JP2008139367A - Active oscillating noise control device - Google Patents

Active oscillating noise control device Download PDF

Info

Publication number
JP2008139367A
JP2008139367A JP2006322848A JP2006322848A JP2008139367A JP 2008139367 A JP2008139367 A JP 2008139367A JP 2006322848 A JP2006322848 A JP 2006322848A JP 2006322848 A JP2006322848 A JP 2006322848A JP 2008139367 A JP2008139367 A JP 2008139367A
Authority
JP
Japan
Prior art keywords
control signal
sound
noise
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322848A
Other languages
Japanese (ja)
Other versions
JP4590389B2 (en
Inventor
Toshiro Inoue
敏郎 井上
Akira Takahashi
高橋  彰
Kosuke Sakamoto
浩介 坂本
Yasumune Kobayashi
康統 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006322848A priority Critical patent/JP4590389B2/en
Publication of JP2008139367A publication Critical patent/JP2008139367A/en
Application granted granted Critical
Publication of JP4590389B2 publication Critical patent/JP4590389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce sound increase due to undesirable sound increase effect in the vicinity of a second frequency, e.g. 60 [Hz] in the vicinity of a first frequency generated, when adaptative noise control is performed by performing the adaptative noise control in the vicinity of the first frequency of the largest sound pressure (noise) among the low-frequency load noise e.g. 40 [Hz], for reducing noise. <P>SOLUTION: There is provided a discrete calculation processing device 202, for generating a second control signal S2 for generating cancellation sounds in a second frequency region for increasing the sound, when the sound is decreased in a first frequency region by a discrete calculation processing device 21B for generating a first control signal S1 for the cancellation sound in the first frequency region of the maximum sound pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車室内騒音を該騒音と逆位相の2次騒音(相殺音)によって打ち消して消音する能動型振動騒音制御装置に関し、例えば、車両の走行中に発生する車室内騒音である20〜150Hzの低周波ロードノイズ(ドラミングノイズとも呼ばれる。)を効果的に消音することができる能動型振動騒音制御装置に関する。   The present invention relates to an active vibration noise control device that cancels and muffles vehicle interior noise with secondary noise (cancellation sound) having a phase opposite to that of the noise, and is, for example, vehicle interior noise generated during travel of a vehicle. The present invention relates to an active vibration noise control device that can effectively mute low frequency road noise (also referred to as drumming noise) of 150 Hz.

車両の走行中に道路(ロード)から受ける車輪の振動がサスペンションを介して車体に伝わり、特に車室内のような閉空間の音響的な共鳴特性により励起されて40Hz程度にピークを有し20〜150Hz帯域幅の低周波ロードノイズによる車室内騒音を打ち消すこの出願の発明に関連する能動型騒音制御装置が提案されている(特許文献1)。   The vibration of the wheel received from the road (road) while the vehicle is traveling is transmitted to the vehicle body via the suspension, and is excited by the acoustic resonance characteristics of the closed space such as the interior of the vehicle and has a peak at about 40 Hz. An active noise control device related to the invention of this application that cancels out vehicle interior noise caused by low-frequency road noise with a 150 Hz bandwidth has been proposed (Patent Document 1).

図6のブロック図に示すように、特許文献1に記載された能動型騒音制御装置2では、車室4内に、車室内騒音とスピーカ6から出力される相殺音とを受音するために、車室4の音響固有モードの腹部分にマイクロフォン8が設けられる。フィードバック制御部(FBC)10は、低周波ロードノイズを検出する帯域通過フィルタ(BPF)12と、振幅を補償する増幅器等の振幅補償回路14と、位相を補償する位相補償回路16とを含んで構成される。   As shown in the block diagram of FIG. 6, in the active noise control device 2 described in Patent Document 1, the vehicle interior 4 receives the vehicle interior noise and the canceling sound output from the speaker 6. The microphone 8 is provided in the belly part of the acoustic eigenmode of the passenger compartment 4. The feedback control unit (FBC) 10 includes a band-pass filter (BPF) 12 that detects low-frequency road noise, an amplitude compensation circuit 14 such as an amplifier that compensates for amplitude, and a phase compensation circuit 16 that compensates for phase. Composed.

そして、FBC10は、マイクロフォン8の出力中から抽出した低周波ロードノイズの振幅と位相を補償して、騒音の位相と逆位相の制御信号を生成してスピーカ6を駆動して騒音の抑制を行う。   Then, the FBC 10 compensates the amplitude and phase of the low-frequency road noise extracted from the output of the microphone 8, generates a control signal having a phase opposite to that of the noise, and drives the speaker 6 to suppress the noise. .

低周波ロードノイズを打ち消す装置ではないが、この出願の発明に関連する能動型騒音低減装置が提案されている(特許文献2)。   Although it is not a device that cancels low-frequency road noise, an active noise reduction device related to the invention of this application has been proposed (Patent Document 2).

図7に示すように、この特許文献2に提案された能動型騒音低減装置20は、適応ノッチフィルタ型の離散演算処理装置21を有し、エンジン22等の騒音周波数の変化する騒音源から発生した周期性を有する課題となる騒音の周波数(消音しようとするノッチ周波数、以下単にノッチ周波数という。)を、エンジンパルスから波形整形器23を通じて検出しノッチ周波数に同期した余弦波信号を発生する余弦波発生器26と正弦波信号を発生する正弦波発生器28とを備える。   As shown in FIG. 7, the active noise reduction device 20 proposed in Patent Document 2 has an adaptive notch filter type discrete arithmetic processing device 21 and is generated from a noise source such as an engine 22 whose noise frequency changes. The frequency of the noise (the notch frequency to be silenced, hereinafter simply referred to as the notch frequency), which is a problem with the periodicity, is detected from the engine pulse through the waveform shaper 23 and generates a cosine wave signal synchronized with the notch frequency. A wave generator 26 and a sine wave generator 28 for generating a sine wave signal are provided.

また、余弦波発生器26からの出力信号である余弦波信号が入力される第1の1タップ適応フィルタ30と、正弦波発生器28からの出力信号である正弦波信号が入力される第2の1タップ適応フィルタ32と、第1の1タップ適応フィルタ30からの出力信号と第2の1タップ適応フィルタ32からの出力信号を加算する加算器34と、この加算器34からの出力信号である制御信号によって駆動され相殺音を発生する音出力手段38とを備える。   The first one-tap adaptive filter 30 to which a cosine wave signal that is an output signal from the cosine wave generator 26 is input, and the second one to which a sine wave signal that is an output signal from the sine wave generator 28 is input. 1-tap adaptive filter 32, an adder 34 for adding the output signal from first 1-tap adaptive filter 30 and the output signal from second 1-tap adaptive filter 32, and the output signal from this adder 34 Sound output means 38 that is driven by a certain control signal and generates a canceling sound.

さらに、前記相殺音と前記課題となる騒音との干渉による残留信号を誤差信号として検出する音検出手段40と、前記余弦波信号及び前記正弦波信号が入力され前記音出力手段38から音検出手段40までの間の伝達特性を模擬した特性{模擬伝達特性(実部)Cr及び模擬伝達特性(虚部)Ciという。}で補正した模擬余弦波信号及び模擬正弦波信号を出力する模擬信号発生手段42(伝達要素49、50、51、52と加算器53、54とで構成される。)と、加算器34から出力される制御信号と同一の信号を音出力手段38から音検出手段40までの間の伝達特性を模擬した特性(上記の模擬伝達特性Cr及びCi)に所定の定数αを乗算した特性で補正した補正信号を出力する補正信号発生手段56(伝達要素59、60、61、62と加算器63、64と係数乗算器71、72と、加算器73と、定数乗算器74とで構成される。)とを備える。   Further, a sound detection means 40 for detecting a residual signal due to interference between the canceling sound and the noise to be the problem as an error signal, and the cosine wave signal and the sine wave signal are input to the sound detection means from the sound output means 38. Characteristics simulating transmission characteristics up to 40 (referred to as simulated transmission characteristics (real part) Cr and simulated transmission characteristics (imaginary part) Ci). }, The simulated signal generating means 42 for outputting the simulated cosine wave signal and the simulated sine wave signal (consisting of transmission elements 49, 50, 51, 52 and adders 53, 54), and the adder 34. A signal identical to the output control signal is corrected with a characteristic obtained by simulating a transfer characteristic between the sound output means 38 and the sound detection means 40 (simulated transfer characteristics Cr and Ci described above) and a predetermined constant α. The correction signal generating means 56 (the transmission elements 59, 60, 61, 62, the adders 63, 64, the coefficient multipliers 71, 72, the adder 73, and the constant multiplier 74) that outputs the corrected signal that has been output. .).

