JP2008143801A - Method for preparing bis(pentamethylcyclopentadienyl)strontium - Google Patents

Method for preparing bis(pentamethylcyclopentadienyl)strontium Download PDF

Info

Publication number
JP2008143801A
JP2008143801A JP2006330359A JP2006330359A JP2008143801A JP 2008143801 A JP2008143801 A JP 2008143801A JP 2006330359 A JP2006330359 A JP 2006330359A JP 2006330359 A JP2006330359 A JP 2006330359A JP 2008143801 A JP2008143801 A JP 2008143801A
Authority
JP
Japan
Prior art keywords
thf
srcp
strontium
toluene
pentamethylcyclopentadienyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006330359A
Other languages
Japanese (ja)
Other versions
JP4767158B2 (en
Inventor
Hidekimi Kadokura
秀公 門倉
Shintaro Azuma
慎太郎 東
Moriatsu Kondou
守厚 近藤
Katsuhisa Uchida
勝久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2006330359A priority Critical patent/JP4767158B2/en
Publication of JP2008143801A publication Critical patent/JP2008143801A/en
Application granted granted Critical
Publication of JP4767158B2 publication Critical patent/JP4767158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing bis(pentamethylcyclopentadienyl)strontium on a large scale which is a suitable raw material for forming a membrane comprising strontium oxide by a chemical vapor deposition method or by an atomic layer deposition method. <P>SOLUTION: The method for preparing bis(pentamethylcyclopentadienyl)strontium comprises a step of forming a tetrahydrofuran adduct of bis(pentamethylcyclopentadienyl)strontium by causing pentamethylcyclopentadienylsodium and strontium iodide to react with each other in tetrahydrofuran, a step of distilling off tetrahydrofuran therefrom, a step of extracting the adduct with toluene to form a toluene solution thereof, a step of removing toluene by distilling and subsequently vacuum-drying the toluene solution or the extract, and a step of subliming the resulting product in vacuum at least twice to obtain bis(pentamethylcyclopentadienyl)strontium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、化学気相成長法(Chemical Vapor Deposition法;以下、CVD法と表す。)や原子層堆積法(Atomic Layer Deposition法;以下、ALD法と表す。)により、酸化ストロンチウム含有膜を形成するための原料化合物であるビス(ペンタメチルシクロペンタジエニル)ストロンチウムの製造方法に関する。   In the present invention, a strontium oxide-containing film is formed by a chemical vapor deposition method (Chemical Vapor Deposition method; hereinafter referred to as CVD method) or an atomic layer deposition method (Atomic Layer Deposition method; hereinafter referred to as ALD method). The present invention relates to a method for producing bis (pentamethylcyclopentadienyl) strontium, which is a raw material compound for the purpose.

CVD法やALD法による高誘電率のSrTiO3、SrBi2Ta29、SrBi4Ti415等の膜は、高集積半導体装置の誘電体として期待されている。また、強誘電体膜の電極として、SrRuO3膜が検討されている。
従来、これらの酸化ストロンチウム(SrO)を含有する膜をCVD法やALD法で形成する際の原料としては、ビス(ジピバロイルメタナト)ストロンチウム(Sr(C111922;以下、Sr(dpm)2と表す。)が主に検討されてきた。
High dielectric constant films such as SrTiO 3 , SrBi 2 Ta 2 O 9 , and SrBi 4 Ti 4 O 15 by CVD or ALD are expected as dielectrics for highly integrated semiconductor devices. In addition, a SrRuO 3 film has been studied as a ferroelectric film electrode.
Conventionally, as a raw material when forming a film containing these strontium oxides (SrO) by a CVD method or an ALD method, bis (dipivaloylmethanato) strontium (Sr (C 11 H 19 O 2 ) 2 ; , Sr (dpm) 2 ) has been mainly studied.

しかしながら、Sr(dpm)2は、三量体に会合しているため、蒸気圧が0.1Torr/231℃と非常に低く、供給上の課題を有している。
また、230℃以上になると熱分解が始まるため、ALD法で成膜する場合に望ましい自己律速成長のみならず、制御困難な熱分解が同時に起きるという問題を有していた。
However, since Sr (dpm) 2 is associated with a trimer, its vapor pressure is as low as 0.1 Torr / 231 ° C., which has a supply problem.
Moreover, since thermal decomposition starts at 230 ° C. or higher, there is a problem that not only self-controlled growth desirable when forming a film by the ALD method but also thermal decomposition that is difficult to control occurs at the same time.

したがって、より蒸気圧が高く、また、酸化剤との反応性が高く、かつ、熱安定性の高い有機ストロンチウム化合物が求められている。   Therefore, an organic strontium compound having a higher vapor pressure, higher reactivity with an oxidant, and higher thermal stability is desired.

