JP2008140967A - 波長可変カーボンナノチューブ素子 - Google Patents

波長可変カーボンナノチューブ素子 Download PDF

Info

Publication number
JP2008140967A
JP2008140967A JP2006325421A JP2006325421A JP2008140967A JP 2008140967 A JP2008140967 A JP 2008140967A JP 2006325421 A JP2006325421 A JP 2006325421A JP 2006325421 A JP2006325421 A JP 2006325421A JP 2008140967 A JP2008140967 A JP 2008140967A
Authority
JP
Japan
Prior art keywords
carbon nanotube
support
wavelength
gap
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325421A
Other languages
English (en)
Inventor
Hideyuki Maki
英之 牧
Tetsuya Sato
徹哉 佐藤
Koji Ishibashi
幸治 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
RIKEN Institute of Physical and Chemical Research
Original Assignee
Keio University
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, RIKEN Institute of Physical and Chemical Research filed Critical Keio University
Priority to JP2006325421A priority Critical patent/JP2008140967A/ja
Publication of JP2008140967A publication Critical patent/JP2008140967A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】波長可変カーボンナノチューブ素子に関し、一本のカーボンナノチューブに対して純粋な引っ張り応力の印加が可能な数mm以下のサイズの小型デバイスを実現する。
【解決手段】少なくとも一方の端部が開放された間隙4を介して対向するとともに、間隙4を架橋する孤立したカーボンナノチューブ6を設けた1対の支持要素部材2からなる支持部材1を圧電素子10の伸縮方向に沿った面に支持する。
【選択図】図1