さらにまた、音検出手段40からの出力信号である誤差信号eと補正信号発生手段56からの出力信号とを加算器76で加算した誤差信号e´と模擬信号発生手段42からの出力信号(上記の模擬余弦波信号又は模擬正弦波信号)とが入力される適応制御アルゴリズム演算器(LMS)80、82を備える。   Furthermore, an error signal e ′ obtained by adding an error signal e, which is an output signal from the sound detection means 40, and an output signal from the correction signal generation means 56 by an adder 76, and an output signal from the simulation signal generation means 42 (described above) Are provided with adaptive control algorithm computing units (LMS) 80 and 82.

このように構成される能動型騒音低減装置20は、適応制御アルゴリズム演算器80の適応制御アルゴリズム、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムに基づいて第1の1タップ適応フィルタ30及び第2の1タップ適応フィルタ32のフィルタ係数A、B及び係数乗算器71、72の係数A、B(上記フィルタ係数A、Bと同値)を更新することによって音検出手段40の位置での前記課題となる騒音を減少させる。   The active noise reduction apparatus 20 configured as described above is based on an adaptive control algorithm of the adaptive control algorithm computing unit 80, for example, a LMS (Least Mean Square) algorithm that is a kind of steepest descent method. 30 and by updating the filter coefficients A and B of the second one-tap adaptive filter 32 and the coefficients A and B (equivalent to the filter coefficients A and B) of the coefficient multipliers 71 and 72 at the position of the sound detection means 40. The noise which becomes the said subject is reduced.

特開2000−322066号公報(図10、図12)JP 2000-322066 A (FIGS. 10 and 12) 特開2004−354657号公報(図7、図8)JP 2004-354657 A (FIGS. 7 and 8)

ところで、特許文献1に提案されている図6に示した能動型騒音低減装置20を搭載した車両は、この装置を搭載しない車両に比較して低周波ロードノイズを画期的に低減することができる。しかも構成が簡単でありコストも低い。   By the way, a vehicle equipped with the active noise reduction device 20 shown in FIG. 6 proposed in Patent Document 1 can dramatically reduce low-frequency road noise compared to a vehicle not equipped with this device. it can. Moreover, the configuration is simple and the cost is low.

しかし、経時によるスピーカ6、マイクロフォン8並びにFBC10を構成する回路部品の変化や、乗員数増減等の車室内環境の変化に対する適応力が低い。   However, the adaptability to changes in the vehicle compartment environment such as changes in circuit components constituting the speaker 6, microphone 8 and FBC 10 over time, and changes in the number of passengers is low.

この欠点を解決するために、これら回路部品の変化や車室内環境の変化に対応して適応力の高い特許文献2に提案されている図7に示したエンジン騒音を低減する能動型騒音低減装置20を低周波ロードノイズの低減装置に適用することが考えられる。   In order to solve this drawback, an active noise reduction device for reducing engine noise shown in FIG. 7 proposed in Patent Document 2 having high adaptability in response to changes in these circuit components and changes in the vehicle interior environment. 20 may be applied to a low-frequency road noise reduction device.

図8Aは、ある車両の車室内騒音をマイクロフォン8の位置で測定した低減前の低周波ロードノイズの特性(低減前騒音特性)94を示している。周波数40[Hz]近傍に顕著な音圧[dB]の最大領域が存在していることが分かる。   FIG. 8A shows a low-frequency road noise characteristic (pre-reduction noise characteristic) 94 before reduction obtained by measuring vehicle interior noise of a vehicle at the position of the microphone 8. It can be seen that there is a significant maximum region of sound pressure [dB] in the vicinity of the frequency 40 [Hz].

図9は、図8Aに示される低減前騒音特性94による低周波ロードノイズの車室内騒音を打ち消すために今般最初に案出した能動型振動騒音制御装置100の構成を示すブロック図である。   FIG. 9 is a block diagram showing the configuration of the active vibration noise control apparatus 100 that has been first devised to cancel the low-frequency road noise in the vehicle interior due to the pre-reduction noise characteristic 94 shown in FIG. 8A.

この図9例の能動型振動騒音制御装置100は、図7に示した適応ノッチフィルタ型の離散演算処理装置21に対応した離散演算処理装置21Aを有する点で類似するが、図8A中のピーク周波数に対応する周波数約43[Hz]の参照余弦波信号発生器90を備える点で異なる。   9 is similar in that it has a discrete arithmetic processing device 21A corresponding to the adaptive notch filter type discrete arithmetic processing device 21 shown in FIG. 7, but the peak in FIG. The difference is that a reference cosine wave signal generator 90 having a frequency of about 43 [Hz] corresponding to the frequency is provided.

また、図7の能動型騒音低減装置20は、エンジンノイズを低減する装置であるのに対し、図9の能動型振動騒音制御装置100は、低周波ロードノイズを低減する装置である点でも異なる。   The active noise reduction device 20 in FIG. 7 is a device that reduces engine noise, whereas the active vibration noise control device 100 in FIG. 9 is also a device that reduces low-frequency road noise. .

なお、図9中、Z-nを描いたブロックは、参照余弦波信号の周波数で位相を90度移相する90度移相器88であり、この90度移相器88の出力には参照正弦波信号が出力される。その他の構成要素は、ブロック線図の等価変換をしたことによる形式的な違いを除いて実質的に同等であるので、図9に示されたものにおいて、図7に示したものと動作が類似して対応する構成要素には同一の符号を付けている。 In FIG. 9, the block depicting Z −n is a 90-degree phase shifter 88 that shifts the phase by 90 degrees at the frequency of the reference cosine wave signal. The output of the 90-degree phase shifter 88 is a reference. A sine wave signal is output. The other components are substantially the same except for the formal difference due to the equivalent conversion of the block diagram, so that the operation shown in FIG. 9 is similar to that shown in FIG. Corresponding components are denoted by the same reference numerals.

図8Bは、この図9例の能動型振動騒音制御装置100を、前記ある車両に搭載して、40[Hz]近傍の低周波ロードノイズを低減させた後の低周波ロードノイズ特性(低減後騒音特性)96と、図8Aに示した低減前騒音特性94との両方を示している。   FIG. 8B shows a low-frequency road noise characteristic (after reduction) after the active vibration noise control apparatus 100 of FIG. 9 is mounted on the vehicle and low-frequency road noise in the vicinity of 40 [Hz] is reduced. Noise characteristic) 96 and the pre-reduction noise characteristic 94 shown in FIG. 8A.

図8Bの低減後騒音特性96では、確かに40[Hz]近傍の騒音は、音圧で−8[dB]程度と大幅に低減されている、しかし53[Hz]近傍で逆に音圧が10[dB]程度増加している。結果として、低減後騒音特性96は、低減前騒音特性94に比較してピーク値が3[dB]程度低減され、一定の低減効果はあるものの、騒音低減効果が未だ不十分であることが分かった。   In the post-reduction noise characteristic 96 of FIG. 8B, the noise near 40 [Hz] is certainly greatly reduced to about −8 [dB] in sound pressure, but the sound pressure is conversely near 53 [Hz]. It has increased by about 10 [dB]. As a result, the reduced noise characteristic 96 has a peak value reduced by about 3 [dB] compared to the pre-reduction noise characteristic 94, and although it has a certain reduction effect, it is found that the noise reduction effect is still insufficient. It was.

図8Cは、図9例の能動型振動騒音制御装置100が有する感度関数であり、図9例の能動型振動騒音制御装置100は、参照余弦波信号発生器90で発生される参照余弦波信号の周波数である約43[Hz]で約−8[dB]と最も消音効果が高いが、逆に周波数約53[Hz]では約+10[dB]増音していることが理解される。   FIG. 8C is a sensitivity function of the active vibration noise control apparatus 100 of FIG. 9, and the active vibration noise control apparatus 100 of FIG. 9 includes the reference cosine wave signal generated by the reference cosine wave signal generator 90. It is understood that the noise reduction effect is the highest at about -8 [dB] at a frequency of about 43 [Hz], but on the contrary, the frequency is increased by about +10 [dB] at a frequency of about 53 [Hz].

この発明は、上述した課題を考慮してなされたものであり、車室内騒音中、騒音の最も大きい第1周波数、例えば上述した周波数43[Hz]近傍で適応騒音制御を行って騒音を低減するとともに、この適応騒音制御を行ったときに発生する、その第1周波数の近傍の第2周波数、例えば上述した周波数53[Hz]近傍での好ましくない増音効果による増音をも効果的に低減することを可能とする能動型振動騒音制御装置を提供することを目的とする。   The present invention has been made in consideration of the above-described problems, and reduces noise by performing adaptive noise control in the vicinity of the first frequency with the highest noise, for example, the above-described frequency of 43 [Hz], in the vehicle interior noise. At the same time, the sound increase due to the undesirable sound increase effect in the vicinity of the second frequency near the first frequency, for example, in the vicinity of the above-mentioned frequency 53 [Hz], which is generated when this adaptive noise control is performed, is also effectively reduced. It is an object of the present invention to provide an active vibration and noise control device that can be used.

この発明に係る能動型振動騒音制御装置は、制御信号に基づき音出力手段から出力される車室内騒音の相殺音と前記車室内騒音との混合音を検出する音検出手段と、前記音検出手段の出力信号が入力されて前記制御信号を生成する制御信号生成手段とを備える能動型振動騒音制御装置において、前記制御信号生成手段は、前記車室内騒音中、音圧の最大部分を含む第1周波数領域での第1制御信号を生成する第1制御信号生成手段と、第2制御信号を生成する第2制御信号生成手段とを備え、前記第2制御信号生成手段は、1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の加算制御信号が入力され、更新された前記第1制御信号により前記第1周波数領域で減音させたときに増音する第2周波数領域での相殺音を前記音出力手段から出力するための更新した前記第2制御信号を生成し、更新された前記第1制御信号と更新した前記第2制御信号の加算制御信号を前記制御信号として前記音出力手段に出力することを特徴とする。   The active vibration noise control device according to the present invention includes a sound detection means for detecting a mixed sound of a canceling sound of the vehicle interior noise output from the sound output means based on the control signal and the vehicle interior noise, and the sound detection means. In the active vibration noise control apparatus comprising the control signal generation means for generating the control signal when the output signal is input, the control signal generation means includes a first portion including a maximum portion of sound pressure in the vehicle interior noise. A first control signal generating means for generating a first control signal in the frequency domain; and a second control signal generating means for generating a second control signal, wherein the second control signal generating means is generated one sample before The added control signal of the generated first control signal and the second control signal generated one sample before is input, and when the sound is reduced in the first frequency domain by the updated first control signal, the sound is increased Second frequency range The updated second control signal for outputting the canceling sound of the second control signal is generated from the sound output means, and the addition control signal of the updated first control signal and the updated second control signal is used as the control signal. It outputs to a sound output means, It is characterized by the above-mentioned.

この発明によれば、車室内騒音中、音圧の最大部分を含む第1周波数領域で、第1制御信号を生成する第1制御信号生成手段により前記第1周波数領域で減音させたときに増音する第2周波数領域で、第2制御信号生成手段により前記音出力手段から相殺音を出力するための第2制御信号を生成し、前記第1制御信号と前記第2制御信号を加算して前記音出力手段に制御信号を出力するようにしているので、騒音の最も大きい第1周波数領域近傍での適応騒音制御により騒音を低減するとともに、この適応騒音制御を行ったときに発生する、その第1周波数の近傍の第2周波数領域での好ましくない増音効果による増音も低減することができる。   According to this invention, when noise is reduced in the first frequency range by the first control signal generating means for generating the first control signal in the first frequency range including the maximum portion of the sound pressure in the vehicle interior noise. A second control signal for outputting a canceling sound from the sound output means is generated by the second control signal generation means in the second frequency region where the sound is increased, and the first control signal and the second control signal are added. Since the control signal is output to the sound output means, the noise is reduced by adaptive noise control in the vicinity of the first frequency region where the noise is the highest, and is generated when this adaptive noise control is performed. Sound increase due to an undesirable sound increase effect in the second frequency region in the vicinity of the first frequency can also be reduced.

この場合、前記第1制御信号生成手段は、前記第1周波数領域で動作する適応ノッチフィルタ型制御信号生成手段、フィードバック制御型制御信号生成手段、又は適応FIRフィルタ型制御信号生成手段のいずれか1つとすることができる。また、前記第2制御信号生成手段は、1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の前記加算制御信号が誤差信号として入力され、前記第2周波数領域で動作する適応ノッチフィルタ型制御信号生成手段とすることができる。   In this case, the first control signal generation means is any one of an adaptive notch filter type control signal generation means, a feedback control type control signal generation means, or an adaptive FIR filter type control signal generation means that operates in the first frequency domain. It can be one. Further, the second control signal generation means receives the first control signal generated one sample before and the addition control signal of the second control signal generated one sample before as the error signal, An adaptive notch filter type control signal generating means operating in the frequency domain can be provided.

ここで、前記第2制御信号生成手段は、さらに、定数乗算手段を備え、該定数乗算手段により1サンプル前に生成した前記第2制御信号を定数倍した補正信号を1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の前記加算制御信号に加算した信号を前記誤差信号として入力するように構成することで、第2周波数領域での補正量を最適化することができる。   Here, the second control signal generation unit further includes a constant multiplication unit, and a correction signal obtained by multiplying the second control signal generated one sample before by the constant multiplication unit is generated one sample before. The signal added to the addition control signal of the first control signal and the second control signal generated one sample before is input as the error signal, so that the correction amount in the second frequency region is optimized. Can be

この発明によれば、車室内騒音の最も大きい第1周波数領域近傍で適応騒音制御を行って騒音を低減するとともに、この適応騒音制御を行ったときに発生する、その第1周波数の近傍の第2周波数領域での好ましくない増音効果による増音をも低減(減音)することができる。   According to the present invention, adaptive noise control is performed in the vicinity of the first frequency region where the vehicle interior noise is greatest to reduce the noise, and the first noise in the vicinity of the first frequency generated when this adaptive noise control is performed. Sound increase due to an undesirable sound increase effect in two frequency regions can also be reduced (sound reduction).

以下、図面を参照してこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の一実施形態に係る能動型振動騒音制御装置200の構成を示すブロック図である。図1に示す能動型振動騒音制御装置200において、図7及び図9に示したものと対応するものには同一の符号を付け、その詳細な説明は省略する。   FIG. 1 is a block diagram showing a configuration of an active vibration noise control apparatus 200 according to an embodiment of the present invention. In the active vibration and noise control apparatus 200 shown in FIG. 1, the same reference numerals are assigned to the components corresponding to those shown in FIGS. 7 and 9, and the detailed description thereof is omitted.

図1に示す能動型振動騒音制御装置200は、図9中に示した離散演算処理装置21Aと同一構成の離散演算処理装置21Bを備え、第1制御信号S1を生成する。なお、離散演算処理装置21Bでは、離散演算処理装置21Aでの周波数43[Hz]の参照余弦波信号発生器90を、第1参照余弦波信号発生器91とし、フィルタ係数A、Bをフィルタ係数A1、B1とし、定数αを定数α1としている。すなわち、離散演算処理装置21Bは、第1制御信号S1を生成する第1の適応ノッチフィルタ型制御信号生成手段である。   The active vibration noise control device 200 shown in FIG. 1 includes a discrete arithmetic processing device 21B having the same configuration as the discrete arithmetic processing device 21A shown in FIG. 9, and generates a first control signal S1. In the discrete arithmetic processing device 21B, the reference cosine wave signal generator 90 having a frequency of 43 [Hz] in the discrete arithmetic processing device 21A is used as the first reference cosine wave signal generator 91, and the filter coefficients A and B are filter coefficients. A1 and B1 are set, and the constant α is set to the constant α1. That is, the discrete arithmetic processing device 21B is a first adaptive notch filter type control signal generating unit that generates the first control signal S1.

図1に示す能動型振動騒音制御装置200は、さらに、第2制御信号S2及び加算制御信号S1+S2を生成する第2制御信号生成手段としての離散演算処理装置202を有し、この離散演算処理装置202には、第1制御信号S1と自己が生成した第2制御信号S2との加算制御信号S1+S2が誤差信号eとして入力され、第1制御信号S1により周波数43[Hz]を中心とする第1周波数領域(車室内騒音である、例えば低周波ロードノイズ中、音圧が最大の領域)で減音させたときに増音する周波数53[Hz]を中心とする第2周波数領域で音出力手段(マイクロフォン等)38から相殺音を出力するための第2制御信号S2を生成し、第1制御信号S1と第2制御信号S2を加算器290により加算した加算制御信号(制御信号)S1+S2を音出力手段(スピーカ等)38に出力する。   The active vibration noise control device 200 shown in FIG. 1 further includes a discrete arithmetic processing device 202 as second control signal generating means for generating the second control signal S2 and the addition control signal S1 + S2, and this discrete arithmetic processing device. In 202, an addition control signal S1 + S2 of the first control signal S1 and the second control signal S2 generated by itself is input as an error signal e, and the first control signal S1 has a first frequency centered at 43 [Hz]. Sound output means in a second frequency region centered on a frequency of 53 [Hz] that is increased when the sound is reduced in the frequency region (in the vehicle interior noise, for example, the region where the sound pressure is maximum in low-frequency road noise) A second control signal S2 for outputting a canceling sound is generated from the (e.g. microphone) 38, and an addition control signal (control signal) obtained by adding the first control signal S1 and the second control signal S2 by the adder 290. ) And outputs the S1 + S2 to the sound output unit (speaker etc.) 38.

この場合、離散演算処理装置202は、誤差信号e2(e2=S1+S2)中、第2制御信号S2の第2周波数領域で動作する第2の適応ノッチフィルタ型制御信号生成手段として構成されている。   In this case, the discrete arithmetic processing device 202 is configured as second adaptive notch filter type control signal generating means that operates in the second frequency region of the second control signal S2 in the error signal e2 (e2 = S1 + S2).

この離散演算処理装置202は、基本的には、加算制御信号S1+S2中、離散演算処理装置21Bにより周波数43[Hz]近傍の第1周波数領域で減音させたときに増音する周波数53[Hz]近傍の第2周波数領域で減音させる相殺音を生成する制御信号S2を生成するものであるから、周波数53[Hz]の第2参照余弦波信号(cos)を発生する第2参照余弦波信号発生器92を備える。   The discrete arithmetic processing device 202 basically has a frequency of 53 [Hz] that is increased when the discrete control processing device 21B reduces the sound in the first frequency region near the frequency 43 [Hz] in the addition control signal S1 + S2. The second reference cosine wave that generates the second reference cosine wave signal (cos) having a frequency of 53 [Hz] is generated because the control signal S2 that generates the canceling sound to be reduced in the second frequency region in the vicinity is generated. A signal generator 92 is provided.

離散演算処理装置202中、Z-mと描いたブロックは、周波数53[Hz]の余弦波を90度移相する90度移相器89であり、この90度移相器89の出力には第2参照正弦波信号(sin)が出力される。 In the discrete arithmetic processing unit 202, a block drawn as Z −m is a 90-degree phase shifter 89 that shifts a cosine wave having a frequency of 53 [Hz] by 90 degrees, and the output of the 90-degree phase shifter 89 includes A second reference sine wave signal (sin) is output.

なお、理解の容易化のために付け加えると、離散演算処理装置202においては、離散演算処理装置21Bと比較して、当該離散演算処理装置21Bの構成要素である音出力手段38から音検出手段40までの間の伝達特性を模擬した特性{模擬伝達特性(実部)Cr及び模擬伝達特性(虚部)Ci}を有する伝達要素49、50、51、52は不要である点に留意する。伝達要素49、50、51、52には遅延要素が含まれており、この遅延要素は、制御信号S1に含まれる第2参照信号の周波数53[Hz]の成分を瞬時に最小化するために不要であるからである。   In addition, in order to facilitate understanding, in the discrete arithmetic processing device 202, compared to the discrete arithmetic processing device 21B, the sound output means 38 to the sound detection means 40 which are constituent elements of the discrete arithmetic processing device 21B. It should be noted that the transfer elements 49, 50, 51, and 52 having characteristics {simulated transfer characteristics (real part) Cr and simulated transfer characteristics (imaginary part) Ci} simulating the transfer characteristics up to the above are unnecessary. The transfer elements 49, 50, 51, 52 include a delay element, which is used to instantaneously minimize the frequency 53 [Hz] component of the second reference signal included in the control signal S1. This is because it is unnecessary.

図2は、図1中の離散演算処理装置202において、加算器277及び加算器273の出力信号は同一の第2制御信号S2であることを考慮し、ブロック線図の等価変換により、定数α2の乗算器である定数乗算器274の入力点を加算器277の加算点に接続するようにして簡単化した離散演算処理装置202の構成を示すブロック図である。   FIG. 2 shows a constant α2 by an equivalent transformation of the block diagram in consideration of the fact that the output signals of the adder 277 and the adder 273 are the same second control signal S2 in the discrete arithmetic processing unit 202 in FIG. 3 is a block diagram showing a configuration of a discrete arithmetic processing device 202 that is simplified by connecting an input point of a constant multiplier 274, which is a multiplier of, to an addition point of an adder 277. FIG.

以下、この図2を参照して、能動型振動騒音制御装置200の構成・動作を説明する。   Hereinafter, the configuration and operation of the active vibration noise control apparatus 200 will be described with reference to FIG.

理解の容易化のために、まず、離散演算処理装置202が動作していなくて、加算器290の一方の入力に加算器277から供給される制御信号S2の値がゼロ値であるものとする(S2=0)
この場合、離散演算処理装置21Bでは、第1参照余弦波信号の周波数43[Hz]の車室内騒音の相殺音を出力するための制御信号S1が加算器77の出力に生成される。
For ease of understanding, first, it is assumed that the discrete arithmetic processing device 202 is not operating and the value of the control signal S2 supplied from the adder 277 to one input of the adder 290 is a zero value. (S2 = 0)
In this case, in the discrete arithmetic processing device 21 </ b> B, the control signal S <b> 1 for outputting the canceling sound of the vehicle interior noise having the frequency 43 [Hz] of the first reference cosine wave signal is generated at the output of the adder 77.

すなわち、離散演算処理装置21Bでは、音出力手段38から音検出手段40までの間の伝達特性を模擬した特性{模擬伝達特性(実部)Cr及び模擬伝達特性(虚部)Ci}の乗算器である伝達要素49、50、51、52と加算器53、54とで構成される模擬信号発生手段42により、周波数43[Hz]の余弦波信号のみが仮に音出力手段38から音として出力されこの音のみが音検出手段40で受音された場合を模擬した模擬余弦波信号Rcが加算器53の出力側に生成されるとともに、周波数43[Hz]の正弦波信号のみが仮に音出力手段38から音として出力されこの音のみが音検出手段40で受音された場合を模擬した模擬正弦波信号Rsが加算器54の出力側に生成される。   That is, in the discrete arithmetic processing unit 21B, multipliers of characteristics {simulated transmission characteristics (real part) Cr and simulated transmission characteristics (imaginary part) Ci} that simulate the transmission characteristics between the sound output means 38 and the sound detection means 40. Only the cosine wave signal having a frequency of 43 [Hz] is temporarily output as sound from the sound output means 38 by the simulation signal generating means 42 composed of the transfer elements 49, 50, 51, 52 and the adders 53, 54. A simulated cosine wave signal Rc simulating the case where only this sound is received by the sound detection means 40 is generated on the output side of the adder 53, and only a sine wave signal having a frequency of 43 [Hz] is temporarily output. A simulated sine wave signal Rs simulating the case where only this sound is received by the sound detection means 40 is generated on the output side of the adder 54.

ここで、理解の容易化のために、まず、定数乗算器74に設定される定数α1をα1=0であると仮定すると(e=e´)、適応制御アルゴリズム演算器80は、模擬余弦波信号Rcと誤差信号eに基づき、その模擬余弦波信号Rc(の周波数)で誤差信号e(の2乗)が最小となるように1タップ適応フィルタ30のフィルタ係数A1を更新する(A1=A1−μ・e・Rc:μはステップサイズパラメータ、等号の右側のフィルタ係数A1は、1サンプル前に算出されたフィルタ係数で、等号の左側のフィルタ係数A1は、更新されたフィルタ係数である。)。同時に、適応制御アルゴリズム演算器82は、模擬正弦波信号Rsと誤差信号eに基づき、その模擬正弦波波信号Rs(の周波数)で誤差信号e(の2乗)が最小となるように1タップ適応フィルタ32のフィルタ係数B1を更新する(B1=B1−μ・e・Rs:μはステップサイズパラメータ、同様に、等号の右側のフィルタ係数B1は、1サンプル前に算出されたフィルタ係数で、等号の左側のフィルタ係数B1は、更新されたフィルタ係数である。)。これにより加算器77の出力側に更新された制御信号S1が生成される。   Here, for ease of understanding, first, assuming that the constant α1 set in the constant multiplier 74 is α1 = 0 (e = e ′), the adaptive control algorithm computing unit 80 has a simulated cosine wave. Based on the signal Rc and the error signal e, the filter coefficient A1 of the 1-tap adaptive filter 30 is updated so that the error signal e (the square) is minimized by the simulated cosine wave signal Rc (frequency thereof) (A1 = A1). -Μ · e · Rc: μ is the step size parameter, the filter coefficient A1 on the right side of the equal sign is the filter coefficient calculated one sample before, and the filter coefficient A1 on the left side of the equal sign is the updated filter coefficient is there.). At the same time, the adaptive control algorithm computing unit 82 performs one tap based on the simulated sine wave signal Rs and the error signal e so that the error signal e (the square) of the simulated sine wave signal Rs (frequency) is minimized. The filter coefficient B1 of the adaptive filter 32 is updated (B1 = B1−μ · e · Rs: μ is a step size parameter. Similarly, the filter coefficient B1 on the right side of the equal sign is a filter coefficient calculated one sample before. The filter coefficient B1 on the left side of the equal sign is an updated filter coefficient.) As a result, an updated control signal S1 is generated on the output side of the adder 77.

このようにして、第1参照余弦波信号の周波数43[Hz]近傍の相殺音を出力するための制御信号S1が生成されるが、この制御信号S1を生成する際に、定数乗算器74に設定される定数α1をゼロ値ではなく適当な値に設定することで、制御信号S1の最適化を図る。   In this way, the control signal S1 for generating a canceling sound in the vicinity of the frequency 43 [Hz] of the first reference cosine wave signal is generated. When the control signal S1 is generated, the control signal S1 is generated by the constant multiplier 74. The control signal S1 is optimized by setting the constant α1 to be set to an appropriate value instead of a zero value.

すなわち、定数乗算器74の入力側(加算器73の出力側)には、模擬信号Ss=A1・Rc+B1・Rsが生成されるので、この模擬信号Ssに定数α1(α1:0<α1<1)を乗算した補正信号α1・Ssを誤差信号eに加えることで、補正後の誤差信号e´(e´=e+α1・Ss)により周波数43[Hz]近傍の相殺音の最適化(安定化)を図ることができる。最終的には、周波数53[Hz]近傍の補償手段である離散演算処理装置202での後述する定数α2をも調整して最適化する必要がある。   That is, since the simulation signal Ss = A1 · Rc + B1 · Rs is generated on the input side of the constant multiplier 74 (output side of the adder 73), the constant α1 (α1: 0 <α1 <1) is generated in the simulation signal Ss. ) Multiplied by the correction signal α1 · Ss is added to the error signal e to optimize (stabilize) the canceling sound near the frequency 43 [Hz] by the corrected error signal e ′ (e ′ = e + α1 · Ss). Can be achieved. Finally, it is necessary to adjust and optimize a constant α2 (to be described later) in the discrete arithmetic processing device 202 which is a compensation means in the vicinity of the frequency 53 [Hz].

そこで、次に、音検出手段40の位置での検出音が最小となるように、換言すれば、誤差信号eが最小となるように、離散演算処理装置21Bに従属接続される離散演算処理装置202をも同時に動作させる(S2≠0)。   Therefore, next, the discrete arithmetic processing devices that are subordinately connected to the discrete arithmetic processing device 21B so that the detected sound at the position of the sound detecting means 40 is minimized, in other words, the error signal e is minimized. 202 is also operated simultaneously (S2 ≠ 0).

離散演算処理装置202は、周波数53[Hz]の参照余弦波信号(cos)を発生する第2参照余弦波信号発生器92と、この第2参照余弦波信号発生器92からの出力信号である第2参照余弦波信号が入力される第1の1タップ適応フィルタ230と、同じく90度移相器89からの出力信号である第2参照正弦波信号(sin)が入力される第2の1タップ適応フィルタ232と、第1の1タップ適応フィルタ230からの出力信号と第2の1タップ適応フィルタ232からの出力信号を加算する加算器277と、この加算器277からの出力信号である第2制御信号S2と第1制御信号S1の加算制御信号S1+S2を生成する加算器290と、1サンプル前に生成された第2制御信号S2に定数α2を乗算して第2制御信号S2の補正信号α2・S2を生成する定数乗算器274と、1サンプル前に生成された加算制御信号S1+S2及び補正信号α2・S2を加算した誤差信号e2´=S1+S2+α2・S2=S1+(1+α2)S2を生成する加算器292と、誤差信号e2´と第2参照余弦波信号又は第2参照正弦波信号が入力される適応制御アルゴリズム演算器(LMS)280、282を備える。   The discrete arithmetic processing device 202 is a second reference cosine wave signal generator 92 that generates a reference cosine wave signal (cos) having a frequency of 53 [Hz], and an output signal from the second reference cosine wave signal generator 92. The first one-tap adaptive filter 230 to which the second reference cosine wave signal is input and the second first sine wave signal (sin) which is also the output signal from the 90-degree phase shifter 89 are input. The tap adaptive filter 232, an adder 277 that adds the output signal from the first one-tap adaptive filter 230 and the output signal from the second one-tap adaptive filter 232, and the output signal from the adder 277 An adder 290 that generates an addition control signal S1 + S2 of the second control signal S2 and the first control signal S1, and a second control signal S2 generated one sample before is multiplied by a constant α2 to A constant multiplier 274 for generating a positive signal α2 · S2 and an error signal e2 ′ = S1 + S2 + α2 · S2 = S1 + (1 + α2) S2 obtained by adding the addition control signal S1 + S2 generated one sample before and the correction signal α2 · S2 And an adaptive control algorithm calculator (LMS) 280 and 282 to which the error signal e2 ′ and the second reference cosine wave signal or the second reference sine wave signal are input.

このように構成される離散演算処理装置202は、適応制御アルゴリズム演算器280、282の適応制御アルゴリズムに基づいて第1の1タップ適応フィルタ230及び第2の1タップ適応フィルタ232のフィルタ係数A2、B2を更新することによって、誤差信号e2´=S1+(1+α2)S2(の2乗)を最小化するように動作する。   The discrete arithmetic processing device 202 configured as described above has filter coefficients A2 of the first one-tap adaptive filter 230 and the second one-tap adaptive filter 232 based on the adaptive control algorithms of the adaptive control algorithm calculators 280 and 282, By updating B2, it operates to minimize the error signal e2 ′ = S1 + (1 + α2) S2 (the square).

この場合にも、定数α2(0<α2<1)の値をゼロ値から徐々に増加させることで、第2参照余弦波信号の周波数53[Hz]における相殺音(加算制御信号S1+S2)の最適化を図ることができる。   Also in this case, the value of the constant α2 (0 <α2 <1) is gradually increased from the zero value to optimize the canceling sound (addition control signal S1 + S2) at the frequency 53 [Hz] of the second reference cosine wave signal. Can be achieved.

最適化が図れる理由を、定性的におおまかに説明すれば、加算器290の一方の入力に供給される制御信号S1には、43[Hz]の相殺音信号成分(消音信号成分)と53[Hz]の増音信号成分が含まれるが、加算器290の他方の入力に供給される制御信号S2には53[Hz]の相殺音信号成分(消音信号成分)のみが含まれる。その際、定数α2を調整することで、加算制御信号S1+S2に含まれる53[Hz]近傍の相殺音の最適化(安定化)を図ることができる。   The reason for the optimization can be roughly explained qualitatively. The control signal S1 supplied to one input of the adder 290 includes a canceling sound signal component (silenced signal component) of 43 [Hz] and 53 [Hz]. Hz] is included, but the control signal S2 supplied to the other input of the adder 290 includes only the cancellation sound signal component (silence signal component) of 53 [Hz]. At that time, by adjusting the constant α2, it is possible to optimize (stabilize) the canceling sound near 53 [Hz] included in the addition control signal S1 + S2.

このようにして、定数乗算器74の定数α1と定数乗算器274の定数α2を調整(チューニング)することにより、周波数43[Hz]近傍の音圧を低減し、かつ周波数53[Hz]近傍での音圧の増加を抑制する最適な加算制御信号(更新した加算制御信号)S1+S2を決定する。もちろん、定数α2=0であっても、周波数53[Hz]近傍の音圧を一定量低減させることができる。   In this way, by adjusting (tuning) the constant α1 of the constant multiplier 74 and the constant α2 of the constant multiplier 274, the sound pressure near the frequency 43 [Hz] is reduced and the frequency near the frequency 53 [Hz] is reduced. The optimum addition control signal (updated addition control signal) S1 + S2 that suppresses the increase in sound pressure is determined. Of course, even if the constant α2 = 0, the sound pressure in the vicinity of the frequency 53 [Hz] can be reduced by a certain amount.

図3Aは、このようにして定数α1と定数α2を調整した結果の図1又は図2に示した能動型振動騒音制御装置200による周波数43[Hz]近傍の低周波ロードノイズと、この低周波ロードノイズを低減させたとき、その近傍に現れる周波数53[Hz]近傍の増音(騒音)を低減(減音)させた低減後騒音特性96Aと、図8Aに示した低減前騒音特性94の両方を示している。図3Bは、この場合の能動型振動騒音制御装置200による感度関数98Aを示している。   FIG. 3A shows low frequency road noise in the vicinity of a frequency of 43 [Hz] by the active vibration noise control apparatus 200 shown in FIG. 1 or FIG. 2 as a result of adjusting the constant α1 and the constant α2 in this manner, and the low frequency. When the road noise is reduced, a post-reduction noise characteristic 96A in which a sound increase (noise) in the vicinity of 53 [Hz] appearing in the vicinity thereof is reduced (sound reduction), and a pre-reduction noise characteristic 94 shown in FIG. 8A. Both are shown. FIG. 3B shows a sensitivity function 98A by the active vibration noise control apparatus 200 in this case.

この低減後騒音特性96Aでは、周波数43[Hz]近傍の騒音が、音圧で7[dB]程度低減され、周波数53[Hz]近傍の騒音が数[dB]増加しているが、図8Bに示した低減後騒音特性96から比較すれば周波数53[Hz]近傍の騒音が約8dBと大幅に低減されている。結果、全体として、低減後騒音特性96Aでは音圧のピークが約8[dB]低下していることが分かる。低周波ロードノイズ(低減前騒音特性94)に対する広い周波数領域での音圧の低減効果(低減後騒音特性96A)により、乗員の耳位置できわめて効果的な消音効果が得られる。   In this reduced noise characteristic 96A, the noise near the frequency 43 [Hz] is reduced by about 7 [dB] in sound pressure, and the noise near the frequency 53 [Hz] is increased by several [dB]. Compared with the reduced noise characteristic 96 shown in FIG. 1, the noise in the vicinity of the frequency 53 [Hz] is greatly reduced to about 8 dB. As a result, it can be seen that the peak of the sound pressure is reduced by about 8 [dB] in the post-reduction noise characteristic 96A as a whole. Due to the sound pressure reduction effect (reduced noise characteristic 96A) in a wide frequency range with respect to the low frequency road noise (pre-reduction noise characteristic 94), a very effective silencing effect can be obtained at the occupant's ear position.

以上説明したように上述した実施形態によれば、能動型振動騒音制御装置200の制御信号生成手段(21B、202)は、車室内騒音中、音圧の最大部分を含む第1周波数43[Hz]を含む領域での第1制御信号S1を生成する離散演算処理装置21B(第1制御信号生成手段)と、第2制御信号S2を生成する離散演算処理装置202(第2制御信号生成手段)とを備え、離散演算処理装置202は、1サンプル前に生成された第1制御信号S1と1サンプル前に生成された第2制御信号S2の加算制御信号S1+S2が入力され、更新された第1制御信号S1により第1周波数43[Hz]を含む領域で減音させたときに増音する第2周波数53[Hz]を含む領域での相殺音を音出力手段38から出力するための更新した第2制御信号S2を生成し、更新した加算制御信号S1+S2を制御信号として音出力手段38に出力するように構成されている。   As described above, according to the embodiment described above, the control signal generation means (21B, 202) of the active vibration noise control apparatus 200 has the first frequency 43 [Hz including the maximum portion of the sound pressure in the vehicle interior noise. ] In the area including the discrete arithmetic processing device 21B (first control signal generating means) for generating the first control signal S1 and the discrete arithmetic processing device 202 (second control signal generating means) for generating the second control signal S2. The discrete arithmetic processing unit 202 receives the updated first control signal S1 + S2 generated by inputting the first control signal S1 generated one sample before and the second control signal S2 generated one sample before. Updated to output from the sound output means 38 the canceling sound in the region including the second frequency 53 [Hz] that is increased when the sound is reduced in the region including the first frequency 43 [Hz] by the control signal S1. Second control Generates issue S2, are configured to output a sum control signal S1 + S2 and then updated to the sound output unit 38 as a control signal.

この構成によれば、車室内騒音中、音圧の最大部分を含む第1周波数43[Hz]を含む領域で第1制御信号S1を生成する離散演算処理装置21Bにより第1周波数43[Hz]を含む領域で減音させたときに増音する第2周波数53[Hz]を含む領域で、離散演算処理装置21Bに対して従属接続される離散演算処理装置202により音出力手段38から相殺音を出力するための第2制御信号S2を生成し、第1制御信号S1と第2制御信号S2を加算して音出力手段38に制御信号S1+S2を出力するようにしているので、騒音の最も大きい第1周波数領域近傍で適応騒音制御により騒音を低減できるとともに、この適応騒音制御を行ったときに発生する、その第1周波数の近傍の第2周波数領域での好ましくない増音効果による増音も効果的に低減することができる。   According to this configuration, the first frequency 43 [Hz] is generated by the discrete arithmetic processing device 21 </ b> B that generates the first control signal S <b> 1 in a region including the first frequency 43 [Hz] including the maximum portion of the sound pressure in the vehicle interior noise. In the region including the second frequency 53 [Hz] that is increased when the sound is reduced in the region including the sound, the canceling sound is output from the sound output unit 38 by the discrete arithmetic processing device 202 that is subordinately connected to the discrete arithmetic processing device 21B. Is generated, and the first control signal S1 and the second control signal S2 are added to output the control signal S1 + S2 to the sound output means 38. Noise can be reduced by adaptive noise control in the vicinity of the first frequency region, and the undesirable sound increase effect in the second frequency region in the vicinity of the first frequency that occurs when the adaptive noise control is performed. The sound can also be effectively reduced.

なお、上述した実施形態において、第1制御信号S1の生成部としての離散演算処理装置21Bを適応ノッチフィルタ型の構成としているが、他の実施形態として、この離散演算処理装置21Bを、図6を参照して説明したフィードバック制御部(FBC)10に代替した図4に示す能動型振動騒音制御装置204の構成としても一定の消音効果を達成することができる。   In the above-described embodiment, the discrete arithmetic processing device 21B serving as the generation unit of the first control signal S1 has an adaptive notch filter type configuration. However, as another embodiment, the discrete arithmetic processing device 21B is configured as shown in FIG. A certain silencing effect can also be achieved with the configuration of the active vibration noise control device 204 shown in FIG. 4 in place of the feedback control unit (FBC) 10 described with reference to FIG.

また、さらに他の実施形態として、第1制御信号S1の生成部である離散演算処理装置21Bを、図5に示すように、適応FIRフィルタ型の離散演算処理部21Cに代替した能動型振動騒音制御装置206の構成としても一定の消音効果を達成することができる。   As still another embodiment, the active vibration noise is obtained by replacing the discrete arithmetic processing device 21B, which is the generation unit of the first control signal S1, with an adaptive FIR filter type discrete arithmetic processing unit 21C as shown in FIG. A certain silencing effect can also be achieved with the configuration of the control device 206.

この図5例の能動型振動騒音制御装置206の場合、第1制御信号S1を生成する離散演算処理部21Cは、音出力手段38から音検出手段40までの間の伝達特性を模擬した特性{上述した模擬伝達特性}C^を有する伝達要素210と、適応FIRフィルタである適応フィルタ(ADF)214と、適応制御アルゴリズム演算器(LMS)212とを備える。   In the case of the active vibration noise control device 206 of FIG. 5 example, the discrete arithmetic processing unit 21C that generates the first control signal S1 simulates the transfer characteristic between the sound output means 38 and the sound detection means 40 { A transfer element 210 having the above-mentioned simulated transfer characteristic} C ^, an adaptive filter (ADF) 214 which is an adaptive FIR filter, and an adaptive control algorithm calculator (LMS) 212 are provided.

伝達要素210と適応フィルタ214の入力側には、車室内で、特に、周波数40[Hz]近傍の低周波ロードノイズを顕著に拾うことのできる位置に設けたマイクロフォン93の出力側を接続して、このマイクロフォン93を離散演算処理装置21Bを構成する第1参照余弦波信号発生器91に代替する。   The input side of the transfer element 210 and the adaptive filter 214 is connected to the output side of the microphone 93 provided in the vehicle interior, particularly at a position where low-frequency road noise in the vicinity of a frequency of 40 [Hz] can be noticeably picked up. The microphone 93 is replaced with a first reference cosine wave signal generator 91 that constitutes the discrete arithmetic processing device 21B.

なお、周波数40[Hz]近傍の低周波ロードノイズを顕著に拾うことのできる車両内の位置は、例えば、上述した特許文献1(特開2000−322066号公報)に記載されているように、車室内の前後方向における音響固有モードの腹部分であり、例えば前座席の足元付近、ルーフの中央付近及びトランクルーム内の位置が該当する。   In addition, the position in the vehicle where the low frequency road noise near the frequency of 40 [Hz] can be noticeably picked up is described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-322066) described above. This is a belly portion of the acoustic eigenmode in the front-rear direction of the passenger compartment, for example, near the feet of the front seat, near the center of the roof, and in the trunk room.

なお、この発明は上述した実施形態に限らず、この明細書及び図面の記載に基づき種々の変形が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made based on the description of the specification and the drawings.

この発明の一実施形態に係る能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus which concerns on one Embodiment of this invention. 図1例の能動型振動騒音制御装置のブロック図に対し、ブロック線図の等価変換を適用して簡単化した能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus simplified by applying the equivalent conversion of a block diagram with respect to the block diagram of the active vibration noise control apparatus of the example of FIG. 図3Aは、この発明の一実施形態に係る能動型振動騒音制御装置の適用前後における車室内の低周波ノイズの特性図である。図3Bは、この発明の一実施形態に係る能動型振動騒音制御装置の感度関数の説明図である。FIG. 3A is a characteristic diagram of low-frequency noise in the vehicle compartment before and after application of the active vibration noise control apparatus according to one embodiment of the present invention. FIG. 3B is an explanatory diagram of a sensitivity function of the active vibration noise control apparatus according to the embodiment of the present invention. この発明の他の実施形態に係る能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus which concerns on further another embodiment of this invention. 従来技術に係る低周波ロードノイズを低減する能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus which reduces the low frequency road noise based on a prior art. 従来技術に係るエンジン騒音を低減する能動型騒音低減制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active noise reduction control apparatus which reduces the engine noise based on a prior art. 図8Aは、車室内の低周波ローズノイズの特性図である。図8Bは、発明者が最初に案出した能動型振動騒音制御装置による騒音低減後の車室内の低周波ロードノイズの特性図である。図8Cは、最初に案出した能動型振動騒音制御装置の感度関数を示す説明図である。FIG. 8A is a characteristic diagram of low-frequency rose noise in the passenger compartment. FIG. 8B is a characteristic diagram of low-frequency road noise in the vehicle interior after noise reduction by the active vibration noise control device first devised by the inventors. FIG. 8C is an explanatory diagram showing a sensitivity function of the active vibration noise control device devised first. 発明者が最初に案出した能動型振動騒音制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the active vibration noise control apparatus which the inventor first devised.

符号の説明Explanation of symbols

6…スピーカ 8、93…マイクロフォン
10…フィードバック制御部(FBC) 20…能動型騒音低減装置
21、21A、21B、202…離散演算処理装置 38…音出力手段
42…模擬信号発生手段 74、274…定数乗算器
80、82…適応制御アルゴリズム演算器 88、89…90度位相器
91…第1参照余弦波信号発生器 92…第2参照余弦波発生器
100、200、204、206…能動型振動騒音制御装置
DESCRIPTION OF SYMBOLS 6 ... Speaker 8, 93 ... Microphone 10 ... Feedback control part (FBC) 20 ... Active noise reduction apparatus 21, 21A, 21B, 202 ... Discrete arithmetic processing unit 38 ... Sound output means 42 ... Simulated signal generation means 74, 274 ... Constant multipliers 80, 82 ... adaptive control algorithm computing unit 88, 89 ... 90 degree phase shifter 91 ... first reference cosine wave signal generator 92 ... second reference cosine wave generator 100, 200, 204, 206 ... active vibration Noise control device

Claims (3)

制御信号に基づき音出力手段から出力される車室内騒音の相殺音と前記車室内騒音との混合音を検出する音検出手段と、前記音検出手段の出力信号が入力されて前記制御信号を生成する制御信号生成手段とを備える能動型振動騒音制御装置において、
前記制御信号生成手段は、
前記車室内騒音中、音圧の最大部分を含む第1周波数領域での第1制御信号を生成する第1制御信号生成手段と、
第2制御信号を生成する第2制御信号生成手段とを備え、
前記第2制御信号生成手段は、
1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の加算制御信号が入力され、更新された前記第1制御信号により前記第1周波数領域で減音させたときに増音する第2周波数領域での相殺音を前記音出力手段から出力するための更新した前記第2制御信号を生成し、更新された前記第1制御信号と更新した前記第2制御信号の加算制御信号を前記制御信号として前記音出力手段に出力する
ことを特徴とする能動型振動騒音制御装置。
Based on the control signal, sound detection means for detecting a mixed sound of the vehicle interior noise canceling sound and the vehicle interior noise output from the sound output means, and the output signal of the sound detection means is input to generate the control signal In an active vibration noise control device comprising a control signal generating means for
The control signal generating means
A first control signal generating means for generating a first control signal in a first frequency region including the maximum portion of the sound pressure in the vehicle interior noise;
Second control signal generating means for generating a second control signal,
The second control signal generating means includes
An addition control signal of the first control signal generated one sample before and the second control signal generated one sample before is input, and sound is reduced in the first frequency region by the updated first control signal. The updated second control signal for outputting the canceling sound in the second frequency region that increases when the sound is output from the sound output means is generated, and the updated second control signal and the updated second control signal are generated. An active vibration noise control apparatus, wherein a signal addition control signal is output as the control signal to the sound output means.
請求項1記載の能動型振動騒音制御装置において、
前記第1制御信号生成手段は、
前記第1周波数領域で動作する適応ノッチフィルタ型制御信号生成手段、フィードバック制御型制御信号生成手段、又は適応FIRフィルタ型制御信号生成手段のいずれか1つであり、
前記第2制御信号生成手段は、
1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の前記加算制御信号が誤差信号として入力され、前記第2周波数領域で動作する適応ノッチフィルタ型制御信号生成手段である
ことを特徴とする能動型振動騒音制御装置。
The active vibration noise control apparatus according to claim 1,
The first control signal generating means includes
Any one of adaptive notch filter type control signal generating means, feedback control type control signal generating means, or adaptive FIR filter type control signal generating means operating in the first frequency domain,
The second control signal generating means includes
An adaptive notch filter type control signal that operates in the second frequency domain by inputting the addition control signal of the first control signal generated one sample before and the second control signal generated one sample before as an error signal. An active vibration noise control device characterized by being a generating means.
請求項2記載の能動型振動騒音制御装置において、
前記第2制御信号生成手段は、
さらに、定数乗算手段を備え、該定数乗算手段により1サンプル前に生成した前記第2制御信号を定数倍した補正信号を1サンプル前に生成された前記第1制御信号と1サンプル前に生成した前記第2制御信号の前記加算制御信号に加算した信号を前記誤差信号として入力する
ことを特徴とする能動型振動騒音制御装置。
The active vibration noise control device according to claim 2,
The second control signal generating means includes
Furthermore, a constant multiplying unit is provided, and a correction signal obtained by multiplying the second control signal generated one sample before by the constant multiplying unit by a constant is generated one sample before the first control signal generated one sample ago. A signal obtained by adding the addition control signal of the second control signal to the error signal is input as the error signal.
JP2006322848A 2006-11-30 2006-11-30 Active vibration noise control device Expired - Fee Related JP4590389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322848A JP4590389B2 (en) 2006-11-30 2006-11-30 Active vibration noise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322848A JP4590389B2 (en) 2006-11-30 2006-11-30 Active vibration noise control device

Publications (2)

Publication Number Publication Date
JP2008139367A true JP2008139367A (en) 2008-06-19
JP4590389B2 JP4590389B2 (en) 2010-12-01

Family

ID=39600933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322848A Expired - Fee Related JP4590389B2 (en) 2006-11-30 2006-11-30 Active vibration noise control device

Country Status (1)

Country Link
JP (1) JP4590389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255784A (en) * 2008-04-18 2009-11-05 Panasonic Corp Active type vibration noise reducing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075377A1 (en) 2008-12-24 2010-07-01 Dolby Laboratories Licensing Corporation Audio signal loudness determination and modification in the frequency domain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195088A (en) * 1992-12-25 1994-07-15 Alpine Electron Inc Noise cancellation system
JPH07219565A (en) * 1994-02-07 1995-08-18 Honda Motor Co Ltd Active vibration controller
JPH09198053A (en) * 1996-01-18 1997-07-31 Denso Corp Muffling device
JP2004354657A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Active type noise reducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195088A (en) * 1992-12-25 1994-07-15 Alpine Electron Inc Noise cancellation system
JPH07219565A (en) * 1994-02-07 1995-08-18 Honda Motor Co Ltd Active vibration controller
JPH09198053A (en) * 1996-01-18 1997-07-31 Denso Corp Muffling device
JP2004354657A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Active type noise reducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255784A (en) * 2008-04-18 2009-11-05 Panasonic Corp Active type vibration noise reducing device

Also Published As

Publication number Publication date
JP4590389B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4079831B2 (en) Active noise reduction device
JP5189307B2 (en) Active noise control device
JP4344763B2 (en) Active vibration and noise control device for vehicle
EP2597638A1 (en) Tunable active noise control
JP4881913B2 (en) Active noise control device
JP2005084500A (en) Active type vibration noise controller
JPWO2007013281A1 (en) Active vibration noise control device
JPWO2007011010A1 (en) Active noise reduction device
EP3537431B1 (en) Active noise cancellation system utilizing a diagonalization filter matrix
CN111627414B (en) Active denoising method and device and electronic equipment
JP2008137636A (en) Active noise control device
JP4590389B2 (en) Active vibration noise control device
JP4977551B2 (en) Active noise control device
JP5214340B2 (en) Active vibration and noise control system for vehicles
JP4843581B2 (en) Active noise control device
JPH07210179A (en) Active noise eliminator
JP5090272B2 (en) Active vibration noise control device
JP2010111206A (en) Active noise control device
JP2008205804A (en) Acoustic system
JP2019203919A (en) Noise removal device
JP4906787B2 (en) Active vibration noise control device
JP4133710B2 (en) Spectral peak flattening for adaptive control
JP2009083809A (en) Active noise reduction device
JP7449186B2 (en) In-vehicle system
JP2007331557A (en) Acoustic system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Ref document number: 4590389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees