JP2008148551A - Manufacturing facility for hydrogen utilizing wind power - Google Patents

Manufacturing facility for hydrogen utilizing wind power Download PDF

Info

Publication number
JP2008148551A
JP2008148551A JP2007330169A JP2007330169A JP2008148551A JP 2008148551 A JP2008148551 A JP 2008148551A JP 2007330169 A JP2007330169 A JP 2007330169A JP 2007330169 A JP2007330169 A JP 2007330169A JP 2008148551 A JP2008148551 A JP 2008148551A
Authority
JP
Japan
Prior art keywords
wind
power generation
power
generator
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007330169A
Other languages
Japanese (ja)
Inventor
Yuji Sasaki
裕司 佐々木
Hidefumi Takada
秀文 高田
Takashi Majima
隆司 真島
Narifumi Tojima
成文 遠嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007330169A priority Critical patent/JP2008148551A/en
Publication of JP2008148551A publication Critical patent/JP2008148551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the degradation of a lifetime of a water electrolysis apparatus by suppressing variations in power output by means of wind-force power generation. <P>SOLUTION: This manufacturing facility for hydrogen is equipped with a wind-force power generator 11 having a windmill 11a and a synchronous generator 11b; a power output controller 15 controlling output power by the wind-force power generator 11; and a water electrolysis apparatus 14 to generate hydrogen with a power output obtained from the power generator 11 as a power supply. The power output controller 15 slows a voltage variation by regulating the power output from the power generator 11 to lie within a predetermined level. An input torque variation to the wind-force power generator 11 is absorbed by the increase or the decrease of own rotation by utilizing the inertial moment of the power generator 11. The wind-force power generator 11 is operated independently without being linked to an electric power system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風力発電設備により電力を得て水素を生産する水素製造設備に関する。   The present invention relates to a hydrogen production facility for producing hydrogen by obtaining electric power from a wind power generation facility.

自動車等に用いられる無公害の燃料として水素が注目されており、水素を得る手段として、例えば特許文献1や特許文献2に記載されているような風力発電を利用した水素を製造する技術が提案されている。   Hydrogen is attracting attention as a non-polluting fuel used in automobiles, and as a means for obtaining hydrogen, for example, a technique for producing hydrogen using wind power generation as described in Patent Document 1 and Patent Document 2 is proposed. Has been.

特許文献1の「自然力利用発電電解法による補助燃料製造とその利用法」は、図4に示すように、風力又は流水利用にて発電機を回転し、得た電力の一部を直接点灯又は動力用に供するほか余剰電力を水の電気分解槽に誘導して水素と酸素を発生させるものである。   Patent Document 1 “Auxiliary Fuel Production by Natural Power Utilization Power Generation Electrolysis Method and Its Utilization”, as shown in FIG. 4, rotates a generator using wind power or running water and directly turns on a part of the obtained power or In addition to being used for power, surplus power is induced into a water electrolysis tank to generate hydrogen and oxygen.

また、特許文献2の「水素生産用水上風力発電設備」は、図5に示すように、陸上1から離れた水上である海8に海底から直接設置され、風車2が取り付けられた発電装置3(風力発電手段)と、この風車2に近接して海底から立ち上がるプラットホーム等を介して設置される電力制御装置4と水素発生装置としての電気分解装置5とを備え、発電装置3で発電された電気を電力制御装置4に送り、この電力制御装置4からの電気を電気分解装置5に供給することにより、水素と酸素を発生させるものである。   In addition, as shown in FIG. 5, the “water-based wind power generation facility for hydrogen production” of Patent Document 2 is installed directly from the sea bottom in the sea 8 that is on the water away from the land 1, and the power generator 3 to which the windmill 2 is attached. (Wind power generation means), a power control device 4 installed via a platform that rises from the sea floor in the vicinity of the windmill 2, and an electrolysis device 5 as a hydrogen generator, and the power generation device 3 generates power. By supplying electricity to the power control device 4 and supplying electricity from the power control device 4 to the electrolysis device 5, hydrogen and oxygen are generated.

