different in that it can slide along. Hereinafter, the description will be focused on the different points, and description of the other parts will be omitted.

図4の物質捕集装置Aでは、ガラス板1の板厚方向に突出するリブ6が、当該ガラス板1の表面側の周囲に沿って形成されている。なお、リブ6は、ガラス板1の短手方向の一端側であって、流路2の上流側では未形成となっている。また、反対の端部側に形成され部分は、流路終端2aから流出する溶液の回収用チャンバ4を形成する。カバーガラス3は、上記のように圧電素子に接続された状態でガラス板1の表面に重ねられており、リブ6に案内され、流路方向に沿ってスライド可能になっている。リブ6は、本発明の案内部に相当し、例えば、樹脂材料、金属材料やガラスで形成できる。リブ6と圧電素子によって本発明のスライド機構が構成されている。なお、流路2の構造や形成方法、ガラス板1及びカバーガラス3の材質や大きさ、カバーガラス3に所定間隔の目盛線が付されている点等は、第1実施例と同じである。   In the substance collection device A of FIG. 4, ribs 6 protruding in the thickness direction of the glass plate 1 are formed along the periphery on the surface side of the glass plate 1. The rib 6 is not formed on one end side in the short direction of the glass plate 1 and on the upstream side of the flow path 2. Further, the portion formed on the opposite end side forms a recovery chamber 4 for the solution flowing out from the channel end 2a. The cover glass 3 is superimposed on the surface of the glass plate 1 in a state of being connected to the piezoelectric element as described above, guided by the rib 6, and slidable along the flow path direction. The rib 6 corresponds to the guide portion of the present invention, and can be formed of, for example, a resin material, a metal material, or glass. The slide mechanism of the present invention is constituted by the rib 6 and the piezoelectric element. The structure and forming method of the flow path 2, the material and size of the glass plate 1 and the cover glass 3, and the fact that scale lines with a predetermined interval are attached to the cover glass 3 are the same as in the first embodiment. .

次に、上記構成の物質捕集装置Aの使用方法や作用効果について説明する。
物質捕集装置Aの使用時には、カバーガラス3を駆動して、目的物質のサイズに応じ当該物質を捕集できる位置にカバーガラス3の位置を設定する。つまり、第2実施例では、カバーガラス3の位置を変更することで、1つの物質捕集装置Aで種々のサイズの物質の捕集に対応できる。カバーガラス3の位置を設定したら、サンプル溶液をポンプで送り出す。これにより、第1実施例と同様に、ギャップとほぼ同径の物質sが、カバーガラス3と流路2の底面との間に捕集される(図4(a)参照)。捕集物質sのサイズは、カバーガラス3に付された目盛線m〜mによって確認できる。なお、第2実施例では、カバーガラス3の位置を調整することで、流路終端2aからの位置が変わるので、カバーガラス3の調整後に流路終端2aからの位置を確認しておく必要がある。
Next, the usage method and effect of the substance collection apparatus A having the above configuration will be described.
When using the substance collection device A, the cover glass 3 is driven, and the position of the cover glass 3 is set at a position where the substance can be collected according to the size of the target substance. In other words, in the second embodiment, by changing the position of the cover glass 3, the collection of substances of various sizes can be handled by the single substance collection device A. After setting the position of the cover glass 3, the sample solution is pumped out. As a result, as in the first embodiment, the substance s having the same diameter as the gap is collected between the cover glass 3 and the bottom surface of the flow path 2 (see FIG. 4A). The size of the trapping substance s can be confirmed by the scale lines m 1 to m 5 attached to the cover glass 3. In the second embodiment, the position from the channel end 2a is changed by adjusting the position of the cover glass 3. Therefore, after the cover glass 3 is adjusted, it is necessary to confirm the position from the channel end 2a. is there.

