JP2008147237A - Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn - Google Patents

Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn Download PDF

Info

Publication number
JP2008147237A
JP2008147237A JP2006329478A JP2006329478A JP2008147237A JP 2008147237 A JP2008147237 A JP 2008147237A JP 2006329478 A JP2006329478 A JP 2006329478A JP 2006329478 A JP2006329478 A JP 2006329478A JP 2008147237 A JP2008147237 A JP 2008147237A
Authority
JP
Japan
Prior art keywords
copper foil
support
qfn
nickel
nickel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006329478A
Other languages
Japanese (ja)
Inventor
Shinji Osawa
真司 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2006329478A priority Critical patent/JP2008147237A/en
Publication of JP2008147237A publication Critical patent/JP2008147237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal laminated plate for QFN (Quad Flat No lead Package) that can cope with thinning, downsizing and high integration, and to provide a method of manufacturing the metal laminated plate for QFN and a method of manufacturing the QFN. <P>SOLUTION: The metal laminated plate 4 for QFN is comprised of three layers: a copper foil 1, a nickel layer 2 and a supporting body 3. The nickel layer 2 is provided on the copper foil 1 or the supporting body 3 by plating method or lamination method, and before the copper foil layer having the nickel layer and the supporting body, or the copper foil and the supporting body having the nickel layer are overlapped respectively, the joint surfaces are activated in advance, and then they are laminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄くて小型化したQFN(Quad Flat No lead Package )用金属積層板、及び当該QFN用金属積層板の製造方法、並びに当該QFN用金属積層板を用いたQFNの製造方法に関する。   The present invention relates to a thin and miniaturized metal laminate for QFN (Quad Flat No Lead Package), a method for producing the metal laminate for QFN, and a method for producing QFN using the metal laminate for QFN.

半導体の集積度が向上するに従い、入出力端子数が増加している。従って、多くの入出力端子数を有する半導体パッケージが必要になった。一般に、入出力端子はパッケージの周辺に一列配置するタイプであるQFP(Quad Flat Package)や電極が底面あるいは側面から底面にかけて露出したQFN(Quad Flat No lead Package)などがある。QFPは配線が外に出ているため小型化が困難である。一般的に配線が樹脂内にあるQFNは小型化しやすい。
従来、QFNを製造する場合、電解銅箔上に、ニッケルめっきを行い、感光性ドライフィルムレジストをラミネートし、配線パターンを露光し、めっきレジストを形成後、銅めっきを行って第1配線を形成している(例えば特許文献1参照)。最後に上記電解箔をエッチングで除去している。しかし、めっきレジスト上に銅めっきを行って第1配線を作る際、高電流密度で銅めっきを行うとめっきレジストが剥離するので、低電流密度でめっきする必要があり生産性が悪い。
As the degree of integration of semiconductors has improved, the number of input / output terminals has increased. Therefore, a semiconductor package having a large number of input / output terminals is required. In general, there are QFP (Quad Flat Package), which is a type in which input / output terminals are arranged in a line around the package, and QFN (Quad Flat No Lead Package) in which electrodes are exposed from the bottom or side to bottom. The QFP is difficult to miniaturize because the wiring goes out. In general, a QFN whose wiring is in resin is easy to downsize.
Conventionally, when manufacturing QFN, nickel plating is performed on an electrolytic copper foil, a photosensitive dry film resist is laminated, a wiring pattern is exposed, a plating resist is formed, and then copper plating is performed to form a first wiring. (For example, refer to Patent Document 1). Finally, the electrolytic foil is removed by etching. However, when copper plating is performed on the plating resist to form the first wiring, if the copper plating is performed at a high current density, the plating resist is peeled off. Therefore, it is necessary to perform the plating at a low current density, resulting in poor productivity.

また、他のQFPの製造方法として、図4に示すように、まず図4(a)に示すリードフレーム9をエッチングして、図4(b)に示すように配線パターンを形成する。次いで、エッチングした後では、リードフレームの強度が弱いので、図4(c)に示すように、接着剤10を介して支持体3を積層する。さらに、図4(d)に示すように、IC基板7を積層後、結線6を行い、リードフレーム、IC基板7、結線6を有機樹脂5で埋め込んだ後、図4(e)に示すように支持体3及び接着剤10を除去する方法も提案されている。しかし、この従来の方法では、配線パターンを形成するリードフレーム9は、支持体3を積層する前にエッチングするので、強度の点で厚いものを使用する必要がある。従って、この従来の方法では、薄型化が困難である。   As another QFP manufacturing method, as shown in FIG. 4, first, the lead frame 9 shown in FIG. 4 (a) is etched to form a wiring pattern as shown in FIG. 4 (b). Next, after etching, the strength of the lead frame is weak. Therefore, as shown in FIG. 4C, the support 3 is laminated via the adhesive 10. Further, as shown in FIG. 4D, after the IC substrate 7 is laminated, the connection 6 is performed, and after the lead frame, the IC substrate 7 and the connection 6 are embedded with the organic resin 5, as shown in FIG. In addition, a method of removing the support 3 and the adhesive 10 has also been proposed. However, in this conventional method, since the lead frame 9 for forming the wiring pattern is etched before the support 3 is laminated, it is necessary to use a thick one in terms of strength. Therefore, it is difficult to reduce the thickness by this conventional method.

以上のように薄型化、小型化、高集積度化に対応できる半導体パッケージとして、種々の提案がされているが、性能、特性、生産性等全てにわたって満足するよう一層の改善が望まれている。
特開2004−247766号公報
As described above, various proposals have been made as semiconductor packages that can cope with thinning, miniaturization, and high integration, but further improvements are desired to satisfy all aspects of performance, characteristics, and productivity. .
JP 2004-247766 A

本発明は、より薄型化、小型化、高集積度化に対応でき、且つ生産性に優れたQFN(Quad Flat No lead Package )を得ることができるQFN用金属積層板、該QFN用金属積層板の製造方法、及び該QFN用金属積層板を用いたQFNの製造方法を提供することを目的とする。   The present invention relates to a metal laminate for QFN and a metal laminate for QFN capable of obtaining a QFN (Quad Flat No Lead Package) that can cope with further reduction in thickness, size, and degree of integration, and that is excellent in productivity. An object of the present invention is to provide a method for producing QFN and a method for producing QFN using the metal laminate for QFN.

上記課題を解決する請求項1に係る本発明のQFN用金属積層板は、銅箔/ニッケル層/支持体の3層からなることを特徴とするものである。請求項2の発明は、請求項1のQFN用金属積層板において、前記ニッケル層がニッケルめっき層またはニッケル箔からなることを特徴とするものである。また、請求項3の発明は、請求項1又は2に記載のQFN用金属積層板において、前記支持体が銅箔からなること特徴とするものである。さらに、請求項4の発明は、請求項1又は2に記載のQFN用金属積層板において、前記銅箔の厚みは8〜100μmであることを特徴とするものである。   The metal laminate for QFN of the present invention according to claim 1 for solving the above-mentioned problems is characterized by comprising three layers of copper foil / nickel layer / support. According to a second aspect of the present invention, in the metal laminate for QFN of the first aspect, the nickel layer is made of a nickel plating layer or a nickel foil. The invention according to claim 3 is the metal laminate for QFN according to claim 1 or 2, wherein the support is made of copper foil. Further, the invention of claim 4 is the metal laminate for QFN according to claim 1 or 2, wherein the copper foil has a thickness of 8 to 100 μm.

前記QFN用金属積層を製造する請求項5に係る本発明のQFN用金属積層板の製造方法は、銅箔/ニッケル層/支持体の3層からなるQFN用金属積層板の製造方法であって、前記銅箔の接合面又は支持体の接合面の何れか一方にニッケル層を形成する工程、前記ニッケル層が形成された銅箔と支持体、又は銅箔とニッケル層が形成された支持体を、前記ニッケル層が支持体又は銅箔に対向するように重ね合わせて、冷間圧延による方法で前記銅箔と前記支持体とを積層することを特徴とするものである。
請求項6の発明は、請求項5に記載のQFN用金属積層板の製造方法において、前記ニッケル層が形成された銅箔と支持体、又は銅箔とニッケル層が形成された支持体は、重ね合わせる前に、それぞれの接合面を活性化処理することを特徴とする。
The method for producing a metal laminate for QFN of the present invention according to claim 5 for producing the metal laminate for QFN is a method for producing a metal laminate for QFN comprising three layers of copper foil / nickel layer / support. , A step of forming a nickel layer on either the bonding surface of the copper foil or the bonding surface of the support, the copper foil and the support on which the nickel layer is formed, or the support on which the copper foil and nickel layer are formed Are stacked such that the nickel layer faces the support or the copper foil, and the copper foil and the support are laminated by a method of cold rolling.
The invention of claim 6 is the method for producing a metal laminate for QFN according to claim 5, wherein the copper foil and support on which the nickel layer is formed, or the support on which the copper foil and nickel layer are formed, Prior to superimposing, each bonding surface is activated.