特開昭62−20889号公報号公報Japanese Patent Laid-Open No. 62-20889 特開2002−70720号公報号公報JP 2002-70720 A

水素発生装置として使用する水電解装置は入力電圧変動に弱い一方、風力発電は、不安定な風力を動力源として発電する分散型発電であり、その発電出力は風力の変化により大きく変動する性格を有するものである。したがって、これをそのまま水電解装置の入力電源とした場合には、水電解装置の寿命低下を招くことになる。   While water electrolysis devices used as hydrogen generators are vulnerable to fluctuations in input voltage, wind power generation is a distributed generation that generates power using unstable wind power as a power source, and its power generation output has a tendency to fluctuate greatly due to changes in wind power. It is what you have. Therefore, if this is used as an input power source for the water electrolysis apparatus as it is, the life of the water electrolysis apparatus will be reduced.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、風力発電による発電出力の変動を抑制して水電解装置の寿命低下を防止することにある。   The present invention has been made to solve such problems. That is, an object of the present invention is to prevent a decrease in the life of a water electrolysis apparatus by suppressing fluctuations in power generation output due to wind power generation.

本発明によれば、風車と同期発電機を備えた風力発電装置と、前記風力発電装置の発電出力を制御する発電出力制御装置と、前記風力発電装置により得られた発電出力を電源として水素を発生させる水電解装置とを備え、前記発電出力制御装置は、前記風力発電装置から取り出す発電出力を所定範囲に制限することにより電圧変動を緩やかにし、前記風力発電装置への入力トルク変動分は、前記風力発電装置自身の慣性モーメントを利用して自身の回転数増減によって吸収し、前記風力発電装置は電力系統へ連係せずに独立で運転される、ことを特徴とする風力発電を利用した水素製造設備が提供される。   According to the present invention, a wind power generator including a windmill and a synchronous generator, a power generation output control device that controls the power generation output of the wind power generation device, and hydrogen generated using the power generation output obtained by the wind power generation device as a power source. A water electrolysis device to generate, the power generation output control device to moderate the voltage fluctuation by limiting the power generation output taken out from the wind power generation device to a predetermined range, the input torque fluctuation to the wind power generation device, Hydrogen using wind power generation, wherein the wind power generation device absorbs by increasing / decreasing its own rotational speed using the moment of inertia of the wind power generation device itself, and the wind power generation device is operated independently without being linked to a power system. Manufacturing equipment is provided.

上記本発明の構成によれば、入力トルク変動分を風車と発電機の回転エネルギーとして吸収するので、風力発電装置からの発電出力は緩やかに変動し、これを水電解装置の電源とすることにより、水電解装置の寿命低下を防止できる。   According to the configuration of the present invention, since the input torque fluctuation is absorbed as the rotational energy of the wind turbine and the generator, the power generation output from the wind power generator fluctuates gently, and this is used as the power source of the water electrolysis device. It is possible to prevent a decrease in the life of the water electrolysis apparatus.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明の実施形態の概念図である。水素発生設備は、風車11aと同期発電機11bを備えた風力発電装置11と、風力発電装置11の発電出力を制御する発電出力制御装置15と、風力発電装置11により得られた発電出力を交流電力から直流電力に変換する整流器13と、変換された発電出力を電源として水素を発生させる水電解装置14とを備えている。また図1に示すように、風力発電装置11は電力系統へ連係せずに独立で運転される。   FIG. 1 is a conceptual diagram of an embodiment of the present invention. The hydrogen generation facility includes a wind turbine generator 11 provided with a wind turbine 11a and a synchronous generator 11b, a power generation output control device 15 that controls the power generation output of the wind power generator 11, and an AC power generation output obtained by the wind power generator 11. It includes a rectifier 13 that converts electric power into direct-current power, and a water electrolysis device 14 that generates hydrogen using the converted power generation output as a power source. As shown in FIG. 1, the wind power generator 11 is operated independently without being linked to the power system.

通常、風車入力トルク(風速)は短時間の間に激しく変動するものであり、これに伴い風力発電装置11による発電出力は激しく変動するため、これを直接、水電解装置14の電源とすると、水電解装置14の寿命が短くなる。一方、水電解装置14の入力電圧を一定とすると、風車11aの回転可能領域が制限され、風力発電の設備利用率の低下を招く。   Usually, the windmill input torque (wind speed) fluctuates violently in a short time, and the power generation output by the wind power generator 11 fluctuates violently along with this. The life of the water electrolysis device 14 is shortened. On the other hand, if the input voltage of the water electrolysis device 14 is constant, the rotatable region of the windmill 11a is limited, leading to a reduction in the facility utilization rate of wind power generation.