サンプル溶液を流し終わった後は、ガラス板1やカバーガラス3が透明部材であるので、ガラス板1にカバーガラス3を被せたまま目的のサイズの物質を顕微鏡で観察することもできるし、捕集物質sの中から目的のサイズの物質sを取り出してもよい。
目的の物質sを取り出す場合には、ポンプからの送液を停止し、圧電素子で駆動し、目的の捕集物質sを解放する位置までカバーガラス3をスライドさせる。これを図4(b)により具体的に説明する。図4(b)は、あらかじめサイズが特定された目的物質をサンプル溶液から捕集する例である。この場合、サンプル溶液を流す前に、目的物質s1(図中の黒塗りの丸)がカバーガラス3の下流側端部付近で捕集されるようにカバーガラス3の位置を設定する。サンプル溶液を流し終わった後、捕集された目的物質s1を解放する位置までカバーガラス3をスライドさせ、そのままの状態でポンプから再び送液すると、解放した部分の目的物質s1のみが回収用チャンバ4に送り出される。これにより、回収用チャンバ4から目的物質s1を回収できる。なお、上流側からポンプで送液する代わりに、スポイトやポンプでなどで下流側から溶液を吸引し、目的物質s1を回収してもよい。
After flowing the sample solution, the glass plate 1 and the cover glass 3 are transparent members, so that the target size substance can be observed with a microscope while the glass plate 1 is covered with the cover glass 3. You may take out the substance s of the target size from the collection material s.
In order to take out the target substance s, liquid feeding from the pump is stopped, and the cover glass 3 is slid to a position where the target collection substance s is released by driving with a piezoelectric element. This will be specifically described with reference to FIG. FIG. 4B shows an example in which a target substance whose size is specified in advance is collected from a sample solution. In this case, before flowing the sample solution, the position of the cover glass 3 is set so that the target substance s1 (black circle in the figure) is collected near the downstream end of the cover glass 3. After flowing the sample solution, the cover glass 3 is slid to the position where the collected target substance s1 is released, and then fed again from the pump as it is, so that only the released target substance s1 is in the collection chamber. 4 is sent out. Thereby, the target substance s1 can be recovered from the recovery chamber 4. Instead of pumping liquid from the upstream side, the target substance s1 may be recovered by sucking the solution from the downstream side with a dropper or a pump.

以上のように、カバーガラス3を流路方向に沿ってスライド可能にすることで、種々のサイズの物質を捕集でき、さらに、捕集した物質の中から目的のサイズの物質を容易に回収できる。
なお、第2実施例では、捕集物質s1のみを回収する場合について説明したが、上記操作を繰り返せば、サイズの小さなものから大きなものへ捕集物質s2〜s4を順次回収することができる。
また、カバーガラスのスライド方法としては、圧電素子に限らず、目的物質のサイズ(スライド距離)に応じた方法(アクチュエータ)が利用できる。
As described above, by making the cover glass 3 slidable along the flow path direction, it is possible to collect substances of various sizes, and easily collect substances of the desired size from the collected substances. it can.
In the second embodiment, the case where only the trapping substance s1 is recovered has been described. However, if the above operation is repeated, the trapping substances s2 to s4 can be sequentially recovered from the small size to the large one.
Further, the method of sliding the cover glass is not limited to the piezoelectric element, and a method (actuator) corresponding to the size (slide distance) of the target substance can be used.