また、請求項7の発明は、請求項5又は6に記載のQFN用金属積層板の製造方法において、前記銅箔又は支持体へのニッケル層の形成は、ニッケル箔を銅箔又は支持体に対向するように重ね合わせて、冷間圧延による方法で前記銅箔又は前記支持体に積層することを特徴とする。請求項8の発明は、請求項7に記載のQFN用金属積層板の製造方法において、ニッケル箔を銅箔又は支持体に重ね合わせる前に、それぞれの接合面を活性化処理することを特徴とする。
さらに、請求項9の発明は、請求項6又は8に記載のQFN用金属積層板の製造方法において、前記活性化処理が、10〜1×10−3Paの不活性ガス雰囲気中で、前記接合面が互いに対向するように、アース接地された一方の電極Aとそれぞれ接触させ、絶縁支持された他の電極Bとの間に1〜50MHzの交流を印加してグロー放電を行わせ、グロー放電によって生じたプラズマ中に露出される前記電極Aと接触した前記接合面のそれぞれの面積が、前記電極Bの面積の1/3以下となるようにスパッタエッチング処理することを特徴とする。
The invention according to claim 7 is the method for producing a metal laminate for QFN according to claim 5 or 6, wherein the nickel layer is formed on the copper foil or the support by using the nickel foil as the copper foil or the support. It superimposes so that it may oppose, and is laminated | stacked on the said copper foil or the said support body by the method by cold rolling. The invention according to claim 8 is characterized in that, in the method for manufacturing a metal laminate for QFN according to claim 7, each joining surface is activated before the nickel foil is superimposed on the copper foil or the support. To do.
Furthermore, the invention of claim 9 is the method for producing a metal laminate for QFN according to claim 6 or 8, wherein the activation treatment is performed in an inert gas atmosphere of 10 to 1 × 10 −3 Pa. Glow discharge is performed by applying an alternating current of 1 to 50 MHz to one electrode A which is grounded so that the joint surfaces face each other, and applying an alternating current of 1 to 50 MHz to the other electrode B which is insulated and supported. Sputter etching is performed so that the area of each of the bonding surfaces in contact with the electrode A exposed in the plasma generated by the discharge is 1/3 or less of the area of the electrode B.

また、上記課題を解決するQFNの製造方法に係る請求項10の発明は、請求項1乃至4のいずれか記載のQFN用金属積層板を用いて、銅箔上にレジスト配線パターンを形成する工程、前記銅箔及びニッケル層をエッチングする工程、レジストを除去して配線を形成する工程、エッチングされずに残留した銅箔の表面にIC基板を積層する工程、IC基板とIC基板を積層していない銅箔とを結線する工程、支持体を除去する工程からなることを特徴とするものである。   A tenth aspect of the present invention relates to a method of manufacturing a QFN that solves the above-described problems, and a step of forming a resist wiring pattern on a copper foil using the QFN metal laminate according to any one of the first to fourth aspects. Etching the copper foil and nickel layer, removing the resist to form a wiring, laminating an IC substrate on the surface of the copper foil remaining without etching, laminating the IC substrate and the IC substrate. It consists of the process of connecting with the copper foil which is not, and the process of removing a support body.

さらに、バンプを有するQFNの製造方法に係る請求項11の発明は、請求項1乃至4のいずれか記載のQFN用金属積層板を用いて、銅箔上にレジスト配線パターンを形成する工程、銅箔及びニッケル層をエッチングする工程、銅箔上のレジストを除去して配線を形成する工程、エッチングされずに残留した銅箔の表面にIC基板を積層する工程、IC基板とIC基板を積層していない銅箔とを結線する工程、支持体上にレジスト配線パターンを形成する工程、支持体をエッチングする工程、支持体上のレジストを除去してバンプを形成する工程からなることを特徴とするものである。   Furthermore, the invention of claim 11 relating to a method of manufacturing a QFN having bumps includes a step of forming a resist wiring pattern on a copper foil using the metal laminate for QFN according to any one of claims 1 to 4, copper Etching the foil and nickel layer, removing the resist on the copper foil to form a wiring, laminating an IC substrate on the surface of the copper foil remaining without etching, laminating the IC substrate and the IC substrate Characterized in that it comprises a step of connecting to a copper foil not formed, a step of forming a resist wiring pattern on the support, a step of etching the support, and a step of forming a bump by removing the resist on the support. Is.

本発明のQFN用金属積層板では、エッチングによる配線パターンを形成する前に、予め配線形成用材料(銅箔)が支持体に積層されているので、配線形成用材料は強度があり、8〜100μm望ましくは18〜50μmの極薄化が可能である。また、エッチングによる配線形成後に、支持体を積層する工程が不要となる。また、支持体をバンプとして使用できる。また、配線形成用材料は配線としても使用できる。本発明のQFN用金属積層板の製造方法によれば、QFN用金属積層板は低圧下率での冷間圧延により積層されるので、積層した後も素材の機械特性がほとんど変化しないため、QFN用金属積層板の設計が容易である。また、ニッケル層が形成された銅箔と支持体、又は銅箔とニッケル層が形成された支持体は、重ね合わせる前に、それぞれの接合面を活性化処理するので、ニッケル層と支持体の接合界面には、これらの酸化物がなく、後のエッチング工程で形成した配線の抵抗値が安定したものが得られる。また、前記接合面の活性化処理をスパッタエッチング処理により行うことによって、高速処理で良好な活性化処理ができ、その結果積層接合が低温で達成できる。   In the metal laminate for QFN of the present invention, since the wiring forming material (copper foil) is previously laminated on the support before forming the wiring pattern by etching, the wiring forming material has strength, The thickness can be reduced to 100 μm, desirably 18 to 50 μm. Further, a step of laminating the support is not required after the wiring is formed by etching. Moreover, a support body can be used as a bump. The wiring forming material can also be used as wiring. According to the method for manufacturing a metal laminate for QFN of the present invention, since the metal laminate for QFN is laminated by cold rolling at a low pressure reduction rate, the mechanical properties of the material hardly change even after lamination. It is easy to design a metal laminated plate for use. In addition, since the copper foil and the support on which the nickel layer is formed, or the support on which the copper foil and the nickel layer are formed, the respective bonding surfaces are activated before being overlapped, the nickel layer and the support There is no such oxide at the bonding interface, and a stable resistance value of the wiring formed in the subsequent etching step can be obtained. Moreover, by performing the activation process of the joint surface by a sputter etching process, a good activation process can be performed by a high-speed process, and as a result, a laminated junction can be achieved at a low temperature.

また、本発明のQFNの製造方法によれば、前記銅箔/ニッケル層/支持体の3層からなるQFN用金属積層板を使用するので、配線形成用材料は強度があり、より薄型化、小型化、高集積度のQFNを得ることができ、且つ支持体を積層する工程が不要であり、生産性に優れている。   In addition, according to the QFN manufacturing method of the present invention, since the metal laminate for QFN composed of the three layers of the copper foil / nickel layer / support is used, the wiring forming material has strength and is thinner. A QFN with a small size and a high degree of integration can be obtained, and a step of laminating a support is not required, and the productivity is excellent.

本発明者らは、上記課題を解決するために、鋭利研究した結果、配線形成用材料の薄肉化が可能な次の構成をもつQFN用金属積層板は、QFNの薄型化、小型化、高集積度化に対応できることを見いだした。
即ち、本発明のQFN用金属積層板は、銅箔/ニッケル層/支持体の3層から構成されている。
前記ニッケル層は、銅箔または支持体上にめっき法または積層法により設ける。めっき法としては、公知の方法が適用でき、例えば電気めっき法、浸漬めっき法、真空蒸着法などで行う。ニッケル層としては、ニッケル単独あるいはニッケルを主成分とするニッケル合金を用いることができる。ニッケルを主成分とするニッケル合金としては、ニッケル−リン合金、ニッケル−ボロン合金などが適用できる。リンあるいはボロンなどの合金成分は、ニッケル合金めっき中に20質量%以下含まれることが望ましい。20質量%を超えると、エッチングストップ層としての役割が効果的でなくなる。ニッケル層の厚みとしては、0.1〜10μmが望ましく、より望ましくは0.5〜2μmである。0.1μm未満では、ニッケル層が均一に被覆しないので、エッチングストップ層としての役割の点で問題が生じる。一方、10μmを超えると、厚すぎてエッチング層としての効果が飽和し、経済的でない。
In order to solve the above-mentioned problems, the present inventors have conducted a keen study, and as a result, the QFN metal laminated plate having the following configuration capable of reducing the thickness of the wiring forming material has been reduced in thickness, size, and height. It was found that it can cope with the integration.
That is, the QFN metal laminate of the present invention is composed of three layers of copper foil / nickel layer / support.
The nickel layer is provided on a copper foil or a support by a plating method or a lamination method. As a plating method, a known method can be applied, and for example, an electroplating method, an immersion plating method, a vacuum evaporation method, or the like is performed. As the nickel layer, nickel alone or a nickel alloy containing nickel as a main component can be used. As the nickel alloy containing nickel as a main component, a nickel-phosphorus alloy, a nickel-boron alloy, or the like can be applied. It is desirable that an alloy component such as phosphorus or boron is contained in the nickel alloy plating by 20% by mass or less. If it exceeds 20% by mass, the role as an etching stop layer becomes ineffective. As thickness of a nickel layer, 0.1-10 micrometers is desirable, More desirably, it is 0.5-2 micrometers. If the thickness is less than 0.1 μm, the nickel layer is not uniformly coated, which causes a problem in terms of the role as an etching stop layer. On the other hand, if it exceeds 10 μm, it is too thick and the effect as an etching layer is saturated, which is not economical.