そこで、本発明の風力発電を利用した水素生産設備は、発電出力制御装置15を備えている。発電出力制御装置15は、風力発電装置11から取り出す発電出力を所定範囲に制限することにより電圧変動を緩やかにする。また、発電出力制御装置15による電圧変動の抑制による風力発電装置への入力トルク変動分は、風力発電装置自身の慣性モーメントを利用して自身の回転数増減によって吸収する。
上記の構成により、風力発電装置11からの発電出力は緩やかに変動し、これを水電解装置14の電源とすることにより、水電解装置14の寿命低下を防止できる。
Therefore, the hydrogen production facility using wind power generation according to the present invention includes a power generation output control device 15. The power generation output control device 15 moderates the voltage fluctuation by limiting the power generation output extracted from the wind power generation device 11 to a predetermined range. Further, the fluctuation of the input torque to the wind turbine generator due to the suppression of the voltage fluctuation by the generator output control device 15 is absorbed by the increase / decrease of its own rotation speed using the inertia moment of the wind turbine generator itself.
With the above configuration, the power generation output from the wind power generator 11 varies gently, and by using this as the power source for the water electrolysis device 14, it is possible to prevent a reduction in the life of the water electrolysis device 14.

図2は、参考例を説明する概念図である。参考例による水素製造設備10は、風車11aと発電機11bと励磁機11cを備えた風力発電装置11、整流器13、水電解装置14を備えており、さらに風車回転数制御装置16および電圧制御装置17を備えている。   FIG. 2 is a conceptual diagram illustrating a reference example. The hydrogen production facility 10 according to the reference example includes a wind turbine generator 11 provided with a wind turbine 11a, a generator 11b, and an exciter 11c, a rectifier 13, and a water electrolysis device 14, and further includes a wind turbine speed controller 16 and a voltage controller. 17 is provided.

ここで、図3は、風力発電装置11における風速(m/s)、風車回転数(rpm)および出力電力(kW)の関係を示した図であり、横軸に風車回転数、縦軸に発電機の出力電力をとり、各風速ごとの出力特性を図中の曲線群で示している。直線Aは、系統連係している風力発電の運転ラインを示しており、風速が比較的遅いときは、風車回転数をω1とし、風速が比較的早いときは風車回転数をω2としている。一方、曲線Bは、風力発電の理論最大出力ラインであり、各風速における最大出力ポイントをつないだものである。この図から分かるように、各風速ごとに最大出力ポイントとなる風車回転数が異なるため、効率良く発電を行うためには、各風速ごとに風車回転数を変化させる必要がある。すなわち、曲線Bのライン上で運転を行う必要がある。   Here, FIG. 3 is a diagram showing the relationship between the wind speed (m / s), the windmill rotational speed (rpm), and the output power (kW) in the wind turbine generator 11, where the horizontal axis represents the windmill rotational speed and the vertical axis represents The output power of the generator is taken, and the output characteristics for each wind speed are shown by a group of curves in the figure. A straight line A indicates an operating line of wind power generation that is linked to the grid. When the wind speed is relatively slow, the windmill rotational speed is ω1, and when the wind speed is relatively fast, the windmill rotational speed is ω2. On the other hand, curve B is the theoretical maximum output line of wind power generation, and connects the maximum output points at each wind speed. As can be seen from this figure, since the wind turbine rotation speed, which is the maximum output point, is different for each wind speed, it is necessary to change the wind turbine rotation speed for each wind speed in order to generate power efficiently. That is, it is necessary to operate on the line of curve B.

そこで、参考例では、風力発電装置11を系統へ連結せず独立で運転することとし、風車付近における風速および風車回転数を風車回転数制御装置16に入力信号として入力し、風速から最大出力となる最適風車回転数を演算するとともに、この風車回転数となるように風力発電装置11の励磁機11cの励磁電流を制御して諸望の風車回転数に制御する。   Therefore, in the reference example, the wind power generator 11 is operated independently without being connected to the system, and the wind speed and the wind turbine speed in the vicinity of the wind turbine are input to the wind turbine speed controller 16 as input signals, and the maximum output from the wind speed is obtained. Is calculated, and the exciting current of the exciter 11c of the wind power generator 11 is controlled so as to be the wind turbine rotational speed, thereby controlling the desired wind turbine rotational speed.

このように、風力発電装置11を独立運転としたことにより、系統連係による設備利用率の低下を解消でき、常に最適効率で発電運転を行い、高効率で水素を製造することが可能となる。   Thus, by making the wind power generator 11 an independent operation, it is possible to eliminate the decrease in the facility utilization rate due to the grid linkage, and it is possible to always perform the power generation operation with the optimum efficiency and produce hydrogen with high efficiency.