[第3実施例]
次に、第3実施例について説明する。
図5に、第3実施例の物質捕集装置Aを示す(図5(a)は側面図、(b)は(a)の物質捕集装置Aのカバーガラス3を上流側へスライドさせた場合の平面図、(c)はカバーガラス3を取り外した状態の平面図である。)。第3実施例の物質捕集装置Aは、目盛線m〜mをカバーガラス3でなく、ガラス板1の方に付した点が第2実施例と異なっている。この目盛線m〜mは、印刷やエッチングなどの方法でガラス板1の裏面側に、流路終端2aから所定距離に付されている。この目盛線m〜mは、ガラス板1及びカバーガラス3が透明であるので、表側からでも確認できる。なお、その他の部分は第2実施例と同様であるので説明を省略する。
[Third embodiment]
Next, a third embodiment will be described.
FIG. 5 shows a substance collection apparatus A of the third embodiment (FIG. 5A is a side view, and FIG. 5B is a slide of the cover glass 3 of the substance collection apparatus A of FIG. 5A to the upstream side. (C) is a plan view with the cover glass 3 removed). The material collection device A of the third embodiment is different from the second embodiment in that the scale lines m 1 to m 5 are attached not to the cover glass 3 but to the glass plate 1. The scale lines m 1 to m 5 are attached to the rear surface side of the glass plate 1 by a method such as printing or etching at a predetermined distance from the channel end 2a. The scale lines m 1 to m 5 can be confirmed even from the front side because the glass plate 1 and the cover glass 3 are transparent. Since other parts are the same as those of the second embodiment, description thereof is omitted.

以上のように、目盛線m〜mをガラス板1側に付すと、サンプル溶液を流し終わった後、カバーガラス3をスライドさせても目盛線m〜mが移動しないので、目的のサイズを正確に把握して、捕集物質s1を回収できる(図5(b)参照)。
なお、流路2に残った溶液を下流側からスポイトなどで吸い取り、除去すれば、図5(c)に示すようにカバーガラス3を完全に取り外してもサイズ分級した状態を維持できるので、この状態から目的物質を回収してもよい。
また、図6に示すように、目盛線が付された台座7をガラス板1の下に敷いて、サイズの判定を行ったりしてもよい。
As described above, when the scale lines m 1 to m 5 are attached to the glass plate 1 side, the scale lines m 1 to m 5 do not move even if the cover glass 3 is slid after the sample solution has finished flowing. The collected material s1 can be recovered by accurately grasping the size (see FIG. 5B).
If the solution remaining in the flow path 2 is sucked and removed from the downstream side with a dropper or the like, the size-classified state can be maintained even if the cover glass 3 is completely removed as shown in FIG. The target substance may be recovered from the state.
Further, as shown in FIG. 6, the size may be determined by laying a pedestal 7 with a graduation line under the glass plate 1.

(a)は本実施形態の物質捕集装置の側面図、(b)は平面図である。(A) is a side view of the substance collection apparatus of this embodiment, (b) is a top view. 物質捕集装置に流路を形成する方法を示す図である。It is a figure which shows the method of forming a flow path in a substance collection apparatus. 流路2の構造を説明するための図である。FIG. 3 is a diagram for explaining the structure of a flow path 2. (a)は第2実施例の物質捕集装置の側面図、(b)は(a)の物質捕集装置のカバーガラスを上流側へスライドさせた場合の平面図である。(A) is a side view of the substance collection apparatus of 2nd Example, (b) is a top view at the time of sliding the cover glass of the substance collection apparatus of (a) to an upstream side. (a)は第3実施例の物質捕集装置の側面図、(b)は(a)の物質捕集装置のカバーガラス3を上流側へスライドさせた場合の平面図、(c)は(a)の物質捕集装置のカバーガラスを取り外した状態の平面図である。(A) is a side view of the material collection device of the third embodiment, (b) is a plan view when the cover glass 3 of the material collection device of (a) is slid upstream, and (c) is ( It is a top view of the state which removed the cover glass of the substance collection apparatus of a). 目盛線付きの台座の使用状態を説明するための図である。It is a figure for demonstrating the use condition of the base with a scale line.