Description

本発明は波長可変カーボンナノチューブ素子に関するものであり、特に、半導体特性を有する個々のカーボンナノチューブの禁制帯幅(バンドギャップ)を電気的に連続的に可変にすることによって発光波長或いは光吸収波長を可変にするための構成に特徴のある波長可変カーボンナノチューブ素子に関するものである。
従来、固体半導体におけるバンドギャップ制御は、材料の組成を変えることにより行われているため、一つの素子でバンドギャップを連続的に変化させることは困難であった。
バンドギャップを外部からの入力により連続的に変化させる方法として、応力印加による歪みを用いる方法が提案(例えば、特許文献1参照)されているが、従来の固体半導体では機械的弾性が低く、バンドギャップの変化が小さすぎて、バンドギャップの変化を有効に利用したデバイスの実用化は難しいという問題がある。
一方、カーボンナノチューブは、機械的弾性に優れており、大きな歪みを与えることが出来ることから、応力印加によるバンドギャップ制御が期待される。
例えば、カーボンナノチューブに対して引っ張り応力を印加した際に、どのようなバンドギャップ変化が得られるかに関しての理論的な考察がなされており(例えば、非特許文献1参照)、理論・電子状態計算からカーボンナノチューブのカイラリティーに依存してバンドギャップの変化が得られることが示された。
カーボンナノチューブに応力を印加してバンドギャップを制御する技術に関しては、これまでに、
(a)原子間力顕微鏡プロープによるもの(例えば、非特許文献2参照)、および、
(b)高分子分散によるもの(例えば、非特許文献3或いは非特許文献4参照)
の2つが報告されている。
このうち、原子間力顕微鏡プロープによるものとしては、純粋な引っ張り応力ではないものの、原子間力顕微鏡のプローブを架橋したカーボンナノチューブに押し付けることにより、カーボンナノチューブを曲げて電気測定を行い、電気伝導測定の結果をバンドギャップの変化により解釈したという報告がなされている。
また、高分子分散によるものとしては、高分子にカーボンナノチューブを分散した際に、高分子に分散することにより受ける歪によりカーボンナノチューブの発光波長が変化することが報告されている。
ここではさらに、試料を温度変化させて高分子の膨張・収縮を起こすことにより、発光波長の連続的な変化を観測している。
一方、カーボンナノチューブを利用したエレクトロルミネッセンス素子としては、カーボンナノチューブFETの有する同時両極性(ambipolar)を利用して電子と正孔を注入して再結合発光させることが提案されている(例えば、特許文献2或いは非特許文献5参照)。
特開2006−245543号公報 特開2005−332991号公報 L.Yang et.al.,Physical Review Letters,Vol.85,p.154,2000 E.Minot et.al.,PhysicaI Revie w Letters,Vol.90,p.156401,18, April,2003 K.Arnold et.al.,Nano Letter, Vol.4,p.2349,2004 L.Li et.al.Physical Review Le tters,Vol.93,p.156104,2004 J.A.Misewich et.al.,Science Vol.300,p.783,2003
しかし、上述の原子間力顕微鏡を用いる方法の場合には、バンドギャップ変化の直接測定である光学測定等の電気測定以外の測定を行うことは困難で、また、原子間力顕微鏡等の大型装置を用いる必要があるためデバイス化できず、デバイス化による応用は困難であるという問題がある。
また、上述の高分子分散を用いる方法の場合には、
(1)高分子中に含まれる非常に多くのカーボンナノチューブからの発光を観測しているために一本からの発光を利用することが出来ない、
(2)温度変化による膨張・収縮を利用していることから電気的信号による高速な波長変化が不可能である、
(3)高分子中のカーボンナノチューブを用いているために電極形成が不可能であり電流注入による発光素子へ応用できない、などの理由からこれらをデバイスとして実用化することは困難である、
等の問題がある。
また、上述の特許文献2においても、一本のカーボンナノチューブのみからの発光を得るための具体的方法・構成については何ら開示がなされていないものである。
いずれにしても、一本のカーボンナノチューブに対して純粋な引っ張り応力を印加することは非常に困難であり、これまで報告はないというのが現状である。
したがって、本発明は、一本のカーボンナノチューブに対して純粋な引っ張り応力の印加が可能な数mm以下のサイズの小型デバイスを実現することを目的とする。
図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
図1参照
(1)上記課題を解決するために、本発明は、波長可変カーボンナノチューブ素子であって、少なくとも一方の端部が開放された間隙4を介して対向するとともに、間隙4を架橋する孤立したカーボンナノチューブ6を設けた1対の支持要素部材2からなる支持部材1を圧電素子10の伸縮方向に沿った面に結合したことを特徴とする。
この様に、カーボンナノチューブ6を設けた支持部材1を圧電素子10に取り付けることによって、カーボンナノチューブ6に印加する引っ張り応力を電気的に任意に制御することが可能になり、それによって、数mm以下のサイズのデバイスとして小型化することができる。
また、カーボンナノチューブ6を成長させる支持基板3として、少なくとも一方の端部が開放された間隙4を介して対向するとともに、間隙4を架橋する孤立したカーボンナノチューブ6を設けた1対の支持要素部材2からなる支持部材1を用いることによって、一本づつに孤立化したカーボンナノチューブ6を成長させることができ、それによって、一本一本の孤立化したカーボンナノチューブ6のバンドギャップの圧力依存性を発光素子或いは分光素子として利用することができるので、電子顕微鏡、プローブ顕微鏡、光学測定装置、電気伝導測定装置等の装置内に容易に導入することが可能になる。
なお、この場合の間隙4の間隔は、一本づつに孤立化したカーボンナノチューブ6を架橋させるためには0.5〜3μm程度が適当である。
この場合、圧電素子10の伸縮方向と略垂直な端面に固着される第1の支持片と、第1の支持片と略垂直方向に延在して支持部材1の底面に固着される第2の支持片とからなる1対のL字状部材9によって、支持部材1と圧電素子10とを結合することが望ましく、それによって、圧電素子10の伸長による引っ張り応力を最大限にしてカーボンナノチューブ6に印加することができる。
即ち、圧電素子10の伸縮方向の面と支持部材1の底面とは直接固着されていないので、圧電素子10の伸長による引っ張り応力の全てを間隙4の伸長に印加することが可能になる。
なお、この場合、間隙4を介して対向する1対の支持要素部材2の他端も開放することが望ましく、それによって、間隙4のいかなる位置において架橋していても、全てのカーボンナノチューブ6に同じ引っ張り応力を印加することができる。
また、各支持要素部材2が、カーボンナノチューブ6に対するゲート電極5を有していることが望ましく、それによって、カーボンナノチューブ6からなるFETの同時両極性特性をゲート電圧によって制御することができ、ひいては、発光特性或いは受光特性をゲート電圧で制御することが可能になる。
なお、この場合のゲート電極5は、支持部材1の主要部を構成する支持基板3を導電性単結晶シリコン基板等の導電性支持基板にすることによって支持基板3自体をゲート電極5としても良いし、或いは、支持基板3上に別個のゲート電極5を設けても良いものである。
また、カーボンナノチューブ6の両端に設けた電極7,8は、互いに仕事関数の異なる金属材料からなることが望ましく、それによって、カーボンナノチューブ6の両端に設けた電極7,8のショットキーバリア障壁を任意に制御することが可能になる。
また、カーボンナノチューブ6に対する一対のゲート電極5に対して、互いに異なった電圧を印加する機構を設けることが望ましく、それによって、カーボンナノチューブ6の両端に設けた電極7,8のショットキーバリア特性を任意に制御して、正孔の注入効率と電子の注入効率を独立に制御することが可能になる。
なお、孤立したカーボンナノチューブ6は、一つの支持部材1に対して一本のみでも良いし、或いは、複数本が所定の間隔を隔てて略平行に配列された状態でも良く、複数本設ける場合には、一本のカーボンナノチューブ6にのみ電圧を印加するようにしても良いし、複数本のカーボンナノチューブ6に電圧を印加してアレイ的に使用しても良いものである。
本発明によれば、小型で直接応力印加可能なカーボンナノチューブ素子を構成することができるので、電子顕微鏡、プローブ顕微鏡、光学測定装置、電気伝導測定装置等の大型装置内に容易に導入することができ、超小型の分光器への応用が可能になるとともに、圧電素子を用いて電気的に応力を印加できることから、高速なバンドギャップ変調も可能となり、電流注入による広い波長範囲を有する波長可変発光素子の実現が可能になる。
本発明は、少なくとも一方の端部が開放された間隙を介して対向するとともに、間隙間にカーボンナノチューブを架橋成長させた一対の支持要素部材を構成するシリコン基板等の支持基板を圧電素子、特に積層型圧電素子の伸縮方向に沿った面上に配置することにより、応力印加可能な素子とし、圧電素子を介して電気制御により圧力を一本一本のカーボンナノチューブに印加することによってバンドギャップを変化させて、発光波長或いは光吸収波長を可変にしたものである。
ここで、図2乃至図5を参照して、本発明の実施例1のカーボンナノチューブ波長可変素子を説明するが、まず、図2及び図3を参照して本発明の実施例1のカーボンナノチューブ波長可変素子の製造工程を説明する。
図2参照
まず、p型シリコン基板11の表面に熱酸化により酸化膜12を形成したのち、ダイヤモンドカッターを用いてp型シリコン基板11の劈開方向に沿って表面から裏面に掛けて貫通する程度の溝13を形成する。
次いで、溝13の一方の端部側をダイヤモンドカッターで切り離して、一対の支持要素片15,16からなる支持部材14を構成する。
なお、この場合、溝13の一方が開放端になることによって形成された間隙17の平均的間隔は0.5μm〜3μm、例えば、2μm程度であり、一対の支持要素片15,16から開放端に向かって若干広がった形状となる。
図3参照
次いで、一対の支持要素片15,16上に触媒となるCo膜18を形成したのち、アルコールCCVD(Alcohol Catalytic Chemical Vapor Deposition)法を用いてカーボンナノチューブを成長させる。
成長条件は、例えば、基板温度を800℃とし、C2 5 OHを原料ガスとして、ガス圧25Torrで10分間成長させる。
この時、一対の支持要素片15,16上には、網状カーボンナノチューブ19が成長するが、間隙16においては一本一本が独立した半導体的特性を有するSWNT(単層カーボンナノチューブ)20が、例えば、2μm程度の間隔を離して架橋成長する。
次いで、SWNT20を成長させた支持部材14を積層圧電素子21の伸縮方向に沿った平坦化加工面上に例えば、厚さが0.8mmの黄銅製の一対のL字状部材22を介してエポキシ樹脂によって固着する。
なお、この場合の積層圧電素子21の長さは5.0mmで、その積層数は、例えば、40層であり、1V当たりの伸長量は、例えば、0.03μm/Vである。
この場合の固着状態としては、L字状部材22の支持片23の側で積層圧電素子21の伸縮方向の端部と接合させ、一方、L字状部材22の支持片24の側で支持部材14の底面と接合するようにし、支持部材14と積層圧電素子21とは直接接合しない構成とする。
このように構成することによって、積層圧電素子21に電圧を印加して伸長させ場合、一対のL字状部材22も同時に同じ伸長長さだけ左右に広がるが、支持部材14は積層圧電素子21とは直接接合していないため、L字状部材22と一緒に一対の支持片23,24がスライドして左右に広がり、その結果、積層圧電素子21の伸長長さだけ間隙17が広がることになる。
図4参照
図4は、積層圧電素子に電圧を印加した場合のSWNTの状態の顕微鏡写真を模写したものでであり、左図は無バイアス(0V)の状態であり、右図は14Vの電圧を印加した状態を示している。
図から明らなように、積層圧電素子に電圧を印加することによって、弛んでいたSWNT20が真っ直ぐになり、引っ張り応力が印加されていることが分かる。
図5参照
図5は、SWNTからのフォトルミネッセンス波長の印加電圧依存性の説明図であり、積層圧電素子21に印加する電圧を大きくするほど、したがって、SWNT20に印加される引っ張り応力が大きいほど、フォトルミネッセンス波長が長波長側に遷移することが分かり、これは、上記非特許文献1における理論的解析結果における予想に矛盾しない結果を示している。
なお、印加電圧を大きくすると、SWNTが切断したり、或いは、SWNTが接続している網状のカーボンナノチューブから引き出されて撓んでしまうため、引っ張り応力が印加されない状態となり、無バイアス状態と同じフォトルミネッセンス波長となる。
このように、本発明の実施例1のカーボンナノチューブ波長可変素子においては、間隙を有する支持部材を用いてカーボンナノチューブを架橋成長させているので、一本一本のSWNT20が分離した状態で架橋成長し、一本一本のSWNT20の特性を利用することが可能になる。
また、カーボンナノチューブを間隙間に架橋成長させた支持部材14を積層圧電素子21に固着させているので、カーボンナノチューブに印加する引っ張り応力を電気的に任意に制御することができるとともに、デバイス化して小型化することが可能になる。
さらに、この場合、一対のL字状部材22を用いて両者を固着することによって、積層圧電素子21の伸長量を全て間隙17の伸長量とすることができるので、小さい印加電圧で大きなバンドギャップ変化を実現することができる。
次に、図6乃至図8を参照して、本発明の実施例2のカーボンナノチューブ分光素子を説明する。
まず、p型シリコン基板11の表面に熱酸化により酸化膜12を形成したのち、全面にゲート電極41,42となるW膜31を成長させたのち、ゲート絶縁膜となるSiO2 膜32を成長させる。
以降は、上記の実施例1と同様に、ダイヤモンドカッターを用いてp型シリコン基板11の劈開方向に沿って表面から裏面に掛けて貫通する程度の溝33を形成する。
次いで、溝33の一方の端部側をダイヤモンドカッターで切り離して、一対の支持要素片35,36からなる支持部材34を構成する。
なお、この場合も、溝33の一方が開放端になることによって形成された間隙37の平均的間隔は0.5μm〜3μm、例えば、2μm程度であり、一対の支持要素片35,36から開放端に向かって若干広がった形状となる。
図7参照
次いで、一対の支持要素片35,36上に触媒となるCo膜38を形成したのち、アルコールCCVD法を用いてカーボンナノチューブを成長させる。
成長条件は、例えば、基板温度を800℃で、C2 5 OHを原料ガスとして、ガス圧25Torrで10分間成長させる。
この時、一対の支持要素片35,36上には、カーボンナノチューブ39が成長するが、間隙37においては一本一本が独立した半導体的特性を有するSWNT40が、例えば、2μm程度の間隔を離して架橋成長する。
次いで、SWNT40を成長させた支持部材34を積層圧電素子21の伸縮方向に沿った平坦化加工面上に例えば、黄銅製の一対のL字状部材22を介してエポキシ樹脂によって固着する。
なお、この場合の積層圧電素子21の長さは5.0mmであり、その積層数は、例えば、40層であり、1V当たりの伸長量は、例えば、0.03μm/Vである。
次いで、SWNT20の両端に例えば、Tiからなるソース電極43及びドレイン電極44を形成し、最後に、一対の支持要素片35,36の他端を切り離して間隙37を開放にすることによって、本発明の実施例2のカーボンナノチューブ分光素子の基本構成が完成する。
図8参照
この場合のSWNT40は、上図に示すようにバンドギャップで大きなスパイク状の状態密度を持つことから、あるスペクトルをもつ光がこのカーボンナノチューブ分光素子入射すると、光のエネルギーとバンドギャップが共鳴する、例えば、E11或いはE22に相当するエネルギーのところで大きな光誘起電流が観測されることになり、この特性を利用することで、グレーティング等を用いることなく超小型の分光器を作製することが可能になる。
なお、光励起電流を観測する際には、ソース電極43とドレイン電極44間に電圧を印加した状態で電流を測定しても良い。
即ち、下図に示すように、ナノチューブに印加する応力を変化させながら入射光による光誘起電流を観測した場合、測定される電流の圧電素子印加電圧依存特性性が入射光のスペクトルに対応することになる。
なお、ゲート電極に印加する電圧は、カーボンナノチューブFETが良好なambipolar特性が得られるように制御して印加すれば良い。
このように、本発明の実施例2においては、圧力印加による連続的なバンドギャップの変化と共鳴とを利用しているので、従来のグレーティングを用いた分光器とは全く原理の異なる新しい分光法であり、そのため、従来の卓上分光器を1チップ化することができ、超小型の分光器が可能になる。
次いで、図9を参照して、本発明の実施例3のカーボンナノチューブ分光素子を説明するが、ソース・ドレイン電極の形成材料が異なるだけであって、基本的製造工程は上記の実施例2と全く同様であるので、最終的な素子の断面構造のみを示す。
図9参照
図9は、本発明の実施例3のカーボンナノチューブ分光素子の概略的断面図であり、ソース電極51として、SWNT40よりも仕事関数の大きな金属、例えば、Pdと、Alとの積層膜を用い、一方、ドレイン電極52としてはSWNT40よりも仕事関数の小さな金属、例えば、Caと、Alとの積層膜を用いる。
この場合、ソース電極51を形成する場合には、マスク成膜法を用いてPd膜及びAl膜を順次選択成長させれば良く、ドレイン電極52を形成する場合にも、マスク成膜法を用いてCa膜及びAl膜を順次選択成長させれば良い。
この実施例3においては、ソース電極51側においては正孔注入効率を制御するように、即ち、ソース電極51側に形成されるショットキーバリアの障壁層の厚さを制御するようにゲート電極41に印加する電圧を制御し、一方、ドレイン電極52側においては電子注入効率を制御するように、即ち、ドレイン電極52側に形成されるショットキーバリアの障壁層の厚さを制御するようにゲート電極42に印加する電圧を制御すれば良い。
このように、本発明の実施例3においては、ソース電極側とドレイン電極側を独立に制御しているので、光起電力型の分光素子を構成することができる。
次いで、図10を参照して、本発明の実施例4のカーボンナノチューブ分光素子を説明するが、実施例2と同様に、一対の支持要素片35,36の他端を切り離して間隙37を開放にすることによって別個のゲート電極を省略しただけであって、基本的製造工程は上記の実施例1と全く同様であるので、最終的な素子の断面構造のみを示す。
図10参照
図10は、本発明の実施例4のカーボンナノチューブ分光素子の概略的断面図であり、ゲート電極として、p型シリコン基板11自体を用いたものである。
即ち、p型シリコン基板11は、一対の支持要素片35,36の他端を切り離した際に、電気的にも切り離されており、且つ、導電性を有しているので、別個にゲート電極を設けることなく、p型シリコン基板11自体に電圧を印加することによってゲート電極として作用させることができ、製造工程が簡素化される。
次いで、図11を参照して、本発明の実施例5のカーボンナノチューブ波長可変発光素子を説明するが、基本的な構成は上記の実施例3と全く同様であるので、最終的な素子の断面構造のみを示す。
図11参照
図11は、本発明の実施例5のカーボンナノチューブ波長可変発光の概略的断面図であり、ソース電極61として、SWNT40よりも仕事関数の大きな金属、例えば、Pdと、Alとの積層膜を用い、一方、ドレイン電極62としてはSWNT40よりも仕事関数の小さな金属、例えば、Caと、Alとの積層膜を用いる。
この場合も、ソース電極61を形成する場合には、マスク成膜法を用いてPd膜及びAl膜を順次選択成長させれば良く、ドレイン電極62を形成する場合にも、マスク成膜法を用いてCa膜及びAl膜を順次選択成長させれば良い。
この実施例5においては、ソース電極61側においては正孔注入効率が向上するように、即ち、ソース電極61側に形成されるショットキーバリアの障壁層の厚さが薄くなるようにゲート電極41に印加する電圧を制御し、一方、ドレイン電極62側においては電子注入効率が向上するように、即ち、ドレイン電極62側に形成されるショットキーバリアの障壁層の厚さが薄くなるようにゲート電極42に印加する電圧を制御すれば良い。
このように、本発明の実施例5においては、積層圧電素子21に印加する電圧を制御して、SWNT40に印加される引っ張り応力を制御することによって、発光波長を広範な範囲にわたって可変にすることができる。
また、発光効率は、ゲート電極41,42に印加する電圧で正孔及び電子の注入効率を制御することによって制御することができる。
次いで、図12を参照して、本発明の実施例6のカーボンナノチューブ波長可変発光素子を説明するが、実施例2と同様に、一対の支持要素片35,36の他端を切り離して間隙37を開放にすることによって別個のゲート電極を省略しただけであって、基本的製造工程は上記の実施例1と同様であるので、最終的な素子の断面構造のみを示す。
図12参照
図12は、本発明の実施例6のカーボンナノチューブ可変波長発光素子の概略的断面図であり、ゲート電極として、p型シリコン基板11自体を用いたものであり、また、ソース・ドレイン電極としては、実施例5と同様に、ソース電極61はマスク成膜法を用いてPd膜及びAl膜を順次選択成長させた積層膜を用い、ドレイン電極62はマスク成膜法を用いてCa膜及びAl膜を順次選択成長させた積層膜を用いる。
この場合も、p型シリコン基板11は、一対の支持要素片35,36の他端を切り離した際に、電気的にも切り離されており、且つ、導電性を有しているので、別個にゲート電極を設けることなく、p型シリコン基板11自体に電圧を印加することによってゲート電極として作用させることができ、製造工程が簡素化される。
以上、本発明の各実施例を説明したが、本発明は各実施例に記載した構成及び条件に限られるものではなく、各種の変更が可能であり、例えば、上記の各実施例においては、支持部材を構成する支持基板としてp型シリコン基板を用いているが、n型シリコン基板を用いても良いものであり、また、ゲート機能を用いない場合或いはゲート電極を別個に形成する場合には半絶縁性シリコン基板を用いても良いものである。
さらには、支持基板としては、ガラス基板等の他の絶縁性基板を用いても良いものであり、劈開を利用する場合には、劈開面を有する単結晶絶縁基板が望ましい。
また、上記の各実施例においては、触媒としてCo膜を用いているが、Coに限られるものではなく、PtやFe等のカーボンナノチューブの成長の際に触媒となる他の材料を用いても良いものである。
また、触媒は膜状である必要はなく、例えば、Co,Pt,Fe等の触媒微粒子を溶媒とともに噴霧することによって、支持要素部材上に固着させても良いものである。
また、上記の各実施例においては、カーボンナノチューブの成長方法としてアルコールCCVD法を用いているが、アルコールCCVD法に限られるものではなく、プラズマCVD法等の他の成長方法を用いても良いものである。
また、上記の各実施の形態においては、支持部材を圧電素子に固着する際に、L字状部材を用いているが、L字状部材は必ずしも必須ではなく、支持部材を圧電素子の伸縮方向に沿った平坦化面に直接接着させても良いものである。
但し、この場合には、間隙の変位量が少なくなるので圧電素子に大きな電圧を印加する必要がある。
また、上記の各実施例においては、L字状部材として加工容易性の観点から黄銅を用いているが、黄銅に限られるものではなく、Ti等の黄銅より硬度の大きな他の金属やセラミック材料を用いても良いものである。
また、上記の実施例3乃至実施例6においては、ソース電極としてPdを用いているが、Pdに限られるものではなく、Pdと同様に、使用するカーボンナノチューブより仕事関数の大きな金属であれば良く、例えば、Au,Pt,Ni等を用いても良いものである。
また、上記の実施例3乃至実施例6においては、ドレイン電極としてCaを用いているが、Caに限られるものではなく、Caと同様に、使用するカーボンナノチューブより仕事関数の小さな金属であれば良く、例えば、Cs,K,Li,Mg等を用いても良いものである。
また、上記の各実施例においては、架橋成長するSWNTの本数については言及していないが、本数は任意であるので、一本のみであっても良いし、複数本であっても良い。
但し、実験的には架橋するSWNTの平均間隔は2μm程度であるので、間隙の長さを制御することによって成長本数を制御することは可能である。
なお、複数本のSWNTを成長させる場合には、フォトルミネッセンス発光を測定して、目的に対して最適なバンドギャップを有する特定の一本にソース・ドレイン電極を形成して波長可変素子としても良いし、全てのSWNTに個々のソース・ドレイン電極を形成してアレイ的に使用しても良い。
なお、アレイ的に用いる場合には、各SWNTの間の網状カーボンナノチューブ及びCo膜(触媒膜)を除去する必要がある。
さらには、全てのSWNTに共通のソース・ドレイン電極を形成しても良く、特に、発光素子の場合には光出力を大きくすることができる。
なお、SWNTのバンドギャップは太さ等に依存するので、共通のソース・ドレイン電極を形成した場合には、ピーク発光波長はブロードになる。
或いは、多数のSWNTの内から、対物レンズを用いて特定の一本のSWNTのみからの発光を選択的に取り出して使用することもできる。
本発明の活用例としては、電流注入型波長可変発光素子や超小型分光素子等のディスクリートデバイスが典型的なものであるが、本デバイスは小型のために様々な機器・デバイスに導入することが可能であり、様々な機器・デバイスとの融合による新しい光・電子デバイスへの応用が可能となる。
本発明の原理的構成の説明図である。 本発明の実施例1のカーボンナノチューブ波長可変素子の途中までの製造工程の説明図である。 本発明の実施例1のカーボンナノチューブ波長可変素子の図2以降の製造工程の説明図である。 積層圧電素子に電圧を印加した場合のSWNTの状態の説明図である。 SWNTからのフォトルミネッセンス波長の印加電圧依存性の説明図である。 本発明の実施例2のカーボンナノチューブ分光素子の途中までの製造工程の説明図である。 本発明の実施例2のカーボンナノチューブ分光素子の図6以降の製造工程の説明図である。 本発明の実施例2のカーボンナノチューブ分光素子の分光原理の説明図である。 本発明の実施例3のカーボンナノチューブ分光素子の概略的断面図である。 本発明の実施例4のカーボンナノチューブ分光素子の概略的断面図である。 本発明の実施例5のカーボンナノチューブ波長可変発光素子の概略的断面図である。 本発明の実施例6のカーボンナノチューブ波長可変発光素子の概略的断面図である。
符号の説明
1 支持部材
2 支持要素部材
3 支持基板
4 間隙
5 ゲート電極
6 カーボンナノチューブ
7 電極
8 電極
9 L字状部材
10 圧電素子
11 p型シリコン基板
12 酸化膜
13 溝
14 支持部材
15 支持要素片
16 支持要素片
17 間隙
18 Co膜
19 網状カーボンナノチューブ
20 SWNT
21 積層圧電素子
22 L字状部材
23 支持片
24 支持片
31 W膜
32 SiO2
33 溝
34 支持部材
35 支持要素片
36 支持要素片
37 間隙
38 Co膜
39 網状カーボンナノチューブ
40 SWNT
41 ゲート電極
42 ゲート電極
43 ソース電極
44 ドレイン電極
51 ソース電極
52 ドレイン電極
61 ソース電極
62 ドレイン電極

Claims (5)

  1. 少なくとも一方が開放された間隙を介して対向するとともに、前記間隙を架橋する孤立したカーボンナノチューブを設けた1対の支持要素部材からなる支持部材を圧電素子の伸縮方向に沿った面に結合したことを特徴とする波長可変カーボンナノチューブ素子。
  2. 上記圧電素子の伸縮方向と略垂直な端面に固着される第1の支持片と、前記第1の支持片と略垂直方向に延在して上記支持部材の底面に固着される第2の支持片とからなる1対のL字状部材によって、前記支持部材と圧電素子とを結合したことを特徴とする請求項1記載の波長可変カーボンナノチューブ素子。
  3. 上記各支持要素部材が、上記カーボンナノチューブに対するゲート電極を有していることを特徴とする請求項1または2に記載の波長可変カーボンナノチューブ素子。
  4. 上記カーボンナノチューブの両端に設けた電極が、互いに仕事関数の異なる金属材料からなることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変カーボンナノチューブ素子。
  5. 上記カーボンナノチューブに対する一対のゲート電極に対して、互いに異なった電圧を印加する機構を設けたことを特徴とする請求項4記載の波長可変カーボンナノチューブ素子。
JP2006325421A 2006-12-01 2006-12-01 波長可変カーボンナノチューブ素子 Pending JP2008140967A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325421A JP2008140967A (ja) 2006-12-01 2006-12-01 波長可変カーボンナノチューブ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325421A JP2008140967A (ja) 2006-12-01 2006-12-01 波長可変カーボンナノチューブ素子

Publications (1)

Publication Number Publication Date
JP2008140967A true JP2008140967A (ja) 2008-06-19

Family

ID=39602136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325421A Pending JP2008140967A (ja) 2006-12-01 2006-12-01 波長可変カーボンナノチューブ素子

Country Status (1)

Country Link
JP (1) JP2008140967A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019585A (ja) * 2008-07-08 2010-01-28 Institute Of Physical & Chemical Research 近接場テラヘルツ光検出器
JP2010245514A (ja) * 2009-04-03 2010-10-28 Internatl Business Mach Corp <Ibm> 半導体構造体およびその形成方法(内部応力を有する半導体ナノワイヤ)
CN103560157A (zh) * 2013-11-19 2014-02-05 中国科学院上海微系统与信息技术研究所 应变结构及其制作方法
GB2508376A (en) * 2012-11-29 2014-06-04 Ibm Optical spectrometer comprising an adjustably strained photodiode
WO2019176705A1 (ja) * 2018-03-16 2019-09-19 学校法人慶應義塾 赤外分析装置、赤外分析チップ、及び赤外イメージングデバイス

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019585A (ja) * 2008-07-08 2010-01-28 Institute Of Physical & Chemical Research 近接場テラヘルツ光検出器
JP2010245514A (ja) * 2009-04-03 2010-10-28 Internatl Business Mach Corp <Ibm> 半導体構造体およびその形成方法(内部応力を有する半導体ナノワイヤ)
GB2508376A (en) * 2012-11-29 2014-06-04 Ibm Optical spectrometer comprising an adjustably strained photodiode
WO2014083461A1 (en) * 2012-11-29 2014-06-05 International Business Machines Corporation Optical spectrometer
US9714863B2 (en) 2012-11-29 2017-07-25 International Business Machines Corporation Optical spectrometer
CN103560157A (zh) * 2013-11-19 2014-02-05 中国科学院上海微系统与信息技术研究所 应变结构及其制作方法
WO2019176705A1 (ja) * 2018-03-16 2019-09-19 学校法人慶應義塾 赤外分析装置、赤外分析チップ、及び赤外イメージングデバイス
JPWO2019176705A1 (ja) * 2018-03-16 2021-12-02 学校法人慶應義塾 赤外分析装置、赤外分析チップ、及び赤外イメージングデバイス
US11656173B2 (en) 2018-03-16 2023-05-23 Keio University Infrared analysis system, infrared analysis chip, and infrared imaging device
JP7450930B2 (ja) 2018-03-16 2024-03-18 慶應義塾 赤外分析装置、及び赤外イメージングデバイス

Similar Documents

Publication Publication Date Title
Luo et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air
Arora et al. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe
CN108064420B (zh) 异质结及由其衍生的电子器件
US8008102B2 (en) Method of forming light emitting devices comprising semiconducting single walled carbon nanotubes
Overbeck et al. A universal length-dependent vibrational mode in graphene nanoribbons
Fu et al. Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires
US9431573B2 (en) Method and system for generating a photo-response from MoS2 schottky junctions
Zhou et al. Utilizing interlayer excitons in bilayer WS2 for increased photovoltaic response in ultrathin graphene vertical cross-bar photodetecting tunneling transistors
JP2008140967A (ja) 波長可変カーボンナノチューブ素子
Murakami et al. Highly monochromatic electron emission from graphene/hexagonal boron nitride/Si heterostructure
Zhou et al. Nanoplasmonic 1D diamond UV photodetectors with high performance
Fujiwara et al. Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices
TW200847225A (en) Diamondoid monolayers as electron emitters
Chu et al. Energy-resolved photoconductivity mapping in a monolayer–bilayer WSe2 lateral heterostructure
Zhou et al. Ultrafast Electron Tunneling Devices—From Electric‐Field Driven to Optical‐Field Driven
US20070228355A1 (en) Terahertz wave radiating device
KR20070069214A (ko) 전계 방출 전극과 그 제조 방법 및 전자 장치
Chung et al. Wavelength tuning in the purple wavelengths using strain-controlled AlxGa1–xN/GaN disk-in-wire structures
Hu et al. Bolometric arrays and infrared sensitivity of VO2 films with varying stoichiometry
Abbas et al. Focused ion beam engineering of carbon nanotubes for optical rectenna applications
Tang et al. Electrically Controlled Wavelength-Tunable Photoluminescence from van der Waals Heterostructures
KR20150136960A (ko) 단분자층 및 그래핀 전극을 포함하는 구조체, 이를 포함하는 유연성 전자 디바이스, 및 이의 제조 방법
Qu et al. Optically and electrically invariant multi-color single InGaN/GaN nanowire light-emitting diodes on a silicon substrate under mechanical compression
Bandyopadhyay et al. Intrinsic and Strain-Dependent Properties of Suspended WSe2 Crystallites toward Next-Generation Nanoelectronics and Quantum-Enabled Sensors
Radauscher Design, fabrication, and characterization of carbon nanotube field emission devices for advanced applications