電圧制御装置17は、風力発電装置11により得られた発電出力の電圧および電解電圧を入力信号として入力し、風車回転数の制御により変動する出力電圧を緩やかに変化させるための電圧指令信号を出力する。例えば、時定数をもたせてゆるやかに変化させることが好ましい。   The voltage control device 17 inputs the voltage of the power generation output and the electrolysis voltage obtained by the wind turbine generator 11 as input signals, and outputs a voltage command signal for gently changing the output voltage that fluctuates by controlling the wind turbine rotation speed. To do. For example, it is preferable to change it slowly with a time constant.

風力発電装置11により得られた発電出力は整流器13に送られ交流電力から直流電力に変換され、水電解装置14に電解電力として供給されるが、最適風車回転数に制御された風力発電装置11からは、風速の変動に応じてその発電出力が激しく変動することになる。したがって、上述したように、これをそのまま水電解装置14の電解電力として供給すると水電解装置14の寿命低下を招く。そこで、この変動の激しい発電出力の電圧を電圧制御装置17で制御している。これにより、風車回転数制御装置16により風力発電装置11で得られた発電出力に変動が生じても、電圧制御装置17により水電解装置14への入力電圧の変動を抑制するので、水電解装置14の寿命低下を防止することができる。   The power generation output obtained by the wind power generator 11 is sent to the rectifier 13, converted from AC power to DC power, and supplied as electrolysis power to the water electrolysis device 14, but the wind power generation device 11 controlled to the optimum wind turbine speed. Therefore, the power generation output fluctuates violently according to the fluctuation of the wind speed. Therefore, as described above, if this is supplied as it is as the electrolysis power of the water electrolysis device 14, the life of the water electrolysis device 14 is reduced. Therefore, the voltage control device 17 controls the voltage of the power generation output that has a large fluctuation. As a result, even if fluctuations occur in the power generation output obtained by the wind turbine generator 11 by the wind turbine rotation speed controller 16, the voltage controller 17 suppresses fluctuations in the input voltage to the water electrolyzer 14, so the water electrolyzer 14 can be prevented from deteriorating.

また、電圧制御装置17を設けずに、整流器13のサイリスタの点弧角を調節することにより発電出力の電圧を制御することによっても上記と同様の効果が得られる。   Further, the same effect as described above can be obtained by controlling the voltage of the power generation output by adjusting the firing angle of the thyristor of the rectifier 13 without providing the voltage control device 17.

なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の風力発電を利用した水素生産設備の実施形態の概念図である。It is a conceptual diagram of embodiment of the hydrogen production facility using the wind power generation of this invention. 風力発電を利用した水素生産設備の参考例の概念図である。It is a conceptual diagram of the reference example of the hydrogen production facility using wind power generation. 風力発電装置の出力特性を示す図である。It is a figure which shows the output characteristic of a wind power generator. 従来の風力発電を利用した水素製造技術を説明する図である。It is a figure explaining the hydrogen production technology using the conventional wind power generation. 従来の風力発電を利用した水素製造技術を説明する図である。It is a figure explaining the hydrogen production technology using the conventional wind power generation.

符号の説明Explanation of symbols

1 陸上
2 風車
3 発電装置
4 電力制御装置
5 電気分解装置
8 海
11 風力発電装置
11a 風車
11b 同期発電機
11c 励磁機
13 整流器
14 水電解装置
15 発電出力制御装置
16 風車回転数制御装置
17 電圧制御装置
20 発電機
21 電気分解槽
DESCRIPTION OF SYMBOLS 1 Land 2 Windmill 3 Power generation apparatus 4 Electric power control apparatus 5 Electrolysis apparatus 8 Sea 11 Wind power generation apparatus 11a Windmill 11b Synchronous generator 11c Exciter 13 Rectifier 14 Water electrolysis apparatus 15 Power generation output control apparatus 16 Windmill rotation speed control apparatus 17 Voltage control Device 20 Generator 21 Electrolysis tank

Claims (1)