符号の説明Explanation of symbols

1 ガラス板
2 流路
2a 流路終端
2b 流路始端
3 カバーガラス
4 回収用チャンバ
4a 側壁
5 チューブ
6 リブ
A 物質捕集装置
G ギャップ
m 目盛線
DESCRIPTION OF SYMBOLS 1 Glass plate 2 Channel 2a Channel end 2b Channel start 3 Cover glass 4 Collection chamber 4a Side wall 5 Tube 6 Rib A Material collection device G Gap m Scale line

Claims (9)

表面に沿って延びる凹状の流路を形成した流路基板と、
前記流路基板に重ねられ、前記流路の流路方向の一部を覆う板と、を備え、
前記流路は下流側に向うに従って浅くなっており、前記板と前記流路の底面との間に前記流路中を流れる物質の捕集空間を形成する物質分級装置であって、
流路方向に沿って付され、前記物質が捕集される流路方向の位置に対応して当該物質のサイズを特定可能な目盛を備えることを特徴とする物質分級装置。
A flow path substrate formed with a concave flow path extending along the surface;
A plate overlaid on the flow path substrate and covering a part of the flow path direction of the flow path,
The flow path is shallower toward the downstream side, and is a substance classification device that forms a collection space for a substance flowing in the flow path between the plate and the bottom surface of the flow path,
A substance classification apparatus comprising a scale attached along a flow path direction and capable of specifying a size of the substance corresponding to a position in the flow path direction where the substance is collected.
前記流路は、底面が前記流路基板の基板面に対し傾斜面として形成されていることを特徴とする請求項1に記載の物質分級装置。   The substance classification device according to claim 1, wherein a bottom surface of the channel is formed as an inclined surface with respect to a substrate surface of the channel substrate. 前記目盛は、前記流路の下流側端部を基準とした流路方向の任意の位置に付されていることを特徴とする請求項1又は2に記載の物質分級装置。   3. The substance classification device according to claim 1, wherein the scale is attached to an arbitrary position in a flow path direction with reference to a downstream end portion of the flow path. 前記目盛を、前記板又は前記流路基板に付したことを特徴とする請求項1〜3のいずれかに記載の物質分級装置。   The substance classification device according to claim 1, wherein the scale is attached to the plate or the flow path substrate. 前記板を流路方向に沿ってスライド可能にするスライド機構を備えることを特徴とする請求項1〜4のいずれかに記載の物質分級装置。   The substance classification apparatus according to any one of claims 1 to 4, further comprising a slide mechanism that allows the plate to slide along a flow path direction. 前記スライド機構は、前記流路方向に沿って前記板を駆動する駆動装置を備えることを特徴とする請求項5に記載の物質分級装置。   The substance classification device according to claim 5, wherein the slide mechanism includes a driving device that drives the plate along the flow path direction. 前記スライド機構は、前記流路方向に沿って前記板を案内する案内部を備えることを特徴とする請求項5又は6に記載の物質分級装置。   The substance classification device according to claim 5, wherein the slide mechanism includes a guide unit that guides the plate along the flow path direction. 表面に沿って延びる凹状の流路を形成した流路基板と、
前記流路基板に重ねられ、前記流路の流路方向の一部を覆う板と、を備え、
前記流路は下流側に向うに従って浅くなっており、前記板と前記流路の底面との間に前記流路中を流れる物質の捕集空間を形成する物質分級装置を用いた物質分級方法であって、
前記物質が捕集された流路方向の位置に基づいて、その捕集された物質のサイズを特定することを特徴とする物質分級方法。
A flow path substrate formed with a concave flow path extending along the surface;
A plate overlaid on the flow path substrate and covering a part of the flow path direction of the flow path,
The flow path is shallower toward the downstream side, and is a material classification method using a material classification device that forms a collection space for a substance flowing in the flow path between the plate and the bottom surface of the flow path. There,
A material classification method, wherein the size of the collected substance is specified based on a position in a flow path direction where the substance is collected.
前記捕集空間に物質を捕集後、捕集された目的の物質を解放する位置まで前記板を上流側にスライドさせて、前記目的の物質を回収することを特徴とする請求項8に記載の物質分級方法。   The material according to claim 8, wherein after collecting the substance in the collection space, the plate is slid upstream to a position where the collected target substance is released to collect the target substance. Substance classification method.
JP2006341676A 2006-12-19 2006-12-19 Substance classification device and substance classification method Expired - Fee Related JP4876891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341676A JP4876891B2 (en) 2006-12-19 2006-12-19 Substance classification device and substance classification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341676A JP4876891B2 (en) 2006-12-19 2006-12-19 Substance classification device and substance classification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011220888A Division JP5152386B2 (en) 2011-10-05 2011-10-05 Substance classification device and substance classification method

Publications (2)

Publication Number Publication Date
JP2008149287A true JP2008149287A (en) 2008-07-03
JP4876891B2 JP4876891B2 (en) 2012-02-15

Family

ID=39652064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341676A Expired - Fee Related JP4876891B2 (en) 2006-12-19 2006-12-19 Substance classification device and substance classification method

Country Status (1)

Country Link
JP (1) JP4876891B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165062A (en) * 1997-12-02 1999-06-22 Natl Food Res Inst Laminated microchannel array device, filtration and classification method using the device and production of emulsion
JP2004181272A (en) * 2002-11-29 2004-07-02 Nomizu Kosan:Kk Metal filter
JP2004283828A (en) * 2003-03-21 2004-10-14 Steag Microparts Gmbh Microstructured separation device and microfluidic method for separating liquid component from liquid containing particle
JP2005211759A (en) * 2004-01-28 2005-08-11 Hitachi High-Technologies Corp Classification filter and blood cell separation/recovery device using the same
JP2008151658A (en) * 2006-12-18 2008-07-03 Nsk Ltd Material collection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165062A (en) * 1997-12-02 1999-06-22 Natl Food Res Inst Laminated microchannel array device, filtration and classification method using the device and production of emulsion
JP2004181272A (en) * 2002-11-29 2004-07-02 Nomizu Kosan:Kk Metal filter
JP2004283828A (en) * 2003-03-21 2004-10-14 Steag Microparts Gmbh Microstructured separation device and microfluidic method for separating liquid component from liquid containing particle
JP2005211759A (en) * 2004-01-28 2005-08-11 Hitachi High-Technologies Corp Classification filter and blood cell separation/recovery device using the same
JP2008151658A (en) * 2006-12-18 2008-07-03 Nsk Ltd Material collection device

Also Published As

Publication number Publication date
JP4876891B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4661942B2 (en) Microchip and its channel structure
JP6003020B2 (en) Microchip and fine particle analyzer
US8771933B2 (en) Continuous-flow deformability-based cell separation
JP4533382B2 (en) Integrated structure for microfluidic analysis and sorting
KR101683066B1 (en) Device and microchip for sorting particles
EP3421968B1 (en) Optical particle analysis using sheath flow
JP6102783B2 (en) Particle sorting apparatus, particle sorting method and program
JP2020533567A (en) Particle capture chamber, particle capture chip, particle capture method, equipment, particle analysis system
US20080311005A1 (en) Apparatus for focusing and detecting particles in sample and method of manufacturing the same
Chen et al. Preconcentration of diluted mixed-species samples following separation and collection in a micro–nanofluidic device
Brouzes Droplet microfluidics for single-cell analysis
CN108628351A (en) Microfluidic droplet generating means
JP6665548B2 (en) Microchip, analysis device and analysis method
JP5152386B2 (en) Substance classification device and substance classification method
Xu et al. Phaseguide-assisted blood separation microfluidic device for point-of-care applications
EP2722663B1 (en) Sensor chip used in specimen detection device and specimen detection device using sensor chip
JP2016514965A (en) Apparatus for classifying cells in a sample and method of using the apparatus
JP4876891B2 (en) Substance classification device and substance classification method
US11179717B2 (en) Disposable pipette tip and methods of use
JP5316530B2 (en) Microchip and its channel structure
Fong et al. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice
Taylor et al. Optimized commercial desktop cutter technique for rapid-prototyping of microfluidic devices and application to Taylor dispersion
JP2019063798A (en) Particle sorting apparatus, particle sorting method, and program
Arter et al. Microchip Free-Flow Electrophoresis for Bioanalysis, Sensing, and Purification
JP6450337B2 (en) Cell sorting device and cell sorting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees