JP2008138804A - Rolling member - Google Patents

Rolling member Download PDF

Info

Publication number
JP2008138804A
JP2008138804A JP2006326989A JP2006326989A JP2008138804A JP 2008138804 A JP2008138804 A JP 2008138804A JP 2006326989 A JP2006326989 A JP 2006326989A JP 2006326989 A JP2006326989 A JP 2006326989A JP 2008138804 A JP2008138804 A JP 2008138804A
Authority
JP
Japan
Prior art keywords
dynamic pressure
lubricating oil
rolling
oil storage
rolling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326989A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Takatsugu Furubayashi
卓嗣 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006326989A priority Critical patent/JP2008138804A/en
Priority to PCT/JP2007/073187 priority patent/WO2008069133A1/en
Publication of JP2008138804A publication Critical patent/JP2008138804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling member capable of separating a contact part by lubricating oil, even in an operation condition of frequently starting and stopping and an operation condition unable to expect supply of the lubricating oil from an external part to the contact part such as rocking motion or a low speed and high load. <P>SOLUTION: A dynamic pressure generating surface having a large number of very small dynamic pressure grooves 5 for generating the dynamic pressure action by the presence of the lubricating oil, is formed in a rolling contact part of the rolling member. A fluid lubricating state can be maintained even at a speed of not forming a sufficient oil film, by delivering the lubricating oil in the dynamic pressure grooves 5 from a deep lubricating oil storage pocket 4 by the thermal expansion, when starting relative motion, by dotting the lubricating oil storage pocket 4 deeper than the depth of the dynamic pressure grooves 5 on this dynamic pressure generating surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、転がりを主体とする相対運動によって摩擦低減を実現する転がり軸受などの機械要素に関し、特に、頻繁に起動停止する稼動条件や揺動運動、あるいは低速かつ高荷重といった稼動条件に好適な転がり部材に関するものである。   The present invention relates to a mechanical element such as a rolling bearing that realizes friction reduction by a relative motion mainly composed of rolling, and is particularly suitable for operating conditions such as frequent start and stop, swinging motion, or operating conditions such as low speed and high load. The present invention relates to a rolling member.

転がり軸受などの転がり部材における転がり接触部では、物体の相対運動によって物体間に介在する流体に動圧効果を発生させて流体潤滑状態とすることにより、物体の直接的な接触を防止して摩擦、摩耗を低減することができる。   In the rolling contact part of a rolling member such as a rolling bearing, a dynamic pressure effect is generated in the fluid interposed between the objects by the relative motion of the objects to achieve a fluid lubrication state, thereby preventing direct contact of the objects and friction. Wear can be reduced.

ところが、潤滑油が少量の場合や速度が低い場合には、動圧効果が小さく潤滑油膜が形成されないため、固体接触を生じる危険がある。特に近年は低トルク化のため、低粘度の潤滑油が用いられており、また、外部から供給される潤滑油量も減少している。このため、固体接触状態となる可能性はより一層高くなっている。   However, when the amount of lubricating oil is small or when the speed is low, the dynamic pressure effect is small and the lubricating oil film is not formed, and there is a risk of causing solid contact. Particularly in recent years, low-viscosity lubricating oil has been used to reduce torque, and the amount of lubricating oil supplied from the outside has also decreased. For this reason, the possibility of becoming a solid contact state is further increased.

従来、接触部近傍の潤滑油量が不足していても、接触部の表面が潤滑油を保持していれば潤滑可能であるから、表面に微細な凹部を多数設けて、この凹部内に潤滑油を保持しようとする技術が特許文献1に開示されている。この技術によって、低速時の境界潤滑性能を向上させることが可能である。   Conventionally, even if the amount of lubricating oil in the vicinity of the contact portion is insufficient, lubrication is possible if the surface of the contact portion retains the lubricating oil. Therefore, a large number of fine recesses are provided on the surface, and lubrication is provided in the recesses. A technique for retaining oil is disclosed in Patent Document 1. This technique can improve boundary lubrication performance at low speeds.

一方、すべり軸受においては、摺動面に油膜厚さ程度の深さの溝を多数形成することによって潤滑性能を向上させる技術が一般的に用いられている。これは、摺動面の深さが溝の存在によって変化するために流体力学的な動圧作用が発生することを利用している。この効果を転がり軸受に適用した例が特許文献2に開示されている。この特許文献2に開示の技術は、相対的に小さい荷重が加わる部位において、すべりが生じる転動体を動圧作用による圧力で軌道輪に押し付け、すべりを防ごうとするものである。ただし、この特許文献2の技術においては、一般の動圧軸受と同様に、接触部には十分な潤滑油が接触部の外部から供給されることが前提となっている。   On the other hand, in a plain bearing, a technique is generally used in which lubricating performance is improved by forming a number of grooves having a depth of about the oil film thickness on a sliding surface. This utilizes the fact that a hydrodynamic dynamic pressure action occurs because the depth of the sliding surface changes due to the presence of the groove. An example in which this effect is applied to a rolling bearing is disclosed in Patent Document 2. The technique disclosed in Patent Document 2 attempts to prevent slippage by pressing a rolling element in which a slip occurs at a portion to which a relatively small load is applied against the raceway with a pressure by a dynamic pressure action. However, the technique of Patent Document 2 is based on the premise that sufficient lubricating oil is supplied to the contact portion from the outside of the contact portion, as in a general hydrodynamic bearing.

また、高面圧を支持するスラスト平面すべり軸受に深い凹部を設けた例が非特許文献1に開示されている。これは熱膨張に伴う凹部からの潤滑油の吐出によって、境界潤滑性能を向上させようとするものである。ただし、この技術は流体力学的な動圧効果の発生を目的としたものではない。   Further, Non-Patent Document 1 discloses an example in which a deep concave portion is provided in a thrust flat plain bearing that supports high surface pressure. This is intended to improve the boundary lubrication performance by discharging the lubricating oil from the recess accompanying thermal expansion. However, this technique is not intended to generate hydrodynamic dynamic pressure effects.

特開平02‐168021号公報Japanese Patent Laid-Open No. 02-168021 特開2006‐105361号公報JP 2006-105361 A H.Kotera、A.Mori、 N.Tagawa、PROPOSAL OF A SEIZURE PREVENTING METHOD IN HEAVILY LOADED SLIDING PAIRS、Synopses of the International Tribology Conference Kobe、 2005、 D-04H.Kotera, A.Mori, N.Tagawa, PROPOSAL OF A SEIZURE PREVENTING METHOD IN HEAVILY LOADED SLIDING PAIRS, Synopses of the International Tribology Conference Kobe, 2005, D-04

ところで、流体力学的な動圧作用は、流体の粘度、接触面の速度、接触面のくさび形状によって発生する。通常の転がり接触では、部材の接触部は必然的にくさび形状になっているので、一定以上の粘度と速度を与えれば、油膜が形成され、接触面は分離する。   By the way, the hydrodynamic dynamic pressure action is generated by the viscosity of the fluid, the speed of the contact surface, and the wedge shape of the contact surface. In normal rolling contact, the contact portion of the member is inevitably in the shape of a wedge. Therefore, if a certain viscosity or speed is applied, an oil film is formed and the contact surface is separated.

しかしながら、低速での動圧作用を増加させようとするときは、流体の粘度の制御は困難であるから、くさび形状を改善する必要がある。すなわち、マクロな形状によるくさび形状のほかに、ミクロなくさび形状を表面に設けることにより、低速での動圧作用を増加させることが考えられる。   However, when trying to increase the dynamic pressure action at low speed, it is difficult to control the viscosity of the fluid, so it is necessary to improve the wedge shape. That is, it is conceivable to increase the dynamic pressure action at a low speed by providing a micro wedge shape on the surface in addition to the macro wedge shape.

転がり軸受においては、特許文献2の技術とは目的が異なるものの、動圧作用を発生する浅い凹部を設けることで、低速での油膜形成性が向上すると考えられる。しかし、低速の場合、接触部への外部からの潤滑油の供給は期待できない。   Although the purpose of the rolling bearing is different from that of the technique of Patent Document 2, it is considered that the oil film forming property at low speed is improved by providing a shallow concave portion that generates a dynamic pressure action. However, when the speed is low, supply of lubricating oil from the outside to the contact portion cannot be expected.

また、特許文献1の方法において、浅い凹部に保持した潤滑油のみでは、流体潤滑性能を向上させることはできない。   Further, in the method of Patent Document 1, the fluid lubrication performance cannot be improved only with the lubricating oil held in the shallow concave portion.

そこで、この発明は、頻繁に起動停止する稼動条件や揺動運動、あるいは低速かつ高荷重といった、接触部への外部からの潤滑油の供給が期待できない稼動条件においても、接触部を潤滑油で分離することが可能な転がり部材を提供しようとするものである。   Therefore, the present invention provides the contact portion with lubricating oil even under operating conditions where frequent starting and stopping, swinging motion, or low speed and high load cannot be expected from the outside. It is intended to provide a rolling member that can be separated.

この発明は、転がり部材の転がり接触部に、潤滑油の存在により動圧作用を発生させる微小な多数の動圧溝を有する動圧発生面を形成し、この動圧発生面に、上記動圧溝の深さよりも深い潤滑油貯留ポケットを点在させたのである。   In the present invention, a dynamic pressure generating surface having a large number of small dynamic pressure grooves that generate a dynamic pressure action due to the presence of lubricating oil is formed in the rolling contact portion of the rolling member, and the dynamic pressure generating surface is formed on the dynamic pressure generating surface. Lubricating oil storage pockets deeper than the groove depth were scattered.

この発明の転がり部材は、例えば、速度が小さく、外部から接触部に流入する潤滑油量が少量であるという条件下、すなわち、動圧作用を発生させる微小な多数の動圧溝に十分な潤滑油がないような条件下においても、相対運動の開始時には、深い潤滑油貯留ポケット内に貯留した潤滑油が、熱膨張によって接触表面に吐出されるため、微小な多数の動圧溝に潤滑油が供給されて動圧作用による油膜が形成されやすい。したがって、十分な油膜が形成されない速度であっても流体潤滑状態を維持することができ、接触部を潤滑油で分離できる。
また、油膜形成が本質的に困難な極低速の場合においては、流体潤滑ほどの良好な潤滑性は期待できないが、摩擦熱による熱膨張で主に潤滑油貯留ポケットから表面に吐出された油による境界潤滑性により、固体接触を防ぎ表面損傷を防止することができる。
The rolling member according to the present invention is sufficiently lubricated, for example, under the condition that the speed is low and the amount of lubricating oil flowing into the contact portion from the outside is small, that is, a large number of minute dynamic pressure grooves that generate dynamic pressure action. Even under conditions where there is no oil, the lubricating oil stored in the deep lubricating oil storage pocket is discharged to the contact surface by thermal expansion at the start of relative motion, so the lubricating oil is placed in a large number of minute dynamic pressure grooves. Is supplied and an oil film is easily formed by the dynamic pressure action. Therefore, the fluid lubrication state can be maintained even at a speed at which a sufficient oil film is not formed, and the contact portion can be separated by the lubricating oil.
Also, in the case of extremely low speed where oil film formation is essentially difficult, good lubricity as high as fluid lubrication cannot be expected, but due to thermal expansion due to frictional heat, it is mainly due to oil discharged from the surface through the lubricating oil storage pocket. The boundary lubricity prevents solid contact and prevents surface damage.

以上のように、この発明に係る転がり部材は、転がり接触部に、潤滑油の存在により動圧作用を発生させる微小な多数の動圧溝を有する動圧発生面を形成し、この動圧発生面に、動圧溝よりも深い潤滑油貯留ポケットを点在させているので、深い潤滑油貯留ポケットからの潤滑油の供給と浅い微小な多数の動圧溝の動圧作用によって、低速の場合であっても十分な潤滑油膜を形成することができ、接触部の直接接触を防止することができる。また、極低速でも境界潤滑作用で表面損傷を防ぐことができる。   As described above, the rolling member according to the present invention forms a dynamic pressure generating surface having a large number of dynamic pressure grooves that generate a dynamic pressure action in the rolling contact portion due to the presence of lubricating oil. Since the surface is interspersed with lubricant storage pockets that are deeper than the dynamic pressure grooves, the supply of lubricant from the deep lubricant storage pockets and the dynamic pressure action of a large number of shallow micro dynamic pressure grooves Even so, a sufficient lubricating oil film can be formed, and direct contact of the contact portion can be prevented. Further, surface damage can be prevented by boundary lubrication even at extremely low speeds.

図1に、この発明を円筒ころ軸受1のころ2に適用した例を示している。
上記ころ2の転動面3は、図2又は図3に拡大して示すように、潤滑油の存在により動圧作用を発生させる微小な多数の動圧溝5を有する動圧発生面に形成され、この動圧発生面に、上記動圧溝5の深さよりも深い潤滑油貯留ポケット4を点在させている。図2又は図3では、潤滑油貯留ポケット4を黒丸で表現している。
FIG. 1 shows an example in which the present invention is applied to a roller 2 of a cylindrical roller bearing 1.
The rolling surface 3 of the roller 2 is formed on a dynamic pressure generating surface having a large number of minute dynamic pressure grooves 5 that generate a dynamic pressure action due to the presence of lubricating oil, as shown in FIG. 2 or FIG. 3 in an enlarged manner. In addition, the lubricating oil storage pockets 4 deeper than the depth of the dynamic pressure grooves 5 are scattered on the dynamic pressure generating surface. In FIG. 2 or FIG. 3, the lubricating oil storage pocket 4 is represented by a black circle.

この図2又は図3の例では、上記浅い動圧溝5を、ころ2の転動面3の全面に、潤滑油の流れ方向に直行するように均等に配置している。また、図2又は図3では、動圧溝5と動圧溝5の間に、潤滑油貯留ポケット4を配置したが、動圧溝5と潤滑油貯留ポケット4の互いの位置関係は任意である。
例えば、深い潤滑油貯留ポケットは、図2に示すように、ころ2の転がりすべり方向(図2の矢印の方向)に、所定間隔で平行に並ぶように点在させてもよいし、図3に示すように、ころ2の転がりすべり方向(図3の矢印の方向)に、所定間隔で千鳥状に点在させてもよい。深い潤滑油貯留ポケット4から吐出された潤滑油6は、ころの転がり運動に伴って、進行方向の後方に移動するので、図2の例のように、潤滑油貯留ポケット4を所定間隔で平行に並ぶように配置すると、潤滑油の表面への分布が、図2に一点鎖線で示すように、平行な筋状になる。また、図3の例のように潤滑油貯留ポケット4を千鳥状に配置すると、図2の例の場合よりも、図3に一点鎖線で示すように、潤滑油6の表面への筋状の分布が概ね倍増する。
In the example of FIG. 2 or FIG. 3, the shallow dynamic pressure grooves 5 are evenly disposed on the entire rolling surface 3 of the roller 2 so as to be orthogonal to the flow direction of the lubricating oil. 2 or 3, the lubricating oil storage pocket 4 is disposed between the dynamic pressure groove 5 and the dynamic pressure groove 5. However, the positional relationship between the dynamic pressure groove 5 and the lubricating oil storage pocket 4 is arbitrary. is there.
For example, as shown in FIG. 2, the deep lubricating oil storage pockets may be interspersed so as to be arranged in parallel at predetermined intervals in the rolling and sliding direction of the roller 2 (the direction of the arrow in FIG. 2). As shown in FIG. 3, the rollers 2 may be scattered in a staggered manner at predetermined intervals in the rolling and sliding direction (the direction of the arrow in FIG. 3). Since the lubricating oil 6 discharged from the deep lubricating oil storage pocket 4 moves backward in the traveling direction as the roller rolls, the lubricating oil storage pocket 4 is paralleled at a predetermined interval as shown in the example of FIG. When arranged so as to line up with each other, the distribution of the lubricating oil on the surface becomes parallel streaks as shown by a one-dot chain line in FIG. Further, when the lubricating oil storage pockets 4 are arranged in a staggered manner as in the example of FIG. 3, the streaks to the surface of the lubricating oil 6 are formed as shown by a one-dot chain line in FIG. 3, rather than the case of the example of FIG. 2. Distribution almost doubles.

また、図2又は図3の例では、潤滑油貯留ポケット4の開口面の形状はすべて円形としたが、楕円や多角形などであってもよい。   In the example of FIG. 2 or FIG. 3, the shape of the opening surface of the lubricating oil storage pocket 4 is all circular, but may be an ellipse or a polygon.

次に、動圧溝5の穴の断面形状、即ち、穴の底面は、表面に平行である必要はなく、傾斜していてもよい。ただし、流体の流れる方向に深くなる方向に傾斜している場合には動圧作用が減少するため、図4及び図5に示すように、少なくとも流体の流れる方向(図4及び図5の矢印の方向)に浅くなるように傾斜していることが望ましい。特に、図5のように、穴の片側の肩がないような形状であれば、起動停止時の摩耗を低減することができる。   Next, the cross-sectional shape of the hole of the dynamic pressure groove 5, that is, the bottom surface of the hole does not need to be parallel to the surface, and may be inclined. However, since the dynamic pressure action decreases when it is inclined deeper in the direction of fluid flow, as shown in FIGS. 4 and 5, at least the direction of fluid flow (as indicated by the arrows in FIGS. 4 and 5). It is desirable to incline so as to be shallow in the direction). In particular, as shown in FIG. 5, if the shape does not have a shoulder on one side of the hole, it is possible to reduce wear at the time of starting and stopping.

次に、動圧溝5よりも深い潤滑油貯留ポケット4は、潤滑油を貯留することを目的としているので、その体積は大きいほどよい。しかしながら、その開口部では潤滑油に荷重支持に寄与するような動圧は発生しないので、開口部面積は小さい方が望ましい。したがって、潤滑油貯留ポケット4は、小径であって、深穴とする。現在の量産可能な加工技術水準を勘案すれば、直径20〜30μm、深さ100μm程度といった大きさとなる。   Next, since the lubricating oil storage pocket 4 deeper than the dynamic pressure groove 5 is intended to store lubricating oil, the larger the volume, the better. However, since the dynamic pressure that contributes to the load support is not generated in the lubricating oil at the opening, it is desirable that the opening area is small. Therefore, the lubricating oil storage pocket 4 has a small diameter and a deep hole. Considering the current level of processing technology that can be mass-produced, the size is 20-30 μm in diameter and about 100 μm in depth.

一方、動圧溝5は、微小な接触領域での動圧の発生を目的としているので、接触部の面積に対して比較的小さく、接触面内に多数あることが望ましい。したがって、転がり軸受に代表される通常の転がり接触機械要素を想定して、溝幅は20〜30μm以下とする。潤滑油が十分に存在する状態で使用される通常の動圧軸受であれば、動圧作用を効果的に発生させる溝の深さは、油膜厚さ程度の深さであるが、この発明においては、十分な油膜厚さとなっていない運転条件での動圧効果を期待しており、一般的な転がり軸受の場合、十分な油膜が発生した状態であっても油膜厚さは高々数μmであるから、この浅い動圧溝5の深さは0.1〜1μm程度とする。動圧溝5の底面は必ずしも平坦である必要はないが、肩部はできる限りだれていないほうがよい。   On the other hand, the dynamic pressure grooves 5 are intended to generate a dynamic pressure in a minute contact region, and are therefore relatively small with respect to the area of the contact portion, and it is desirable that there are many in the contact surface. Accordingly, assuming a normal rolling contact machine element represented by a rolling bearing, the groove width is set to 20 to 30 μm or less. In the case of a normal dynamic pressure bearing that is used in a state where there is sufficient lubricating oil, the depth of the groove that effectively generates the dynamic pressure action is about the oil film thickness. Expects a dynamic pressure effect under operating conditions where the oil film thickness is not sufficient. In the case of a general rolling bearing, the oil film thickness is at most several μm even when a sufficient oil film is generated. Therefore, the depth of the shallow dynamic pressure groove 5 is about 0.1 to 1 μm. The bottom surface of the dynamic pressure groove 5 does not necessarily have to be flat, but it is better that the shoulder portion is not bent as much as possible.

転がり軸受は、運転開始や揺動運動の死点では回転速度は0となり、徐々に所定の、あるいは最大回転速度に達する。速度が0から運動を開始した直後には、外部から潤滑油が供給されず、さらに接触面の速度も低いために油膜が形成されず、固体同士が接触している。接触した状態で運動を継続すると、高摩擦のために熱が発生し、接触面の凹部に保持された潤滑油は膨張する。動圧溝5に保持された潤滑油も接触表面に排出され、潤滑に寄与すると考えられるが、深い潤滑油貯留ポケット4にあっては、固体と潤滑油の熱膨張差によって比較的多量の潤滑油が接触表面に吐出されることになる。   The rolling bearing has a rotational speed of 0 at the start of operation or the dead center of the swinging motion, and gradually reaches a predetermined or maximum rotational speed. Immediately after starting the movement from the speed of 0, no lubricating oil is supplied from the outside, and since the speed of the contact surface is low, an oil film is not formed, and the solids are in contact with each other. When the movement is continued in the contact state, heat is generated due to high friction, and the lubricating oil held in the concave portion of the contact surface expands. The lubricating oil held in the dynamic pressure groove 5 is also discharged to the contact surface and is considered to contribute to lubrication. However, in the deep lubricating oil storage pocket 4, a relatively large amount of lubrication is caused by the difference in thermal expansion between the solid and the lubricating oil. Oil will be discharged onto the contact surface.

転がり接触部の潤滑油が極めて微量の場合には、動圧溝5において動圧作用を発生させることはできないが、この発明では、深い潤滑油貯留ポケット4から吐出された潤滑油によって、動圧溝5に潤滑油が補充され、転がり接触部に動圧作用による油膜が形成されやすく、接触面が油膜によって分離する。
したがって、この発明によると、速度が小さい運転条件でも接触面の固体接触が防止され、流体潤滑状態を維持することができる。
When the amount of lubricating oil in the rolling contact portion is extremely small, a dynamic pressure action cannot be generated in the dynamic pressure groove 5, but in the present invention, the dynamic pressure is increased by the lubricating oil discharged from the deep lubricating oil storage pocket 4. Lubricating oil is replenished to the groove 5, and an oil film due to a dynamic pressure action is easily formed on the rolling contact portion, and the contact surface is separated by the oil film.
Therefore, according to the present invention, solid contact on the contact surface is prevented even under operating conditions at a low speed, and the fluid lubrication state can be maintained.

また、油膜形成が本質的に困難な極低速の場合には、摩擦熱による熱膨張で主に深い潤滑油貯留ポケット4から表面に吐出された油による境界潤滑性により、固体接触が防止される。   Further, in the case of extremely low speed where oil film formation is essentially difficult, solid contact is prevented by boundary lubricity due to oil discharged mainly from the deep lubricating oil reservoir pocket 4 due to thermal expansion due to frictional heat. .

次に、深い潤滑油貯留ポケット4に貯留された潤滑油は、主に接触面の発熱に起因した熱膨張によって吐出されるが、接触面の発熱によって、ころの部材も熱膨張し、潤滑油貯留ポケット4の容積も増加するので、潤滑油の吐出量は、潤滑油貯留ポケット4に貯留された潤滑油の体積の膨張分と潤滑油貯留ポケット4の容積の増加分との差となる。
したがって、通常の転がり軸受に使用される鋼の線膨張係数は約12×10−6−1であるのに対して、窒化珪素の熱膨張係数は約3×10−6−1であり、上記のように、ころの材料の熱膨張係数が小さいほど、潤滑油の吐出効果が高いといえるので、ころをセラミック、特に窒化珪素で形成した場合、潤滑油の吐出が有利になる。
Next, the lubricating oil stored in the deep lubricating oil storage pocket 4 is discharged mainly by thermal expansion caused by heat generation on the contact surface, but the roller member also thermally expands due to heat generation on the contact surface. Since the volume of the storage pocket 4 also increases, the discharge amount of the lubricating oil is the difference between the expansion of the volume of the lubricating oil stored in the lubricating oil storage pocket 4 and the increase of the volume of the lubricating oil storage pocket 4.
Therefore, the linear expansion coefficient of steel used for a normal rolling bearing is about 12 × 10 −6 K −1 , whereas the thermal expansion coefficient of silicon nitride is about 3 × 10 −6 K −1 . As described above, the smaller the coefficient of thermal expansion of the material of the roller, the higher the effect of discharging the lubricating oil. Therefore, when the roller is made of ceramic, particularly silicon nitride, it is advantageous to discharge the lubricating oil.

以上の実施例は、円筒ころ軸受のころの転動面にこの発明を適用した例を示したが、内輪、外輪あるいはころ端面やつば面に適用してもよく、その他、転がり運動するあらゆる機械要素の転がり接触部に適用できる。   In the above embodiment, the present invention is applied to the rolling surface of the roller of the cylindrical roller bearing. However, the present invention may be applied to an inner ring, an outer ring, a roller end face or a collar surface, and any other machine that performs rolling motion. Applicable to rolling contact part of element.

この発明を円筒ころ軸受のころに適用した例を示す概念図である。It is a conceptual diagram which shows the example which applied this invention to the roller of the cylindrical roller bearing. この発明に係る転がり部材の転がり接触部に形成する潤滑油貯留ポケット4と動圧溝5の配置例を示す拡大平面図である。It is an enlarged plan view which shows the example of arrangement | positioning of the lubricating oil storage pocket 4 and the dynamic pressure groove 5 which are formed in the rolling contact part of the rolling member which concerns on this invention. この発明に係る転がり部材の転がり接触部に形成する潤滑油貯留ポケット4と動圧溝5の配置例を示す拡大平面図である。It is an enlarged plan view which shows the example of arrangement | positioning of the lubricating oil storage pocket 4 and the dynamic pressure groove 5 which are formed in the rolling contact part of the rolling member which concerns on this invention. この発明に係る転がり部材の転がり接触部に形成した潤滑油貯留ポケット4と動圧溝5の断面形状の一例を図1のA−A線の方向で切断して示す縦断面図である。It is a longitudinal cross-sectional view which cuts an example of the cross-sectional shape of the lubricating oil storage pocket 4 and the dynamic pressure groove 5 which were formed in the rolling contact part of the rolling member which concerns on this invention in the direction of the AA line of FIG. この発明に係る転がり部材の転がり接触部に形成した潤滑油貯留ポケット4と動圧溝5の断面形状の他の例を図1のA−A線の方向で切断して示す縦断面図である。It is a longitudinal cross-sectional view which cuts and shows the other example of the cross-sectional shape of the lubricating oil storage pocket 4 and the dynamic pressure groove 5 which were formed in the rolling contact part of the rolling member which concerns on this invention in the direction of the AA line of FIG. .

符号の説明Explanation of symbols

1 円筒ころ軸受
2 ころ
3 転動面
4 潤滑油貯留ポケット
5 動圧溝
6 潤滑油
DESCRIPTION OF SYMBOLS 1 Cylindrical roller bearing 2 Roller 3 Rolling surface 4 Lubricant storage pocket 5 Dynamic pressure groove 6 Lubricant

Claims (4)

転がり接触部に、潤滑油の存在により動圧作用を発生させる微小な多数の動圧溝を有する動圧発生面を形成し、この動圧発生面に、上記動圧溝の深さよりも深い潤滑油貯留ポケットを点在させたことを特徴とする転がり部材。   A dynamic pressure generating surface having a large number of minute dynamic pressure grooves that generate dynamic pressure action due to the presence of lubricating oil is formed in the rolling contact portion, and lubrication deeper than the depth of the dynamic pressure grooves is formed on the dynamic pressure generation surface. A rolling member characterized by interspersed with oil storage pockets. 動圧発生面に形成された深い潤滑油貯留ポケットが、転がり方向に千鳥状に配置されている請求項1記載の転がり部材。   The rolling member according to claim 1, wherein deep lubricating oil storage pockets formed on the dynamic pressure generating surface are arranged in a staggered manner in the rolling direction. 上記動圧溝の底面が、転がり方向に向かって浅くなるように傾斜する請求項1又は2記載の転がり部材。   The rolling member according to claim 1, wherein a bottom surface of the dynamic pressure groove is inclined so as to become shallower in a rolling direction. 上記動圧溝並びに潤滑油貯留ポケットを形成する部材が、窒化珪素などのセラミックで形成されている請求項1〜3のいずれかに記載の転がり部材。   The rolling member according to any one of claims 1 to 3, wherein the member forming the dynamic pressure groove and the lubricating oil storage pocket is formed of a ceramic such as silicon nitride.
JP2006326989A 2006-12-04 2006-12-04 Rolling member Pending JP2008138804A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006326989A JP2008138804A (en) 2006-12-04 2006-12-04 Rolling member
PCT/JP2007/073187 WO2008069133A1 (en) 2006-12-04 2007-11-30 Rolling member and method of processing of rolling contact surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326989A JP2008138804A (en) 2006-12-04 2006-12-04 Rolling member

Publications (1)

Publication Number Publication Date
JP2008138804A true JP2008138804A (en) 2008-06-19

Family

ID=39600489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326989A Pending JP2008138804A (en) 2006-12-04 2006-12-04 Rolling member

Country Status (1)

Country Link
JP (1) JP2008138804A (en)

Similar Documents

Publication Publication Date Title
JP2009108963A (en) Rolling member
JPH01220720A (en) Rolling bearing and manufacturing method therefor
KR101940385B1 (en) Tilting segment for a shaft bearing device, and shaft bearing device
US6102580A (en) Axial-thrust bearing with improved lubricant flow
JP2009121659A (en) Rolling member
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
CN103671556A (en) Rolling bearing
JP2009115187A (en) Rolling member
JP2008138803A (en) Rolling member
JP2009121554A (en) Rolling member
CN104067012A (en) Sliding member
JP2008138804A (en) Rolling member
JP2008164055A (en) Rolling member
JP2006250222A (en) Thrust roller bearing
JP2008240827A (en) Rolling bearing
JP2006105323A (en) Ball bearing
JP2008164058A (en) Rolling member
JP2016114120A (en) Rolling bearing
CN106050930B (en) Rolling element bearing
JP2008298144A (en) Method of processing of rolling contact surface
JP2006316933A (en) Rolling bearing
JP2008164056A (en) Rolling member
JP2006322504A (en) Tapered roller bearing
JP2008038770A (en) Pump device
JP2008164054A (en) Rolling member