JP2008143103A - Gas barrier laminated film - Google Patents

Gas barrier laminated film Download PDF

Info

Publication number
JP2008143103A
JP2008143103A JP2006334845A JP2006334845A JP2008143103A JP 2008143103 A JP2008143103 A JP 2008143103A JP 2006334845 A JP2006334845 A JP 2006334845A JP 2006334845 A JP2006334845 A JP 2006334845A JP 2008143103 A JP2008143103 A JP 2008143103A
Authority
JP
Japan
Prior art keywords
film
gas barrier
layer
vapor deposition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006334845A
Other languages
Japanese (ja)
Inventor
Norio Akita
紀雄 秋田
Yukinobu Yamaguchi
幸伸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006334845A priority Critical patent/JP2008143103A/en
Publication of JP2008143103A publication Critical patent/JP2008143103A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas barrier laminated film excellent in gas barrier properties and lamination strength. <P>SOLUTION: The gas barrier laminated film has a base material film 10, a vapor deposition film 20 of an inorganic oxide, a gas barrier coating film 30, an anchor coating layer 40, and a heat sealing layer 50 in this order. The gas barrier coating film 30 comprises a gas barrier composition containing an alkoxide, a polyvinyl alcohol-based resin and/or an ethylene/vinyl alcohol copolymer and obtained by polycondensation with a sol-gel method, and the anchor coating layer 40 comprises an anchor coating composition containing polyethyleneimine. Further, an adhesive resin layer is preferably provided between the anchor coating layer 40 and the heat sealing layer 50 and the heat sealing layer 50 is preferably composed of a thermally weldable polyolefinic resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスバリア性積層フィルムに関し、更に詳しくは、ラミネート強度に優れ、かつ酸素、水蒸気等の透過を阻止するガスバリア性に優れるガスバリア性積層フィルムに関するものである。   The present invention relates to a gas barrier laminate film, and more particularly to a gas barrier laminate film having excellent laminate strength and excellent gas barrier properties that prevent permeation of oxygen, water vapor, and the like.

従来、飲食品、化成品、雑貨品、その他を充填包装する包装用材料としては、内容物の変質、変色、その他を防止するために、酸素ガス、水蒸気等の透過を遮断、阻止する、種々の形態からなるバリア性積層材が開発されている。また、廃棄の際に金属箔が不燃物として残存することを考慮して、アルミなどの金属箔を使用せず、内容物が透視できるガスバリア性積層材が開発されている。   Conventionally, as packaging materials for filling and packaging foods, beverages, chemicals, miscellaneous goods, etc., various kinds of materials that block or block the transmission of oxygen gas, water vapor, etc. to prevent alteration, discoloration, etc. of the contents. Barrier laminates having the following form have been developed. In consideration of the fact that the metal foil remains as an incombustible material at the time of disposal, a gas barrier laminate material has been developed that allows the contents to be seen through without using a metal foil such as aluminum.

例えば、プラスチックフィルムの少なくとも一方の表面に無機酸化物薄膜層を形成し、該無機酸化物薄膜層上にアンカーコート剤に架橋剤を混合した層を設け、更に前記層の表面にヒートシール性樹脂を設けた包装材料積層体である(特許文献1)。前記アンカーコート剤は、架橋剤とポリエチレンイミンとエポキシ化合物との混合物であり、エポキシ化合物を混合することで、ガスバリア性に優れ、かつ吸湿時でもラミネート強度に優れる、という。   For example, an inorganic oxide thin film layer is formed on at least one surface of a plastic film, a layer in which an anchor coating agent is mixed with a crosslinking agent is provided on the inorganic oxide thin film layer, and a heat sealable resin is further formed on the surface of the layer. (Patent Literature 1). The anchor coating agent is a mixture of a crosslinking agent, polyethyleneimine, and an epoxy compound. By mixing the epoxy compound, the anchor coating agent is excellent in gas barrier properties and excellent in laminate strength even when moisture is absorbed.

また、基材フィルムの一方の面に、無機酸化物の蒸着膜を設け、更に、該無機酸化物の蒸着膜の上に、ポリエチレンイミンを含む組成物によるプライマー剤層を設け、更に該プライマー剤層の上に熱接着性樹脂層を設けたバリア性フィルムもある(特許文献2)。該発明は、透明バリア性フィルムを構成する無機酸化物の蒸着膜にクラック等が発生することを防止してガスバリア性を確保し、内容物の変質等を防止すると共に極めて高いラミネート強度を確保するため、ポリエチレンイミンを含む組成物によるプライマー剤層を設けたものである。   Further, an inorganic oxide vapor deposition film is provided on one surface of the base film, and a primer agent layer made of a composition containing polyethyleneimine is further provided on the inorganic oxide vapor deposition film, and the primer agent is further provided. There is also a barrier film in which a heat-adhesive resin layer is provided on the layer (Patent Document 2). The invention prevents the occurrence of cracks or the like in the inorganic oxide vapor deposition film constituting the transparent barrier film, thereby ensuring gas barrier properties, preventing deterioration of contents, etc. and ensuring extremely high laminate strength. Therefore, the primer agent layer by the composition containing polyethyleneimine is provided.

更に、高分子フィルム基材の少なくとも片面に金属または金属化合物薄膜層、保護層を順次形成した透明性を有する被覆フィルムの保護層面と、ヒートシール性樹脂とをバリアー性接着剤を介して接着させたことを特徴とするバリアー性積層体であって、前記保護層が、少なくとも金属アルコキシドの加水分解物と非水溶性バインダーからなる塗膜層であり、前記バリアー性接着剤として、不飽和酸とポリアミン誘導体からなる硬化膜を使用するバリアー性積層体もある(特許文献3)。該発明によれば、被覆薄膜層と保護層を通してクラックやピンホールを通過するガス、水蒸気等が接着剤層で吸収、遮断されるのでより高度なバリアー性が達成できる、という。
特開2001−138428号公報 特開2002−166486号公報 特開2000−25145号公報
Further, the protective layer surface of the transparent coating film in which the metal or metal compound thin film layer and the protective layer are sequentially formed on at least one surface of the polymer film substrate is bonded to the heat-sealable resin through a barrier adhesive. The protective layer is a coating layer comprising at least a hydrolyzate of metal alkoxide and a water-insoluble binder, and the barrier adhesive includes an unsaturated acid and There is also a barrier laminate using a cured film made of a polyamine derivative (Patent Document 3). According to the invention, gas, water vapor, and the like that pass through cracks and pinholes through the coated thin film layer and the protective layer are absorbed and blocked by the adhesive layer, so that higher barrier properties can be achieved.
JP 2001-138428 A JP 2002-166486 A JP 2000-25145 A

しかしながら、基材フィルムの一方の面に、酸化珪素、酸化アルミニウム等の無機酸化物の蒸着膜を設けた透明バリア性フィルムは、前記無機酸化物の蒸着膜がガラス質の非可撓性の薄膜であるため柔軟性に欠け、熱や圧力などによりクラック等が発生しやすく、バリア性を低下させる場合がある。これは、フィルム製造時のみならず、積層時に更に印刷層を含める場合や、該ガスバリア性積層フィルムを用いて製袋、製缶する際も同様であり、積層時や製袋時の外力等によって無機酸化物の蒸着膜にクラック等が発生し、バリア性が低下する。また、無機酸化物の蒸着膜は、ガラス質であってその表面は極めて不活性であり、著しくその濡れ性等に欠けるため、これにヒートシール性樹脂層等を設けても、その層間のラミネート強度に欠け、望ましい各種の包装用容器を製造することが困難である。この点、上記特許文献1や特許文献2に記載するように、無機酸化物の蒸着膜と熱接着性樹脂層との間にプライマー剤層を設けると、ラミネート強度を向上させることができるが、更にラミネート強度を向上させ、かつガスバリア性を向上できれば、内容物の変質等をより効果的に防止することができる。   However, a transparent barrier film in which a vapor deposition film of an inorganic oxide such as silicon oxide or aluminum oxide is provided on one surface of a base film is a non-flexible thin film in which the vapor deposition film of the inorganic oxide is a glassy material. Therefore, it lacks flexibility, and cracks and the like are likely to occur due to heat and pressure, and the barrier property may be lowered. This is the same not only when the film is manufactured, but also when a printed layer is further included at the time of lamination, or when making a bag or can using the gas barrier laminate film, depending on the external force at the time of lamination or bag making, etc. Cracks and the like are generated in the inorganic oxide vapor-deposited film, and the barrier property is lowered. In addition, the vapor deposition film of inorganic oxide is glassy and its surface is extremely inactive, and its wettability is extremely poor. It lacks strength and it is difficult to produce various desirable packaging containers. In this regard, as described in Patent Document 1 and Patent Document 2, when a primer agent layer is provided between the vapor-deposited film of the inorganic oxide and the heat-adhesive resin layer, the laminate strength can be improved. Furthermore, if the laminate strength can be improved and the gas barrier properties can be improved, the contents can be more effectively prevented from being altered.

また、ガスバリア性フィルムは、各種の袋体に成型できるものであり、フィルムが柔軟であればより多用な変形の際にもガスバリア性が維持される。この点、特許文献3のフィルムは、不飽和酸とポリアミン誘導体からなる硬化膜を使用するバリアー性積層体であり、柔軟性が確保できればよりガスバリア性が向上する。   In addition, the gas barrier film can be molded into various bags, and the gas barrier property is maintained even when the film is more flexible if the film is flexible. In this regard, the film of Patent Document 3 is a barrier laminate using a cured film made of an unsaturated acid and a polyamine derivative, and the gas barrier properties are further improved if flexibility can be secured.

そこで本発明は、酸素ガス、水蒸気等の透過を阻止するバリア性に優れ、ラミネート強度に優れるガスバリア性積層フィルムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a gas barrier laminate film that has excellent barrier properties that prevent permeation of oxygen gas, water vapor, and the like, and that is excellent in laminate strength.

本発明者は、ガスバリア性積層フィルムについて詳細に検討した結果、基材フィルムの一方の面に無機酸化物の蒸着膜を形成するとガスバリア性を付与でき、この蒸着薄膜の上にポリビニルアルコール系樹脂と金属アルコキシド、シランカップリング剤などからなるガスバリア性塗布膜を設けると耐水性を付与でき、更に、該ガスバリア性塗布膜とヒートシール層との間にポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層を設けると、該ガスバリア性塗布膜とヒートシール層との柔軟性を確保しつつ密着性を向上させることができ、これによってラミネート強度の向上と共にガスバリア性をより向上させることができることを見出し、本発明を完成させた。   As a result of examining the gas barrier laminate film in detail, the present inventor can impart gas barrier properties by forming an inorganic oxide vapor-deposited film on one surface of the base film, and a polyvinyl alcohol-based resin on the vapor-deposited thin film. When a gas barrier coating film comprising a metal alkoxide, a silane coupling agent or the like is provided, water resistance can be imparted, and an anchor coat comprising an anchor coat composition containing polyethyleneimine between the gas barrier coating film and the heat seal layer When a layer is provided, the adhesiveness can be improved while ensuring the flexibility between the gas barrier coating film and the heat seal layer, thereby finding that the gas barrier property can be further improved together with the improvement of the laminate strength, The present invention has been completed.

本発明のガスバリア性積層フィルムは、無機酸化物の蒸着膜の上にガスバリア性塗布膜が積層されたものであり、該ガスバリア性塗布膜は、ポリビニルアルコール系樹脂又はエチレン・ビニルアルコール共重合体と1種以上のアルコキシドとが、相互に化学的に反応して、極めて強固な三次元網状複合ポリマー層を構成するものであるから、ガスバリア性に優れるとともに、クラックやピンホールを防止できる。   The gas barrier laminated film of the present invention is obtained by laminating a gas barrier coating film on an inorganic oxide vapor-deposited film, and the gas barrier coating film comprises a polyvinyl alcohol resin or an ethylene / vinyl alcohol copolymer. One or more alkoxides chemically react with each other to form a very strong three-dimensional network composite polymer layer, so that it has excellent gas barrier properties and can prevent cracks and pinholes.

本発明のガスバリア性積層フィルムは、前記ガスバリア性塗布膜とヒートシール層との間にポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層が積層さ、溶融押し出し法によるラミネートでラミネート強度を向上させることができ、フィルムの柔軟性に優れる。   In the gas barrier laminate film of the present invention, an anchor coat layer made of an anchor coat composition containing polyethyleneimine is laminated between the gas barrier coating film and the heat seal layer, and the laminate strength is improved by lamination by a melt extrusion method. The film has excellent flexibility.

本発明の第一は、基材フィルム、無機酸化物の蒸着膜、ガスバリア性塗布膜、アンカーコート層およびヒートシール層とを有するガスバリア性積層フィルムであって、
前記基材フィルム面に無機酸化物の蒸着膜を設け、該無機酸化物の蒸着膜の面上に一般式R1 nM(OR2m(ただし、式中、R1、R2は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設け、かつ
前記ガスバリア性塗布膜上に、ポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層を設け、該アンカーコート層上にヒートシール層を積層したことを特徴とする、ガスバリア性積層フィルムである。以下、本発明を詳細に説明する。
The first of the present invention is a gas barrier laminate film having a base film, an inorganic oxide vapor deposition film, a gas barrier coating film, an anchor coat layer and a heat seal layer,
An inorganic oxide vapor deposition film is provided on the surface of the base film, and the general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are C represents an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents the valence of M.) Gas barrier coating with a gas barrier composition obtained by polycondensation by a sol-gel method, which contains at least one alkoxide represented by the formula (1) and a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer. A gas barrier property, characterized in that a film is provided, an anchor coat layer comprising an anchor coat composition containing polyethyleneimine is provided on the gas barrier coating film, and a heat seal layer is laminated on the anchor coat layer. It is a layer film. Hereinafter, the present invention will be described in detail.

(1)フィルムの層構成
本発明のガスバリア性積層フィルムは、図1(a)に示すように、基材フィルム(10)、無機酸化物の蒸着膜(20)、ガスバリア性塗布膜(30)、アンカーコート層(40)およびヒートシール層(50)とを有する。更に、図1(b)に示すように、基材フィルム(10)および蒸着膜(20)上にそれぞれ表面処理層(10’)、(20’)を有していても良い。また、図1(c)に示すように、更にアンカーコート層(40)上に印刷層(60)を有していてもよい。なお、前記印刷層(60)は、全面印刷であっても、部分印刷であってもよい。
(1) Layer constitution of film As shown in FIG. 1 (a), the gas barrier laminate film of the present invention comprises a base film (10), an inorganic oxide vapor deposition film (20), and a gas barrier coating film (30). And an anchor coat layer (40) and a heat seal layer (50). Furthermore, as shown in FIG.1 (b), you may have a surface treatment layer (10 ') and (20') on a base film (10) and a vapor deposition film (20), respectively. Moreover, as shown in FIG.1 (c), you may have a printing layer (60) on the anchor coat layer (40) further. The print layer (60) may be full-surface printing or partial printing.

(2)基材フィルム
本発明で使用しうる基材フィルムとしては、化学的ないし物理的強度に優れ、各無機酸化物の蒸着膜を製膜化する条件等に耐え、また、その無機酸化物の蒸着膜等の膜特性を損なうことなく良好に保持し得ることができる樹脂のフィルムを使用することができる。具体的には、例えば、ポリエチレン系樹脂あるいはポリプロピレン系樹脂等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルル−プタジェン−スチレン共重合体(ABS樹脂)、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、エチレン−ビニルエステル共重合体ケン化物、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムを使用することができる。本発明においては、上記の樹脂のフィルムの中でも、特に、ポリエステル系樹脂、ポリオレフィン系樹脂、または、ポリアミド系樹脂のフィルムを使用することが好ましいものである。なお、基材フィルムは、上記樹脂の未延伸フィルムや一軸方向または二軸方向に延伸した樹脂のフィルムなどのいずれのものでも使用することができる。
(2) Base film The base film that can be used in the present invention is excellent in chemical or physical strength, withstands the conditions for forming a vapor-deposited film of each inorganic oxide, and the inorganic oxide. It is possible to use a resin film that can be satisfactorily maintained without deteriorating film properties such as the deposited film. Specifically, for example, polyolefin resin such as polyethylene resin or polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile ruptage-styrene copolymer ( ABS resins), poly (meth) acrylic resins, polycarbonate resins, polyvinyl alcohol resins, saponified ethylene-vinyl ester copolymers, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, and polyamides such as various nylons Various resin films such as resin, polyurethane resin, acetal resin, cellulose resin, and the like can be used. In the present invention, among the above resin films, it is particularly preferable to use a polyester resin, polyolefin resin, or polyamide resin film. As the base film, any of an unstretched film of the resin and a resin film stretched in a uniaxial direction or a biaxial direction can be used.

本発明において、上記の各種の樹脂のフィルムとしては、例えば、上記の各種の樹脂の1種ないしそれ以上を使用し、押出法、キャスト成形法、Tダイ法、切削法、インフレーション法、その他等の製膜化法を用いて、上記の各種の樹脂を単独で製膜化する方法、あるいは、2種以上の各種の樹脂を使用して多層共押し出し製膜化する方法、更には、2種以上の樹脂を使用し、製膜化する前に混合して製膜化する方法等により、各種の樹脂のフィルムを製造し、更に、要すれば、例えば、テンター方式、あるいは、チューブラー方式等を利用して1軸ないし2軸方向に延伸してなる各種の樹脂のフィルムを使用することができる。   In the present invention, as the above-mentioned various resin films, for example, one or more of the above-mentioned various resins are used, and an extrusion method, a cast molding method, a T-die method, a cutting method, an inflation method, etc. The above-mentioned film forming method is used to form a film of each of the above-mentioned various resins alone, or to form a multilayer co-extrusion film using two or more kinds of resins, Using the above resins, various resin films are manufactured by a method of forming a film by mixing before forming into a film, and if necessary, for example, a tenter method or a tubular method, etc. Various resin films that are stretched in a uniaxial or biaxial direction using the above can be used.

本発明において、各種の樹脂のフィルムの膜厚としては、6〜2000μm位、より好ましくは、9〜100μm位が望ましい。   In the present invention, the film thickness of various resin films is preferably about 6 to 2000 μm, more preferably about 9 to 100 μm.

なお、上記の各種の樹脂の1種ないしそれ以上を使用し、その製膜化に際して、例えば、フィルムの加工性、耐熱性、耐候性、機械的性質、寸法安定性、抗酸化性、滑り性、離形性、難燃性、抗カビ性、電気的特性、強度、その他等を改良、改質する目的で、種々のプラスチック配合剤や添加剤等を添加することができ、その添加量としては、極く微量から数十%まで、その目的に応じて、任意に添加することができる。   It should be noted that one or more of the above-mentioned various resins are used, and in forming the film, for example, film processability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness Various plastic compounding agents and additives can be added for the purpose of improving and modifying mold release properties, flame retardancy, antifungal properties, electrical properties, strength, etc. Can be optionally added from a very small amount to several tens of percent depending on the purpose.