一方、ニッケルの銅箔又は支持体との積層方法としては、ニッケル箔を冷間圧延法、熱間圧延法、冷間圧延後熱処理する方法など公知の方法で、銅箔または支持体上に積層する。特に、ニッケル箔と、銅箔または支持体の接合するそれぞれの表面を、積層する前に、活性化処理をして接合表面の酸化物などを取り除いた後、低圧下率での冷間圧延による活性化接合法により積層する。
以下にその活性化接合法をニッケル箔と銅箔を接合する場合について説明する。
On the other hand, as a method of laminating the nickel foil with the copper foil or the support, the nickel foil is laminated on the copper foil or the support by a known method such as a cold rolling method, a hot rolling method, a method of heat-treating after the cold rolling. To do. In particular, before laminating the surfaces of the nickel foil and the copper foil or support to be joined, activation treatment is performed to remove oxides on the joining surface, and then cold rolling at a low pressure rate is performed. Lamination is performed by an activated bonding method.
The case where nickel foil and copper foil are joined will be described below as the activation joining method.

ニッケル箔と銅箔は、接合前に接合予定面をそれぞれ活性化処理を行う。活性化処理は、真空槽内に装填された銅箔、ニッケル箔をそれぞれアース接地された一方の電極(電極A)と接触させ、絶縁支持された他の電極(電極B)との間に、10〜1×10−3Paの極低圧不活性ガス雰囲気好ましくはアルゴンガス中で、1〜50MHzの交流を印加してグロー放電を行わせ、グロー放電によって生じたプラズマ中に露出される電極と接触した銅箔、ニッケル箔のそれぞれの面積が、電極Bの面積の1/3以下となるようにスパッタエッチング処理することにより行う。 The nickel foil and the copper foil are each subjected to an activation treatment on the surfaces to be joined before joining. In the activation treatment, the copper foil and the nickel foil loaded in the vacuum chamber are brought into contact with one electrode (electrode A) grounded to the ground, and the other electrode (electrode B) supported by insulation, An electrode exposed to plasma generated by glow discharge by applying an alternating current of 1 to 50 MHz in an extremely low pressure inert gas atmosphere of 10 to 1 × 10 −3 Pa, preferably argon gas, Sputter etching is performed so that the area of each of the contacted copper foil and nickel foil is 1/3 or less of the area of the electrode B.

なお不活性ガス圧力が1×10−3Pa未満では安定したグロー放電が行いにくく高速エッチングが困難であり、10Paを超えると活性化処理効率が低下する。印加する交流は、1MHz未満では安定したグロー放電を維持するのが難しく連続エッチングが困難であり、50MHzを超えると発振し易く電力の供給系が複雑となり好ましくない。また、効率よくエッチングするためには電極と接触した銅箔、ニッケル箔のそれぞれの面積を電極Bの面積より小さくする必要があり、1/3以下とすることにより、充分な効率でエッチング可能となり、胴箔とニッケル箔のスパッタエッチングが均一となる。 If the inert gas pressure is less than 1 × 10 −3 Pa, stable glow discharge is difficult to perform and high-speed etching is difficult, and if it exceeds 10 Pa, the activation treatment efficiency decreases. If the alternating current applied is less than 1 MHz, it is difficult to maintain a stable glow discharge, and continuous etching is difficult, and if it exceeds 50 MHz, oscillation tends to occur and the power supply system becomes complicated, which is not preferable. Moreover, in order to etch efficiently, it is necessary to make each area of the copper foil and nickel foil which contacted the electrode smaller than the area of the electrode B. By making it 1/3 or less, it becomes possible to etch with sufficient efficiency. The sputter etching of the body foil and the nickel foil becomes uniform.

その後これら活性化処理された銅箔、ニッケル箔を積層接合する。積層接合は、銅箔、ニッケル箔のそれぞれ活性化処理された面が対向するようにして両者を当接して重ね合わせ圧接ユニットで冷間圧接を施すことによって達成される。この際の積層接合は低温度で可能であり、銅箔、ニッケル箔ならびに接合部に組織変化や合金層の形成などといった悪影響を軽減または排除することが可能である。Tを銅箔、ニッケル箔の温度(℃)とするとき、0℃<T≦300℃で良好な圧接状態が得られる。0℃以下では特別な冷却装置が必要となり、300℃を超えると組織変化などの悪影響が生じてくるため好ましくない。また圧延率R(%)は、0.01%≦R≦30%であることが好ましい。0.01%未満では充分な接合強度が得られず、30%を超えると変形が大きくなり加工精度上好ましくない。より好ましくは、0.1%≦R≦3%である。   Thereafter, the activated copper foil and nickel foil are laminated and joined. Laminate bonding is achieved by cold-welding with a superposition pressure welding unit, with the activated surfaces of the copper foil and nickel foil facing each other and contacting each other. Lamination bonding at this time can be performed at a low temperature, and adverse effects such as a change in structure and formation of an alloy layer at the copper foil, nickel foil, and bonding portion can be reduced or eliminated. When T is the temperature (° C.) of the copper foil and nickel foil, a good pressure contact state is obtained at 0 ° C. <T ≦ 300 ° C. If the temperature is 0 ° C. or lower, a special cooling device is required, and if it exceeds 300 ° C., adverse effects such as a change in structure occur. The rolling rate R (%) is preferably 0.01% ≦ R ≦ 30%. If it is less than 0.01%, sufficient bonding strength cannot be obtained, and if it exceeds 30%, deformation becomes large, which is not preferable in terms of processing accuracy. More preferably, 0.1% ≦ R ≦ 3%.

このように積層接合することにより、所要の層厚みを有するニッケル箔を積層した銅箔を形成することができる。さらに必要により所定の大きさに切り出して製造することができる。このようにして製造されたニッケル箔を積層した銅箔に、必要により残留応力の除去または低減などのために熱処理を施してもよい。   By laminating and bonding in this manner, a copper foil in which nickel foils having a required layer thickness are laminated can be formed. Further, if necessary, it can be cut into a predetermined size and manufactured. The copper foil laminated with the nickel foil thus manufactured may be subjected to heat treatment for removing or reducing the residual stress if necessary.

なお積層接合はバッチ処理を用いることができる。すなわち真空槽内に予め所定の大きさに切り出されたニッケル箔と銅箔を複数枚装填して活性化処理装置に搬送して垂直または水平など適切な位置に処理すべき面を対向または並置した状態などで設置または把持して固定して活性化処理を行い、さらにニッケル箔と銅箔を保持する装置が圧接装置を兼ねる場合には活性化処理後に設置または把持したまま圧接し、ニッケル箔と銅箔を保持する装置が圧接装置を兼ねない場合にはプレス装置などの圧接装置に搬送して圧接を行うことにより達成される。なお活性化処理は、ニッケル箔と銅箔を絶縁支持された一方の電極とし、アース接地された他の電極との間で行うことが好ましい。   In addition, a batch process can be used for lamination | stacking joining. That is, a plurality of nickel foils and copper foils cut into a predetermined size in a vacuum chamber are loaded and transported to an activation processing apparatus so that the surfaces to be processed in an appropriate position such as vertical or horizontal are opposed or juxtaposed. When the device that holds or holds the nickel foil and the copper foil also serves as a pressure welding device, press and hold the nickel foil and the nickel foil after the activation treatment. In the case where the apparatus for holding the copper foil does not serve as the pressure welding apparatus, it is achieved by carrying the pressure welding by conveying it to a pressure welding apparatus such as a press apparatus. The activation treatment is preferably performed between one electrode having a nickel foil and a copper foil insulated and supported and the other electrode grounded.