その候補としては、例えば、公知化合物であるビス(ペンタメチルシクロペンタジエニル)ストロンチウム(Sr[C5(CH352;以下、SrCp* 2と表す。)が挙げられる。ここで、SrCp* 2は、ジエチルエーテル((C252O;以下、Et2Oと表す。)やテトラヒドロフラン(C48O;以下、THFと表す。)等が配位した付加体ではない。 Examples of the candidate include bis (pentamethylcyclopentadienyl) strontium (Sr [C 5 (CH 3 ) 5 ] 2 ; hereinafter referred to as SrCp * 2 ), which is a known compound. Here, SrCp * 2 was coordinated by diethyl ether ((C 2 H 5 ) 2 O; hereinafter referred to as Et 2 O), tetrahydrofuran (C 4 H 8 O; hereinafter referred to as THF), or the like. It is not an adduct.

前記付加体は、熱安定性が低く、加熱とともに付加物を放出し、かつ、熱変質するため、安定した蒸気圧とならない。また、酸素原子を付加体に含んでいるため、自己分解により酸素が供給される可能性があり、ALD法の原料としては好ましくない。   The adduct is low in thermal stability, releases an adduct with heating, and undergoes thermal alteration, and therefore does not have a stable vapor pressure. In addition, since an oxygen atom is included in the adduct, oxygen may be supplied by autolysis, which is not preferable as a raw material for the ALD method.

これに対して、付加体でないSrCp* 2は、単量体であるため、有機ストロンチウム化合物の中では、蒸気圧が最も高いものの1つであり、また、酸化剤の水とも瞬時に反応するというALD法の原料として好ましい性質を有している。また、5個のメチル基の影響により、有機溶媒に溶解しやすいという長所も有している。 On the other hand, since SrCp * 2 which is not an adduct is a monomer, it is one of the highest vapor pressures among organic strontium compounds, and also reacts instantly with the oxidant water. It has desirable properties as a raw material for the ALD method. In addition, it has an advantage of being easily dissolved in an organic solvent due to the influence of five methyl groups.

このSrCp* 2の製造方法としては、非特許文献1に、ヨウ化ストロンチウム(SrI2)粉末と、固体のペンタメチルシクロペンタジエニルナトリウム(Na[C5(CH35];以下、NaCp*と表す。)とをEt2O中で、室温で36時間撹拌して反応させ、ろ液を濃縮後、−25℃で再結晶し、真空乾燥して、SrCp* 2(Et2O)が得られることが記載されている。
さらに、この付加体からEt2Oを除去するために、SrCp* 2(Et2O)を100質量倍の大量のトルエンに溶解し、100℃で微減圧下、2〜3時間かけて、トルエンを留去する(トルエンリフラックス)操作を2回繰り返し、トルエンを完全に除去した後、100〜110℃/0.001Torrで昇華させて、SrCp* 2が得られることが記載されている。
As a method for producing this SrCp * 2 , Non-patent Document 1 discloses that strontium iodide (SrI 2 ) powder and solid pentamethylcyclopentadienyl sodium (Na [C 5 (CH 3 ) 5 ]; * ) And stirred in Et 2 O at room temperature for 36 hours. The filtrate was concentrated, recrystallized at −25 ° C., dried in vacuo, and SrCp * 2 (Et 2 O). Is obtained.
Further, in order to remove Et 2 O from this adduct, SrCp * 2 (Et 2 O) was dissolved in a large amount of toluene 100 mass times, and toluene was added at 100 ° C. under slight vacuum for 2 to 3 hours. It is described that SrCp * 2 is obtained by repeating the operation of distilling off (toluene reflux) twice to completely remove toluene and then sublimating at 100 to 110 ° C./0.001 Torr.

しかしながら、上記非特許文献1記載の製法は、グラムオーダーの実験室レベルのスケールであり、使用されている溶媒のEt2Oは、沸点が32℃と低く、揮発性が非常に高く、引火性が高く、麻酔性がある等の特性から、量産においては取り扱いにくい。しかも、原料や生成物の溶解度があまり高くなく、量産するためには、大量に必要となるため、容積効率にも劣る。 However, the production method described in Non-Patent Document 1 is a laboratory level scale in the order of grams, and Et 2 O used as a solvent has a boiling point as low as 32 ° C., has a very high volatility, and is flammable. It is difficult to handle in mass production due to its high properties and anesthetic properties. Moreover, the solubility of the raw materials and products is not so high, and a large amount is required for mass production, so that volume efficiency is also inferior.

また、大量のトルエンで抽出後、100℃の微減圧下で、時間をかけてトルエンを留去する工程では、使用するトルエンの量が非常に多くなり、また、長時間を要するリフラックス操作を2回も繰り返さなければならない等、量産向きの工程とは言い難い。さらに、溶媒使用量が多いと、溶媒中に含まれる微量の水分や酸素により、SrCp* 2が変質する可能性も高くなる。 Also, in the process of distilling off toluene over 100 hours at a slightly reduced pressure at 100 ° C. after extraction with a large amount of toluene, the amount of toluene to be used becomes very large, and a reflux operation requiring a long time is performed. It is difficult to say that it is a mass production process, because it must be repeated twice. Furthermore, if the amount of the solvent used is large, there is a high possibility that the SrCp * 2 will be altered by a trace amount of water and oxygen contained in the solvent.

このように、上記非特許文献1記載の製法は、そのままスケールアップして、キログラムオーダーの量産体制に適用可能な製法とは言えない。   Thus, the manufacturing method described in Non-Patent Document 1 cannot be said to be a manufacturing method that can be scaled up as it is and applied to a mass production system on the order of kilograms.

一方、非特許文献2に、SrCp* 2への配位力がEt2Oより強く、小さい分子であるTHFをEt2Oの代わりに用いると、SrCp* 2(THF)2となることが記載されている。 On the other hand, in Non-Patent Document 2, coordination force to SrCp * 2 is stronger than Et 2 O, the use of THF is small molecule instead of Et 2 O, wherein be a SrCp * 2 (THF) 2 Has been.

また、上記のようなTHF付加体からのTHFの除去に関しては、同族元素の化合物であるBaCp* 2(THF)2については、非特許文献1に、トルエンリフラックス操作でTHFを除去することができることが記載されている。一方、非特許文献3には、CaCp* 2(THF)2のTHFは、トルエンリフラックス操作では除去することができないことが記載されている。
また、非特許文献2には、SrCp* 2(THF)2が、190〜192℃でTHFを一部離し、分解することが開示されているが、SrCp* 2が得られたとの記載はない。
Regarding the removal of THF from the above-mentioned THF adduct, regarding BaCp * 2 (THF) 2 which is a compound of a homologous element, Non-Patent Document 1 discloses that THF can be removed by a toluene reflux operation. It describes what you can do. On the other hand, Non-Patent Document 3 describes that THF of CaCp * 2 (THF) 2 cannot be removed by a toluene reflux operation.
Non-Patent Document 2 discloses that SrCp * 2 (THF) 2 partially decomposes THF at 190 to 192 ° C. to decompose, but there is no description that SrCp * 2 was obtained. .

したがって、SrCp* 2(THF)2については、トルエンリフラックス操作でTHFを除去可能か否か、さらに、それを昇華して、SrCp* 2とすることができるか否かについて開示されている文献はない。
すなわち、好適な溶媒であるTHF中で合成したSrCp* 2(THF)2からSrCp* 2を得る方法は、これまで知られていなかった。
C.L.Burns and R.A.Andersen, J.Organomet.Chem Vol.325(1987)31 McCormick,M.J. et al. Polyhedron Vol.7, 725(1988) R.A.Williams, T.P.Hanusa and J.C.Huffman, Organometallics Vol.9(1990)1128
Therefore, for SrCp * 2 (THF) 2 , a document that discloses whether or not THF can be removed by a toluene reflux operation, and whether or not it can be sublimated to SrCp * 2 . There is no.
That is, the method of the preferred solvents SrCp was synthesized in THF * 2 (THF) 2 obtaining SrCp * 2 has not been known heretofore.
CLBurns and RAAndersen, J. Organomet.Chem Vol.325 (1987) 31 McCormick, MJ et al. Polyhedron Vol. 7, 725 (1988) RAWilliams, TPHanusa and JCHuffman, Organometallics Vol. 9 (1990) 1128

そこで、本発明者らは、SrCp* 2(THF)2について、このTHF付加体からTHFを除去するために、100質量倍程度の大量のトルエンによるリフラックス操作を試みた。トルエンリフラックス操作を2回繰り返し、減圧でトルエンを完全に除去した後、ヘキサン抽出、濃縮、−25℃での再結晶を行い、さらに、得られた粉末を昇華器に仕込み、140〜200℃/0.1Torrで昇華させたところ、昇華物の収率は10%以下であった。 Therefore, the inventors of the present invention tried to reflux SrCp * 2 (THF) 2 with a large amount of toluene about 100 mass times in order to remove THF from this THF adduct. Toluene reflux operation was repeated twice, and toluene was completely removed under reduced pressure, followed by hexane extraction, concentration, and recrystallization at -25 ° C. The obtained powder was charged into a sublimator, and 140-200 ° C. When sublimated at /0.1 Torr, the yield of the sublimate was 10% or less.