上記において、一般的な添加剤としては、例えば、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、その他等を使用することができ、更には、改質用樹脂等も使用することができる。   In the above, as a general additive, for example, a lubricant, a crosslinking agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment, and the like can be used. Furthermore, a modifying resin or the like can also be used.

(3)表面処理
本発明では、上記の基材フィルムの一方の面に無機酸化物の蒸着膜を形成するが、予め基材フィルムに表面処理をおこなってもよい。これによって無機酸化物の蒸着膜やガスバリア性塗布膜との密着性を向上させることができる。同様に、蒸着層上に表面処理を行ってもよい。
(3) Surface treatment In this invention, although the vapor deposition film | membrane of an inorganic oxide is formed in one surface of said base film, you may surface-treat a base film previously. As a result, the adhesion with an inorganic oxide vapor deposition film or a gas barrier coating film can be improved. Similarly, surface treatment may be performed on the vapor deposition layer.

このような表面処理としては、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理、その他等の前処理などがある。   Such surface treatments include corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, oxidation treatment using chemicals, etc., and other pretreatments, etc. is there.

また、本発明で使用する各種フィルムの表面に、予め、プライマーコート剤、アンダーコート剤、あるいは、蒸着アンカーコート剤等を任意に塗布し、表面処理とすることもできる。なお、前記コート剤としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂あるいはその共重合体ないし変性樹脂、セルロース系樹脂、その他等をビヒクルの主成分とする樹脂組成物を使用することができる。   In addition, a primer coating agent, an undercoat agent, a vapor deposition anchor coating agent, or the like can be optionally applied in advance to the surface of various films used in the present invention. Examples of the coating agent include polyester resins, polyamide resins, polyurethane resins, epoxy resins, phenol resins, (meth) acrylic resins, polyvinyl acetate resins, polyolefins such as polyethylene or polypropylene. A resin composition containing a resin or a copolymer or modified resin thereof, a cellulose resin, or the like as a main component of the vehicle can be used.

このような表面処理の中でも、特に、コロナ処理やプラズマ処理を行うことが好適である。例えばプラズマ処理としては、気体をアーク放電により電離させることにより生じるプラズマガスを利用して表面改質を行なうプラズマ処理がある。プラズマガスとしては、上記のほかに、酸素ガス、窒素ガス、アルゴンガス、ヘリウムガス等の無機ガスを使用することができる。例えば、後記する化学気相成長法による無機酸化物の蒸着膜を形成する直前に、インラインでプラズマ処理を行うことにより、基材フィルムの表面の水分、塵などを除去すると共にその表面の平滑化、活性化、その他等の表面処理を可能とすることができる。また、蒸着後にプラズマ処理を行い、密着性を向上させることもできる。本発明では、プラズマ処理としては、プラズマ出力、プラズマガスの種類、プラズマガスの供給量、処理時間、その他の条件を考慮してプラズマ放電処理を行うことが好ましい。また、プラズマを発生する方法としては、直流グロー放電、高周波放電、マイクロ波放電、その他の装置を使用することができる。また、大気圧プラズマ処理法によりプラズマ処理を行なうこともできる。   Among such surface treatments, it is particularly preferable to perform corona treatment or plasma treatment. For example, as plasma processing, there is plasma processing in which surface modification is performed using a plasma gas generated by ionizing a gas by arc discharge. In addition to the above, an inorganic gas such as oxygen gas, nitrogen gas, argon gas, helium gas can be used as the plasma gas. For example, immediately before forming a vapor-deposited film of an inorganic oxide by chemical vapor deposition, which will be described later, in-line plasma treatment removes moisture and dust from the surface of the base film and smoothes the surface. Surface treatment such as activation, etc. can be made possible. In addition, plasma treatment can be performed after vapor deposition to improve adhesion. In the present invention, as the plasma treatment, it is preferable to perform the plasma discharge treatment in consideration of the plasma output, the type of plasma gas, the supply amount of the plasma gas, the treatment time, and other conditions. Moreover, as a method for generating plasma, DC glow discharge, high frequency discharge, microwave discharge, and other devices can be used. In addition, plasma treatment can be performed by an atmospheric pressure plasma treatment method.

なお、本発明においては、前記基材フィルム以外の他の樹脂フィルムの表面にも、無機酸化物の蒸着膜、ガスバリア性塗布膜、ヒートシール層、印刷層その他の層やフィルムとの密着性を向上させるために、前記いずれかの表面処理をおこなってもよい。例えば、本発明では、無機酸化物の蒸着膜にガスバリア性塗布膜を形成する際に、無機酸化物の蒸着膜にプラズマ処理を行い、このプラズマ処理面上にガスバリア性塗布膜を形成してもよい。また、前記ガスバリア性塗布膜上に印刷層を形成する場合には、予めガスバリア性塗布膜にプラズマ処理を行い、印刷層を形成してもよい。   In the present invention, the surface of the resin film other than the base film is also adhered to an inorganic oxide vapor-deposited film, a gas barrier coating film, a heat seal layer, a printed layer and other layers and films. In order to improve, any of the above surface treatments may be performed. For example, in the present invention, when the gas barrier coating film is formed on the inorganic oxide vapor-deposited film, the inorganic oxide vapor-deposited film is subjected to plasma treatment, and the gas barrier coating film is formed on the plasma-treated surface. Good. Moreover, when forming a printing layer on the said gas-barrier coating film, a plasma process may be previously performed to a gas-barrier coating film, and a printing layer may be formed.

(4)無機酸化物の蒸着膜
無機酸化物の蒸着膜としては、例えば、化学気相成長法、物理気相成長法またはこれらを複合して、無機酸化物の蒸着膜の1層からなる単層膜あるいは2層以上からなる多層膜または複合膜を形成して製造することができる。
(4) Inorganic oxide vapor-deposited film As the inorganic oxide vapor-deposited film, for example, a chemical vapor deposition method, a physical vapor deposition method, or a combination of these is used to form a single layer of an inorganic oxide vapor-deposited film. It can be produced by forming a layer film or a multilayer film or a composite film composed of two or more layers.

化学気相成長法としては、例えば、プラズマ化学気相成長法、低温プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等がある。具体的には、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。   Examples of the chemical vapor deposition method include chemical vapor deposition methods such as plasma chemical vapor deposition method, low temperature plasma chemical vapor deposition method, thermal chemical vapor deposition method, and photochemical vapor deposition method (Chemical Vapor Deposition method), CVD method). Specifically, a vapor deposition monomer gas such as an organosilicon compound is used as a raw material on one surface of a base film, and an inert gas such as argon gas or helium gas is used as a carrier gas. As described above, a vapor deposition film of an inorganic oxide such as silicon oxide can be formed by using a low temperature plasma chemical vapor deposition method using an oxygen gas or the like and using a low temperature plasma generator or the like.

上記において、低温プラズマ発生装置としては、例えば、高周波プラズマ、パルス波プラズマ、マイクロ波プラズマ等の発生装置を使用することができる。高活性の安定したプラズマが得られる点で、高周波プラズマ方式による発生装置を使用することが好ましい。   In the above, as a low temperature plasma generator, generators, such as high frequency plasma, pulse wave plasma, and microwave plasma, can be used, for example. In view of obtaining highly active and stable plasma, it is preferable to use a high-frequency plasma generator.

上記の低温プラズマ化学気相成長法による無機酸化物の蒸着膜の形成法の一例を低温プラズマ化学気相成長装置の概略的構成図である図2を用いて説明する。   An example of the formation method of the vapor deposition film | membrane of an inorganic oxide by said low temperature plasma chemical vapor deposition method is demonstrated using FIG. 2 which is a schematic block diagram of a low temperature plasma chemical vapor deposition apparatus.

本発明では、プラズマ化学気相成長装置221の真空チャンバー222内に配置された巻き出しロール223から基材フィルム201を繰り出し、更に、該基材フィルム201を、補助ロール224を介して所定の速度で冷却・電極ドラム225周面上に搬送する。一方、ガス供給装置226、227および、原料揮発供給装置228等から酸素ガス、不活性ガス、有機珪素化合物等の蒸着用モノマーガスその他等を供給して蒸着用混合ガス組成物を調製し、これを原料供給ノズル229を通して真空チャンバー222内に導入する。該蒸着用混合ガス組成物を上記冷却・電極ドラム225周面上に搬送された基材フィルム201の上に供給し、グロー放電プラズマ230によってプラズマを発生させ照射し、酸化珪素等の無機酸化物の蒸着膜を製膜化する。次いで、上記で酸化珪素等の無機酸化物の蒸着膜を形成した基材フィルム201を補助ロール233を介して巻き取りロール234に巻き取れば、プラズマ化学気相成長法による無機酸化物の蒸着膜を形成することができる。なお、冷却・電極ドラム225は、真空チャンバー222の外に配置されている電源231から所定の電力が印加され、冷却・電極ドラム225の近傍には、マグネット232を配置してプラズマの発生が促進されている。このように冷却・電極ドラムに電源から所定の電圧が印加されているため、真空チャンバー内の原料供給ノズルの開口部と冷却・電極ドラムとの近傍でグロー放電プラズマが生成される。このグロー放電プラズマは、混合ガスなかの1つ以上のガス成分から導出されるものであり、この状態で基材フィルムを一定速度で搬送させると、グロー放電プラブマによって、冷却・電極ドラム周面上の基材フィルムの上に、酸化珪素等の無機酸化物の蒸着膜を形成することができる。なお、図2中、符号235は真空ポンプを表す。   In the present invention, the base film 201 is fed out from the unwinding roll 223 disposed in the vacuum chamber 222 of the plasma chemical vapor deposition apparatus 221, and the base film 201 is further fed at a predetermined speed via the auxiliary roll 224. Then, it is conveyed onto the circumferential surface of the cooling / electrode drum 225. On the other hand, a gas mixture for vapor deposition is prepared by supplying vapor deposition monomer gas such as oxygen gas, inert gas, organosilicon compound, etc. from the gas supply devices 226, 227 and the raw material volatilization supply device 228, etc. Is introduced into the vacuum chamber 222 through the raw material supply nozzle 229. The vapor deposition mixed gas composition is supplied onto the substrate film 201 transported on the circumferential surface of the cooling / electrode drum 225, and is generated and irradiated with glow discharge plasma 230 to generate an inorganic oxide such as silicon oxide. The deposited film is formed. Next, if the base film 201 on which the inorganic oxide vapor deposition film such as silicon oxide is formed is wound on the take-up roll 234 via the auxiliary roll 233, the inorganic oxide vapor deposition film by the plasma chemical vapor deposition method is used. Can be formed. A predetermined power is applied to the cooling / electrode drum 225 from a power source 231 disposed outside the vacuum chamber 222, and a magnet 232 is disposed in the vicinity of the cooling / electrode drum 225 to promote plasma generation. Has been. Since a predetermined voltage is applied from the power source to the cooling / electrode drum in this way, glow discharge plasma is generated in the vicinity of the opening of the raw material supply nozzle in the vacuum chamber and the cooling / electrode drum. This glow discharge plasma is derived from one or more gas components in the mixed gas. When the substrate film is conveyed at a constant speed in this state, the glow discharge plasma causes the cooling / electrode drum surface to be A deposited film of an inorganic oxide such as silicon oxide can be formed on the base film. In FIG. 2, reference numeral 235 represents a vacuum pump.

本発明では、真空チャンバー内を真空ポンプにより減圧し、真空度1×10-1〜1×10-8Torr位、好ましくは、真空度1×10-3〜1×10-7Torr位に調整することが好ましい。 In the present invention, the vacuum chamber is depressurized by a vacuum pump and adjusted to a vacuum degree of 1 × 10 −1 to 1 × 10 −8 Torr, preferably a vacuum degree of 1 × 10 −3 to 1 × 10 −7 Torr. It is preferable to do.

原料揮発供給装置は、原料である有機珪素化合物を揮発させ、ガス供給装置から供給される酸素ガス、不活性ガス等と混合させ、この混合ガスを原料供給ノズルを介して真空チャンバー内に導入させる。この際、混合ガス中の有機珪素化合物の含有量は、1〜40%、酸素ガスの含有量は10〜70%、不活性ガスの含有量は10〜60%の範囲とすることが好ましく、例えば、有機珪素化合物:酸素ガス:不活性ガスの混合比を1:6:5〜1:17:14程度とすることができる。なお、上記有機珪素化合物、不活性ガス、酸素ガスなどを供給する際の真空チャンバー内の真空度は、1×10-1〜1×10-4Torr、好ましくは真空度1×10-1〜1×10-2Torrであることが好ましく、また、基材フィルムの搬送速度は、10〜300m/分、好ましくは50〜150m/分である。このようにして得られる酸化珪素等の無機酸化物の蒸着膜の形成は、基材フィルムの上に、プラズマ化した原料ガスを酸素ガスで酸化しながらSiOXの形で薄膜状に形成されるので、当該形成される酸化珪素等の無機酸化物の蒸着膜は、緻密で隙間の少ない、可撓性に富む連続層となり、従って、酸化珪素等の無機酸化物の蒸着膜のバリア性は、従来の真空蒸着法等によって形成される酸化珪素等の無機酸化物の蒸着膜と比較してはるかに高く、薄い膜厚で十分なバリア性を得ることができる。また、SiOXプラズマにより基材フィルムの表面が清浄化され、基材フィルムの表面に、極性基やフリーラジカル等が発生するので、形成される酸化珪素等の無機酸化物の蒸着膜と基材フィルムとの密接着性が高いものとなる。更に、酸化珪素等の無機酸化物の連続膜の形成時の真空度は、1×10-1〜1×10-4Torr、好ましくは、1×10-1〜1×10-2Torrであって、従来の真空蒸着法により酸化珪素等の無機酸化物の蒸着膜を形成する時の真空度、1×10-4〜1×10-5Torrに比較して低真空度であるから、基材フィルムの原反交換時の真空状態設定時間を短くすることができ、真空度が安定しやすく製膜プロセスも安定化する。 The raw material volatilization supply device volatilizes the organic silicon compound as the raw material, mixes it with oxygen gas, inert gas, etc. supplied from the gas supply device, and introduces this mixed gas into the vacuum chamber through the raw material supply nozzle. . At this time, the content of the organosilicon compound in the mixed gas is preferably 1 to 40%, the oxygen gas content is 10 to 70%, and the inert gas content is preferably 10 to 60%. For example, the mixing ratio of organosilicon compound: oxygen gas: inert gas can be about 1: 6: 5 to 1:17:14. Note that the degree of vacuum in the vacuum chamber when supplying the organosilicon compound, the inert gas, the oxygen gas, and the like is 1 × 10 −1 to 1 × 10 −4 Torr, preferably 1 × 10 −1 to 1 × 10 −2 Torr is preferable, and the conveying speed of the base film is 10 to 300 m / min, preferably 50 to 150 m / min. Formation of a vapor-deposited film of an inorganic oxide such as silicon oxide obtained in this way is formed on a base film in the form of a thin film in the form of SiO x while oxidizing the plasma source gas with oxygen gas. Therefore, the deposited film of inorganic oxide such as silicon oxide is a continuous layer that is dense, has few gaps, and is flexible. Accordingly, the barrier property of the deposited film of inorganic oxide such as silicon oxide is It is much higher than a vapor deposition film of an inorganic oxide such as silicon oxide formed by a conventional vacuum vapor deposition method, and a sufficient barrier property can be obtained with a thin film thickness. Moreover, since the surface of the base film is cleaned by SiO x plasma, and polar groups, free radicals, etc. are generated on the surface of the base film, the deposited film of inorganic oxide such as silicon oxide and the base material are formed. The tight adhesion with the film is high. Further, the degree of vacuum when forming a continuous film of an inorganic oxide such as silicon oxide is 1 × 10 −1 to 1 × 10 −4 Torr, preferably 1 × 10 −1 to 1 × 10 −2 Torr. Since the vacuum degree when forming a deposited film of an inorganic oxide such as silicon oxide by the conventional vacuum deposition method is lower than 1 × 10 −4 to 1 × 10 −5 Torr, It is possible to shorten the vacuum state setting time at the time of replacing the raw material film, and the degree of vacuum is easily stabilized, and the film forming process is also stabilized.

本発明において、有機珪素化合物等の蒸着モノマーガスを使用して形成される酸化珪素の蒸着膜は、有機珪素化合物等の蒸着モノマーガスと酸素ガス等とが化学反応し、その反応生成物が、基材フィルムの一方の面に密接着し、緻密な、柔軟性等に富む薄膜を形成するものであり、通常、一般式SiOX(ただし、Xは、0〜2の数を表す)で表される酸化珪素を主体とする連続状の薄膜である。上記酸化珪素の蒸着膜としては、透明性、バリア性等の点から、一般式SiOX(ただし、Xは、1.3〜1.9の数を表す。)で表される酸化珪素の蒸着膜を主体とする薄膜であることが好ましい。なお、Xの値は、蒸着モノマーガスと酸素ガスのモル比、プラズマのエネルギー等により変化するが、一般的に、Xの値が小さくなればガス透過度は小さくなるが、膜自身が黄色性を帯び、透明性が悪くなる。 In the present invention, a vapor deposition film of silicon oxide formed using a vapor deposition monomer gas such as an organosilicon compound chemically reacts with a vapor deposition monomer gas such as an organosilicon compound and oxygen gas, and the reaction product is It is closely bonded to one surface of a base film to form a dense thin film having high flexibility, and is usually represented by the general formula SiO x (where X represents a number from 0 to 2). It is a continuous thin film mainly composed of silicon oxide. The silicon oxide vapor deposition film is a silicon oxide vapor deposition represented by the general formula SiO x (where X represents a number from 1.3 to 1.9) in terms of transparency and barrier properties. A thin film mainly composed of a film is preferable. The value of X varies depending on the molar ratio of vapor deposition monomer gas and oxygen gas, plasma energy, etc. Generally, the gas permeability decreases as the value of X decreases, but the film itself is yellow. The transparency becomes worse.

本発明において、酸化珪素の蒸着膜は、酸化珪素を主体とし、更に、炭素、水素、珪素または酸素の1種類、または2種類以上の元素からなる化合物の少なくとも1種類を化学結合等により含有する蒸着膜からなることを特徴とするものである。例えば、C−H結合を有する化合物、Si−H結合を有する化合物、または、炭素単位がグラファイト状、ダイヤモンド状、フラーレン状等になっている場合、更に、原料の有機珪素化合物やそれらの誘導体を化学結合等によって含有する場合があるものである。例えば、CH3部位を持つハイドロカーボン、SiH3シリル、SiH2シリレン等のハイドロシリカ、SiH2OHシラノール等の水酸基誘導体等を挙げることができる。なお、上記以外でも、蒸着過程の条件等を変化させることにより、酸化珪素の蒸着膜中に含有される化合物の種類、量等を変化させることができる。この際、上記の化合物が酸化珪素の蒸着膜中に含有する含有量としては、0.1〜50質量%、好ましくは5〜20質量%である。含有率が0.1質量%未満であると、酸化珪素の蒸着膜の耐衝撃性、延展性、柔軟性等が不十分となり、曲げなどにより、擦り傷、クラック等が発生し易く、高いバリア性を安定して維持することが困難になる場合があり、一方、50質量%を越えるとバリア性が低下する場合がある。 In the present invention, the silicon oxide vapor-deposited film is mainly composed of silicon oxide, and further contains at least one compound of carbon, hydrogen, silicon or oxygen, or a compound composed of two or more elements by chemical bonding or the like. It consists of a vapor deposition film. For example, when a compound having a C—H bond, a compound having a Si—H bond, or a carbon unit is in the form of graphite, diamond, fullerene, or the like, the raw material organosilicon compound or a derivative thereof is further added. It may be contained by a chemical bond or the like. Examples thereof include hydrocarbons having a CH 3 site, hydrosilica such as SiH 3 silyl and SiH 2 silylene, and hydroxyl derivatives such as SiH 2 OH silanol. In addition to the above, the type, amount, etc. of the compound contained in the silicon oxide vapor deposition film can be varied by changing the conditions of the vapor deposition process. In this case, the content of the above-mentioned compound in the deposited film of silicon oxide is 0.1 to 50% by mass, preferably 5 to 20% by mass. When the content is less than 0.1% by mass, the impact resistance, spreadability, flexibility, etc. of the deposited silicon oxide film are insufficient, and scratches, cracks, etc. are likely to occur due to bending, etc., and high barrier properties. May be difficult to maintain stably, and on the other hand, if it exceeds 50% by mass, the barrier property may be lowered.

更に、本発明では、酸化珪素の蒸着膜において、上記の化合物の含有量が酸化珪素の蒸着膜の表面から深さ方向に向かって減少していることが好ましい。これにより、酸化珪素の蒸着膜の表面では上記化合物等により耐衝撃性等が高められ、他方、基材フィルムとの界面では、上記化合物の含有量が少ないために基材フィルムと酸化珪素の蒸着膜との密接着性が強固なものとなる。   Further, in the present invention, in the silicon oxide vapor-deposited film, it is preferable that the content of the above compound decreases in the depth direction from the surface of the silicon oxide vapor-deposited film. As a result, the impact resistance and the like are enhanced by the above compound on the surface of the silicon oxide vapor deposition film, and on the other hand, since the content of the above compound is small at the interface with the base film, the vapor deposition of the base film and the silicon oxide is performed. The tight adhesion with the film becomes strong.

本発明において、上記の酸化珪素の蒸着膜は、例えばX線光電子分光装置(Xray Photoelectron Spectroscopy、XPS)、二次イオン質量分析装置(Secondary Ion Mass Spectroscopy、SIMS)等の表面分析装置を用い、深さ方向にイオンエッチングする等して分析し、酸化珪素の蒸着膜の元素分析を行うことで、上記の物性を確認することができる。   In the present invention, the above-described vapor deposition film of silicon oxide uses, for example, a surface analyzer such as an X-ray photoelectron spectrometer (Xray), a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy, SIMS), or the like. The above-mentioned physical properties can be confirmed by performing analysis such as ion etching in the vertical direction and performing elemental analysis of the deposited film of silicon oxide.

本発明において、上記酸化珪素の蒸着膜の膜厚は、50Å〜4000Å位であることが好ましく、より好ましくは100〜1000Åである。4000Åより厚くなると、その膜にクラック等が発生する場合があり、一方、50Å未満であると、バリア性の効果を奏することが困難になる場合がある。なお、膜厚は、例えば、株式会社理学製の蛍光X線分析装置(機種名、RIX2000型)を用いて、ファンダメンタルパラメーター法で測定することができる。また、酸化珪素の蒸着膜の膜厚を変更する手段としては、蒸着膜の体積速度を大きくする方法、すなわち、モノマーガスと酸素ガス量を多くする方法や蒸着する速度を遅くする方法等によって行うことができる。   In the present invention, the thickness of the silicon oxide vapor-deposited film is preferably about 50 to 4000 mm, more preferably 100 to 1000 mm. If it is thicker than 4000 mm, cracks or the like may occur in the film. On the other hand, if it is less than 50 mm, it may be difficult to achieve a barrier effect. The film thickness can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (model name, RIX2000 type) manufactured by Rigaku Corporation. As a means for changing the film thickness of the silicon oxide vapor deposition film, a method of increasing the volume velocity of the vapor deposition film, that is, a method of increasing the amount of monomer gas and oxygen gas, a method of slowing the vapor deposition rate, etc. be able to.

本発明では、無機酸化物の蒸着膜として、無機酸化物の蒸着膜の1層だけでなく、2層あるいはそれ以上を積層した多層膜の状態でもよく、また、使用する材料も1種または2種以上の混合物で使用し、また、異種の材質で混合した無機酸化物の蒸着膜を構成することもできる。   In the present invention, the inorganic oxide vapor-deposited film may be not only one layer of the inorganic oxide vapor-deposited film but also a multilayer film in which two or more layers are laminated, and one or two materials are used. It is also possible to form a vapor-deposited film of an inorganic oxide that is used as a mixture of seeds or more and mixed with different materials.

本発明において、酸化珪素等の無機酸化物の蒸着膜を形成する有機珪素化合物等の蒸着用モノマーガスとしては、例えば、1,1,3,3−テトラメチルジシロキサン、ヘキサメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、その他等を使用することができる。これらの中でも、1,1,3,3−テトラメチルジシロキサン、または、ヘキサメチルジシロキサンを原料として使用することが、その取り扱い性、形成された連続膜の特性等から、特に好ましい。なお、上記において、不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を使用することができる。   In the present invention, as a monomer gas for vapor deposition of an organic silicon compound or the like that forms a vapor deposition film of an inorganic oxide such as silicon oxide, for example, 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane, vinyl Trimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane , Methyltriethoxysilane, octamethylcyclotetrasiloxane, and the like can be used. Among these, it is particularly preferable to use 1,1,3,3-tetramethyldisiloxane or hexamethyldisiloxane as a raw material because of its handleability and the characteristics of the formed continuous film. In the above, as the inert gas, for example, argon gas, helium gas, or the like can be used.

一方、本発明では、物理気相成長法によっても無機酸化物の蒸着膜を形成することができる。このような物理気相成長法として、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンクラスタービーム法等の物理気相成長法(Physical Vapor Deposition法、PVD法)などにより無機酸化物の蒸着膜を形成することができる。   On the other hand, in the present invention, an inorganic oxide vapor-deposited film can also be formed by physical vapor deposition. As such a physical vapor deposition method, for example, an inorganic oxide can be formed by a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum deposition method, a sputtering method, an ion plating method, or an ion cluster beam method. A vapor deposition film can be formed.

具体的には、金属または金属の酸化物を原料とし、これを加熱して蒸気化し、これを基材フィルムの一方の上に蒸着する真空蒸着法、または、原料として金属または金属の酸化物を使用し、酸素を導入して酸化させて基材フィルムの一方の上に蒸着する酸化反応蒸着法、更に酸化反応をプラズマで助成するプラズマ助成式の酸化反応蒸着法等を用いて蒸着膜を形成することができる。なお、蒸着材料の加熱方式としては、例えば、抵抗加熱方式、高周波誘導加熱方式、エレクトロンビーム加熱方式(EB)等にて行うことができる。物理気相成長法による無機酸化物の薄膜膜を形成する方法について、巻き取り式真空蒸着装置の一例を示す概略的構成図を示す図3を参照して説明する。   Specifically, a metal or metal oxide is used as a raw material, this is heated and vaporized, and this is vapor-deposited on one of the base films, or a metal or metal oxide as a raw material. Used to oxidize by introducing oxygen and oxidize and deposit on one side of the base film, and further use plasma-assisted oxidation reaction deposition method that promotes oxidation reaction with plasma to form a deposited film can do. In addition, as a heating method of the vapor deposition material, for example, a resistance heating method, a high frequency induction heating method, an electron beam heating method (EB), or the like can be used. A method of forming a thin film of an inorganic oxide by physical vapor deposition will be described with reference to FIG. 3 showing a schematic configuration diagram showing an example of a take-up vacuum deposition apparatus.

まず、巻き取り式真空蒸着装置241の真空チャンバー242の中で、巻き出しロール243から繰り出す基材フィルム201は、ガイドロール244、245を介して、冷却したコーティングドラム246に案内される。上記の冷却したコーティングドラム246上に案内された基材フィルム201の上に、るつぼ247で熱せられた蒸着源248、例えば、金属アルミニウム、あるいは、酸化アルミニウム等を蒸発させ、更に、必要ならば、酸素ガス吹出口249より酸素ガス等を噴出し、これを供給しながら、マスク250、250を介して、例えば、酸化アルミニウム等の無機酸化物の蒸着膜を成膜化し、次いで、上記において、例えば、酸化アルミニウム等の無機酸化物の蒸着膜を形成した基材フィルム201を、ガイドロール251、252を介して送り出し、巻き取りロール253に巻き取ると物理気相成長法による無機酸化物の蒸着膜を形成することができる。なお、上記巻き取り式真空蒸着装置を用いて、まず第1層の無機酸化物の蒸着膜を形成し、次いで、その上に無機酸化物の蒸着膜を更に形成し、または、上記巻き取り式真空蒸着装置を2連に連接し、連続的に、無機酸化物の蒸着膜を形成して、2層以上の多層膜からなる無機酸化物の蒸着膜を形成してもよい。   First, the base film 201 fed out from the unwinding roll 243 is guided to the cooled coating drum 246 through the guide rolls 244 and 245 in the vacuum chamber 242 of the wind-up type vacuum evaporation apparatus 241. The evaporation source 248 heated by the crucible 247, for example, metal aluminum or aluminum oxide is evaporated on the substrate film 201 guided on the cooled coating drum 246, and if necessary, While an oxygen gas or the like is ejected from the oxygen gas outlet 249 and supplied, an inorganic oxide vapor deposition film such as aluminum oxide is formed through the masks 250 and 250. When the base film 201 on which an inorganic oxide vapor deposition film such as aluminum oxide is formed is sent out through the guide rolls 251 and 252 and wound around the take-up roll 253, the inorganic oxide vapor deposition film is formed by physical vapor deposition. Can be formed. In addition, using the above-described winding-type vacuum vapor deposition apparatus, first, a first-layer inorganic oxide vapor-deposited film is formed, and then an inorganic oxide vapor-deposited film is further formed thereon, or A vacuum evaporation apparatus may be connected in series, and an inorganic oxide vapor deposition film may be continuously formed to form an inorganic oxide vapor deposition film composed of a multilayer film of two or more layers.

金属または無機酸化物の蒸着膜としては、基本的には、金属の酸化物を蒸着した薄膜であればよく、例えば、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)等の金属の酸化物の蒸着膜を使用することができる。好ましくは、ケイ素(Si)、アルミニウム(Al)等の金属の酸化物の蒸着膜を挙げることができる。よって、上記の金属の酸化物の蒸着膜は、ケイ素酸化物、アルミニウム酸化物、マグネシウム酸化物等のように金属酸化物と称することができ、その表記は、例えば、SiOX、AlOX、MgOX等のようにMOX(ただし、式中、Mは、金属元素を表し、Xの値は、金属元素によってそれぞれ範囲がことなる。)で表される。 The vapor deposition film of metal or inorganic oxide may basically be a thin film on which a metal oxide is deposited, for example, silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca). , Vapor deposition films of metal oxides such as potassium (K), tin (Sn), sodium (Na), boron (B), titanium (Ti), lead (Pb), zirconium (Zr), yttrium (Y) Can be used. Preferably, a vapor-deposited film of a metal oxide such as silicon (Si) or aluminum (Al) can be used. Therefore, the metal oxide vapor deposition film can be referred to as a metal oxide such as silicon oxide, aluminum oxide, magnesium oxide, and the like, for example, SiO x , AlO x , MgO. MO X (in the formula, M represents a metal element, the value of X is in the range respectively of a metal element different.) as X, etc. represented by.

また、上記のXの値の範囲としては、ケイ素(Si)は0を超え2以下、アルミニウム(Al)は0を超え1.5以下、マグネシウム(Mg)は0を超え1以下、カルシウム(Ca)は0を超え1以下、カリウム(K)は0を超え0.5以下、スズ(Sn)は0を超え2以下、ナトリウム(Na)は0を超え0.5以下、ホウ素(B)は0を超え1、5以下、チタン(Ti)は0を超え2以下、鉛(Pb)は0を超え1以下、ジルコニウム(Zr)は0を超え2以下、イットリウム(Y)は0を超え1.5以下の範囲である。上記においてX=0の場合は完全な金属であり、Xの範囲の上限は、完全に酸化した値である。本発明では、Mとしてケイ素やアルミニウムが好ましく、その際これらのXの値は、ケイ素(Si)は1.0〜2.0、アルミニウム(Al)は0.5〜1.5の範囲である。なお、無機酸化物の蒸着膜の膜厚は、使用する金属や金属の酸化物の種類等によって異なるが、例えば、50〜2000Å、好ましくは、100〜1000Åの範囲内で任意に選択することができる。また、無機酸化物の蒸着膜としては、使用する金属または金属の酸化物としては、1種または2種以上の混合物で使用し、異種の材質で混合した無機酸化物の蒸着膜を構成することもできる。   In addition, as the range of the value of X, silicon (Si) exceeds 0 and 2 or less, aluminum (Al) exceeds 0 and 1.5 or less, magnesium (Mg) exceeds 0 and 1 or less, calcium (Ca ) Is greater than 0 and less than or equal to 1, potassium (K) is greater than 0 and less than or equal to 0.5, tin (Sn) is greater than 0 and less than or equal to 2, sodium (Na) is greater than 0 and less than or equal to 0.5, and boron (B) is 0 to 1, 5 or less, Titanium (Ti) is more than 0 to 2 or less, Lead (Pb) is more than 0 to 1 or less, Zirconium (Zr) is more than 0 to 2 or less, Yttrium (Y) is more than 0 to 1 .5 or less. In the above, when X = 0, it is a complete metal, and the upper limit of the range of X is a completely oxidized value. In the present invention, silicon and aluminum are preferable as M, and the values of these X are in the range of 1.0 to 2.0 for silicon (Si) and 0.5 to 1.5 for aluminum (Al). . In addition, although the film thickness of the vapor deposition film | membrane of an inorganic oxide changes with kinds etc. of the metal to be used or a metal oxide, it can select arbitrarily within the range of 50-2000 mm, for example, Preferably, it is 100-1000 mm. it can. In addition, as the inorganic oxide vapor deposition film, the metal or metal oxide to be used is used in one kind or a mixture of two or more kinds to constitute a vapor deposition film of an inorganic oxide mixed with different materials. You can also.

更に、本発明では、例えば物理気相成長法と化学気相成長法の両者を併用して異種の無機酸化物の蒸着膜の2層以上からなる複合膜を形成して使用することもできる。   Further, in the present invention, for example, a composite film composed of two or more vapor-deposited films of different kinds of inorganic oxides can be formed by using both physical vapor deposition and chemical vapor deposition.

上記の異種の無機酸化物の蒸着膜の2層以上からなる複合膜としては、まず、基材フィルムの上に、化学気相成長法により、緻密で柔軟性に富み、比較的にクラックの発生を防止し得る無機酸化物の蒸着膜を設け、次いで、該無機酸化物の蒸着膜の上に、物理気相成長法による無機酸化物の蒸着膜を設けて、2層以上からなる複合膜からなる無機酸化物の蒸着膜を構成することが好ましいものである。上記とは逆くに、基材フィルムの上に、先に、物理気相成長法により、無機酸化物の蒸着膜を設け、次に、化学気相成長法により、緻密で、柔軟性に富み、比較的にクラックの発生を防止し得る無機酸化物の蒸着膜を設けて、2層以上からなる複合膜からなる無機酸化物の蒸着膜を構成することもできる。   As a composite film composed of two or more layers of the above-mentioned different kinds of inorganic oxide vapor-deposited films, first, a chemical vapor deposition method is used on a base film, and it is dense and flexible, and relatively cracks are generated. An inorganic oxide vapor-deposited film that can prevent the formation of an inorganic oxide, and then an inorganic oxide vapor-deposited film formed by physical vapor deposition on the inorganic oxide vapor-deposited film. It is preferable to constitute an inorganic oxide vapor deposition film. Contrary to the above, on the base film, first, a vapor deposition film of an inorganic oxide is provided by a physical vapor deposition method, and then dense and flexible by a chemical vapor deposition method. It is also possible to provide an inorganic oxide vapor deposition film composed of a composite film composed of two or more layers by providing an inorganic oxide vapor deposition film that can relatively prevent the occurrence of cracks.

(5)ガスバリア性塗布膜
本発明で使用するガスバリア性塗布膜としては、一般式R1 nM(OR2m(ただし、式中、R1、R2は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体とを含有し、更に、ゾル−ゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合してなるガスバリア性組成物からなる塗布膜であり、該組成物を上記基材フィルム層上の無機酸化物の蒸着膜の上に塗工して塗布膜を設け、20℃〜180℃、かつ上記の基材フィルム層の融点以下の温度で30秒〜10分間加熱処理して形成することができる。
(5) Gas barrier coating film The gas barrier coating film used in the present invention has a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are organic having 1 to 8 carbon atoms). Represents a group, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M. Contains the above alkoxide, polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer, and polycondensation by sol-gel method in the presence of sol-gel method catalyst, acid, water, and organic solvent A coating film made of a gas barrier composition formed by coating the composition on the inorganic oxide vapor-deposited film on the substrate film layer to provide a coating film, 30 seconds to 10 seconds at a temperature below the melting point of the base film layer It can be formed by between heat treatment.

また、前記ガスバリア性組成物を上記基材フィルム層上の無機酸化物の蒸着膜の上に塗工して塗布膜を2層以上重層し、20℃〜180℃、かつ、上記基材フィルム層の融点以下の温度で30秒〜10分間加熱処理し、ガスバリア性塗布膜を2層以上重層した複合ポリマー層を形成してもよい。   Further, the gas barrier composition is coated on the inorganic oxide vapor-deposited film on the base film layer, and two or more coating films are stacked, and the base film layer has a temperature of 20 to 180 ° C. A composite polymer layer in which two or more gas barrier coating films are stacked may be formed by heat treatment at a temperature equal to or lower than the melting point of 30 seconds to 10 minutes.