ニッケル箔として、ニッケル箔だけでなく、公知のニッケルを主成分とした合金箔、例えばニッケル−鉄合金箔等も適用できる。ニッケル箔の厚みとして、5〜20μmが望ましい。ニッケル箔の厚みが5μm未満では、ニッケル箔にピンホールができやすく、エッチングストップ層としての役割の効果がほとんどなくなる。逆に20μmを超えると、厚すぎてエッチングストップ層としての効果が飽和し経済的でない。   As the nickel foil, not only a nickel foil but also an alloy foil containing nickel as a main component, such as a nickel-iron alloy foil, can be applied. As thickness of nickel foil, 5-20 micrometers is desirable. When the thickness of the nickel foil is less than 5 μm, pinholes are easily formed in the nickel foil, and the effect of the role as an etching stop layer is almost lost. On the contrary, if it exceeds 20 μm, it is too thick and the effect as an etching stop layer is saturated, which is not economical.

銅箔は、電解銅箔あるいは圧延銅箔などが適用できる。また、銅箔としては、Cuの他、JISに規定の無酸素銅、タフピッチ銅、リン青銅、黄銅や、銅ベリリウム系合金(例えば、ベリリウム2%、残部が銅の合金など)、銅銀系合金(例えば、銀3〜5%、残部が銅の合金など)など公知のものが適用できる。銅箔の厚みとしては、8〜100μmが望ましい。より望ましくは18〜50μmである。8μm未満では、薄いため導電性の点で問題が生じ、逆に100μmを超えると、厚すぎて不経済である。   As the copper foil, an electrolytic copper foil or a rolled copper foil can be applied. In addition to Cu, oxygen-free copper, tough pitch copper, phosphor bronze, brass, copper beryllium-based alloys (for example, alloys with 2% beryllium and the remainder being copper), copper silver-based copper, etc. Known alloys such as alloys (for example, alloys of 3 to 5% silver and the balance being copper) can be applied. As thickness of copper foil, 8-100 micrometers is desirable. More desirably, the thickness is 18 to 50 μm. If the thickness is less than 8 μm, a problem arises in terms of conductivity because it is thin. Conversely, if it exceeds 100 μm, it is too thick and uneconomic.

支持体は、エッチング後にバンプとして残す場合、銅箔と同じ材料を適用する。バンプとして残さない場合、銅箔と同じ材料を適用しても良いし、その他アルミニウム、アルミニウム合金、ニッケルなどの金属材料が適用できる。アルミニウム、アルミニウム合金としては、Alの他、JIS H4000に規定の1000系、3000系、5000系などのアルミニウム合金を適用することができる。支持体において、バンプとして残さず、銅箔を使わない場合、エッチングストップ層であるニッケル層はなくても良い。すなわち、銅箔のエッチング液に支持体が溶けず、かつ支持体のエッチング液に銅箔が溶けない場合、エッチングストップ層であるニッケル層はなくても良い。
支持体の厚みとしては、30〜150μmが望ましい。より望ましくは50〜80μmである。30μm未満では、バンプあるいは支持体としての機能を有さず、逆に150μmを超えると、厚すぎて不経済である。
When the support is left as a bump after etching, the same material as the copper foil is applied. When the bumps are not left, the same material as that of the copper foil may be applied, and other metal materials such as aluminum, aluminum alloy, and nickel may be applied. As aluminum and aluminum alloys, aluminum alloys such as 1000 series, 3000 series, and 5000 series defined in JIS H4000 can be applied in addition to Al. When the support is not left as a bump and a copper foil is not used, the nickel layer as an etching stop layer may be omitted. That is, when the support is not dissolved in the copper foil etching solution and the copper foil is not dissolved in the support etching solution, the nickel layer as the etching stop layer may not be provided.
The thickness of the support is preferably 30 to 150 μm. More desirably, the thickness is 50 to 80 μm. If it is less than 30 μm, it does not have a function as a bump or a support, whereas if it exceeds 150 μm, it is too thick and uneconomical.

ニッケルめっきした銅箔と支持体、銅箔とニッケルめっきした支持体、ニッケル箔を積層した銅箔と支持体あるいは、銅箔とニッケル箔を積層した支持体との積層は、冷間圧延法、熱間圧延法、冷間圧延後の熱拡散処理により行う。特に、ニッケルめっきした銅箔と支持体、銅箔とニッケルめっきした支持体、ニッケル箔を積層した銅箔と支持体あるいは、銅箔とニッケル箔を積層した支持体の接合するそれぞれの表面を、積層する前に、活性化処理をして接合表面の酸化物などを取り除いた後、低圧下率での冷間圧延による活性化接合法により積層する。その活性化接合法については、上記した条件で行うが、以下、ニッケルめっきした銅箔と支持体を使用した例の接合方法を図3により説明する。   Nickel-plated copper foil and support, copper foil and nickel-plated support, copper foil and support laminated with nickel foil, or lamination with copper foil and nickel foil laminated is a cold rolling method, It is performed by a hot rolling method or a thermal diffusion treatment after cold rolling. In particular, nickel-plated copper foil and support, copper foil and nickel-plated support, copper foil and support laminated with nickel foil, or each surface where the copper foil and nickel foil laminated support are joined, Prior to lamination, after activation treatment is performed to remove oxides and the like on the bonding surfaces, lamination is performed by an activated bonding method by cold rolling at a low pressure reduction rate. The activated joining method is performed under the above-described conditions. Hereinafter, an example joining method using a nickel-plated copper foil and a support will be described with reference to FIG.

図3に示すように、真空槽52内において、巻き戻しリール62に設置された支持体20の接合予定面側が、活性化処理装置70で活性化処理される。同様にして巻き戻しリール64に設置されたニッケルめっきした銅箔24の接合予定面側が、活性化処理装置80で活性化処理される。   As shown in FIG. 3, in the vacuum chamber 52, the planned joining surface side of the support 20 installed on the rewind reel 62 is activated by the activation processing device 70. Similarly, the surface to be joined of the nickel-plated copper foil 24 installed on the rewind reel 64 is activated by the activation processing device 80.

活性化処理は、以下のようにして実施する。すなわち、真空槽52内に装填されたニッケルめっきした銅箔24、支持体20をそれぞれアース接地された一方の電極Aと接触させ、交流電源に接続され絶縁支持された他の電極Bとの間に、10〜1×10−3Paの極低圧不活性ガス雰囲気好ましくはアルゴンガス中で、1〜50MHzの交流を印加してグロー放電を行わせ、グロー放電によって生じたプラズマ中に露出される電極Aと接触したニッケルめっきした銅箔24、支持体20のそれぞれの面積が、電極Bの面積の1/3以下となるようにスパッタエッチング処理する。なお不活性ガス圧力が1×10−3Pa未満では安定したグロー放電が行いにくく高速エッチングが困難であり、10Paを超えると活性化処理効率が低下する。印加する交流は、1MHz未満では安定したグロー放電を維持するのが難しく連続エッチングが困難であり、50MHzを超えると発振し易く電力の供給系が複雑となり好ましくない。また、効率よくエッチングするためには電極Aと接触したニッケルめっきした銅箔24、支持体20のそれぞれの面積を電極Bの面積より小さくする必要があり、1/3以下とすることにより充分な効率でエッチング可能となる。そのため、図示してないが電極Aと電極Bとの間に、両者の対向面積を調節するための適度の開口を有する遮蔽板(マスク)が設けられている。 The activation process is performed as follows. That is, the nickel-plated copper foil 24 and the support 20 loaded in the vacuum chamber 52 are brought into contact with one electrode A which is grounded to the ground, and the other electrode B which is connected to an AC power source and insulated and supported. In addition, a glow discharge is performed by applying an alternating current of 1 to 50 MHz in an extremely low pressure inert gas atmosphere of 10 to 1 × 10 −3 Pa, preferably in an argon gas, and exposed to plasma generated by the glow discharge. Sputter etching is performed so that the area of each of the nickel-plated copper foil 24 in contact with the electrode A and the support 20 is 1/3 or less of the area of the electrode B. If the inert gas pressure is less than 1 × 10 −3 Pa, stable glow discharge is difficult to perform and high-speed etching is difficult, and if it exceeds 10 Pa, the activation treatment efficiency decreases. If the alternating current applied is less than 1 MHz, it is difficult to maintain a stable glow discharge, and continuous etching is difficult, and if it exceeds 50 MHz, oscillation tends to occur and the power supply system becomes complicated, which is not preferable. Moreover, in order to etch efficiently, it is necessary to make each area of the nickel-plated copper foil 24 and the support 20 in contact with the electrode A smaller than the area of the electrode B. It becomes possible to etch with efficiency. Therefore, although not shown, a shielding plate (mask) having an appropriate opening for adjusting the facing area between the electrodes A and B is provided between the electrodes A and B.

その後これら活性化処理されたニッケルめっきした銅箔24、支持体20を積層接合する。積層接合は、ニッケルめっきした銅箔24、支持体20のそれぞれ活性化処理された面が対向するようにして両者を当接して重ね合わせ圧接ユニット60で冷間圧接を施すことによって達成される。この際の積層接合は低温度で可能であり、ニッケルめっきした銅箔24、支持体20ならびに接合部に組織変化や合金層の形成などといった悪影響を軽減または排除することが可能である。Tをニッケルめっきした銅箔24、支持体20の温度(℃)とするとき、0℃<T≦300℃で良好な圧接状態が得られる。0℃以下では特別な冷却装置が必要となり、300℃を超えると組織変化などの悪影響が生じてくるため好ましくない。また圧延率R(%)は、0.01%≦R≦30%であることが好ましい。0.01%未満では充分な接合強度が得られず、30%を超えると変形が大きくなり加工精度上好ましくない。より好ましくは、0.1%≦R≦3%である。   Thereafter, the nickel-plated copper foil 24 and the support 20 subjected to the activation treatment are laminated and joined. Lamination bonding is achieved by performing cold pressure welding with the overlapping pressure welding unit 60 with the nickel-plated copper foil 24 and the support body 20 facing each other so that the surfaces subjected to activation treatment face each other. In this case, the lamination bonding can be performed at a low temperature, and adverse effects such as a change in structure and formation of an alloy layer in the nickel-plated copper foil 24, the support 20 and the bonding portion can be reduced or eliminated. When T is the temperature (° C.) of the nickel-plated copper foil 24 and the support 20, a good pressure contact state is obtained at 0 ° C. <T ≦ 300 ° C. If the temperature is 0 ° C. or lower, a special cooling device is required, and if it exceeds 300 ° C., adverse effects such as a change in structure occur. The rolling rate R (%) is preferably 0.01% ≦ R ≦ 30%. If it is less than 0.01%, sufficient bonding strength cannot be obtained, and if it exceeds 30%, deformation becomes large, which is not preferable in terms of processing accuracy. More preferably, 0.1% ≦ R ≦ 3%.

このように積層接合することにより、所要の層厚みを有するニッケルめっきした銅箔24と支持体20のQFN用金属積層板22を形成することができ、巻き取りロール66に巻き取られる。さらに必要により所定の大きさに切り出して、ニッケルめっきした銅箔と支持体とのQFN用金属積層板4を製造することができる。このようにして製造されたQFN用金属積層板22に、必要により残留応力の除去または低減などのために熱処理を施してもよい。   By laminating and bonding in this manner, a nickel-plated copper foil 24 having a required layer thickness and the QFN metal laminate plate 22 of the support 20 can be formed and taken up by a take-up roll 66. Furthermore, if necessary, it cuts out to a predetermined | prescribed magnitude | size and can manufacture the metal laminated board 4 for QFN of the copper foil and support which were nickel-plated. The QFN metal laminate 22 thus manufactured may be subjected to heat treatment for removing or reducing the residual stress, if necessary.

なお積層接合はバッチ処理を用いることができる。すなわち真空槽内に予め所定の大きさに切り出されたニッケルめっきした銅箔24や支持体20を複数枚装填して活性化処理装置に搬送して垂直または水平など適切な位置に処理すべき面を対向または並置した状態などで設置または把持して固定して活性化処理を行い、さらにニッケルめっきした銅箔24や支持体20を保持する装置が圧接装置を兼ねる場合には活性化処理後に設置または把持したまま圧接し、ニッケルめっきした銅箔や支持体を保持する装置が圧接装置を兼ねない場合にはプレス装置などの圧接装置に搬送して圧接を行うことにより達成される。なお活性化処理は、ニッケルめっきした銅箔24や支持体20を絶縁支持された一方の電極Aとし、アース接地された他の電極Bとの間で行うことが好ましい。   In addition, a batch process can be used for lamination | stacking joining. That is, a surface to be processed in an appropriate position such as vertical or horizontal by loading a plurality of nickel-plated copper foils 24 or supports 20 cut in advance into a vacuum chamber and transporting them to an activation processing apparatus. Are installed or gripped and fixed in an opposed or juxtaposed state, etc., and the activation process is performed. Further, when the apparatus holding the nickel-plated copper foil 24 and the support 20 also serves as a pressure welding apparatus, it is installed after the activation process. Alternatively, when a device that holds the nickel-plated copper foil or the support is also used as a pressure welding device while being held in pressure contact, it is achieved by carrying the pressure welding device to a pressure welding device such as a press device. The activation treatment is preferably performed between the nickel-plated copper foil 24 and the support 20 as one electrode A that is insulated and supported, and the other electrode B that is grounded.

次に、銅箔、ニッケル層、支持体の3層からなるQFN用金属積層板4からQFNを製造する方法を図1及び図2により説明する。ニッケル層として銅箔1にニッケルめっき2を行った場合について説明する。なお、図1は、QFNの極薄化ができ、かつQFNの製造工程で、改めて支持体を積層する必要性がなく、工程の省略が可能な点で特徴がある端子タイプQFNについて示す図である。図2の再配線タイプでは、端子タイプに加え、残留した銅箔を結線の代替えとして使用できるので、結線として高価な金の使う量(結線の長さ)を少なくすることができる。すなわち、IC基板側の端子位置とマザーボード側の端子位置を離れて設置できる。   Next, a method for producing QFN from a QFN metal laminate 4 comprising three layers of a copper foil, a nickel layer, and a support will be described with reference to FIGS. The case where the nickel plating 2 is performed on the copper foil 1 as the nickel layer will be described. FIG. 1 is a diagram showing a terminal type QFN that is characterized in that the QFN can be made extremely thin, and there is no need to stack a support again in the QFN manufacturing process, and the process can be omitted. is there. In the rewiring type of FIG. 2, since the remaining copper foil can be used as an alternative to the connection in addition to the terminal type, the amount of expensive gold used for the connection (connection length) can be reduced. That is, the terminal position on the IC board side and the terminal position on the motherboard side can be set apart.

(レジスト配線パターンの形成)
QFN用金属積層板4の銅箔1の表面にレジスト塗布後、露光、現像を行い、レジスト配線パターンを形成する(レジスト配線パターンの形成工程)。これらの一連の手法については、常法に基づいて行うことができる。また、図示しないが、レジスト配線パターンを金めっき層またはニッケルめっき層(下層)/金めっき層(上層)の2層で形成しても良い。2層めっきの場合、高価な金の厚みを薄くでき経済的である。この配線パターン形成用の金属めっきは、電気めっき、無電解めっき又は蒸着めっきで行うのが配線パターンの精度の点で望ましい。
(Formation of resist wiring pattern)
After applying a resist on the surface of the copper foil 1 of the QFN metal laminate 4, exposure and development are performed to form a resist wiring pattern (resist wiring pattern forming step). About these series of methods, it can carry out based on a conventional method. Although not shown, the resist wiring pattern may be formed of two layers of a gold plating layer or a nickel plating layer (lower layer) / gold plating layer (upper layer). In the case of two-layer plating, the thickness of expensive gold can be reduced, which is economical. The metal plating for forming the wiring pattern is preferably performed by electroplating, electroless plating or vapor deposition in view of the accuracy of the wiring pattern.

次に、QFN用金属積層板4の銅箔1のエッチングを行う(銅箔エッチング工程)。銅箔1は、市販のアルカリ系銅のエッチング液等を用いて、エッチングを行うことができる。ニッケルめっき層2はエッチングストップ層として働くのでエッチングされないで残留する。次に、レジストを除去して、配線を形成する(配線形成工程)。
引き続き、エッチング液を変えて、露出したニッケル層のみをエッチングする(ニッケル層エッチング工程)。エッチングストップ層がニッケルなので、市販のニッケル除去液(例えばメルテックス社製N−950)を用いることができる(図1(b)と図2(b)参照)。
Next, the copper foil 1 of the QFN metal laminate 4 is etched (copper foil etching step). The copper foil 1 can be etched using a commercially available alkaline copper etchant or the like. Since the nickel plating layer 2 functions as an etching stop layer, it remains without being etched. Next, the resist is removed to form a wiring (wiring forming process).
Subsequently, only the exposed nickel layer is etched by changing the etching solution (nickel layer etching step). Since the etching stop layer is nickel, a commercially available nickel removing solution (for example, N-950 manufactured by Meltex) can be used (see FIGS. 1B and 2B).

(IC基板の積層および結線)
上記工程で、残留した銅箔はその表面に、接着剤を介してIC基板7を積層する(IC基盤積層工程)。次いで、IC基板7と、その周辺にある銅箔1とを結線6をする(結線工程)。接着剤は接着性の他に絶縁性を有することを必要とする。接着剤は、公知のものが適用でき、特に限定されるものではない。例えば、エポキシ系樹脂、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、オレフィン系樹脂、イソシアネート系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、クロロプレンゴム系樹脂、ニトリル系樹脂、スチレン−ブタジエン−ゴム系樹脂、シアノアクリレート系樹脂、ポリウレタン系樹脂あるいはホットメルト接着剤が適用できる、ホットメルト接着剤としては、エチレン酢酸ビニル共重合樹脂、ポリアミド、ポリエステル、アタクチックポリプロピレン、熱可塑性エラストマーなどが適用できる。
(Lamination and connection of IC substrates)
In the above process, the remaining copper foil is laminated with an IC substrate 7 on its surface via an adhesive (IC substrate laminating process). Next, the IC substrate 7 and the copper foil 1 in the periphery thereof are connected 6 (connection process). The adhesive needs to have insulating properties in addition to adhesiveness. As the adhesive, known ones can be applied and are not particularly limited. For example, epoxy resin, urea resin, melamine resin, phenol resin, olefin resin, isocyanate resin, vinyl acetate resin, acrylic resin, chloroprene rubber resin, nitrile resin, styrene-butadiene rubber Resins, cyanoacrylate resins, polyurethane resins or hot melt adhesives can be applied. Examples of hot melt adhesives include ethylene vinyl acetate copolymer resins, polyamides, polyesters, atactic polypropylene, and thermoplastic elastomers.

また、結線の代わりにIC基板7を上下逆にして、IC基板は残留した銅箔1と半田ボールを介して接合することができる。この場合、高価な金線で結線する必要はない。
結線した後、支持体3上のIC基板7、接着剤、結線6及び配線用銅箔を有機樹脂5で埋める(図1(c)と図2(c)参照)。有機樹脂5は、公知のものが適用でき、特に限定されるものではないが、接着剤の成分と似たものが望ましい。例えば、エポキシ系樹脂、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、オレフィン系樹脂、イソシアネート系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、クロロプレンゴム系樹脂、ニトリル系樹脂、スチレン−ブタジエン−ゴム系樹脂、シアノアクリレート系樹脂、ポリウレタン系樹脂あるいはホットメルト接着剤が適用できる、ホットメルト接着剤としては、エチレン酢酸ビニル共重合樹脂、ポリアミド、ポリエステル、アタクチックポリプロピレン、熱可塑性エラストマーなどが適用できる。
Further, the IC substrate 7 can be turned upside down instead of being connected, and the IC substrate can be bonded to the remaining copper foil 1 via the solder balls. In this case, it is not necessary to connect with an expensive gold wire.
After the connection, the IC substrate 7, the adhesive, the connection 6, and the wiring copper foil on the support 3 are filled with the organic resin 5 (see FIG. 1 (c) and FIG. 2 (c)). The organic resin 5 may be a known one and is not particularly limited, but is preferably similar to the adhesive component. For example, epoxy resin, urea resin, melamine resin, phenol resin, olefin resin, isocyanate resin, vinyl acetate resin, acrylic resin, chloroprene rubber resin, nitrile resin, styrene-butadiene rubber Resins, cyanoacrylate resins, polyurethane resins or hot melt adhesives can be applied. Examples of hot melt adhesives include ethylene vinyl acetate copolymer resins, polyamides, polyesters, atactic polypropylene, and thermoplastic elastomers.

(支持体除去)
有機樹脂5でIC基板7、接着剤、結線6及び配線用銅箔を埋めた後、支持体3を除去する(支持体除去工程)。支持体3は全てか一部エッチングにより除去する。支持体3の全て除去する場合、支持体3をエッチング液で全て溶解する(図1(d)と図2(d)参照)。また、図1(e)と図2(e)に示すように、一部除去してバンブを形成する場合、支持体3は銅箔を用い、銅箔の表面にレジスト塗布後、露光、現像を行い、レジストパターンを形成する。これらの一連の手法については、常法に基づいて行うことができる。次に、QFN用金属積層板の支持体3のエッチングを行う(支持体エッチング工程)。銅箔は、市販のアルカリ系銅のエッチング液等を用いて、エッチングを行うことができる。次に、レジストを除去してバンプ8を形成する(バンブ形成工程)。
以上のようにして、QFNだけでなく、バンプ8を有するQFNを製造することができる。
(Support removal)
After filling the IC substrate 7, the adhesive, the connection 6 and the copper foil for wiring with the organic resin 5, the support 3 is removed (support removal process). The support 3 is completely or partially removed by etching. When all of the support 3 is removed, the support 3 is completely dissolved with an etching solution (see FIGS. 1D and 2D). Also, as shown in FIGS. 1 (e) and 2 (e), when a bump is formed by removing a part, the support 3 uses a copper foil, and after exposure to resist, the resist is applied to the surface of the copper foil. To form a resist pattern. About these series of methods, it can carry out based on a conventional method. Next, the support 3 of the QFN metal laminate is etched (support etching step). The copper foil can be etched using a commercially available alkaline copper etchant or the like. Next, the resist is removed to form bumps 8 (bump formation step).
As described above, not only QFN but also QFN having bumps 8 can be manufactured.

実施例1
(1)材料構成
QFN用金属積層板は、ニッケルめっき(厚み:1μm)した銅箔(電解銅箔、厚み:18μm)と支持体である銅箔(電解銅箔、厚み:50μm)とを、ニッケルめっき層と厚み50μmの銅箔とを接するように向かい合わせて、活性化接合方法により積層して得た。
(活性化接合条件)
真空雰囲気:アルゴンガス雰囲気、10−2Pa
印加した交流:30MHz
圧延率:0.5%
(2)レジスト配線パターン形成
厚み18μmの銅箔上にレジスト塗布後、露光、現像を行い、レジスト配線パターンを形成した。
(3)エッチング
市販のアルカリ系銅のエッチング液等を用いて、厚み18μm銅箔の選択エッチングを行った。
(4)レジスト除去
レジストを除去し、配線を形成した。次いで、市販のニッケル除去液(メルテックス社製N−950)を用いて露出したニッケルめっき層(エッチングストップ層)をエッチングにより除去した。
Example 1
(1) Material structure The metal laminated plate for QFN consists of a nickel-plated (thickness: 1 μm) copper foil (electrolytic copper foil, thickness: 18 μm) and a copper foil (electrolytic copper foil, thickness: 50 μm) as a support. The nickel plating layer and the copper foil having a thickness of 50 μm were opposed to each other so as to be laminated by an activation joining method.
(Activated bonding conditions)
Vacuum atmosphere: Argon gas atmosphere, 10 −2 Pa
Applied AC: 30 MHz
Rolling ratio: 0.5%
(2) Formation of resist wiring pattern After applying a resist on a copper foil having a thickness of 18 μm, exposure and development were performed to form a resist wiring pattern.
(3) Etching Selective etching of a 18 μm thick copper foil was performed using a commercially available alkaline copper etchant or the like.
(4) Resist removal The resist was removed to form wiring. Next, the exposed nickel plating layer (etching stop layer) was removed by etching using a commercially available nickel removing solution (N-950 manufactured by Meltex).

(5)IC基板の積層
残留した銅箔上に、接着剤(エポキシ系接着剤、厚み:12μm)を介してIC基板を積層した。次いでIC基板と、その周辺の残留した配線用銅箔とを結線した。さらに、IC基板、配線用銅箔及び結線とを有機樹脂(エポキシ系樹脂)で埋めた。
(6)バンプ形成用レジスト配線パターン形成
支持体である厚み30μmの銅箔(電解銅箔)上にレジスト塗布後、露光、現像を行い、バンプ形成用レジスト配線パターンを形成する。
(7)支持体エッチング
市販のアルカリ系銅のエッチング液等を用いて銅の選択エッチングを行い、バンプを形成する。
(5) Lamination of IC substrate An IC substrate was laminated on the remaining copper foil via an adhesive (epoxy adhesive, thickness: 12 μm). Next, the IC substrate and the remaining wiring copper foil in the periphery thereof were connected. Furthermore, the IC substrate, the copper foil for wiring, and the connection were filled with an organic resin (epoxy resin).
(6) Forming resist wiring pattern for bump formation A resist wiring pattern for bump formation is formed by applying a resist on a 30 μm thick copper foil (electrolytic copper foil) as a support, and then exposing and developing.
(7) Support Etching Selective copper etching is performed using a commercially available alkaline copper etchant or the like to form bumps.

実施例2
(1)材料構成
QFN用金属積層板は、ニッケルめっき(厚み:1μm)した銅箔(電解銅箔、厚み:18μm)と支持体であるアルミニウム箔(JIS H4000の合金記号1100、厚み:80μm)とを、ニッケルめっき層とアルミニウム箔とを接するように向かい合わせて、活性化接合方法により積層して得た。
(活性化接合条件)
真空雰囲気:アルゴンガス雰囲気、1×10−1Pa
印加した交流:10MHz
圧延率:1.0%
(2)レジスト配線パターン形成
厚み18μmの銅箔上にレジスト塗布後、露光、現像を行い、レジスト配線パターンを形成した。
(3)エッチング
市販のアルカリ系銅のエッチング液等を用いて、厚み18μm銅箔の選択エッチングを行った。
(4)レジスト除去
レジストを除去し、配線を形成した。次いで、市販のニッケル除去液(メルテックス社製N−950)を用いて露出したニッケルめっき層(エッチングストップ層)をエッチングにより除去した。
Example 2
(1) Material structure The metal laminated plate for QFN consists of a nickel-plated (thickness: 1 μm) copper foil (electrolytic copper foil, thickness: 18 μm) and an aluminum foil as a support (alloy symbol 1100 of JIS H4000, thickness: 80 μm). And the nickel plating layer and the aluminum foil face each other so as to be in contact with each other and laminated by an activation joining method.
(Activated bonding conditions)
Vacuum atmosphere: Argon gas atmosphere, 1 × 10 −1 Pa
Applied AC: 10 MHz
Rolling ratio: 1.0%
(2) Formation of resist wiring pattern After applying a resist on a copper foil having a thickness of 18 μm, exposure and development were performed to form a resist wiring pattern.
(3) Etching Selective etching of a 18 μm thick copper foil was performed using a commercially available alkaline copper etchant or the like.
(4) Resist removal The resist was removed to form wiring. Next, the exposed nickel plating layer (etching stop layer) was removed by etching using a commercially available nickel removing solution (N-950 manufactured by Meltex).

(5)IC基板の積層
残留した銅箔上に、接着剤(エポキシ系接着剤、厚み:15μm)を介してIC基板を積層した。次いでIC基板と、その周辺の残留した配線用銅箔とを結線した。さらに、IC基板、配線用銅箔及び結線とを有機樹脂(エポキシ系樹脂)で埋めた。
(6)支持体の除去
支持体である厚み80μmのアルミニウム箔を市販のアルカリ系銅のエッチング液等を用いてアルミニウム箔を除去した。
(5) Lamination of IC substrate An IC substrate was laminated on the remaining copper foil via an adhesive (epoxy adhesive, thickness: 15 μm). Next, the IC substrate and the remaining wiring copper foil in the periphery thereof were connected. Furthermore, the IC substrate, the copper foil for wiring, and the connection were filled with an organic resin (epoxy resin).
(6) Removal of Support The aluminum foil having a thickness of 80 μm as a support was removed using a commercially available alkaline copper etching solution or the like.

本発明のQFN用金属積層板では、エッチングによる配線パターンを形成する前に、予め配線形成用材料が支持体に積層されているので、配線形成用材料は強度があり、極薄化が可能である。また、エッチングによる配線形成後に、支持体を積層する工程が不要となる。また、支持体をバンプとして使用できる。また、配線形成用材料は配線としても使用できる。そして、本発明のQFN用金属積層板は、低圧下率での冷間圧延により積層するので、積層した後も素材の機械特性がほとんど変化せず、QFN用金属積層板の設計が容易である。また、銅箔のニッケル層面と支持体は、重ね合わせる前に、それぞれの接合面を活性化処理するので、ニッケル層と支持体の接合界面には、これらの酸化物がなく、後のエッチング工程で形成した配線の抵抗値が安定したものが得られる等の利点があり、QFNの製造に利用価値が高い。   In the metal laminated plate for QFN of the present invention, since the wiring forming material is laminated on the support in advance before forming the wiring pattern by etching, the wiring forming material is strong and can be made extremely thin. is there. Further, a step of laminating the support is not required after the wiring is formed by etching. Moreover, a support body can be used as a bump. The wiring forming material can also be used as wiring. Since the QFN metal laminate of the present invention is laminated by cold rolling at a low pressure reduction rate, the mechanical properties of the material hardly change even after lamination, and the design of the QFN metal laminate is easy. . In addition, since the nickel layer surface of the copper foil and the support are subjected to an activation treatment before being overlapped, there is no such oxide at the bonding interface between the nickel layer and the support, and a subsequent etching step. There is an advantage that a wire having a stable resistance value can be obtained, and the utility value is high in the manufacture of QFN.

本発明のQFNの形成方法の工程を示す図であり、(a)は本発明のQFN用金属積層板の側面図、(b)は銅の選択エッチングならびにニッケル槽除去後の側面図、(c)はIC基板の積層、結線、有機樹脂の埋め込み後の側面図、(d)〜(e)は支持体の全部または一部を除去後の側面図である。It is a figure which shows the process of the formation method of QFN of this invention, (a) is a side view of the metal laminated board for QFN of this invention, (b) is a side view after copper selective etching and nickel tank removal, (c) ) Is a side view after stacking, wiring, and embedding of an organic resin, and (d) to (e) are side views after removing all or part of the support. 本発明のQFNの形成方法の他の工程を示す図であり、(a)は本発明のQFN用金属積層板の側面図、(b)は銅の選択エッチングならびにニッケル槽除去後の側面図、(c)はIC基板の積層、結線、有機樹脂の埋め込み後の側面図、(d)〜(e)は支持体の全部または一部を除去後の側面図である。It is a figure which shows the other process of the formation method of QFN of this invention, (a) is a side view of the metal laminated board for QFN of this invention, (b) is a side view after copper selective etching and nickel tank removal, (C) is a side view after stacking, wiring, and embedding of an organic resin, and (d) to (e) are side views after removing all or part of the support. 本発明のQFN用金属積層板の製造方法に用いる装置の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the apparatus used for the manufacturing method of the metal laminated board for QFN of this invention. 従来のQFNの形成方法の他の工程を示す図であり、(a)はリードフレームの側面図、(b)は選択エッチング後の側面図、(c)は支持体の積層後の側面図、(d)はIC基板の積層、結線、有機樹脂の埋め込み後の側面図、(e)は支持体の全部を除去後の側面図である。It is a figure which shows the other process of the formation method of the conventional QFN, (a) is a side view of a lead frame, (b) is a side view after selective etching, (c) is a side view after lamination | stacking of a support body, (D) is a side view after lamination and connection of an IC substrate, and embedding of an organic resin, and (e) is a side view after the entire support is removed.

符号の説明Explanation of symbols

1 銅箔 2 ニッケル層
3 支持体 4 QFN用金属積層板
5 有機樹脂 6 配線
7 IC基板 8 バンプ
9 リ−ドフレーム 10 接着剤
20 支持体 22 QFN用金属積層板
24 ニッケルめっきした銅箔
50 QFN用金属積層板の製造装置 52 真空槽
60 圧延ユニット 62 巻き戻しリール
64 巻き戻しリール 66 巻き取りロール
70 活性化処理装置 72 電極ロール
74 電極 80 活性化処理装置
82 電極ロール 84 電極
A 電極A B 電極B
DESCRIPTION OF SYMBOLS 1 Copper foil 2 Nickel layer 3 Support body 4 Metal laminated board for QFN 5 Organic resin 6 Wiring 7 IC board 8 Bump 9 Lead frame 10 Adhesive 20 Support body 22 Metal laminated board for QFN 24 Nickel-plated copper foil 50 QFN Metal laminated plate manufacturing apparatus 52 Vacuum tank 60 Rolling unit 62 Rewinding reel 64 Rewinding reel 66 Take-up roll 70 Activation processing device 72 Electrode roll 74 Electrode 80 Activation processing device 82 Electrode roll 84 Electrode A Electrode A B Electrode B

Claims (11)

銅箔/ニッケル層/支持体の3層からなることを特徴とするQFN用金属積層板。   A metal laminate for QFN, comprising three layers of copper foil / nickel layer / support. 前記ニッケル層がニッケルめっき層またはニッケル箔からなることを特徴とする請求項1記載のQFN用金属積層板。   The metal laminate for QFN according to claim 1, wherein the nickel layer is made of a nickel plating layer or a nickel foil. 前記支持体が銅箔からなることを特徴とする請求項1または2記載のQFN用金属積層板。   The metal substrate for QFN according to claim 1 or 2, wherein the support is made of copper foil. 前記銅箔の厚みが8〜100μmであることを特徴とする請求項1又は2に記載のQFN用金属積層板。   The thickness of the said copper foil is 8-100 micrometers, The metal laminated plate for QFN of Claim 1 or 2 characterized by the above-mentioned. 銅箔/ニッケル層/支持体の3層からなるQFN用金属積層板の製造方法であって、前記銅箔の接合面又は支持体の接合面の何れか一方にニッケル層を形成する工程、前記ニッケル層が形成された銅箔と支持体、又は銅箔とニッケル層が形成された支持体を、前記ニッケル層が支持体又は銅箔に対向するように重ね合わせて、冷間圧延による方法で前記銅箔と前記支持体とを積層することを特徴とするQFN用金属積層板の製造方法。   A method for producing a metal laminate for QFN comprising three layers of copper foil / nickel layer / support, wherein a step of forming a nickel layer on either the bonding surface of the copper foil or the bonding surface of the support, The copper foil and the support on which the nickel layer is formed, or the support on which the copper foil and the nickel layer are formed are overlapped so that the nickel layer faces the support or the copper foil, and a method by cold rolling is used. A method for producing a metal laminate for QFN, comprising laminating the copper foil and the support. 前記ニッケル層が形成された銅箔と支持体、又は銅箔とニッケル層が形成された支持体は、重ね合わせる前に、それぞれの接合面を活性化処理することを特徴とする請求項5記載のQFN用金属積層板の製造方法。   6. The copper foil and the support on which the nickel layer is formed, or the support on which the copper foil and the nickel layer are formed is subjected to an activation treatment on each bonding surface before being overlaid. Of manufacturing a metal laminate for QFN. 前記銅箔又は支持体へのニッケル層の形成は、ニッケル箔を銅箔又は支持体に対向するように重ね合わせて、冷間圧延による方法で前記銅箔又は前記支持体に積層することを特徴とする請求項5又は6に記載のQFN用金属積層板の製造方法。   The formation of the nickel layer on the copper foil or the support is performed by superimposing the nickel foil so as to face the copper foil or the support and laminating the copper foil or the support by a method of cold rolling. The manufacturing method of the metal laminated sheet for QFN of Claim 5 or 6. ニッケル箔を銅箔又は支持体に重ね合わせる前に、それぞれの接合面を活性化処理することを特徴とする請求項7に記載のQFN用金属積層板の製造方法。   The method for producing a metal laminate for QFN according to claim 7, wherein each joint surface is activated before the nickel foil is superimposed on the copper foil or the support. 前記活性化処理が、10〜1×10−3Paの不活性ガス雰囲気中で、前記接合面が互いに対向するように、アース接地された一方の電極Aとそれぞれ接触させ、絶縁支持された他の電極Bとの間に1〜50MHzの交流を印加してグロー放電を行わせ、グロー放電によって生じたプラズマ中に露出される前記電極Aと接触した前記接合面のそれぞれの面積が、前記電極Bの面積の1/3以下となるようにスパッタエッチング処理することを特徴とする請求項6又は8に記載のQFN用金属積層板の製造方法。 In the inert gas atmosphere of 10 to 1 × 10 −3 Pa, the activation treatment is in contact with one of the grounded electrodes A so that the bonding surfaces face each other, and the other is insulated and supported The glow discharge is performed by applying an alternating current of 1 to 50 MHz to the electrode B of the electrode B, and the respective areas of the joint surface that are in contact with the electrode A exposed in the plasma generated by the glow discharge are the electrodes. The method for producing a metal laminate for QFN according to claim 6 or 8, wherein a sputter etching process is performed so that the area of B is 1/3 or less. 請求項1乃至4のいずれか記載のQFN用金属積層板を用いて、銅箔上にレジスト配線パターンを形成する工程、前記銅箔及びニッケル層をエッチングする工程、レジストを除去して配線を形成する工程、エッチングされずに残留した銅箔の表面にIC基板を積層する工程、IC基板とIC基板を積層していない銅箔とを結線する工程、支持体を除去する工程からなることを特徴とするQFNの製造方法。   A process for forming a resist wiring pattern on a copper foil, a process for etching the copper foil and the nickel layer, and a wiring by removing the resist, using the metal laminate for QFN according to claim 1. A step of laminating an IC substrate on the surface of the copper foil that remains without being etched, a step of connecting the IC substrate and a copper foil on which the IC substrate is not laminated, and a step of removing the support. The manufacturing method of QFN. 請求項1乃至4のいずれか記載のQFN用金属積層板を用いて、銅箔上にレジスト配線パターンを形成する工程、銅箔及びニッケル層をエッチングする工程、銅箔上のレジストを除去して配線を形成する工程、エッチングされずに残留した銅箔の表面にIC基板を積層する工程、IC基板とIC基板を積層していない銅箔とを結線する工程、支持体上にレジスト配線パターンを形成する工程、支持体をエッチングする工程、支持体上のレジストを除去してバンプを形成する工程からなることを特徴とするQFNの製造方法。   A step of forming a resist wiring pattern on a copper foil, a step of etching a copper foil and a nickel layer, and a step of removing the resist on the copper foil using the QFN metal laminated plate according to claim 1. A step of forming a wiring, a step of laminating an IC substrate on the surface of the copper foil remaining without being etched, a step of connecting the IC substrate and a copper foil in which the IC substrate is not laminated, a resist wiring pattern on the support A method for producing QFN, comprising: a step of forming; a step of etching the support; and a step of removing a resist on the support to form a bump.
JP2006329478A 2006-12-06 2006-12-06 Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn Pending JP2008147237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329478A JP2008147237A (en) 2006-12-06 2006-12-06 Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329478A JP2008147237A (en) 2006-12-06 2006-12-06 Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011166215A Division JP2011211248A (en) 2011-07-29 2011-07-29 Method for manufacturing qfn using metal laminated board for qfn

Publications (1)

Publication Number Publication Date
JP2008147237A true JP2008147237A (en) 2008-06-26

Family

ID=39607117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329478A Pending JP2008147237A (en) 2006-12-06 2006-12-06 Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn

Country Status (1)

Country Link
JP (1) JP2008147237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933089A (en) * 2017-05-25 2018-12-04 无锡华润安盛科技有限公司 A kind of integrated circuit package structure and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135546A (en) * 1997-10-31 1999-05-21 Nec Corp Resin sealed semiconductor device and its manufacture
WO2000019533A1 (en) * 1998-09-30 2000-04-06 Toyo Kohan Co., Ltd. Clad plate for lead frames, lead frame using the same, and method of manufacturing the lead frame
JP2001267461A (en) * 2000-03-23 2001-09-28 Mitsui High Tec Inc Method for manufacturing semiconductor device
JP2004119726A (en) * 2002-09-26 2004-04-15 Sanyo Electric Co Ltd Method of manufacturing circuit device
JP2006222332A (en) * 2005-02-14 2006-08-24 Toyo Kohan Co Ltd Process for producing collective circuit material and process for manufacturing component employing collective circuit material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135546A (en) * 1997-10-31 1999-05-21 Nec Corp Resin sealed semiconductor device and its manufacture
WO2000019533A1 (en) * 1998-09-30 2000-04-06 Toyo Kohan Co., Ltd. Clad plate for lead frames, lead frame using the same, and method of manufacturing the lead frame
JP2001267461A (en) * 2000-03-23 2001-09-28 Mitsui High Tec Inc Method for manufacturing semiconductor device
JP2004119726A (en) * 2002-09-26 2004-04-15 Sanyo Electric Co Ltd Method of manufacturing circuit device
JP2006222332A (en) * 2005-02-14 2006-08-24 Toyo Kohan Co Ltd Process for producing collective circuit material and process for manufacturing component employing collective circuit material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933089A (en) * 2017-05-25 2018-12-04 无锡华润安盛科技有限公司 A kind of integrated circuit package structure and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4345808B2 (en) Manufacturing method of semiconductor device
US6663980B1 (en) Clad plate for lead frames, lead frame using the same, and method of manufacturing the lead frame
KR100622514B1 (en) Method of manufacturing circuit device
JP2010272737A (en) Method for manufacturing semiconductor device
JP2011211248A (en) Method for manufacturing qfn using metal laminated board for qfn
KR100658023B1 (en) Method of manufacturing circuit device
EP1193755B1 (en) Clad plate for forming interposer for semiconductor device, interposer for semiconductor device, and method of manufacturing them
JP2002043467A (en) Board for semiconductor package, its manufacturing method, semiconductor package using board and manufacturing method of semiconductor package
JP2004363573A (en) Semiconductor chip mounted body and its manufacturing method
JP2001267461A (en) Method for manufacturing semiconductor device
JP2013069955A (en) Semiconductor device, semiconductor device manufacturing method and lead frame
JP2008147237A (en) Metal laminated plate for qfn and its manufacturing method, and method of manufacturing qfn using the metal laminated plate for qfn
JP2004179295A (en) Manufacturing method for package
JP4623622B2 (en) Manufacturing method of clad material for semiconductor package and manufacturing method of semiconductor package
JP5105625B2 (en) Manufacturing method of semiconductor package unit
JP2004058578A (en) Laminated metal foil with carrier and method for manufacturing package using it
JP2006159797A (en) Hollow structure formed body, hollow structure forming material used for hollow structure formed body, laminate used for hollow structure forming material and component part using hollow structure formed body
JP3801929B2 (en) Method for manufacturing resistance layer laminate and method for manufacturing component using resistance layer laminate
JP2006222331A (en) Collective circuit material and component employing it
JP2006222332A (en) Process for producing collective circuit material and process for manufacturing component employing collective circuit material
JP2005324466A (en) Low thermal expansion laminated material and part using it
JP3801928B2 (en) Resistance layer laminate and parts using resistance layer laminate
JP2005243990A (en) Method for manufacturing wiring board
JP2003229514A (en) Laminate and method of manufacturing resin sealing package
JP4190955B2 (en) Method for producing conductive plate laminate for selective etching

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130531

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127