風車と同期発電機を備えた風力発電装置と、
前記風力発電装置の発電出力を制御する発電出力制御装置と、
前記風力発電装置により得られた発電出力を電源として水素を発生させる水電解装置とを備え、
前記発電出力制御装置は、前記風力発電装置から取り出す発電出力を所定範囲に制限することにより電圧変動を緩やかにし、
前記風力発電装置への入力トルク変動分は、前記風力発電装置自身の慣性モーメントを利用して自身の回転数増減によって吸収し、
前記風力発電装置は電力系統へ連係せずに独立で運転される、ことを特徴とする風力発電を利用した水素製造設備。
A wind turbine generator with a windmill and a synchronous generator;
A power generation output control device for controlling the power generation output of the wind power generation device;
A water electrolysis device that generates hydrogen using the power generation output obtained by the wind power generator as a power source;
The power generation output control device moderates the voltage fluctuation by limiting the power generation output taken out from the wind power generation device to a predetermined range,
The input torque fluctuation to the wind turbine generator is absorbed by increasing / decreasing its own rotational speed using the inertia moment of the wind turbine generator itself,
A hydrogen production facility using wind power generation, wherein the wind power generator is operated independently without being linked to an electric power system.
JP2007330169A 2007-12-21 2007-12-21 Manufacturing facility for hydrogen utilizing wind power Pending JP2008148551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330169A JP2008148551A (en) 2007-12-21 2007-12-21 Manufacturing facility for hydrogen utilizing wind power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330169A JP2008148551A (en) 2007-12-21 2007-12-21 Manufacturing facility for hydrogen utilizing wind power

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003060593A Division JP2004269945A (en) 2003-03-06 2003-03-06 Hydrogen-producing facility using wind-power generation

Publications (1)

Publication Number Publication Date
JP2008148551A true JP2008148551A (en) 2008-06-26

Family

ID=39608092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330169A Pending JP2008148551A (en) 2007-12-21 2007-12-21 Manufacturing facility for hydrogen utilizing wind power

Country Status (1)

Country Link
JP (1) JP2008148551A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220889A (en) * 1985-07-18 1987-01-29 Terukazu Suzuki Production of auxiliary fuel by natural force-utilizing power generation electrolysis and its application
JP2001238493A (en) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp Control unit of generator
JP2001304091A (en) * 2000-04-20 2001-10-31 Toshiba Corp Wind power generation system
JP2002070720A (en) * 2000-08-25 2002-03-08 Mitsubishi Heavy Ind Ltd Aquatic wind force power generation facility for hydrogen production
WO2002021661A1 (en) * 2000-09-07 2002-03-14 Aloys Wobben Island network and method for operation of an island network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220889A (en) * 1985-07-18 1987-01-29 Terukazu Suzuki Production of auxiliary fuel by natural force-utilizing power generation electrolysis and its application
JP2001238493A (en) * 2000-02-23 2001-08-31 Mitsubishi Electric Corp Control unit of generator
JP2001304091A (en) * 2000-04-20 2001-10-31 Toshiba Corp Wind power generation system
JP2002070720A (en) * 2000-08-25 2002-03-08 Mitsubishi Heavy Ind Ltd Aquatic wind force power generation facility for hydrogen production
WO2002021661A1 (en) * 2000-09-07 2002-03-14 Aloys Wobben Island network and method for operation of an island network
JP2004508795A (en) * 2000-09-07 2004-03-18 アロイス・ヴォベン Isolated networks and how to operate isolated networks

Similar Documents

Publication Publication Date Title
JP6559559B2 (en) Wind power generation system and operation method of wind power generation system
US8674535B2 (en) Method for power regulation of an underwater power plant
US8793027B2 (en) Power curtailment of wind turbines
KR101253854B1 (en) Wind power generation system, and its control method
US8961247B2 (en) Power supply system for marine drilling vessel
JP6506664B2 (en) Wind power generation system or control method of wind power generation system
TW201809460A (en) Wind power generating system
JP4831843B2 (en) Wind power generator and output control method thereof
JP2007249341A (en) Hydrogen production system
US20100148508A1 (en) Control method and apparatus
KR20110009072A (en) Wind-driven generator and control method thereof
JP5787870B2 (en) Wind power generation facility and operation method thereof
JP2018059450A (en) Wind power generation device and control method of wind power generation device
JP6756489B2 (en) How to control wind power generators
Ahmad et al. Review on frequency adjustment for power systems with grid connected wind farm
TW201827703A (en) Wind power generation system or method of operating wind power generation system
JP3987993B2 (en) Wind power generator
JP2008148551A (en) Manufacturing facility for hydrogen utilizing wind power
JP2004269945A (en) Hydrogen-producing facility using wind-power generation
KR20130012750A (en) Power generation system for ships
JP2005069125A (en) Wind power generator and hydrogen manufacturing equipment using wind power generation
KR101487992B1 (en) Variable speed wind generator, and operating method thereof
JP2008161022A (en) Hydraulic power generator
KR20130074264A (en) Method for controlling wind turbine in extreme wind speeds
KR20130023524A (en) Pitch control system for blade of wind power generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110711