上記一般式R1 nM(OR2mで表されるアルコキシドとしては、アルコキシドの部分加水分解物、アルコキシドの加水分解縮合物の少なくとも1種以上を使用することができ、また、上記アルコキシドの部分加水分解物としては、アルコキシ基のすべてが加水分解されるものに限定されず、1個以上が加水分解されているもの、および、その混合物であってもよく、更に、加水分解の縮合物としては、部分加水分解アルコキシドの2量体以上のもの、具体的には、2〜6量体のものを使用してもよい。 As the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , at least one of alkoxide partial hydrolyzate and alkoxide hydrolysis condensate can be used. The partial hydrolyzate is not limited to the one in which all of the alkoxy groups are hydrolyzed, and may be one in which one or more are hydrolyzed, or a mixture thereof, and further a hydrolysis condensate. As a dimer or more of a partially hydrolyzed alkoxide, specifically, a dimer or hexamer may be used.

上記一般式R1 nM(OR2m中、R1としては、分岐を有していてもよい炭素数1〜8、好ましくは1〜5、より好ましくは1〜4のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基などを挙げることができる。 In the general formula R 1 n M (OR 2 ) m , R 1 is an alkyl group having 1 to 8, preferably 1 to 5, more preferably 1 to 4 carbon atoms which may have a branch. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group, etc. Can be mentioned.

上記一般式R1 nM(OR2m中、R2としては、分岐を有していてもよい炭素数1〜8、より好ましくは1〜5、特に好ましくは1〜4のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、その他等を挙げることができる。なお、同一分子中に複数の(OR2)が存在する場合には、(OR2)は同一であっても、異なってもよい。 In the general formula R 1 n M (OR 2 ) m , R 2 is an alkyl group having 1 to 8 carbon atoms, more preferably 1 to 5, and particularly preferably 1 to 4 which may have a branch. Yes, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, and the like. When a plurality of (OR 2 ) are present in the same molecule, (OR 2 ) may be the same or different.

上記一般式R1 nM(OR2m中、Mで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他等を例示することができる。 Examples of the metal atom represented by M in the general formula R 1 n M (OR 2 ) m include silicon, zirconium, titanium, aluminum, and the like.

本発明においてケイ素であることが好ましい。この場合、本発明で好ましく使用できるアルコキシドとしては、上記一般式R1 nM(OR2mにおいてn=0の場合には、一般式Si(ORa)4(ただし、式中、Raは、炭素数1〜5のアルキル基を表す。)で表されるものである。上記において、Raとしては、メチル基、エチル基、n−プロピル基、n−ブチル基、その他等が用いられる。このようなアルコキシシランの具体例としては、テトラメトキシシランSi(OCH34、テトラエトキシシランSi(OC254、テトラプロポキシシランSi(0C374、テトラブトキシシランSi(OC494等を例示することができる。 In the present invention, silicon is preferable. In this case, as an alkoxide that can be preferably used in the present invention, when n = 0 in the general formula R 1 n M (OR 2 ) m , the general formula Si (ORa) 4 (wherein Ra is Represents an alkyl group having 1 to 5 carbon atoms). In the above, Ra includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like. Specific examples of such an alkoxysilane include tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (0C 3 H 7 ) 4 , tetrabutoxysilane Si ( OC 4 H 9) can be exemplified 4 like.

また、nが1以上の場合には、一般式RbnSi(ORc)4-m(ただし、式中、mは、1、2、3の整数を表し、Rb、Rcは、メチル基、エチル基、n−プロピル基、n−ブチル基、その他を表わす。)で表されるアルキルアルコキシシランを使用することができる。このようなアルキルアルコキシシランとしては、例えば、メチルトリメトキシシランCH3Si(OCH33、メチルトリエトキシシランCH3Si(OC253、ジメチルジメトキシシラン(CH32Si(OCH32、ジメチルジエトキシシラン(CH32Si(OC252、その他等を使用することができる。本発明では、上記のアルコキシシラン、アルキルアルコキシシラン等は、単独で又は2種以上を併用してもよい。 In the case where n is 1 or more, the general formula RbnSi (ORc) 4-m (wherein m represents an integer of 1, 2, 3 and Rb and Rc are a methyl group, an ethyl group, An alkylalkoxysilane represented by n-propyl group, n-butyl group, etc.) can be used. Examples of such an alkylalkoxysilane include methyltrimethoxysilane CH 3 Si (OCH 3 ) 3 , methyltriethoxysilane CH 3 Si (OC 2 H 5 ) 3 , dimethyldimethoxysilane (CH 3 ) 2 Si (OCH). 3) 2, dimethyl diethoxy silane (CH 3) 2 Si (OC 2 H 5) 2, may use other like. In the present invention, the above alkoxysilane, alkylalkoxysilane and the like may be used alone or in combination of two or more.

また、本発明において、上記のアルコキシシランの縮重合物も使用することができ、具体的には、例えば、ポリテトラメトキシシラン、ポリテトラエメトキシシラン、その他等を使用することができる。   In the present invention, a polycondensation product of the above alkoxysilane can also be used, and specifically, for example, polytetramethoxysilane, polytetraemethoxysilane, and the like can be used.

本発明では、上記一般式R1 nM(OR2mで表されるアルコキシドとして、MがZrであるジルコニウムアルコキシドも好適に使用することができる。例えば、テトラメトキシジルコニウムZr(OCH34、テトラエトキシジルコニウムZr(OC254、テトラiプロポキシジルコニウムZr(iso−0C374、テトラnブトキシジルコニウムZr(OC494、その他等を例示することができる。 In the present invention, a zirconium alkoxide in which M is Zr can also be suitably used as the alkoxide represented by the general formula R 1 n M (OR 2 ) m . For example, tetramethoxy zirconium Zr (OCH 3) 4, tetraethoxy zirconium Zr (OC 2 H 5) 4 , tetra i propoxy zirconium Zr (iso-0C 3 H 7 ) 4, tetra-n-butoxy zirconium Zr (OC 4 H 9) 4 , etc. can be exemplified.

また、上記一般式R1 nM(OR2mで表されるアルコキシドとして、MがTiであるチタニウムアルコキシドを好適に使用することができ、例えば、テトラメトキシチタニウムTi(OCH34、テトラエトキシチタニウムTi(OC254、テトライソプロポキシチタニウムTi(iso−0C374、テトラnブトキシチタニウムTi(OC494、その他等を例示することができる。 Further, as the alkoxide represented by the general formula R 1 n M (OR 2 ) m , a titanium alkoxide in which M is Ti can be preferably used. For example, tetramethoxytitanium Ti (OCH 3 ) 4 , tetra Examples thereof include ethoxytitanium Ti (OC 2 H 5 ) 4 , tetraisopropoxytitanium Ti (iso-0C 3 H 7 ) 4 , tetra n-butoxytitanium Ti (OC 4 H 9 ) 4 , and the like.

また、上記一般式R1 nM(OR2mで表されるアルコキシドとして、MがAlであるアルミニウムアルコキシドを使用することができ、例えば、テトラメトキシアルミニウムAl(OCH34、テトラエトキシアルミニウムAl(OC254、テトライソプロポキシアルミニウムAl(is0−OC374、テトラnブトキシアルミニウムAl(OC494、その他等を使用することができる。 As the alkoxide represented by the general formula R 1 n M (OR 2 ) m , an aluminum alkoxide in which M is Al can be used. For example, tetramethoxyaluminum Al (OCH 3 ) 4 , tetraethoxyaluminum Al (OC 2 H 5) 4 , tetraisopropoxy aluminum Al (is0-OC 3 H 7 ) 4, tetra-n-butoxy aluminum Al (OC 4 H 9) 4 , may use other like.

本発明では、上記アルコキシドは、2種以上を併用してもよい。例えばアルコキシシランとジルコニウムアルコキシドを混合して用いると、得られるガスバリア性積層フィルムの靭性、耐熱性等を向上させることができ、また、延伸時のフィルムの耐レトルト性などの低下が回避される。この際、ジルコニウムアルコキシドの使用量は、上記アルコキシシラン100質量部に対して10質量部以下の範囲である。10質量部を越えると、形成されるガスバリア性塗布膜が、ゲル化し易くなり、また、その膜の脆性が大きくなり、基材フィルム層を被覆した際にガスバリア性塗布膜が剥離し易くなる傾向にあることから好ましくないものである。   In the present invention, two or more of the alkoxides may be used in combination. For example, when alkoxysilane and zirconium alkoxide are mixed and used, the toughness, heat resistance and the like of the resulting gas barrier laminate film can be improved, and a decrease in the retort resistance of the film during stretching can be avoided. Under the present circumstances, the usage-amount of a zirconium alkoxide is the range of 10 mass parts or less with respect to 100 mass parts of said alkoxysilanes. When the amount exceeds 10 parts by mass, the formed gas barrier coating film tends to gel, and the brittleness of the film increases, and the gas barrier coating film tends to peel off when the base film layer is coated. Therefore, it is not preferable.

また、アルコキシシランとチタニウムアルコキシドを混合して用いると、得られるガスバリア性塗布膜の熱伝導率が低くなり、耐熱性が著しく向上する。この際、チタニウムアルコキシドの使用量は、上記のアルコキシシラン100質量部に対して5質量部以下の範囲である。5質量部を越えると、形成されるガスバリア性塗布膜の脆性が大きくなり、基材フィルム層を被覆した際に、ガスバリア性塗布膜が剥離し易くなる場合がある。   In addition, when alkoxysilane and titanium alkoxide are mixed and used, the thermal conductivity of the resulting gas barrier coating film is lowered, and the heat resistance is remarkably improved. Under the present circumstances, the usage-amount of a titanium alkoxide is the range of 5 mass parts or less with respect to 100 mass parts of said alkoxysilane. When the amount exceeds 5 parts by mass, the brittleness of the formed gas barrier coating film increases, and the gas barrier coating film may be easily peeled off when the base film layer is coated.

本発明で使用するポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体としては、ポリビニルアルコール系樹脂、またはエチレン・ビニルアルコ一ル共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコ一ル系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて使用することができる。本発明では、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体を使用することにより、ガスバリア性、耐水性、耐候性、その他等の物性を著しく向上させることができる。   As the polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer used in the present invention, a polyvinyl alcohol resin or an ethylene / vinyl alcohol copolymer can be used alone, respectively, or polyvinyl alcohol A single resin and an ethylene / vinyl alcohol copolymer can be used in combination. In the present invention, physical properties such as gas barrier properties, water resistance, weather resistance, and the like can be remarkably improved by using a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer.

ポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体とを組み合わせて使用する場合、それぞれの配合割合としては、質量比で、ポリビニルアルコ一ル系樹脂:エチレン・ビニルアルコール共重合体=10:0.05〜10:6位であることが好ましい。   When the polyvinyl alcohol resin and the ethylene / vinyl alcohol copolymer are used in combination, the blending ratio of each is polyvinyl alcohol resin: ethylene / vinyl alcohol copolymer = 10: 0. It is preferable that the position is from 05 to 10: 6.

また、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体の含有量は、上記のアルコキシドの合計量100質量部に対して5〜500質量部の範囲であり、好ましくは20〜200質量部の配合割合である。500質量部を越えると、ガスバリア性塗布膜の脆性が大きくなり、得られるガスバリア性積層フィルムの耐水性および耐候性等が低下する場合がある。一方、5質量部を下回るとガスバリア性が低下する場合がある。   The content of the polyvinyl alcohol resin and / or the ethylene / vinyl alcohol copolymer is in the range of 5 to 500 parts by mass, preferably 20 to 200 parts by mass with respect to 100 parts by mass of the total amount of the alkoxide. The blending ratio of If it exceeds 500 parts by mass, the brittleness of the gas barrier coating film increases, and the water resistance and weather resistance of the resulting gas barrier laminated film may be lowered. On the other hand, if it is less than 5 parts by mass, the gas barrier property may be lowered.

前記ポリビニルアルコ一ル系樹脂及び/又はエチレン・ビニルアルコール共重合体において、ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。ポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂でも、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、OH基が変性された変性ポリビニルアルコール系樹脂でもよく、特に限定されるものではない。このようなポリビニルアルコール系樹脂としては、株式会社クラレ製のRSポリマーである「RS−110(ケン化度=99%、重合度=1,000)」、同社製の「クラレポバールLM−20SO(ケン化度=40%、重合度=2,000)」、日本合成化学工業株式会社製の「ゴーセノールNM−14(ケン化度=99%、重合度=1,400)」等を例示することができる。   In the polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer, as the polyvinyl alcohol resin, one obtained by saponifying polyvinyl acetate can be generally used. Polyvinyl alcohol resins include partially saponified polyvinyl alcohol resins in which several tens of percent of acetate groups remain, completely saponified polyvinyl alcohols in which no acetate groups remain, and modified polyvinyl alcohol resins in which OH groups have been modified. Well, not particularly limited. Examples of such a polyvinyl alcohol resin include “RS-110 (degree of saponification = 99%, degree of polymerization = 1,000)” manufactured by Kuraray Co., Ltd., and “Kuraray Poval LM-20SO ( “Saponification degree = 40%, polymerization degree = 2,000)”, “GOHSENOL NM-14 (degree of saponification = 99%, polymerization degree = 1,400)” manufactured by Nippon Synthetic Chemical Industry Co., Ltd. Can do.

また、エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン−酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。例えば、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではない。ただし、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが好ましい。なお、上記エチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0〜50モル%、好ましくは、20〜45モル%であるものことが好ましい。このようなエチレン・ビニルアルコール共重合体としては、株式会社クラレ製、「エバールEP−F101(エチレン含量;32モル%)」、日本合成化学工業株式会社製、「ソアノールD2908(エチレン含量;29モル%)」等を例示することができる。   As the ethylene / vinyl alcohol copolymer, a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer can be used. For example, it is not particularly limited, and includes a partially saponified product in which several tens mol% of acetic acid groups remain to a complete saponified product in which only several mol% of acetic acid groups remain or no acetic acid groups remain. However, it is preferable to use a saponification degree that is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of gas barrier properties. In addition, the content of the repeating unit derived from ethylene in the ethylene / vinyl alcohol copolymer (hereinafter also referred to as “ethylene content”) is usually 0 to 50 mol%, preferably 20 to 45 mol%. It is preferable. Examples of such an ethylene / vinyl alcohol copolymer include “Eval EP-F101 (ethylene content; 32 mol%)” manufactured by Kuraray Co., Ltd., “Soarnol D2908 (ethylene content; 29 mol) manufactured by Nippon Synthetic Chemical Industry Co., Ltd.” %) "And the like.

本発明で使用するガスバリア性組成物は、前記一般式R1 nM(OR2m(ただし、式中、R1、R2は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、上記のようなポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体とを含有し、更に、ゾル−ゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合して得たガスバリア性組成物である。上記ガスバリア性組成物を調製するに際し、シランカップリング剤等を添加してもよい。 The gas barrier composition used in the present invention has the general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M is Represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) And a polycondensation by a sol-gel method in the presence of a sol-gel method catalyst, acid, water, and an organic solvent. Gas barrier composition. In preparing the gas barrier composition, a silane coupling agent or the like may be added.

本発明で好適に使用できるシランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを広く使用することができる。例えば、エポキシ基を有するオルガノアルコキシシランが好適であり、それには、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、あるいは、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を使用することができる。このようなシランカップリング剤は、1種ないし2種以上を混合して用いてもよい。なお、シランカップリング剤の使用量は、上記アルコキシシラン100質量部に対して1〜20質量部の範囲内である。20質量部以上を使用すると、形成されるガスバリア性塗布膜の剛性と脆性とが大きくなり、また、ガスバリア性塗布膜の絶縁性および加工性が低下する場合がある。   As the silane coupling agent that can be suitably used in the present invention, known organic reactive group-containing organoalkoxysilanes can be widely used. For example, an organoalkoxysilane having an epoxy group is suitable. For example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, or β- (3,4-epoxy). (Cyclohexyl) ethyltrimethoxysilane or the like can be used. Such silane coupling agents may be used alone or in combination of two or more. In addition, the usage-amount of a silane coupling agent exists in the range of 1-20 mass parts with respect to 100 mass parts of said alkoxysilanes. If 20 parts by mass or more is used, the gas barrier coating film to be formed has increased rigidity and brittleness, and the insulation and workability of the gas barrier coating film may be lowered.

また、ゾル−ゲル法触媒とは、主として、重縮合触媒として使用される触媒であり、水に実質的に不溶であり、かつ有機溶媒に可溶な第三アミンなどの塩基性物質が用いられる。例えば、N、N−ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、その他等を使用することができる。本発明においては、特に、N、N−ジメチルべンジルアミンが好適である。その使用量は、アルコキシド、および、シランカップリング剤の合計量100質量部当り、0.01〜1.0質量部である。   The sol-gel catalyst is a catalyst mainly used as a polycondensation catalyst, and a basic substance such as a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is used. . For example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine, etc. can be used. In the present invention, N, N-dimethylbenzylamine is particularly preferred. The usage-amount is 0.01-1.0 mass part per 100 mass parts of total amounts of an alkoxide and a silane coupling agent.

また、上記ガスバリア性組成物において用いられる「酸」としては、上記ゾル−ゲル法において、主として、アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。例えば、硫酸、塩酸、硝酸などの鉱酸、ならびに、酢酸、酒石酸な等の有機酸、その他等を使用することができる。上記酸の使用量は、アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対し0.001〜0.05モルを使用することが好ましい。   The “acid” used in the gas barrier composition is mainly used as a catalyst for hydrolysis of an alkoxide, a silane coupling agent or the like in the sol-gel method. For example, mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and tartaric acid, and the like can be used. The amount of the acid used is preferably 0.001 to 0.05 mol based on the total molar amount of the alkoxide and the alkoxide content of the silane coupling agent (for example, silicate moiety).

更に、上記のガスバリア性組成物においては、上記のアルコキシドの合計モル量1モルに対して0.1〜100モル、好ましくは、0.8から2モルの割合の水をもちいることができる。水の量が2モルを越えると、上記アルコキシシランと金属アルコキシドとから得られるポリマーが球状粒子となり、更に、この球状粒子同士が3次元的に架橋し、密度の低い、多孔性のポリマーとなり、そのような多孔性のポリマーは、ガスバリア性積層フィルムのガスバリア性を改善することができなくなる。また、上記の水の量が0.8モルを下回ると、加水分解反応が進行しにくくなる場合がある。   Furthermore, in the gas barrier composition, water can be used in a proportion of 0.1 to 100 mol, preferably 0.8 to 2 mol, relative to 1 mol of the total molar amount of the alkoxide. When the amount of water exceeds 2 mol, the polymer obtained from the alkoxysilane and the metal alkoxide becomes spherical particles, and the spherical particles are three-dimensionally crosslinked to form a porous polymer having a low density, Such a porous polymer cannot improve the gas barrier property of the gas barrier laminate film. Moreover, when the amount of the water is less than 0.8 mol, the hydrolysis reaction may hardly proceed.

更に、上記のガスバリア性組成物において用いられる有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、その他等を用いることができる。なお、上記ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体は、上記アルコキシドやシランカップリング剤などを含む塗工液中で溶解した状態で取り扱われることが好ましく、上記有機溶媒の中から適宜選択することができる。例えば、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて使用する場合には、n−ブタノールを使用することが好ましい。なお、溶媒中に可溶化されたエチレン・ビニルアルコール共重合体を使用することもでき、例えば、日本合成化学工業株式会社製、商品名「ソアノール」などを好適に使用することができる。上記の有機溶媒の使用量は、通常、上記アルコキシド、シランカップリング剤、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体、酸およびゾル−ゲル法触媒の合計量100質量に対して30〜500質量部である。   Furthermore, as an organic solvent used in said gas-barrier composition, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol, etc. can be used, for example. The polyvinyl alcohol-based resin and / or the ethylene / vinyl alcohol copolymer is preferably handled in a state of being dissolved in a coating solution containing the alkoxide, silane coupling agent, or the like. It can be selected appropriately. For example, when a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer are used in combination, it is preferable to use n-butanol. An ethylene / vinyl alcohol copolymer solubilized in a solvent can also be used. For example, trade name “Soarnol” manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can be preferably used. The amount of the organic solvent used is usually 30 with respect to 100 mass of the total amount of the alkoxide, silane coupling agent, polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer, acid and sol-gel method catalyst. It is -500 mass parts.

本発明において、基材フィルムに無機酸化物の蒸着層を設け、更にガスバリア性塗布膜を形成するには以下の方法で行うことができる。   In the present invention, an inorganic oxide vapor deposition layer is provided on a base film, and a gas barrier coating film can be formed by the following method.

まず、上記のアルコキシシラン等のアルコキシド、シランカップリング剤、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体、ゾル−ゲル法触媒、酸、水、有機溶媒、および、必要に応じて、金属アルコキシド等を混合し、ガスバリア性組成物を調製する。混合により、ガスバリア性組成物(塗工液)は、重縮合反応が開始および進行する。   First, an alkoxide such as alkoxysilane, a silane coupling agent, a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, a sol-gel method catalyst, an acid, water, an organic solvent, and, if necessary, A metal alkoxide or the like is mixed to prepare a gas barrier composition. By mixing, the gas barrier composition (coating liquid) starts and proceeds with a polycondensation reaction.

基材フィルム層上の無機酸化物の蒸着膜の上に、常法により、上記のガスバリア性組成物を塗布し、および乾燥する。この乾燥工程によって、上記のアルコキシシラン等のアルコキシド、金属アルコキシド、シランカップリング剤およびポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体等の重縮合が更に進行し、塗布膜が形成される。第一の塗布膜の上に、更に上記塗布操作を繰り返して、2層以上からなる複数の塗布膜を形成してもよい。   On the inorganic oxide vapor deposition film on the base film layer, the above gas barrier composition is applied and dried by a conventional method. By this drying step, polycondensation of the alkoxide such as alkoxysilane, metal alkoxide, silane coupling agent, polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer further proceeds, and a coating film is formed. . On the first coating film, the above coating operation may be further repeated to form a plurality of coating films composed of two or more layers.

次いで、上記ガスバリア性組成物を塗布した基材フィルム層を20℃〜180℃、かつ基材フィルム層の融点以下の温度、好ましくは、50℃〜160℃の範囲の温度で、10秒〜10分間加熱処理する。前記無機酸化物の蒸着膜の上に、上記ガスバリア性組成物によるガスバリア性塗布膜を1層ないし2層以上形成してもよい。   Next, the base film layer to which the gas barrier composition is applied is 20 ° C. to 180 ° C. and a temperature not higher than the melting point of the base film layer, preferably at a temperature in the range of 50 ° C. to 160 ° C. for 10 seconds to 10 seconds. Heat for minutes. One or more gas barrier coating films of the gas barrier composition may be formed on the inorganic oxide vapor-deposited film.

なお、エチレン・ビニルアルコール共重合体単独、またはポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体との両者を用いて得られたガスバリア性積層フィルムは、熱水処理後のガスバリア性に優れる。一方、ポリビニルアルコール系樹脂のみを使用してガスバリア性積層フィルムを製造した場合には、予め、ポリビニルアルコール系樹脂を使用したガスバリア性組成物を塗工して第1の塗布膜を形成し、次いで、その塗布膜の上に、エチレン・ビニルアルコール共重合体を含有するガスバリア性組成物を塗工して第2の塗布膜を形成し、それらの複合層を形成すると、熱水処理後のガスバリア性を向上させることができる。   A gas barrier laminate film obtained using an ethylene / vinyl alcohol copolymer alone or both a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer is excellent in gas barrier properties after hydrothermal treatment. On the other hand, when a gas barrier laminate film is produced using only a polyvinyl alcohol-based resin, a first coating film is formed by previously applying a gas barrier composition using a polyvinyl alcohol-based resin, A gas barrier composition containing an ethylene / vinyl alcohol copolymer is applied onto the coating film to form a second coating film, and a composite layer thereof is formed. Can be improved.

更に、上記エチレン・ビニルアルコール共重合体を含有するガスバリア性組成物により塗布膜を形成し、または、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて含有するガスバリア性組成物により塗布膜を形成し、これらを複数積層しても、本発明に係るガスバリア性積層フィルムのガスバリア性の向上に有効な手段となる。   Further, a coating film is formed by the gas barrier composition containing the ethylene / vinyl alcohol copolymer, or the gas barrier composition containing a combination of the polyvinyl alcohol resin and the ethylene / vinyl alcohol copolymer is applied. Even if a film is formed and a plurality of these films are laminated, it becomes an effective means for improving the gas barrier property of the gas barrier laminated film according to the present invention.

本発明で使用するガスバリア性積層フィルムの製造法について、アルコキシドとしてアルコキシシランを使用し、より詳細に説明する。   The production method of the gas barrier laminate film used in the present invention will be described in more detail using alkoxysilane as the alkoxide.

ガスバリア性組成物として配合されたアルコキシシランや金属アルコキシドは、添加された水によって加水分解される。加水分解の際には、酸が加水分解の触媒として作用する。次いで、ゾル−ゲル法触媒の働きによって、加水分解によって生じた水酸基からプロトンが奪取され、加水分解生成物同士が脱水重縮合する。このとき、酸触媒により同時にシランカップリング剤も加水分解されて、アルコキシ基が水酸基となる。   The alkoxysilane and metal alkoxide blended as the gas barrier composition are hydrolyzed by the added water. During the hydrolysis, the acid acts as a hydrolysis catalyst. Next, protons are taken from the hydroxyl groups generated by hydrolysis by the action of the sol-gel method catalyst, and the hydrolyzed products undergo dehydration polycondensation. At this time, the silane coupling agent is simultaneously hydrolyzed by the acid catalyst, and the alkoxy group becomes a hydroxyl group.

また、塩基触媒の働きによりエポキシ基の開環も起こり、水酸基が生じる。また、加水分解されたシランカップリング剤と加水分解されたアルコキシドとの重縮合反応も進行する。反応系にはポリビニルアルコール系樹脂、または、エチレン・ビニルアルコール共重合体、または、ポリビニルアルコール系樹脂および/またはエチレン・ビニルアルコール共重合体が存在するため、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体が有する水酸基との反応も生じる。なお、生成する重縮合物は、例えば、Si−O−Si、Si−O−Zr、Si−O−Ti、その他等の結合からなる無機質部分と、シランカップリング剤に起因する有機部分とを含有する複合ポリマーである。   In addition, the opening of the epoxy group also occurs due to the action of the base catalyst, generating a hydroxyl group. In addition, a polycondensation reaction between the hydrolyzed silane coupling agent and the hydrolyzed alkoxide also proceeds. In the reaction system, polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer, or polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer are present, so polyvinyl alcohol resin and ethylene / vinyl alcohol copolymer are present. Reaction with the hydroxyl group of the polymer also occurs. In addition, the polycondensate to be generated includes, for example, an inorganic part composed of a bond such as Si—O—Si, Si—O—Zr, Si—O—Ti, and the like, and an organic part resulting from the silane coupling agent. It is a composite polymer containing.

上記反応において、例えば、下記の式(III)に示される部分構造式を有し、更に、シランカップリング剤に起因する部分を有する直鎖状のポリマーがまず生成する。   In the above reaction, for example, a linear polymer having a partial structural formula represented by the following formula (III) and further having a portion derived from a silane coupling agent is first formed.

Figure 2008143103
このポリマーは、OR基(エトキシ基などのアルコキシ基)を、直鎖状のポリマーから分岐した形で有する。このOR基は、存在する酸が触媒となって加水分解されてOH基となり、ゾル−ゲル法触媒(塩基触媒)の働きにより、まず、OH基が、脱プロトン化し、次いで、重縮合が進行する。すなわち、このOH基が、下記の式(I)に示されるポリビニルアルコール系樹脂、または、下記の式(II)に示されるエチレン・ビニルアルコール共重合体と重縮合反応し、Si−O−Si結合を有する、例えば、下記の式(IV)に示される複合ポリマー、あるいは、下記の式(V)及び(VI)に示される共重合した複合ポリマーを生じると考えられる。
Figure 2008143103
This polymer has an OR group (an alkoxy group such as an ethoxy group) branched from a linear polymer. This OR group is hydrolyzed to become an OH group using the existing acid as a catalyst. The OH group is first deprotonated by the action of a sol-gel method catalyst (base catalyst), and then polycondensation proceeds. To do. That is, this OH group undergoes a polycondensation reaction with a polyvinyl alcohol-based resin represented by the following formula (I) or an ethylene / vinyl alcohol copolymer represented by the following formula (II) to form Si—O—Si. For example, it is considered that a composite polymer represented by the following formula (IV) or a copolymerized composite polymer represented by the following formulas (V) and (VI) is formed.

Figure 2008143103
Figure 2008143103

Figure 2008143103
Figure 2008143103

Figure 2008143103
Figure 2008143103

Figure 2008143103
Figure 2008143103

Figure 2008143103
上記の反応は常温で進行し、ガスバリア性組成物は、調製中に粘度が増加する。このガスバリア性組成物を、基材フィルム層上の無機酸化物の蒸着膜の上に塗布し、加熱して溶媒および重縮合反応により生成したアルコールを除去すると重縮合反応が完結し、基材フィルム層上の無機酸化物の蒸着膜の上に透明な塗布膜が形成される。なお、上記の塗布膜を複数層積層する場合には、層間の塗布膜中の複合ポリマー同士も縮合し、層と層との間が強固に結合する。
Figure 2008143103
The above reaction proceeds at room temperature, and the viscosity of the gas barrier composition increases during preparation. When this gas barrier composition is applied onto an inorganic oxide vapor-deposited film on a base film layer and heated to remove the solvent and the alcohol produced by the polycondensation reaction, the polycondensation reaction is completed, and the base film A transparent coating film is formed on the inorganic oxide vapor deposition film on the layer. In addition, when laminating | stacking two or more said coating films, the composite polymer in the coating film of an interlayer is also condensed, and a layer couple | bonds firmly between layers.

更に、シランカップリング剤の有機反応性基や、加水分解によって生じた水酸基が、基材フィルム層、または、基材フィルム層上の無機酸化物の蒸着膜の表面の水酸基等と結合するため、基材フィルム層、または前記無機酸化物の蒸着膜表面と、塗布膜との接着性も良好なものとなる。このように、本発明においては、無機酸化物の蒸着膜とガスバリア性塗布膜とが、例えば、加水分解・共縮合反応による化学結合、水素結合、あるいは、配位結合などを形成するため、無機酸化物の蒸着膜とガスバリア性塗布膜との密着性が向上し、その2層の相乗効果により、より良好なガスバリア性の効果を発揮し得る。   Furthermore, the organic reactive group of the silane coupling agent and the hydroxyl group generated by hydrolysis are bonded to the hydroxyl group on the surface of the base film layer, or the deposited film of the inorganic oxide on the base film layer, The adhesion between the base film layer or the surface of the inorganic oxide vapor deposition film and the coating film is also good. Thus, in the present invention, the inorganic oxide vapor-deposited film and the gas barrier coating film form, for example, a chemical bond, a hydrogen bond, or a coordinate bond by hydrolysis / co-condensation reaction. Adhesion between the oxide vapor deposition film and the gas barrier coating film is improved, and a better gas barrier effect can be exhibited by the synergistic effect of the two layers.

なお、本発明では、添加される水の量をアルコキシド類1モルに対して0.8〜2モル、好ましくは1.0〜1.7モルに調節した場合には、上記直鎖状のポリマーが形成される。このような直鎖状ポリマーは結晶性を有し、非晶質部分の中に多数の微小の結晶が埋包された構造をとる。このような結晶構造は、結晶性有機ポリマー(例えば、塩化ビニリデンやポリビニルアルコール)と同様であり、さらに極性基(OH基)が部分的に分子内に存在し、分子の凝集エネルギーが高く分子鎖剛性も高いため、特にガスバリア性(O2、N2、H2O、CO2、その他等の透過を遮断、阻止する)に優れる。特に、N2、CO2ガス等を充填した、いわゆる、ガス充填包装に用いた場合には、その優れたガスバリア性が、充填ガスの保持に極めて有効となる。これにより、本発明にかかるガスバリア性積層フィルムは、熱水処理、特に、高圧熱水処理(レトルト処理)に優れ、極めて優れたガスバリア性特性を示す。 In the present invention, when the amount of water added is adjusted to 0.8 to 2 mol, preferably 1.0 to 1.7 mol, relative to 1 mol of alkoxides, the above linear polymer is used. Is formed. Such a linear polymer has crystallinity and has a structure in which a large number of minute crystals are embedded in an amorphous part. Such a crystal structure is the same as that of a crystalline organic polymer (for example, vinylidene chloride or polyvinyl alcohol), and a polar group (OH group) is partially present in the molecule, and the molecular aggregation energy is high. Since the rigidity is also high, it is particularly excellent in gas barrier properties (blocking and blocking permeation of O 2 , N 2 , H 2 O, CO 2 , etc.). In particular, when used for so-called gas-filled packaging filled with N 2 , CO 2 gas or the like, the excellent gas barrier property is extremely effective for holding the filled gas. Thereby, the gas barrier laminate film according to the present invention is excellent in hot water treatment, particularly high pressure hot water treatment (retort treatment), and exhibits extremely excellent gas barrier properties.

上記の本発明のガスバリア性組成物を塗布する方法としては、例えば、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、デイツピング、刷毛、バーコード、アプリケータ等の塗布手段により、1回あるいは複数回の塗布で、乾燥膜厚が、0.01〜30μm、好ましくは、0.1〜10μm位の塗布膜を形成することができ、更に、通常の環境下、50〜300℃、好ましくは、70〜200℃の温度で、0.005〜60分間、好ましくは、0.01〜10分間、加熱・乾操することにより、縮合が行われ、本発明のガスバリア性塗布膜を形成することができる。   Examples of the method for applying the gas barrier composition of the present invention include, for example, once by a roll coater such as a gravure roll coater, spray coat, spin coat, dipping, brush, bar code, applicator or the like. A coating film having a dry film thickness of 0.01 to 30 μm, preferably about 0.1 to 10 μm, can be formed by applying a plurality of times. Further, under a normal environment, 50 to 300 ° C., preferably The gas barrier coating film of the present invention is formed by performing condensation at a temperature of 70 to 200 ° C. by heating and drying for 0.005 to 60 minutes, preferably 0.01 to 10 minutes. Can do.

(6)アンカーコート層
本発明では、前記ガスバリア性塗布膜上にポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層を積層する。
(6) Anchor coat layer In the present invention, an anchor coat layer made of an anchor coat composition containing polyethyleneimine is laminated on the gas barrier coating film.

ポリエチレンイミンとしては、例えば、エチレンイミンを酸触媒の存在下、開環重合させることによって合成される。一般に、下記式で示されるような完全な線状高分子ではなく、含まれる窒素原子上の活性水素原子の反応性に由来して、1級、2級、3級アミンを1:2:1の割合で含む分岐構造を有する。本発明ではこのような分岐構造を含む高分子化合物を好適に使用することができる。これにより、上記ガスバリア性塗布膜に含まれる反応基と結合でき、柔軟かつ密接にガスバリア性塗布膜とヒートシール層とを密着することができる。   Polyethyleneimine is synthesized, for example, by ring-opening polymerization of ethyleneimine in the presence of an acid catalyst. In general, primary, secondary and tertiary amines are 1: 2: 1 derived from the reactivity of active hydrogen atoms on the nitrogen atoms contained, rather than a perfect linear polymer as shown by the formula Having a branched structure. In the present invention, a polymer compound containing such a branched structure can be preferably used. Thereby, it can couple | bond with the reactive group contained in the said gas-barrier coating film, and can adhere | attach a gas-barrier coating film and a heat seal layer closely | flexibly and closely.

Figure 2008143103
したがって、本発明で使用するポリエチレンイミンとしては、エチレンイミンの重合体であって、反応性に優れる活性水素に、1級、2級、3級アミンが結合し、これによってラミネート強度を高め得るものであれば、その構造に制限はない。また、そのようなポリエチレンイミンであれば、市販品を使用することもできる。このような市販品としては、日本触媒株式会社製、商品名「エポミン(登録商標)」、東洋モートン社製、商品名「AD372MW」、大日精化社製、商品名「セカダイン4100」、等がある。本発明において、上記のようなポリエチレンイミンを使用することにより、ガスバリア性塗布膜とヒートシール層との密接着性等を向上させ、ラミネート加工、あるいは、製函加工等の後加工適性を向上させ、後加工時における無機酸化物の蒸着膜のクラック等の発生を防止することができる。
Figure 2008143103
Therefore, the polyethyleneimine used in the present invention is a polymer of ethyleneimine, and primary, secondary, and tertiary amines are bonded to active hydrogen that is excellent in reactivity, thereby increasing the laminate strength. If so, the structure is not limited. Moreover, if it is such a polyethyleneimine, a commercial item can also be used. Examples of such commercially available products include Nippon Shokubai Co., Ltd., trade name “Epomin (registered trademark)”, Toyo Morton, trade name “AD372MW”, Dainichi Seika Co., Ltd., trade name “SECADINE 4100”, and the like. is there. In the present invention, by using the polyethyleneimine as described above, the tight adhesion between the gas barrier coating film and the heat seal layer is improved, and the post-processing suitability such as laminating or box making is improved. Further, it is possible to prevent the occurrence of cracks or the like in the deposited film of the inorganic oxide during post-processing.

該アンカーコート剤は、ポリエチレンイミンを主成分とするものであれば、更に他の成分を含んでいてもよい。アンカーコート剤としてしては、例えば、ポリエチレンイミン1〜30質量%に対し、更に、安定剤、硬化剤、架橋剤、滑剤、紫外線吸収剤、その他等の添加剤を任意に添加し、溶媒、希釈剤等を加えて充分に混合して水性組成物を調製したものであってもよい。具体的には、ポリエチレンイミンを主成分とするものであり、該ポリエチレンイミン1〜30質量%に対し、シランカップリング剤0.05〜10質量%、好ましくは、0.1質量%〜5質量%、充填剤0.1〜20質量%、好ましくは、1〜10質量%の割合で添加し、更に、必要ならば、安定剤、硬化剤、架橋剤、滑剤、紫外線吸収剤、その他等の添加剤を任意に添加し、溶媒、希釈剤等を加えて充分に混合して水性組成物を調製したものなどが好適に使用できる。   The anchor coating agent may further contain other components as long as it has polyethyleneimine as a main component. As an anchor coating agent, for example, for polyethyleneimine 1 to 30% by mass, an additive such as a stabilizer, a curing agent, a crosslinking agent, a lubricant, an ultraviolet absorber, and the like is optionally added, and a solvent, An aqueous composition may be prepared by adding a diluent and mixing well. Specifically, the main component is polyethyleneimine, and the silane coupling agent is 0.05 to 10% by mass, preferably 0.1% to 5% by mass with respect to 1 to 30% by mass of the polyethyleneimine. %, 0.1 to 20% by weight, preferably 1 to 10% by weight, and, if necessary, stabilizers, curing agents, crosslinking agents, lubricants, ultraviolet absorbers, etc. A solution prepared by adding an additive arbitrarily, adding a solvent, a diluent and the like and mixing them well to prepare an aqueous composition can be suitably used.

上記組成物に配合しうるシランカップリング剤としては、二元反応性を有する有機官能性シランモノマー類を使用することができ、例えば、γ−クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリルオキシプロピルトリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルシリコ−ンの水溶液等の1種ないしそれ以上を使用することができる。   As the silane coupling agent that can be blended in the composition, organic functional silane monomers having binary reactivity can be used. For example, γ-chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxy Silane, vinyl-tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxy Silane, γ-mercaptopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane, Bis (β-hydroxy Chill)-.gamma.-aminopropyltriethoxysilane, .gamma.-aminopropyl silicone - can be used one or more of such aqueous emissions.

また、配合しうる充填剤としては、例えば、炭酸カルシウム、硫酸バリウム、アルミナホワイト、シリカ、タルク、ガラスフリット、樹脂粉末、その他等のものを使用することができる。而して、上記の充填剤は、上記の組成物液の粘度等を調製し、そのコーティング適性を向上させると共にポリエチレンイミンとシランカップリング剤を介して結合し、コーティング膜の凝集力を向上させるものである。   Examples of the filler that can be blended include calcium carbonate, barium sulfate, alumina white, silica, talc, glass frit, resin powder, and the like. Thus, the above-mentioned filler adjusts the viscosity of the above-described composition liquid, improves its coating suitability, and binds with polyethyleneimine via a silane coupling agent to improve the cohesive strength of the coating film. Is.

本発明では、アンカーコート剤として、必要ならば、例えば、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂あるいはその共重合体ないし変性樹脂、セルロース系樹脂、その他等の樹脂の1種ないしそれ以上を任意に添加して組成物を調製してもよい。   In the present invention, as an anchor coating agent, if necessary, for example, polyurethane resin, polyester resin, polyamide resin, epoxy resin, phenol resin, (meth) acrylic resin, polyvinyl acetate resin, polyethylene or A composition may be prepared by arbitrarily adding one or more of polyolefin resins such as polypropylene or copolymers or modified resins thereof, cellulose resins, and the like.

アンカーコート剤を溶解する溶剤は、アンカーコート剤を溶解することが可能な溶剤であればよく、有機溶剤・水系溶剤などを単独または混合液として用いることができる。   The solvent that dissolves the anchor coating agent may be any solvent that can dissolve the anchor coating agent, and an organic solvent, an aqueous solvent, or the like can be used alone or as a mixed solution.

上記組成物を、例えば、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法等により、上記ガスバリア性塗布膜の上にコーティングし、しかる後、コーティング膜を乾燥させて溶媒、希釈剤等を除去し、更に、要すれば、エージング処理等を行って、本発明にかかるアンカーコート層を形成してもよい。なお、本発明において、アンカーコート層の膜厚としては、例えば、0.1〜5.0g/m2(乾燥状態)が望ましい。本発明においては、上記のようなアンカーコート層により、ガスバリア性塗布膜とヒートシール層等との密接着性等を向上させると共にアンカーコート層の伸長度を向上させ、例えば、ラミネート加工、あるいは、製函加工等の後加工適性を向上させ、後加工時における無機酸化物の蒸着膜のクラック等の発生を防止することができる。 The composition is coated on the gas barrier coating film by, for example, roll coating, gravure coating, knife coating, dip coating, spray coating, or other coating methods, and then the coating film is dried to form a solvent. The anchor coat layer according to the present invention may be formed by removing the diluent and the like, and further performing an aging treatment if necessary. In the present invention, the thickness of the anchor coat layer is preferably, for example, 0.1 to 5.0 g / m 2 (dry state). In the present invention, the anchor coat layer as described above improves the tight adhesion between the gas barrier coating film and the heat seal layer and the like and improves the elongation of the anchor coat layer, for example, laminating, or It is possible to improve post-processing suitability such as box making and to prevent generation of cracks or the like in the deposited film of inorganic oxide during post-processing.

(7)ヒートシール層
ヒートシール層としては、熱によって溶融し相互に融着し得る各種のヒートシール性を有するポリオレフィン系樹脂、その他等を使用することができる。具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン−α・オレフィン共重合体、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマール酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、その他等の樹脂を使用することができる。本発明においては、上記のような樹脂の1種ないし2種以上を使用し、これを押出機等を用いて溶融押出して、アンカーコート層等を介して、溶融押出樹脂層を溶融押出積層することにより、あるいは、上記のような樹脂の1種ないし2種以上を使用し、予め、これから樹脂のフィルムないしシートを製造し、その樹脂のフィルムないしシートを、ラミネート用接着剤層等を介してドライラミネート積層することにより、ヒートシール層を形成することができる。
(7) Heat-seal layer As the heat-seal layer, polyolefin resins having various heat-seal properties that can be melted by heat and fused together can be used. Specifically, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, ethylene-α / olefin copolymer polymerized using a metallocene catalyst, polypropylene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, methyl Polyethylene resins such as pentene polymer, polybutene polymer, polyethylene or polypropylene modified with unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, acid-modified polyolefin resin, polyvinyl acetate Resin, poly (medium ) Can be used an acrylic resin, polyvinyl chloride resin, other like resins. In the present invention, one or more of the above resins are used, melt extruded using an extruder or the like, and a melt extruded resin layer is melt extrusion laminated through an anchor coat layer or the like. Alternatively, one or more of the above resins are used, and a resin film or sheet is produced in advance from the resin film or sheet through an adhesive layer for laminating or the like. A heat seal layer can be formed by dry lamination lamination.

本発明の特徴の一つは、ポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層の上にヒートシール層を形成することにあり、低密度ポリエチレンをヒートシール層として使用した場合にも、ラミネート強度を向上させることができる。この点について詳記すれば、低密度ポリエチレン、あるいは、直鎖状(線状)低密度ポリエチレンは330〜350℃位に加熱して溶融押出するため、ガスバリア性積層フィルムを構成する酸化珪素、酸化アルミニウム等の無機酸化物の蒸着膜に、その330〜350℃位の加熱温度が作用し、酸化珪素、酸化アルミニウム等の無機酸化物の蒸着膜にクラック等が発生し易く、酸素ガス、水蒸気等の透過を阻止するバリア性に著しく劣化させてしまう場合があった。そのため、より低温で溶融押出積層することができるエチレン−不飽和カルボン酸またはそのエステル化物との共重合体が使用される場合がある。しかしながら本発明では、基材フィルム面に無機酸化物の蒸着膜を設け、該無機酸化物の蒸着膜の面上に上記ガスバリア性塗布膜を設け、この上に、ポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層を設けることで、該アンカーコート層上にヒートシール性を有するポリオレフィン系樹脂からなるヒートシール層を積層した場合にも、ポリエチレンイミンによって層間のラミネート強度を向上することができるため、ガスバリア性積層フィルムにおいて、十分な接着強度とガスバリア性を確保することができる。   One of the characteristics of the present invention is that a heat seal layer is formed on an anchor coat layer made of an anchor coat composition containing polyethyleneimine. Even when low density polyethylene is used as a heat seal layer, lamination is also possible. Strength can be improved. If this point is described in detail, since low density polyethylene or linear (linear) low density polyethylene is heated to about 330 to 350 ° C. and melt extruded, silicon oxide and oxide constituting the gas barrier laminate film are oxidized. A heating temperature of about 330 to 350 ° C. acts on a vapor deposition film of an inorganic oxide such as aluminum, and a crack or the like is likely to occur in the vapor deposition film of an inorganic oxide such as silicon oxide or aluminum oxide. In some cases, the barrier property to prevent the permeation of light is significantly deteriorated. Therefore, a copolymer with ethylene-unsaturated carboxylic acid or an esterified product thereof that can be melt-extruded and laminated at a lower temperature may be used. However, in the present invention, an inorganic oxide vapor deposition film is provided on the surface of the base film, the gas barrier coating film is provided on the surface of the inorganic oxide vapor deposition film, and an anchor coat composition containing polyethyleneimine thereon. By providing an anchor coat layer made of the above, even when a heat seal layer made of a polyolefin resin having heat sealability is laminated on the anchor coat layer, the laminate strength between the layers can be improved by polyethyleneimine In a gas barrier laminate film, sufficient adhesive strength and gas barrier properties can be ensured.

本発明において、ヒートシール層の厚さとしては、5〜200μm位、好ましくは、10〜100μm位が望ましいものである。   In the present invention, the thickness of the heat seal layer is about 5 to 200 μm, preferably about 10 to 100 μm.

(8)熱接着性樹脂層
本発明では、アンカーコート層とヒートシール層との間に、熱接着性樹脂層を設けることができる。このような熱接着性樹脂層としては、熱によって溶融し相互に融着し得る各種のヒートシール性を有するポリオレフィン系樹脂等を使用することができ、上記ヒートシール層と同一の樹脂を使用してもよい。具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸共重合体、メタロセン触媒を使用して重合したエチレン−α・オレフィン共重合体、ポリプロピレン、エチレン−メタクリル酸メチル共重合体、エチレン−プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマール酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂等の樹脂からなる1種以上の樹脂がある。この熱接着性樹脂層を構成する樹脂を溶融押出しによって形成すると、アンカーコート層と熱接着性樹脂層とを優れた密接性をもって接着することができる。次いで、上記ヒートシール層を構成する樹脂からなるフィルムを前記熱接着性樹脂層に積層し、本発明のガスバリア性積層フィルムとすることができる。
(8) Thermal adhesive resin layer In the present invention, a thermal adhesive resin layer can be provided between the anchor coat layer and the heat seal layer. As such a heat-adhesive resin layer, various heat-sealable polyolefin-based resins that can be melted by heat and fused to each other can be used, and the same resin as the heat-seal layer is used. May be. Specifically, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid copolymer, ethylene -Ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-α / olefin copolymer polymerized using metallocene catalyst, polypropylene, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer Polyolefin resins such as methylpentene polymer, polybutene polymer, polyethylene or polypropylene modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, Vinyl acetate Resins, poly (meth) acrylic resins, one or more resins comprising a resin such as polyvinyl chloride resin. When the resin constituting the heat-adhesive resin layer is formed by melt extrusion, the anchor coat layer and the heat-adhesive resin layer can be bonded with excellent adhesion. Subsequently, the film which consists of resin which comprises the said heat seal layer can be laminated | stacked on the said heat adhesive resin layer, and it can be set as the gas barrier laminated film of this invention.

前記したように、本発明は、ポリエチレンイミンを含むアンカーコート層を使用し、該アンカーコート層上に熱にして溶融し相互に溶着しうるヒートシール層または熱接着性樹脂層を積層することで、より低温で溶融及び接着するエチレン−不飽和カルボン酸またはそのエステル化物との共重合体からなる接着層を設けることなく、ラミネート強度を向上できる点に特徴がある。したがって、アンカーコート層上に熱接着性樹脂層を溶融押出しによって積層した場合には、該熱接着性樹脂層上に積層されるヒートシール層は、溶融押出しに限定されず、ラミネート接着剤などを介してドライラミネーション法によって接着されるものであってもよい。   As described above, the present invention uses an anchor coat layer containing polyethyleneimine, and laminates a heat seal layer or a heat-adhesive resin layer that can be melted and welded to each other on the anchor coat layer. The laminate strength can be improved without providing an adhesive layer made of a copolymer with ethylene-unsaturated carboxylic acid or its esterified product that melts and adheres at a lower temperature. Therefore, when the heat-adhesive resin layer is laminated on the anchor coat layer by melt extrusion, the heat seal layer laminated on the heat-adhesive resin layer is not limited to melt extrusion, and a laminate adhesive or the like is used. It may be bonded by a dry lamination method.

(9)印刷層
本発明においては、上記ガスバリア性積層フィルムを形成するいずれかの層間に所望の印刷模様層を形成することができるものである。上記の印刷模様層としては、例えば、基材フィルムやガスバリア性塗布膜の上に、通常のグラビアインキ組成物、オフセットインキ組成物、凸版インキ組成物、スクリーンインキ組成物、その他のインキ組成物を使用し、例えば、グラビア印刷方式、オフセット印刷方式、凸版印刷方式、シルクスクリーン印刷方式、その他の印刷方式を使用し、例えば、文字、図形、絵柄、記号、その他からなる所望の印刷絵柄を形成することにより構成することができる。
(9) Printed layer In the present invention, a desired printed pattern layer can be formed between any of the layers forming the gas barrier laminate film. As the printed pattern layer, for example, a normal gravure ink composition, an offset ink composition, a relief ink composition, a screen ink composition, and other ink compositions on a base film or a gas barrier coating film. Use, for example, gravure printing method, offset printing method, letterpress printing method, silk screen printing method, and other printing methods, for example, to form a desired printing pattern consisting of characters, figures, patterns, symbols, etc. Can be configured.

上記インキ組成物について、インキ組成物を構成するビヒクルとしては、例えば、ポリエチレン系樹脂、塩素化ポリプロピレン系樹脂などのポリオレフィン系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、塩化ビニル−酢酸ビニル共重合体、ポリスチレン系樹脂、スチレン−ブタジエン共重合体、フッ化ビニリデン系樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール系樹脂、ポリビニルブチラール系樹脂、ポリブタジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、アルキッド系樹脂、エポキシ系樹脂、不飽和ポリエステル系樹脂、熱硬化型ポリ(メタ)アクリル系樹脂、メラミン系樹脂、尿素系樹脂、ポリウレタン系樹脂、フェノール系樹脂、キシレン系樹脂、マレイン酸樹脂、ニトロセルロース、エチルセルロース、アセチルブチルセルロース、エチルオキシエチルセルロースなどの繊維素系樹脂、塩化ゴム、環化ゴムなどのゴム系樹脂、石油系樹脂、ロジン、カゼインなどの天然樹脂、アマニ油、大豆油などの油脂類、その他の樹脂の1種ないし2種以上の混合物を使用することができる。本発明において、上記のようなビヒクルの1種ないし2種以上を主成分とし、これに、染料・顔料などの着色剤の1種ないし2種以上を加え、さらに必要ならば、充填剤、安定剤、可塑剤、酸化防止剤、紫外線吸収剤などの光安定剤、分散剤、増粘剤、乾燥剤、滑剤、帯電防止剤、架橋剤、その他の添加剤を任意に添加し、溶剤、希釈剤などで充分に混練してなる各種の形態からなるインキ組成物を使用することができる。   Regarding the ink composition, examples of the vehicle constituting the ink composition include polyolefin resins such as polyethylene resins and chlorinated polypropylene resins, poly (meth) acrylic resins, polyvinyl chloride resins, and polyvinyl acetate. Resin, vinyl chloride-vinyl acetate copolymer, polystyrene resin, styrene-butadiene copolymer, vinylidene fluoride resin, polyvinyl alcohol resin, polyvinyl acetal resin, polyvinyl butyral resin, polybutadiene resin, polyester resin Resins, polyamide resins, alkyd resins, epoxy resins, unsaturated polyester resins, thermosetting poly (meth) acrylic resins, melamine resins, urea resins, polyurethane resins, phenol resins, xylene resins , Maleic resin, Fiber resins such as rocellulose, ethylcellulose, acetylbutylcellulose, ethyloxyethylcellulose, rubber resins such as chlorinated rubber and cyclized rubber, natural resins such as petroleum resins, rosin and casein, linseed oil, soybean oil, etc. A mixture of one or more of fats and oils and other resins can be used. In the present invention, one or more of the above-mentioned vehicles are used as a main component, and one or more of coloring agents such as dyes and pigments are added to this, and if necessary, a filler, Light stabilizers such as additives, plasticizers, antioxidants, UV absorbers, dispersants, thickeners, drying agents, lubricants, antistatic agents, cross-linking agents, and other additives are optionally added, solvent, dilution Ink compositions having various forms obtained by sufficiently kneading with an agent or the like can be used.

印刷層は、文字、図形、記号、絵柄、模様等の所望の印刷絵柄を表刷り印刷しても、あるいは裏刷り印刷してもよく、全面印刷でも、部分印刷でもよい。   The print layer may be printed by surface printing or reverse printing of a desired printing pattern such as a character, a figure, a symbol, a pattern, or a pattern, and may be full surface printing or partial printing.

(10)他の積層材
本発明においては、ガスバリア性積層フィルムは、その使用の際に物理的にも化学的にも過酷な条件におかれる場合があり、変形防止強度、落下衝撃強度、耐ピンホール性、耐熱性、密封性、品質保全性、作業性、衛生性、その他等の種々の条件が要求される。このため、本発明にでは、上記ガスバリア性積層フィルムに更に、上記諸条件を充足する材料を任意に選択して積層することができる。このような積層材としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸またはメタクリル酸共重合体、メチルペンテンポリマー、ポリブテン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩化ビニル−塩化ビニリデン共重合体、ポリ(メタ)アクリル系樹脂、ポリアクリルニトリル系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS系樹脂)、アクリロニトリル−ブタジェン−スチレン共重合体(ABS系樹脂)、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、エチレン−酢酸ビニル共重合体のケン化物、フッ素系樹脂、ジエン系樹脂、ポリアセタール系樹脂、ポリウレタン系樹脂、ニトロセルロース、その他等の公知の樹脂のフィルムなどがある。これらのフィルムは、未延伸、一軸ないし二軸方向に延伸されたもの等のいずれのものでも使用することができる。また、その厚さは、任意であるが、用途に応じて、数μmから300μm位の範囲から選択して使用することができる。これらのフィルムは、押し出し成膜、インフレーション成膜、コーティング膜等のいずれの性状の膜でもよい。その他、例えば、セロハン等のフィルム、各種の紙基材、合成紙等も使用することができる。
(10) Other laminated materials In the present invention, the gas barrier laminated film may be subjected to severe physical and chemical conditions during its use, and has a deformation prevention strength, a drop impact strength, Various conditions such as pinhole property, heat resistance, sealing property, quality maintenance, workability, hygiene, etc. are required. For this reason, in this invention, the material which satisfies the said various conditions can further be selected arbitrarily and laminated | stacked on the said gas-barrier laminated | multilayer film further. Examples of such a laminated material include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- Ethyl acrylate copolymer, ethylene-acrylic acid or methacrylic acid copolymer, methylpentene polymer, polybutene resin, polyvinyl chloride resin, polyvinyl acetate resin, polyvinylidene chloride resin, vinyl chloride-vinylidene chloride Polymer, poly (meth) acrylic resin, polyacrylonitrile resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyester resin , Polyamide series Oil, polycarbonate resin, polyvinyl alcohol resin, saponified ethylene-vinyl acetate copolymer, fluorine resin, diene resin, polyacetal resin, polyurethane resin, nitrocellulose, and other known resin films There is. Any of these films, such as unstretched films and films stretched in a uniaxial or biaxial direction, can be used. Moreover, although the thickness is arbitrary, it can select and use from the range of several micrometers-about 300 micrometers according to a use. These films may be films having any properties such as extrusion film formation, inflation film formation, and coating film. In addition, for example, a film such as cellophane, various paper base materials, synthetic paper, and the like can be used.

本発明では、他の積層材を積層する際に、例えばラミネート用接着剤を使用し、ドライラミネート積層法を用いて積層することができる。ラミネート用接着剤としては、ポリ酢酸ビニル系接着剤、アクリル酸のエチル、ブチル、2−エチルへキシルエステルなどのホモポリマーもしくはこれらとメタクリル酸メチル、アクリロニトリル、スチレンなどとの共重合体などからなるポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレンと酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸などのモノマーとの共重合体などからなるエチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、尿素樹脂またはメラミン樹脂などからなるアミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル酸系接着剤、クロロプレンゴム、ニトリルゴム、スチレン−ブタジエンゴムなどからなる無機系接着剤、シリコーン系接着剤、アルカリ金属シリケート、低融点ガラスなどからなる無機系接着剤、その他の接着剤を使用することができる。   In this invention, when laminating | stacking another laminated material, it can laminate | stack using the adhesive agent for lamination, for example, using the dry lamination lamination method. The adhesive for laminating comprises a polyvinyl acetate adhesive, a homopolymer such as ethyl acrylate, butyl, 2-ethylhexyl ester or a copolymer of these with methyl methacrylate, acrylonitrile, styrene, etc. Polyacrylate adhesives, cyanoacrylate adhesives, ethylene copolymer adhesives made of copolymers of ethylene and monomers such as vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid, etc., cellulose adhesives Polyester adhesive, polyamide adhesive, polyimide adhesive, amino resin adhesive made of urea resin or melamine resin, phenol resin adhesive, epoxy adhesive, polyurethane adhesive, reactive type (meta ) Acrylic acid adhesive, chloroprene rubber, nitrile Beam, styrene - inorganic adhesive made of butadiene rubber, a silicone-based adhesive, an alkali metal silicate, inorganic adhesive made of low-melting glass, it is possible to use other adhesives.

より好ましくは、例えば、トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメチレンポリフェニレンポリイソシアナートなどの芳香族ポリイソシアナート、またはヘキサメチレンジイソシアナート、キシリレンジイソシアナートなどの脂肪族ポリイソシアナート等の多官能イソシアナートと、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリアクリレートポリオール、その他のヒドロキシル基含有化合物との反応によって得られるポリエーテルポリウレタン系樹脂、ポリエステル系ポリウレタン系樹脂、ポリアクリレートポリウレタン系樹脂を主成分とするものである。これらによれば、柔軟性と屈曲性に富む薄膜を形成することができ、その引っ張り伸長度を向上させ、無機酸化物からなるバリア性薄膜層に対し、柔軟性、屈曲性などを有する被膜として作用し、ラミネート加工、印刷加工などの加工適性を向上させ、無機酸化物からなるバリア性薄膜層へのクラックなどの発生を回避することができる。   More preferably, for example, aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, or aliphatic polyisocyanates such as hexamethylene diisocyanate, xylylene diisocyanate, etc. Mainly used are polyether polyurethane resins, polyester polyurethane resins, and polyacrylate polyurethane resins obtained by reacting polyfunctional isocyanates with polyether polyols, polyester polyols, polyacrylate polyols, and other hydroxyl group-containing compounds. Ingredients. According to these, it is possible to form a thin film rich in flexibility and flexibility, improve its tensile elongation, and as a film having flexibility, flexibility, etc. against a barrier thin film layer made of an inorganic oxide It can act and improve processing aptitude, such as lamination processing and printing processing, and can avoid generation of a crack etc. to a barrier thin film layer which consists of inorganic oxides.

これらの接着剤の組成系は、水性型、溶液型、エマルジョン型、分散型などのいずれの組成物形態でもよく、その性状はフィルム、シート状、粉末状、固形状などのいずれでもよい。更に、反応機構として、化学反応型、溶剤揮発型、熱溶着型、熱圧型などのいずれでもよい。また、ラミネート用接着剤の使用量には特に限定はないが、一般には、0.1〜10g/m2(乾燥状態)である。上記ラミネート用接着剤は、ロールコート、グラビアコート、キスコートその他のコート法や印刷法によって行うことができる。 The composition system of these adhesives may be any composition form such as an aqueous type, a solution type, an emulsion type, and a dispersion type, and the property may be any of a film, a sheet, a powder, a solid, and the like. Furthermore, the reaction mechanism may be any of a chemical reaction type, a solvent volatilization type, a heat welding type, a hot pressure type, and the like. The amount of the laminating adhesive is not particularly limited, but is generally 0.1 to 10 g / m 2 (dry state). The laminating adhesive can be applied by roll coating, gravure coating, kiss coating or other coating methods or printing methods.

(11)ガスバリア性積層フィルム
本発明のガスバリア性積層フィルムは、上記した材料を使用してガスバリア性積層フィルムを製造するには、通常の積層材をラミネートする方法、例えば、ウエットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押し出しラミネーション法、Tダイ押し出し成形法、共押し出しラミネーション法、インフレーション法、共押し出しインフレーション法、その他等で行うことができる。
(11) Gas barrier laminated film The gas barrier laminated film of the present invention is produced by a method of laminating an ordinary laminated material, for example, a wet lamination method, a dry lamination, in order to produce a gas barrier laminated film using the above-described materials. For example, a solvent-free dry lamination method, an extrusion lamination method, a T-die extrusion molding method, a coextrusion lamination method, an inflation method, a coextrusion inflation method, and the like.

本発明において、上記のようなバリア性積層フィルムを使用して包装用容器を製造することができる。例えば、包装用容器がプラスチックフィルム等からなる軟包装袋の場合、上記のような方法で製造した積層材を使用し、その内層のヒートシール性フィルムの面を対向させて、それを折り重ねるか、或いはその二枚を重ね合わせ、更にその周辺端部をヒートシールしてシール部を設けて袋体を構成することができる。その製袋方法としては、上記の積層材を、その内層の面を対向させて折り曲げるか、あるいはその二枚を重ね合わせ、更にその外周の周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、その他等のヒートシール形態によりヒートシールして、本発明にかかる種々の形態の包装用容器を製造することができる。また、例えば、自立性包装袋(スタンディングパウチ)等も製造することが可能であり、更に、本発明においては、上記の積層フィルムを使用してチューブ容器等も製造することができる。   In the present invention, a packaging container can be produced using the barrier laminate film as described above. For example, if the packaging container is a flexible packaging bag made of plastic film, etc., use the laminated material manufactured by the method described above, and fold it up with the inner surface of the heat-sealable film facing each other. Alternatively, the two sheets can be overlapped, and the peripheral edge can be heat sealed to provide a seal portion to form a bag. As the bag making method, the above-mentioned laminated material is bent with the inner layer faces facing each other, or the two sheets are overlapped, and the peripheral edge of the outer periphery is, for example, a side seal type, two-side seal Heat seal by heat seal form such as mold, three-side seal type, four-side seal type, envelope sticker seal type, palm seal sticker type (pillow seal type), pleated seal type, flat bottom seal type, square bottom seal type, etc. Various types of packaging containers according to the present invention can be manufactured. In addition, for example, a self-supporting packaging bag (standing pouch) or the like can be manufactured. Further, in the present invention, a tube container or the like can be manufactured using the laminated film.

上記において、ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。なお、本発明においては、上記のような包装用容器には、例えば、ワンピースタイプ、ツウーピースタイプ、その他等の注出口、あるいは開閉用ジッパー等を任意に取り付けることができる。また、その形状は、角形容器、丸形等の円筒状の紙缶等のいずれのものでも製造することができる。   In the above, the heat sealing method can be performed by a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, an ultrasonic seal, and the like. In the present invention, a spout such as a one-piece type, a two-piece type, or the like, or an opening / closing zipper can be arbitrarily attached to the packaging container as described above. Further, the shape can be any of a rectangular container, a cylindrical paper can such as a round shape, and the like.

本発明において、上記のようにして製造した包装用容器は、種々の飲食品、接着剤、粘着剤等の化学品、化粧品、医薬品、ケミカルカイロ等の雑貨品、その他等の各種の物品の充填包装に使用されるものである。本発明においては、例えば、醤油、ソース、スープ等を充填包装する液体用小袋、生菓子等を充填包装する軟包装用袋、あるいは、ボイルあるいはレトルト食品等を充填包装する軟包装用袋等の液体飲食物あるいは水分等を含む飲食物等を充填包装する包装用容器などとして有用なものである。   In the present invention, the packaging container produced as described above is filled with various foods and drinks, chemicals such as adhesives and adhesives, cosmetics, pharmaceuticals, miscellaneous goods such as chemical warmers, and other various articles. It is used for packaging. In the present invention, for example, a liquid sachet for filling and packaging soy sauce, sauce, soup, etc., a soft packaging bag for filling and packaging fresh confectionery, etc., or a soft packaging bag for filling and packaging boiled or retort food, etc. It is useful as a packaging container for filling and packaging foods and drinks or foods and drinks containing moisture.

次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.

実施例1
(1) 一方にコロナ処理面を有する厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムを使用し、これをプラズマ化学気相成長装置の送り出しロールに装着し、次いで、下記に示す条件で、上記の2軸延伸ポリエチレンテレフタレートフィルムのコロナ処理面に、厚さ120Åの酸化珪素の蒸着膜を形成した。
Example 1
(1) A biaxially stretched polyethylene terephthalate film having a thickness of 12 μm having a corona-treated surface on one side is used, and this film is attached to a delivery roll of a plasma chemical vapor deposition apparatus. A deposited silicon oxide film having a thickness of 120 mm was formed on the corona-treated surface of the axially stretched polyethylene terephthalate film.

すなわち、原料であるヘキサメチルジシロキサン(以下、HMDSOという。)を前記コロナ処理面に、導入ガス量;ヘキサメチルジシロキサン:酸素ガス:ヘリウム=1.0:3.0:3.0(単位:slm)、真空チャンバー内の真空度;2〜6×10-6mBar、蒸着チャンバー内の真空度;2〜5×10-3mBar、冷却・電極ドラム供給電力;10kW、ライン速度;100m/minで供給した。 That is, the raw material hexamethyldisiloxane (hereinafter referred to as HMDSO) is introduced into the corona-treated surface; the amount of introduced gas; hexamethyldisiloxane: oxygen gas: helium = 1.0: 3.0: 3.0 (units) Slm), degree of vacuum in the vacuum chamber; 2-6 × 10 −6 mBar, degree of vacuum in the deposition chamber; 2-5 × 10 −3 mBar, cooling and electrode drum power supply: 10 kW, line speed: 100 m / supplied in min.

次に、膜厚120Åの酸化珪素の蒸着膜を形成した直後に、酸化珪素の蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kw、酸素ガス(O2):アルゴンガス(Ar)=7.0:2.5(単位:slm)からなる混合ガスを使用し、混合ガス圧6×10-5Torr、処理速度420m/minで酸素/アルゴン混合ガスプラズマ処理を行って、酸化珪素の蒸着膜面の表面張力を54dyn/cm以上向上させてプラズマ処理面を形成した。 Next, immediately after the silicon oxide vapor deposition film having a thickness of 120 mm was formed, a glow discharge plasma generator was used on the silicon oxide vapor deposition film surface, and the power was 9 kw, oxygen gas (O 2 ): argon gas (Ar). = 7.0: 2.5 (unit: slm) is used, and oxygen / argon mixed gas plasma treatment is performed at a mixed gas pressure of 6 × 10 −5 Torr and a processing speed of 420 m / min. The surface tension of the deposited film surface was improved by 54 dyn / cm or more to form a plasma treated surface.

(2) 次に、表1に示す組成に従って調製した組成aの混合液に、予め調製した組成bの加水分解液を加えて攪拌し、無色透明のバリアー塗工液を得た。   (2) Next, a preliminarily prepared hydrolyzate of composition b was added to the mixed solution of composition a prepared according to the composition shown in Table 1 and stirred to obtain a colorless and transparent barrier coating solution.

Figure 2008143103
上記で製造したバリア性塗工液を使用し、これをグラビアロールコート法により前記(1)のプラズマ処理面上にコーティングし、次いで、140℃で60秒間、加熱処理して、厚さ0.3μm(乾操状態)のガスバリア性塗布膜を形成した。
Figure 2008143103
Using the barrier coating solution produced above, this was coated on the plasma-treated surface of (1) by the gravure roll coating method, and then heat-treated at 140 ° C. for 60 seconds to obtain a thickness of 0. A gas barrier coating film of 3 μm (dry operation state) was formed.

(3) 次に、上記(2)で形成したガスバリア性塗布膜に、ポリエチレンイミン系アンカーコート剤をグラビアロールコート法により、膜厚0.1g/m2(乾燥状態)になるようにコーティングおよび乾燥してアンカーコート層を形成した。 (3) Next, the gas barrier coating film formed in the above (2) is coated with a polyethyleneimine anchor coating agent by a gravure roll coating method so that the film thickness becomes 0.1 g / m 2 (dry state). It dried and the anchor coat layer was formed.

(4) 押出ラミネート機を用いて上記で形成したアンカーコート層の面に、低密度ポリエチレンを、押出温度310℃、押出膜厚30μmに押出ラミネートして溶融押出樹脂層を形成し、しかる後、40℃で3日間エージング処理を施してガスバリア性積層フィルムを製造した。   (4) On the surface of the anchor coat layer formed above using an extrusion laminator, low-density polyethylene is extruded and laminated at an extrusion temperature of 310 ° C. and an extrusion film thickness of 30 μm to form a melt-extruded resin layer. A gas barrier laminate film was produced by aging treatment at 40 ° C. for 3 days.

実施例2
基材フィルムとして、一方にコロナ処理面を有する厚さ15μmの2軸延伸ナイロンフィルムを使用し、蒸着条件として、反応ガス混合比:ヘキサメチルジシロキサン:酸素ガス:ヘリウム=1:11:10(単位:slm)、真空チャンバー内の真空度:5.2×10-6mbar、蒸着チャンバー内の真空度:5.1×10-2mbar、冷却・電極ドラム供給電力:18kW、フィルムの搬送速度:70m/分として厚さ150Åの酸化ケイ素の蒸着膜を上記2軸延伸ナイロンフィルムのコロナ処理面に形成した以外は、実施例1と同様に操作して、ガスバリア性積層フィルムを製造した。
Example 2
A biaxially stretched nylon film having a corona-treated surface on one side and having a thickness of 15 μm was used as the base film, and the vapor deposition conditions were as follows: reaction gas mixture ratio: hexamethyldisiloxane: oxygen gas: helium = 1: 11: 10 ( (Unit: slm), degree of vacuum in the vacuum chamber: 5.2 × 10 −6 mbar, degree of vacuum in the deposition chamber: 5.1 × 10 −2 mbar, cooling / electrode drum power supply: 18 kW, film transport speed : A gas barrier laminate film was produced in the same manner as in Example 1 except that a vapor-deposited silicon oxide film having a thickness of 150 mm was formed on the corona-treated surface of the biaxially stretched nylon film at 70 m / min.

実施例3
基材フィルムとして、一方にコロナ処理面を有する厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムを使用し、これを巻き取り式の真空蒸着装置の送り出しロールに装着し、蒸着条件として、アルミニウムを蒸着源として酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、蒸着チャンバー内の真空度2×10-4mbar、巻き取りチャンバー内の真空度:2×10-2mbar、電子ビーム電力:25kW、フィルムの搬送速度:240m/分としてコロナ処理面上に膜厚200Åの酸化アルミニウムの蒸着膜を形成した以外は、実施例1と同様に操作して、ガスバリア性積層フィルムを製造した。
Example 3
A biaxially stretched polyethylene terephthalate film with a thickness of 12 μm that has a corona-treated surface on one side is used as a base film, and this film is attached to a take-up roll of a take-up type vacuum vapor deposition apparatus. The vacuum degree in the deposition chamber is 2 × 10 −4 mbar, the vacuum degree in the take-up chamber is 2 × 10 −2 mbar, by the electron beam (EB) heating method while supplying oxygen gas A gas barrier laminate film is produced in the same manner as in Example 1 except that a vapor deposition film of aluminum oxide having a thickness of 200 mm is formed on the corona-treated surface with a beam power of 25 kW and a film conveyance speed of 240 m / min. did.

実施例4
基材フィルムとして、一方にコロナ処理面を有する厚さ15μmの2軸延伸ナイロンフィルを使用し、これを巻き取り式の真空蒸着装置の送り出しロールに装着し、蒸着条件として、アルミニウムを蒸着源として酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、蒸着チャンバー内の真空度7.2×10-6mbar、巻き取りチャンバー内の真空度:1.0×10-6mbar、電子ビーム電力:40kW、フィルムの搬送速度:500m/分としてコロナ処理面上に膜厚200Åの酸化アルミニウムの蒸着膜を形成した以外は、実施例1と同様に操作して、ガスバリア性積層フィルムを製造した。
Example 4
A biaxially stretched nylon film with a thickness of 15 μm having a corona-treated surface on one side is used as a base film, and this is attached to a delivery roll of a take-up vacuum deposition apparatus, and as a deposition condition, aluminum is used as a deposition source. While supplying oxygen gas, the degree of vacuum in the deposition chamber is 7.2 × 10 −6 mbar and the degree of vacuum in the take-up chamber is 1.0 × 10 −6 by the vacuum deposition method using an electron beam (EB) heating method. Gas barrier lamination was carried out in the same manner as in Example 1 except that a vapor deposition film of 200 mm thick aluminum oxide was formed on the corona-treated surface at mbar, electron beam power: 40 kW, and film transport speed: 500 m / min. A film was produced.

実施例5
実施例の(1)〜(3)と同様にして、基材フィルム(一方にコロナ処理面を有する厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルム)に酸化珪素の蒸着膜、プラズマ処理面、ガスバリア性塗布膜およびアンカーコート層を積層したフィルムを製造した。
Example 5
In the same manner as in Examples (1) to (3), a base film (a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm having a corona-treated surface on one side) is deposited on a silicon oxide film, a plasma-treated surface, and a gas barrier property. A film in which a coating film and an anchor coat layer were laminated was produced.

次に、上記で製造したフィルムの厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムの面を対向させ、その層間を低密度ポリエチレンを押出温度310℃、押出膜厚15μmで押出ラミネートして貼り合せ、層間に30μmのポリエチレンフィルムを設けたガスバリア性積層フィルムを製造した。   Next, the surface of the biaxially stretched polyethylene terephthalate film having a thickness of 12 μm made to face is opposed to each other, and the low-density polyethylene is laminated by extrusion lamination at an extrusion temperature of 310 ° C. and an extrusion film thickness of 15 μm. A gas barrier laminate film having a 30 μm polyethylene film was prepared.

比較例1
実施例1の(1)〜(3)と同様にして、厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムに、酸化珪素の蒸着膜、プラズマ処理面、ガスバリア性塗布膜を積層したフィルムを製造した。
Comparative Example 1
In the same manner as in (1) to (3) of Example 1, a film was produced by laminating a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm with a deposited silicon oxide film, a plasma-treated surface, and a gas barrier coating film.

次に、前記ガスバリア性塗布膜上に低密度ポリエチレンを押出温度310℃、押出膜厚30μmで押出ラミネートして溶融押出樹脂層を形成し、しかる後、40℃で3日間エージング処理を施して比較ガスバリア性積層フィルムを製造した。   Next, low density polyethylene is extruded on the gas barrier coating film at an extrusion temperature of 310 ° C. and an extrusion film thickness of 30 μm to form a melt-extruded resin layer, and then subjected to aging treatment at 40 ° C. for 3 days for comparison. A gas barrier laminate film was produced.

比較例2
実施例1の(1)〜(3)と同様にして、厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムに、酸化珪素の蒸着膜、プラズマ処理面、ガスバリア性塗布膜を積層したフィルムを製造した。
Comparative Example 2
In the same manner as in (1) to (3) of Example 1, a film was produced by laminating a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm with a deposited silicon oxide film, a plasma-treated surface, and a gas barrier coating film.

次に、前記ガスバリア性塗布膜上にエチレン−メタクリル酸共重合体を押出温度280℃、押出膜厚30μmで押出ラミネートして溶融押出樹脂層を形成し、しかる後、40℃で3日間エージング処理を施して比較ガスバリア性積層フィルムを製造した。   Next, an ethylene-methacrylic acid copolymer is extrusion laminated at an extrusion temperature of 280 ° C. and an extrusion film thickness of 30 μm on the gas barrier coating film to form a melt-extruded resin layer, and then an aging treatment at 40 ° C. for 3 days. A comparative gas barrier laminate film was produced.

比較例3
実施例5の(1)と同様にして、厚さ12μmの2軸延伸ポリエチレンテレフタレートフィルムに、酸化珪素の蒸着膜、およびプラズマ処理面を形成した。
Comparative Example 3
In the same manner as in Example 5 (1), a silicon oxide vapor-deposited film and a plasma-treated surface were formed on a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm.

次に、上記プラズマ処理面上にポリエチレンイミン系プライマーコート剤をグラビアロールコート法により、膜厚0.1g/m2(乾燥状態)になるようにコーティングおよび乾燥してプライマーコート層を形成した。 Next, a polyethyleneimine-based primer coating agent was coated and dried on the plasma-treated surface by a gravure roll coating method so as to have a film thickness of 0.1 g / m 2 (dry state) to form a primer coating layer.

次に、前記プライマーコート層に低密度ポリエチレンを押出温度310℃、押出膜厚30μmで押出ラミネートして溶融押出樹脂層を形成し、しかる後、40℃で3日間エージング処理を施して比較ガスバリア性積層フィルムを製造した。   Next, low-density polyethylene is extruded and laminated to the primer coat layer at an extrusion temperature of 310 ° C. and an extrusion film thickness of 30 μm to form a melt-extruded resin layer, and then subjected to an aging treatment at 40 ° C. for 3 days for comparative gas barrier properties. A laminated film was produced.

評価方法
実施例1〜5、比較例1〜3で製造したフィルムについて、ガスバリア性、ラミネート強度を評価した。結果を表2に示す。
Evaluation method About the film manufactured in Examples 1-5 and Comparative Examples 1-3, gas-barrier property and laminate strength were evaluated. The results are shown in Table 2.

(1)ガスバリア性
(i)酸素透過度の測定:
温度23℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、オクストラン(OX−TRAN2/20)〕にて測定した。結果を表2に示す。
(1) Gas barrier properties (i) Measurement of oxygen permeability:
The measurement was performed with a measuring instrument (model name, OX-TRAN 2/20) manufactured by MOCON, USA under the conditions of a temperature of 23 ° C. and a humidity of 90% RH. The results are shown in Table 2.

(ii)水蒸気透過度の測定:
温度40℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、パーマトラン(PERMATRAN3/31)〕にて測定した。結果を表2に示す。なお、表2において、酸素透過度の単位は、〔cc/m2/day・23℃・90%RH〕であり、水蒸気透過度の単位は、〔g/m2/day・40℃・90%RH〕である。
(Ii) Measurement of water vapor permeability:
Measurement was performed with a measuring instrument (model name, PERMATRAN 3/31) manufactured by MOCON, USA under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. The results are shown in Table 2. In Table 2, the unit of oxygen permeability is [cc / m 2 / day · 23 ° C./90% RH], and the unit of water vapor permeability is [g / m 2 / day · 40 ° C. · 90 % RH].

(2) ラミネート強度
剥離試験機(株式会社オリエンテック製、機種名、テンシロン万能試験機STA−1150)を使用し、資料を15mm巾にカットし、剥離界面に対しT字型剥離となるようにして剥離強度を測定した。なお、単位は、〔N/15mm〕である。
(2) Laminate strength Using a peel tester (Orientec Co., Ltd., model name, Tensilon Universal Tester STA-1150), cut the material to a width of 15 mm so that the peel interface has a T-shaped peel. The peel strength was measured. The unit is [N / 15 mm].

Figure 2008143103
Figure 2008143103

本発明によるガスバリア性積層フィルムは、ラミネート強度およびガスバリア性に優れ、有用である。   The gas barrier laminate film according to the present invention is excellent in laminate strength and gas barrier properties and is useful.

図1(a)〜(e)は、本発明のガスバリア性積層フィルムを説明する横断面図である。Fig.1 (a)-(e) is a cross-sectional view explaining the gas-barrier laminated | multilayer film of this invention. 低温プラズマ化学蒸着装置の一例を示す概略的構成図である。It is a schematic block diagram which shows an example of a low temperature plasma chemical vapor deposition apparatus. 巻き取り式真空蒸着装置の一例を示す概略的構成図である。It is a schematic block diagram which shows an example of a winding-type vacuum deposition apparatus.

符号の説明Explanation of symbols

10・・・基材フィルム、
10’ ・・・プラズマ表面処理面
20・・・無機酸化物の蒸着膜、
20’ ・・・コロナ表面処理面
30・・・ガスバリア性塗布膜、
40・・・アンカーコート層、
50・・・ヒートシール層、
60・・・印刷層。
10 ... base film,
10 '... plasma surface treatment surface 20 ... deposited film of inorganic oxide,
20 '... corona surface treatment surface 30 ... gas barrier coating film,
40: Anchor coat layer,
50 ... heat seal layer,
60: Print layer.

Claims (8)

基材フィルム、無機酸化物の蒸着膜、ガスバリア性塗布膜、アンカーコート層およびヒートシール層とを有するガスバリア性積層フィルムであって、
前記基材フィルム面に無機酸化物の蒸着膜を設け、該無機酸化物の蒸着膜の面上に一般式R1 nM(OR2m(ただし、式中、R1、R2は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設け、かつ
前記ガスバリア性塗布膜上に、ポリエチレンイミンを含むアンカーコート組成物からなるアンカーコート層を設け、該アンカーコート層上にヒートシール層を積層したことを特徴とする、ガスバリア性積層フィルム。
A gas barrier laminated film having a base film, an inorganic oxide vapor deposition film, a gas barrier coating film, an anchor coat layer and a heat seal layer,
An inorganic oxide vapor deposition film is provided on the surface of the base film, and the general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are C represents an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents the valence of M.) Gas barrier coating with a gas barrier composition obtained by polycondensation by a sol-gel method, which contains at least one alkoxide represented by the formula (1) and a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer. A gas barrier property, characterized in that a film is provided, an anchor coat layer comprising an anchor coat composition containing polyethyleneimine is provided on the gas barrier coating film, and a heat seal layer is laminated on the anchor coat layer. Layer film.
更に、前記アンカーコート層とヒートシール層との間に、接着性樹脂層を含む、請求項1記載のガスバリア性積層フィルム。   The gas barrier laminate film according to claim 1, further comprising an adhesive resin layer between the anchor coat layer and the heat seal layer. 前記ヒートシール層が、熱融着性ポリオレフィン系樹脂からなることを特徴とする、請求項1または2に記載のガスバリア性積層フィルム。   The gas barrier laminate film according to claim 1 or 2, wherein the heat seal layer is made of a heat-fusible polyolefin resin. 前記ヒートシール層および/または前記熱接着性樹脂層が、熱融着性ポリオレフィン系樹脂を溶融押出積層によって積層されることを特徴とする、請求項1または2記載のガスバリア性積層フィルム。   The gas barrier laminate film according to claim 1 or 2, wherein the heat seal layer and / or the heat-adhesive resin layer is laminated by melt extrusion lamination of a heat-fusible polyolefin resin. 前記基材フィルムが、2軸延伸加工した樹脂のフィルムからなることを特徴とする請求項1〜4のいずれかに記載のガスバリア性積層フィルム。   The gas barrier laminate film according to any one of claims 1 to 4, wherein the base film is a biaxially stretched resin film. 前記無機酸化物の蒸着膜が、化学気相成長法または物理気相成長法による無機酸化物の蒸着膜からなることを特徴とする請求項1〜5に記載のガスバリア性積層フィルム。   6. The gas barrier laminated film according to claim 1, wherein the inorganic oxide vapor-deposited film comprises an inorganic oxide vapor-deposited film formed by chemical vapor deposition or physical vapor deposition. 前記無機酸化物の蒸着膜が、化学気相成長法による有機珪素化合物の蒸着膜からなることを特徴とする請求項1〜5のいずれかに記載のガスバリア性積層フィルム。   6. The gas barrier laminate film according to claim 1, wherein the inorganic oxide vapor-deposited film is an organic silicon compound vapor-deposited film formed by chemical vapor deposition. 前記無機酸化物の蒸着膜が、物理気相成長法による酸化アルミニウムの蒸着膜からなることを特徴とする請求項1〜5のいずれかに記載のガスバリア性積層フィルム。   6. The gas barrier laminate film according to claim 1, wherein the inorganic oxide vapor-deposited film comprises an aluminum oxide vapor-deposited film formed by physical vapor deposition.
JP2006334845A 2006-12-12 2006-12-12 Gas barrier laminated film Withdrawn JP2008143103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334845A JP2008143103A (en) 2006-12-12 2006-12-12 Gas barrier laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334845A JP2008143103A (en) 2006-12-12 2006-12-12 Gas barrier laminated film

Publications (1)

Publication Number Publication Date
JP2008143103A true JP2008143103A (en) 2008-06-26

Family

ID=39603787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334845A Withdrawn JP2008143103A (en) 2006-12-12 2006-12-12 Gas barrier laminated film

Country Status (1)

Country Link
JP (1) JP2008143103A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039123A (en) * 2009-08-07 2011-02-24 Konica Minolta Opto Inc Method of manufacturing optical element, and optical element
WO2013129520A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Aqueous coating agent and gas barrier film
WO2016017733A1 (en) * 2014-07-31 2016-02-04 小林製薬株式会社 Multilayer film for disposable pocket warmer wrapper and disposable pocket warmer
JP2017081175A (en) * 2017-02-07 2017-05-18 大日本印刷株式会社 Barrier film and laminate using the same
JP2018118520A (en) * 2018-04-23 2018-08-02 大日本印刷株式会社 Barrier film and laminate using the same
JP2020078941A (en) * 2020-02-05 2020-05-28 大日本印刷株式会社 Barrier film and laminate using the same
US10695215B2 (en) 2015-06-23 2020-06-30 Kobayashi Pharmaceutical Co., Ltd. Multilayer film for disposable body warmer outer bag, and disposable body warmer
EP3858612A4 (en) * 2018-09-28 2022-03-02 Toppan Printing Co., Ltd. Laminated film and packaging container
US11565512B2 (en) 2019-12-23 2023-01-31 Sonoco Development, Inc. Recyclable, high barrier sheet and tray

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039123A (en) * 2009-08-07 2011-02-24 Konica Minolta Opto Inc Method of manufacturing optical element, and optical element
US9657195B2 (en) 2012-02-28 2017-05-23 Toppan Printing Co., Ltd. Aqueous coating agent and gas barrier film
WO2013129520A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Aqueous coating agent and gas barrier film
CN104136560A (en) * 2012-02-28 2014-11-05 凸版印刷株式会社 Aqueous coating agent and gas barrier film
JPWO2013129520A1 (en) * 2012-02-28 2015-07-30 凸版印刷株式会社 Water-based coating agent and gas barrier film
US10952893B2 (en) 2014-07-31 2021-03-23 Kobayashi Pharmaceutical Co., Ltd. Multilayer film for disposable body warmer outer bag, and disposable body warmer
WO2016017733A1 (en) * 2014-07-31 2016-02-04 小林製薬株式会社 Multilayer film for disposable pocket warmer wrapper and disposable pocket warmer
CN106660675A (en) * 2014-07-31 2017-05-10 小林制药株式会社 Multilayer film for disposable pocket warmer wrapper and disposable pocket warmer
JP2016033054A (en) * 2014-07-31 2016-03-10 小林製薬株式会社 Multilayer film for outer bag of disposable body warmer and disposable body warmer
US20170258632A1 (en) * 2014-07-31 2017-09-14 Kobayashi Pharmaceutical Co., Ltd. Multilayer film for disposable body warmer outer bag, and disposable body warmer
TWI658928B (en) * 2014-07-31 2019-05-11 日商小林製藥股份有限公司 Multilayer film for outer bag of disposable heating bag and disposable heating bag
US10695215B2 (en) 2015-06-23 2020-06-30 Kobayashi Pharmaceutical Co., Ltd. Multilayer film for disposable body warmer outer bag, and disposable body warmer
TWI708681B (en) * 2015-06-23 2020-11-01 日商小林製藥股份有限公司 Multilayer film for outer bag of disposable heating pack and disposable heating pack
JP2017081175A (en) * 2017-02-07 2017-05-18 大日本印刷株式会社 Barrier film and laminate using the same
JP2018118520A (en) * 2018-04-23 2018-08-02 大日本印刷株式会社 Barrier film and laminate using the same
EP3858612A4 (en) * 2018-09-28 2022-03-02 Toppan Printing Co., Ltd. Laminated film and packaging container
US11565512B2 (en) 2019-12-23 2023-01-31 Sonoco Development, Inc. Recyclable, high barrier sheet and tray
US20230092236A1 (en) * 2019-12-23 2023-03-23 Sonoco Development, Inc. Recyclable, High Barrier Sheet And Tray
JP2020078941A (en) * 2020-02-05 2020-05-28 大日本印刷株式会社 Barrier film and laminate using the same
JP2022166132A (en) * 2020-02-05 2022-11-01 大日本印刷株式会社 Barrier film and laminate including the same

Similar Documents

Publication Publication Date Title
JP4852822B2 (en) Barrier film and laminated material using the same
JP5051494B2 (en) Gas barrier laminate film and method for producing the same
KR20070051332A (en) Gas barrier multilayer film and method for producing same
JP2008143103A (en) Gas barrier laminated film
JP2005088415A (en) Laminated film and its manufacturing method
JP2008155437A (en) Gas barrier laminated film
JP2009255398A (en) Gas barrier laminated film
JP2008073986A (en) Gas barrier laminated film
JP2008044617A (en) Lid for boil-retort container
JP2009248456A (en) Laminate for tube and laminated tube
JP4967633B2 (en) Laminated film for packaging and method for producing laminated film for packaging
JP2008143098A (en) Gas barrier laminated film
JP2000127286A (en) Barrier film and laminate employing the same
JP4076036B2 (en) Barrier film and laminated material using the same
JP2008264998A (en) Gas barrier laminated film, its manufacturing method, packaging laminated material using gas barrier laminated film and packaging bag
JP2008023931A (en) Barrier film and laminated material using the same
JP4946412B2 (en) Liquid paper container
JP4402412B2 (en) Laminate and packaging bag using the same
JP2009083174A (en) Pillow packaging laminated body and package for wet tissue
JP4357933B2 (en) Liquid sachet packaging
JP4858014B2 (en) Seed wrapping material and seed bag
JP2008143583A (en) Small bag for liquid, and liquid small bag packaging body filled with liquid
JP2008179104A (en) Barrier film
JP4998064B2 (en) GAS BARRIER LAMINATED FILM, MANUFACTURING METHOD THEREOF, PACKAGING LAMINATE USING THE SAME, AND PACKAGING BAG
JP2007111974A (en) Barrier film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302