すなわち、SrCp* 2(THF)2のTHFを除去するためのトルエンリフラックス操作は、副反応が起こりやすいためか、SrCp* 2またはSrCp* 2(THF)2の収率が非常に低下し、したがって、非特許文献2に記載されているような方法によっては、SrCp* 2を量産することは困難であった。 That is, the toluene reflux operation for removing THF from SrCp * 2 (THF) 2 is likely to cause side reactions, or the yield of SrCp * 2 or SrCp * 2 (THF) 2 is greatly reduced. Therefore, it has been difficult to mass-produce SrCp * 2 by the method described in Non-Patent Document 2.

本発明は、上記技術的課題を解決するためになされたものであり、SrOを含有する膜をCVD法やALD法により形成するための好適な原料であるSrCp* 2を量産することができる製造方法を提供することを目的とするものである。 The present invention has been made to solve the above technical problem, and is capable of mass-producing SrCp * 2 , which is a suitable raw material for forming a film containing SrO by a CVD method or an ALD method. It is intended to provide a method.

本発明に係るSrCp* 2の製造方法は、NaCp*とSrI2をTHF中で反応させ、SrCp* 2のTHF付加体を生成させる工程と、THFを留去し、トルエンで抽出してトルエン溶液とする工程と、トルエンを留去し、減圧乾燥後、真空下で2回以上昇華させる工程とを経ることを特徴とする。
上記製造方法によれば、SrCp* 2のTHF付加体から、THFを完全に除去することができ、SrCp* 2の量産が可能となる。
Method for producing SrCp * 2 according to the present invention, the NaCp * and SrI 2 are reacted in THF, the step of generating the THF adduct of SrCp * 2, was distilled off THF, toluene solution was extracted with toluene And the step of evaporating toluene and drying under reduced pressure, followed by sublimation twice or more under vacuum.
According to the above manufacturing method, the THF adduct of SrCp * 2, it is possible to completely remove the THF, it is possible to mass production of SrCp * 2.

本発明に係るSrCp* 2の製造方法によれば、量産に適したTHFを溶媒として用いてSrCp* 2を製造することができる。
したがって、本発明は、CVD法やALD法によるSrO含有膜の量産に寄与し得るものである。
According to SrCp * 2 of the manufacturing method according to the present invention, the THF suitable for mass production can be produced SrCp * 2 used as a solvent.
Therefore, the present invention can contribute to the mass production of SrO-containing films by the CVD method or the ALD method.

以下、本発明について、より詳細に説明する。
本発明に係るSrCp* 2の製造方法においては、まず、NaCp*とSrI2をTHF中で反応させ、SrCp* 2のTHF付加体を生成させる。そして、THFを留去し、トルエンで抽出してトルエン溶液とし、さらに、トルエンを留去し、減圧乾燥後、真空下で2回以上昇華させることにより、SrCp* 2が得られる。
Hereinafter, the present invention will be described in more detail.
In SrCp * 2 of the manufacturing method according to the present invention, firstly, the NaCp * and SrI 2 are reacted in THF, to produce THF adduct of SrCp * 2. Then, THF is distilled off, extracted with toluene to form a toluene solution, further toluene is distilled off, dried under reduced pressure, and sublimated twice or more under vacuum to obtain SrCp * 2 .

前記抽出操作において得られたSrCp* 2(THF)2のトルエン溶液から、トルエンを減圧留去し、約100℃で減圧乾燥すると、SrCp* 2(THF)2〜1.5の粉末が得られ、これを、140〜180/0.1Torrで昇華させると、SrCp* 2(THF)0.5〜0.3程度の結晶が得られる。再度、140〜180℃/0.1Torrで昇華させると、SrCp* 2が純白結晶として得られる。
このように、本発明に係る製造方法は、反応溶媒としてTHFを用い、得られたSrCp* 2のTHF付加体から、THFを完全に除去することができるため、SrCp* 2の量産に好適に適用することができる。
From SrCp * 2 (THF) 2 in toluene solution obtained in the extraction operation, toluene was distilled off under reduced pressure, and dried under reduced pressure at about 100 ℃, SrCp * 2 (THF ) 2~1.5 powder was obtained, which Is sublimated at 140 to 180 / 0.1 Torr, crystals of about SrCp * 2 (THF) 0.5 to 0.3 are obtained. When sublimation is again performed at 140 to 180 ° C./0.1 Torr, SrCp * 2 is obtained as pure white crystals.
As described above, the production method according to the present invention can use THF as a reaction solvent, and THF can be completely removed from the obtained SrCp * 2 THF adduct, which is suitable for mass production of SrCp * 2. Can be applied.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
温度計、撹拌子、投入口、還流器を備えた1L三口フラスコに、真空アルゴン置換後、脱水脱酸素したTHF750mlとNaCp*79g(0.50mol)を入れて溶解し、フラスコを水冷しながら、SrI2粉末90g(0.246mol)を加え、25〜40℃で24時間撹拌した。
次いで、減圧で脱溶媒し、乾燥後、脱水脱酸素したトルエン900mlを加え、加熱撹拌による抽出操作を行い、静置後、ろ過し、透明なろ液を得た。減圧し、ろ液からトルエンを留去し、100℃で減圧乾燥した。
固形分をグローブボックス中で取り出し、軽く粉砕すると、淡黄色のさらさらとした粉末(減圧乾燥品)99gが得られた。
この粉末を昇華器に仕込み、140〜180℃/0.1Torrで1回目の昇華を行い、1回昇華品を66g得た。
さらに、この1回昇華品を昇華器に仕込み、再度、140〜180℃/0.1Torrで2回目の昇華を行い、純白な2回昇華品58gが得られた。
この2回昇華品の結晶は、下記に示す分析の結果から、SrCp* 2(0.162mol)と同定され、その収率はNaCp*に対して65%であった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
In a 1 L three-necked flask equipped with a thermometer, a stirrer, an inlet, and a refluxer, 750 ml of dehydrated and deoxygenated THF and 79 g (0.50 mol) of NaCp * were dissolved after vacuum substitution, and the flask was cooled with water. 90 g (0.246 mol) of SrI 2 powder was added, and the mixture was stirred at 25 to 40 ° C. for 24 hours.
Next, the solvent was removed under reduced pressure, and after drying, 900 ml of dehydrated and deoxygenated toluene was added, and extraction operation was performed by heating and stirring. After standing, the solution was filtered to obtain a transparent filtrate. The pressure was reduced, and toluene was distilled off from the filtrate, followed by drying at 100 ° C. under reduced pressure.
The solid content was taken out in the glove box and lightly pulverized to obtain 99 g of a light yellow free flowing powder (vacuum dried product).
This powder was charged into a sublimator and sublimated for the first time at 140 to 180 ° C./0.1 Torr to obtain 66 g of a sublimated product.
Further, this once-sublimated product was charged into a sublimator and again sublimated at 140-180 ° C./0.1 Torr for the second time, and 58 g of pure white twice-sublimated product was obtained.
The twice-sublimated crystals were identified as SrCp * 2 (0.162 mol) from the results of the analysis shown below, and the yield was 65% with respect to NaCp * .

以下、各工程において得られた固体の同定分析および物性評価の方法および結果について述べる。
(1)組成分析
2回昇華品を湿式分解して得られた液のICP発光分光分析の結果、Sr含有量は25.1%(理論値24.47%)であった。
また不純物については、Ca<0.2,Mg<0.3,Ba=120,Na<1,K<1,Cr<1,Fe<1,Cu<1,Ni<1(単位:ppm)であり、高純度であることが認められた。
同様に、1回昇華品および減圧乾燥品についても、Sr含有量を測定したところ、それぞれ、19.7%、22.1%であった。
Hereinafter, methods and results of identification analysis and physical property evaluation of the solid obtained in each step will be described.
(1) Composition analysis As a result of ICP emission spectroscopic analysis of the liquid obtained by wet decomposition of the sublimation product twice, the Sr content was 25.1% (theoretical value: 24.47%).
The impurities are Ca <0.2, Mg <0.3, Ba = 120, Na <1, K <1, Cr <1, Fe <1, Cu <1, Ni <1 (unit: ppm). It was found to be high purity.
Similarly, the Sr content of the once-sublimated product and the vacuum-dried product was measured and found to be 19.7% and 22.1%, respectively.

(2)1H−NMR
測定条件(装置:JNM−ECA400(400MHz)、溶媒:C66、方法:1D)
図1に2回昇華品、図2に減圧乾燥品、図3に1回昇華品の各測定スペクトルを示す。
(2) 1 H-NMR
Measurement conditions (apparatus: JNM-ECA400 (400 MHz), solvent: C 6 D 6 , method: 1D)
FIG. 1 shows the measured spectra of the twice-sublimated product, FIG. 2 shows the dried product under reduced pressure, and FIG. 3 shows the measured spectrum of the once-sublimated product.

図1〜3の測定スペクトルにおける各シグナルの位置とHの個数、SrとTHFの比率を考慮して、以下のように帰属を行った。
1.95〜2.03ppm(s):THFが配位していないSrCp* 2のC5(C 35(全てが等価なCH3
1.79,1.73,0.99,0.97ppm:THFが2個または1個配位したSrCp* 2のC5(C 35(主に3種の非等価なCH3
3.57〜3.05,1.41〜1.18ppm:THFの−OC 2 2 2 2
In consideration of the position of each signal, the number of H, and the ratio of Sr and THF in the measurement spectra of FIGS.
1.95~2.03ppm (s): C 5 ( C H 3) of SrCp * 2 which THF is not coordinated 5 (all equivalent CH 3)
1.79,1.73,0.99,0.97ppm: C 5 (C H 3 ) of SrCp * 2 of THF was 2 or 1 coordination 5 (mainly three nonequivalent CH 3)
3.57~3.05,1.41~1.18ppm: -OC of THF H 2 C H 2 C H 2 C H 2 -

図2に示した測定スペクトルによれば、減圧乾燥品の平均的化学式はSrCp* 2(THF)1.5であり、THFが配位していないSrCp* 2のシグナルは全く見られず、いずれも、THFが配位したSrCp* 2のシグナルであった。
したがって、SrCp* 2(THF)1.5の内訳は、SrCp* 2(THF)11molとSrCp* 2(THF)21molの混合物であると推定される。
According to the measurement spectrum shown in FIG. 2, the average chemical formula of the dried product under reduced pressure is SrCp * 2 (THF) 1.5 , and no signal of SrCp * 2 in which THF is not coordinated is observed. The signal was SrCp * 2 coordinated with THF.
Therefore, breakdown of SrCp * 2 (THF) 1.5 is estimated to be SrCp * 2 (THF) 1 1mol and SrCp * 2 (THF) 2 1mol mixtures.

図3に示した測定スペクトルによれば、1回昇華品の平均的化学式はSrCp* 2(THF)0.5であり、THFが配位していないSrCp* 2のH個数100に対して、(THF)2が配位したSrCp* 2のH個数は、10.43+10.43+7.68=28.7であった。
したがって、SrCp* 2(THF)0.5の内訳は、SrCp* 23.5(=100/28.7)molとSrCp* 2(THF)21molの混合物であると推定される。
According to the measurement spectrum shown in FIG. 3, the average chemical formula of the single sublimation product is SrCp * 2 (THF) 0.5 , and (THF) is 100 for the H number of SrCp * 2 in which THF is not coordinated. ) The H number of SrCp * 2 coordinated with 2 was 10.43 + 10.43 + 7.68 = 28.7.
Therefore, the breakdown of SrCp * 2 (THF) 0.5 is estimated to be a mixture of SrCp * 2 3.5 (= 100 / 28.7) mol and SrCp * 2 (THF) 2 1 mol.

図1に示した2回昇華品の測定スペクトルには、THFのシグナルは全く見られなかった。
したがって、図1に示した測定スペクトルから、2回昇華品のδH(ppm)=1.951(s)は、SrCp* 2のC5(C 35に帰属され、これは、非特許文献1記載のδH(ppm)=1.95とほぼ一致する結果となった。
No signal of THF was observed in the measurement spectrum of the twice-sublimated product shown in FIG.
Therefore, from the measurement spectrum shown in FIG. 1, δH (ppm) = 1.951 (s) of the twice sublimated product is attributed to C 5 (C H 3 ) 5 of SrCp * 2 , which is not patented. The result almost coincided with δH (ppm) described in Document 1 = 1.95.

なお、図1に示した2回昇華品の測定スペクトルには、減圧乾燥品や1回昇華品(図1,2)において見られたTHFの配位したSrCp* 2(THF)またはSrCp* 2(THF)2のシグナル位置(1.79,1.73,0.99,0.97ppm)に、SrCp* 2のH個数100に対して、1.88+1.68+0.87=4.43(H個数)が認められた。
この原因は不明であるが、例えば、THFが配位していなくても非等価なCH3が平衡で存在する、また、わずかに配位したTHFはシグナルとして現れない、あるいはまた、NMRサンプル調製時に水分と反応して生成したCp*Hによる等の原因が考えられる。
In addition, the measurement spectrum of the twice-sublimated product shown in FIG. 1 shows SrCp * 2 (THF) or SrCp * 2 coordinated with THF found in the vacuum-dried product or the once-sublimated product (FIGS. 1 and 2). (THF) 2 signal position (1.79, 1.73, 0.99, 0.97 ppm), 1.88 + 1.68 + 0.87 = 4.43 (H for 100 H numbers of SrCp * 2 ) Number) was recognized.
The cause of this is unknown, but, for example, non-equivalent CH 3 is present in equilibrium even if THF is not coordinated, and slightly coordinated THF does not appear as a signal, or NMR sample preparation The cause of this may be due to Cp * H produced by reaction with moisture.

以下に、各工程で得られた固体について、Sr含量分析値と、1H−NMRのSrCp* 2各シグナルのH個数とTHFシグナルのH個数の比率から推定した化合物の平均的化学式をまとめて示す。
減圧乾燥品:Sr含量19.7%;SrCp* 2(THF)1.5
1回昇華品:Sr含量22.1%;SrCp* 2(THF)0.5
2回昇華品:Sr含量25.1%;SrCp* 2
Hereinafter, the solid obtained in each step, together with Sr content analysis, the average chemical formula 1 H-NMR compounds SrCp * 2 was estimated from the ratio of H number of H number and THF signals of each signal Show.
Vacuum-dried product: Sr content 19.7%; SrCp * 2 (THF) 1.5
Single sublimation product: Sr content 22.1%; SrCp * 2 (THF) 0.5
Sublimation product twice: Sr content 25.1%; SrCp * 2

(3)性状および融点
2回昇華品は、昇華析出時は無色(純白色)であったが、回収時に極微量の酸素混入により、微淡黄色に着色した。
また、下記TG−DTAの測定結果から、その融点は207℃であった。非特許文献1記載の融点は216〜218℃であり、これよりもわずかに低いが、ほぼ一致すると言える。
(3) Property and melting point The twice-sublimated product was colorless (pure white) at the time of sublimation precipitation, but was colored slightly pale yellow due to a very small amount of oxygen at the time of recovery.
Moreover, the melting point was 207 degreeC from the measurement result of the following TG-DTA. The melting point described in Non-Patent Document 1 is 216 to 218 ° C., which is slightly lower than this, but can be said to be almost the same.

(4)会合度
2回昇華品をベンゼン凝固点降下法による分子量測定を行った結果、分子量は352であった。
したがって、会合度は0.98であり、また、ベンゼンが配位しないことも確認された。
(4) Degree of association As a result of measuring the molecular weight of the sublimated product twice by the benzene freezing point depression method, the molecular weight was 352.
Therefore, the degree of association was 0.98, and it was also confirmed that benzene did not coordinate.

(5)TG−DTA
測定条件(試料重量:5.23mg、雰囲気:Ar1気圧、昇温速度:10.0deg/min)
図4に、2回昇華品のTG−DTA測定結果を示す。
図4から、160℃付近まで減量はなく、除去されるTHFは存在していないと推定される。
また、260℃までに94%蒸発していることから、分オーダーの短時間では、260℃以下においては熱劣化することはなく、ALD法やCVD法の原料に求められる熱安定性を有していることが認められる。
(5) TG-DTA
Measurement conditions (sample weight: 5.23 mg, atmosphere: Ar 1 atm, heating rate: 10.0 deg / min)
FIG. 4 shows the TG-DTA measurement results of the twice-sublimated product.
From FIG. 4, it is estimated that there is no weight loss up to around 160 ° C. and there is no THF to be removed.
In addition, since 94% has been evaporated up to 260 ° C., heat degradation does not occur at 260 ° C. or less in a short time on the order of minutes, and it has the thermal stability required for ALD and CVD methods. It is recognized that

(6)蒸気圧
気体飽和法測定の結果、0.1Torr/160℃、1Torr/200℃であった。
(6) Vapor pressure As a result of the gas saturation method measurement, they were 0.1 Torr / 160 ° C. and 1 Torr / 200 ° C.

(7)密度
結晶の密度は1.28g/cm3であった。
(7) Density The density of the crystal was 1.28 g / cm 3 .

実施例に係る2回昇華品の1H−NMRの測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 1 H-NMR of the twice sublimation goods which concern on an Example. 実施例に係る減圧乾燥品の1H−NMRの測定スペクトルを示す図である。It is a diagram showing a measured spectrum of 1 H-NMR of the dried product according to Example. 実施例に係る1回昇華品の1H−NMRの測定スペクトルを示す図である。It is a figure which shows the measurement spectrum of 1 H-NMR of the once sublimated product which concerns on an Example. 実施例に係る2回昇華品の1気圧でのTG−DTA測定結果を示す図である。It is a figure which shows the TG-DTA measurement result in 1 atmosphere of the twice sublimation goods which concern on an Example.

Claims (1)

ペンタメチルシクロペンタジエニルナトリウムとヨウ化ストロンチウムをテトラヒドロフラン中で反応させ、ビス(ペンタメチルシクロペンタジエニル)ストロンチウムのテトラヒドロフラン付加体を生成させる工程と、テトラヒドロフランを留去し、トルエンで抽出してトルエン溶液とする工程と、トルエンを留去し、減圧乾燥後、真空下で2回以上昇華させる工程とを経ることを特徴とするビス(ペンタメチルシクロペンタジエニル)ストロンチウムの製造方法。   A step of reacting sodium pentamethylcyclopentadienyl with strontium iodide in tetrahydrofuran to form a tetrahydrofuran adduct of bis (pentamethylcyclopentadienyl) strontium, and distilling off the tetrahydrofuran, followed by extraction with toluene and toluene. A method for producing bis (pentamethylcyclopentadienyl) strontium, comprising a step of forming a solution and a step of distilling off toluene, drying under reduced pressure, and sublimating twice or more under vacuum.
JP2006330359A 2006-12-07 2006-12-07 Method for producing bis (pentamethylcyclopentadienyl) strontium Expired - Fee Related JP4767158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330359A JP4767158B2 (en) 2006-12-07 2006-12-07 Method for producing bis (pentamethylcyclopentadienyl) strontium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330359A JP4767158B2 (en) 2006-12-07 2006-12-07 Method for producing bis (pentamethylcyclopentadienyl) strontium

Publications (2)

Publication Number Publication Date
JP2008143801A true JP2008143801A (en) 2008-06-26
JP4767158B2 JP4767158B2 (en) 2011-09-07

Family

ID=39604375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330359A Expired - Fee Related JP4767158B2 (en) 2006-12-07 2006-12-07 Method for producing bis (pentamethylcyclopentadienyl) strontium

Country Status (1)

Country Link
JP (1) JP4767158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563390A (en) * 2021-09-24 2021-10-29 苏州源展材料科技有限公司 Preparation method of bis (triisopropylcyclopentadienyl) strontium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563390A (en) * 2021-09-24 2021-10-29 苏州源展材料科技有限公司 Preparation method of bis (triisopropylcyclopentadienyl) strontium
CN113563390B (en) * 2021-09-24 2021-12-14 苏州源展材料科技有限公司 Preparation method of bis (triisopropylcyclopentadienyl) strontium

Also Published As

Publication number Publication date
JP4767158B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
KR101533844B1 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
US8580989B2 (en) Process for the preparation of indium chlordialkoxides
EP0178786B1 (en) Volatile metal complexes
JP2008094728A (en) Organic ruthenium compound for chemical vapor deposition and chemical vapor deposition method using the organic ruthenium compound
US6669990B2 (en) Atomic layer deposition method using a novel group IV metal precursor
JP5260148B2 (en) Method for forming strontium-containing thin film
TWI257393B (en) Novel alkaline earth metal complexes and their use
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
JP4767158B2 (en) Method for producing bis (pentamethylcyclopentadienyl) strontium
JP3227891B2 (en) Novel organometallic complexes and their ligands
Igumenov et al. New volatile β-diketonate complexes of barium with sterically hindered methoxy-β-diketones as precursors for CVD
JPH11302286A (en) Barium strontium beta-diketonate and is production and production of barium strontium-containing oxide dielectric thin film using the same
SU637088A3 (en) Method of obtaining oligomer n-alkyliminoalane
JP5776555B2 (en) Metal alkoxide compound and method for producing metal-containing thin film using the compound
Baxter et al. Synthesis, structural characterization, thermolysis and volatility study of the Schiff base complex Cu [CH3C (O) CHC (NCH2CH2OCH3) CH3] 2
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP4006892B2 (en) Method for producing liquid double alkoxide of niobium, tantalum and alkaline earth metal, and method for producing complex oxide dielectric using the same
KR20030063096A (en) Process for producing pzt films by chemical vapor deposition method
JP4326005B2 (en) Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.
WO1982004254A1 (en) Composite oxyalkoxides and derivatives thereof
EP0103446B1 (en) Volatile metal complexes
KR100830529B1 (en) Process for producing high-purity hafnium amide
JP2002069027A (en) HAFNIUM ALKOXYTRIS(beta-DIKETONATE), METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING OXIDE FILM USING THE SAME
JP3858138B2 (en) Niobium, liquid double alkoxides of tantalum and lithium, a method for producing the same, and a method for producing a complex oxide dielectric thin film using the same
Guillon et al. Synthesis, characterisation and thermal decomposition study of cerium (IV) 2-(2′-hydroxyphenyl)-2-oxazoline derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees