JP2008138460A - Method of reinforcing column standing in water - Google Patents

Method of reinforcing column standing in water Download PDF

Info

Publication number
JP2008138460A
JP2008138460A JP2006326580A JP2006326580A JP2008138460A JP 2008138460 A JP2008138460 A JP 2008138460A JP 2006326580 A JP2006326580 A JP 2006326580A JP 2006326580 A JP2006326580 A JP 2006326580A JP 2008138460 A JP2008138460 A JP 2008138460A
Authority
JP
Japan
Prior art keywords
reinforcing layer
reinforcing
column
water
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326580A
Other languages
Japanese (ja)
Inventor
Takahiro Matsui
孝洋 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006326580A priority Critical patent/JP2008138460A/en
Publication of JP2008138460A publication Critical patent/JP2008138460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing method for reinforcing even a column standing in water, in a manner easily bringing materials in the field at a low cost and in a short construction period, without carrying out underwater construction or large-scale cutoff works, and without providing a special construction machine. <P>SOLUTION: The reinforcing method is provided for reinforcing the column standing in water, specifically a reinforcement target portion which is partly located in water, and characterized by carrying out the following (A), (B), (C), and (D) steps. In the step (A), a reinforcing layer is formed on the periphery of the column at a height higher than a water level. In the step (B), a water cutoff material for preventing infiltration of water into a gap between the reinforcing layer and the column, is set at a lower portion of the reinforcing layer. In the step (C), the reinforcing layer and the water cutoff material are lowered to the reinforcement target portion. In the step (D), a filler for connecting the reinforcing layer and the column together in one body, is filled in the gap between the reinforcing layer and the column. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に既設の水中に立脚する橋脚の耐力不足を補い、その強度を向上するための新規な柱の補強方法に関するものである。   The present invention mainly relates to a novel column reinforcing method for compensating for a lack of proof strength of an existing pier that stands in water and improving its strength.

阪神大震災以降、橋梁の橋脚などの柱部材の耐力不足が各地で指摘され、それらの補強方法としてその外周をコンクリート、鋼板や繊維強化プラスチックで覆う補強工法が用いられている。   Since the Great Hanshin Earthquake, lack of strength of pillar members such as bridge piers has been pointed out in various places, and the reinforcement method of covering the outer periphery with concrete, steel plate or fiber reinforced plastic is used.

しかしながら、水中に立脚する柱や橋脚の場合、法規上の制限や、あるいは技術的、コスト的などの様々な問題があるため、補強作業が進んでいないのが現状である。例えば、鉄筋コンクリート巻き立てによる補強は、補強コンクリートの厚みが25cm程度と大きくなる。特に河川の場合、河川流下能力の減少を考慮して、河川を管理する省庁や地方自治体などの河川管理者が許可しないケースが多い。   However, in the case of pillars and piers that stand in water, the current situation is that reinforcement work is not progressing due to various problems such as legal restrictions and technical and cost problems. For example, reinforcement by reinforced concrete winding increases the thickness of the reinforced concrete to about 25 cm. In particular, in the case of rivers, there are many cases where river managers such as ministries and local governments managing rivers do not permit in consideration of a decrease in river flow capacity.

すなわち、河川管理者は河川の流水阻害による洪水や堤体破壊などの問題を発生させないために、橋脚の河積阻害率を定めており、それを上回る補強は認可しにくいのである。ところが、既設橋脚の多くは、既にその定められた河積阻害率ぎりぎりの構造寸法にて建設されており、さらに鉄筋コンクリートによる補強をする余裕がないのである。   In other words, river managers set the rate of hindrance for bridge piers in order to prevent problems such as flooding and breakage due to river flow inhibition, and it is difficult to approve any reinforcement beyond that. However, many of the existing piers have already been constructed with the structural dimensions that are just below the established river volume inhibition rate, and there is no room for reinforcement with reinforced concrete.

鋼板巻き立てによる補強は、コンクリートほどの厚みを必要としないため、河積阻害率の問題はさほど発生しない。しかしながら、鉄板の腐食を防止するため、その表面には防錆塗料とそれを保護する耐候性塗料とを塗り重ねる必要があるが、両塗料の塗膜は使用経過に伴い剥離する恐れがある。剥離状態で放置した場合、鋼板が腐食して補強効果が著しく低下することが懸念されるため、定期的に点検・再塗装をする必要がある。さらに水中での再塗装は容易でなく、再塗装のコストが高くつくという問題がある。したがって、鋼板巻き立てによる補強も水中に立脚する橋脚ではほとんど採用されていないのが現状である。   Reinforcing steel plates does not require the same thickness as concrete, so the problem of the river volume inhibition rate does not occur so much. However, in order to prevent corrosion of the iron plate, it is necessary to recoat the surface with a rust-preventive paint and a weather-resistant paint that protects it, but the coating films of both paints may peel off over the course of use. When left in a peeled state, there is a concern that the steel sheet will corrode and the reinforcing effect will be significantly reduced, so it is necessary to periodically inspect and repaint. Furthermore, there is a problem that repainting in water is not easy and the cost of repainting is high. Therefore, the current situation is that the reinforcement by winding the steel plate is hardly adopted in the pier that stands in water.

連続繊維強化プラスチック巻き立てによる補強は、鋼板巻き立てより薄く補強することが可能であり、河積阻害率の問題はほとんど発生しない。さらに材料は腐食をしないため、メンテナンスにかかる手間は鋼板巻き立て補強より少なく、鉄筋コンクリート巻き立て補強と同等である。しかしながら、連続繊維強化プラスチックは、連続繊維シートにマトリックス樹脂を含浸させて連続繊維強化プラスチック補強層を形成させるため、水分に弱いマトリックス樹脂は硬化せず補強層を形成することができない。また、水中で硬化する樹脂もあるが、今のところこの樹脂で形成された連続繊維強化プラスチック巻き立てによる補強効果は確認されておらず、公的に認められていない。さらに、一般的に使用されるエポキシ樹脂に比べてコストも非常に高くなる。したがって、連続繊維強化プラスチック巻き立てによる補強も水中に立脚する橋脚ではほとんど採用されていないのが現状である。   Reinforcement by continuous fiber reinforced plastic winding can be reinforced thinner than steel sheet winding, and there is almost no problem of the river volume inhibition rate. Furthermore, since the material does not corrode, the maintenance work is less than that of the steel sheet winding reinforcement, which is equivalent to the reinforced concrete winding reinforcement. However, since the continuous fiber reinforced plastic impregnates a continuous fiber sheet with a matrix resin to form a continuous fiber reinforced plastic reinforcing layer, the matrix resin weak against moisture cannot be cured and a reinforcing layer cannot be formed. There are also resins that cure in water, but so far the reinforcing effect of the continuous fiber reinforced plastic winding formed with this resin has not been confirmed and has not been publicly recognized. Furthermore, the cost is much higher than that of generally used epoxy resins. Therefore, under the present circumstances, reinforcement by continuous fiber reinforced plastic winding is hardly employed in bridge piers standing in water.

そこで、河積阻害率の問題を生じることなしに、既設の水中に立脚する橋脚補強をするための方法が提案されている(例えば、特許文献1、2参照)。   In view of this, a method for reinforcing a pier that stands in existing water without causing a problem of a river volume inhibition rate has been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、水中作業によって連続繊維シートを橋脚外周に巻き立て、さらに外周に型枠を兼ねた外枠で囲み、脱水後、硬化性樹脂を注入して含浸、硬化させる連続繊維強化プラスチック補強層を形成する方法が開示されている。この外枠は鋼製であるが、直径数mとなる橋脚を囲む外枠となるとため重量も重く、外枠設置には重機が必要となる。さらに外枠は受注生産となるため、鋼板巻き立て補強に比べて材料の汎用性も低く、材料コストが高くなる。しかも水中での設置となるため、外枠はタグボートなどで曳航搬入となり、水上クレーンなどといった特殊な施工機械が必要となる、もしくは近くに陸地がある橋脚のみの限定的な補強となる。さらに、水中作業となるため、施工には一般作業員ではなく、潜水士が必要となる。特に河川の流下状況の施工においては、河の流れが連続繊維シートに抵抗力としてかかり、巻き付け作業が容易でなくなる。したがって、施工方法の制限や工期の延長や施工コストの増大といった課題がある。   Patent Document 1 discloses a continuous fiber reinforced plastic in which a continuous fiber sheet is wound around the pier outer periphery by underwater work, and further surrounded by an outer frame that also serves as a mold, and after dehydration, a curable resin is injected and impregnated and cured. A method of forming a reinforcing layer is disclosed. Although the outer frame is made of steel, the outer frame encloses the pier having a diameter of several meters, so the weight is heavy, and heavy equipment is required for installing the outer frame. Furthermore, since the outer frame is produced upon receipt of order, the versatility of the material is low and the material cost is high compared to steel-winding reinforcement. Moreover, because it is installed underwater, the outer frame is towed in by a tugboat or the like, and a special construction machine such as a water crane is required, or only a pier with a land nearby is limited reinforcement. Furthermore, since it is an underwater work, a diver is required for construction, not a general worker. Especially in the construction of the river flow situation, the river flow is applied as resistance to the continuous fiber sheet, and the winding work is not easy. Therefore, there are problems such as limitation of construction methods, extension of construction period, and increase of construction costs.

特許文献2は、段落としされた河川内橋脚において、河川流下方向に直交する面に角型鋼管などの剛性部材を設置させ、その剛性部材と既設橋脚との定着にアンカーを用いた方法である。水中内での定着アンカーの接合には、締め切り工を実施し、脱水後に作業員が入って施工する、もしくは潜水士をつかって水中で施工するかのどちらかとなる。また、剛性部材として鋼材を使用しており、補強材の寸法も橋脚断面と同程度となるため、かなりの重量となる。この剛性部材は、陸地である工場や施工現場の仮設ヤードなどで組み立てるなどして施工箇所に持ち込むため、水中に立脚する橋脚の場合、タグボートなどで曳航搬入となり、設置には水上クレーンなどといった特殊な施工機械が必要となる、もしくは近くに陸地がある橋脚のみの限定的な補強となる。したがって、施工方法の制限や工期が長くかかる、施工コストが高くなるといった課題がある。   Patent Document 2 is a method in which a rigid member such as a square steel pipe is installed on a surface orthogonal to the river flow direction in a river pier that is set as a paragraph, and an anchor is used for fixing the rigid member and an existing pier. . For joining anchor anchors in the water, a deadline is implemented and either the worker enters after dehydration or construction is performed underwater using a diver. Moreover, since the steel material is used as a rigid member and the dimension of a reinforcing material is also the same level as a bridge pier cross section, it becomes a considerable weight. This rigid member is brought into the construction site by assembling it at a temporary factory or construction site on the land. Construction equipment is required, or limited reinforcement for bridge piers with land nearby. Therefore, there are problems that the construction method is restricted and the construction period is long, and the construction cost is high.

つまり、上記提案の補強方法は、河積阻害率の問題は発生することはないものの、補強資材を特殊に用意する、補強資材搬入が容易でない、施工のために特殊機械が必要である、長期間の施工となる、多大な工事費がかかるといった課題を残している。
特開2006−9336号公報(請求項1、図3) 特開2005−30119号公報(請求項1、図1)
In other words, the proposed reinforcement method does not cause the problem of river blockage rate, but specially prepares the reinforcement material, it is not easy to carry in the reinforcement material, and a special machine is required for the construction. There is still a problem that it takes a lot of construction costs, which is the construction of the period.
JP 2006-9336 A (Claim 1, FIG. 3) JP 2005-30119 A (Claim 1, FIG. 1)

本発明は、上記の問題に鑑みてなされたもので、既存の水中に立脚する柱であっても特別な資材を必要とせず、容易な資材の搬入を可能とし、補強することができ、しかも、河積阻害率の問題を発生することなく、特殊な施工機械を必要とせず、短期間に補強可能な水中に立脚する柱の補強方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and does not require any special material even if it is a pillar that stands in existing water, and can easily carry in the material and can be reinforced. It is an object of the present invention to provide a method for reinforcing a pillar that is erected in water, which does not require a special construction machine, does not cause a problem of river blockage rate, and can be reinforced in a short period of time.

上記課題を解決するため、本発明は、以下の構成を採用するものである。すなわち、
(1)水中に立脚する柱の、補強部位の一部が水中部分を含む補強方法であって、次の(A)、(B)、(C)および(D)の工程を経ることを特徴とする柱の補強方法。
(A)水面よりも高い位置で柱の周囲に補強層を形成する工程、
(B)補強層の下部に柱との間に水の浸入を防ぐための止水材を設置する工程、
(C)補強層と止水材を柱の補強部位まで下降させる工程、
(D)補強層と柱の隙間に該補強層と柱とを一体化するための充填材を充填する工程。
In order to solve the above problems, the present invention employs the following configuration. That is,
(1) A reinforcement method in which a part of a reinforcing part of a column that stands in water includes an underwater part, and is subjected to the following steps (A), (B), (C), and (D) Column reinforcement method.
(A) forming a reinforcing layer around the pillar at a position higher than the water surface;
(B) a step of installing a water stop material for preventing water from entering between the columns at the bottom of the reinforcing layer;
(C) a step of lowering the reinforcing layer and the water stop material to the reinforcing portion of the column,
(D) A step of filling a gap between the reinforcing layer and the column with a filler for integrating the reinforcing layer and the column.

(2)前記補強層が連続繊維強化プラスチックまたは金属材からなることを特徴とする前記(1)に記載の柱の補強方法。   (2) The method for reinforcing a column according to (1), wherein the reinforcing layer is made of continuous fiber reinforced plastic or a metal material.

(3)前記(A)工程において、柱の外周に予め型枠を設置し、当該型枠の外周に補強層を形成した後、前記(C)工程で補強層を移動させるまでの間に前記型枠を取り除くことを特徴とする前記(1)または(2)に記載の柱の補強方法。   (3) In the step (A), after the mold is installed in advance on the outer periphery of the column and the reinforcing layer is formed on the outer periphery of the mold, the process until the reinforcing layer is moved in the step (C) The column reinforcing method according to (1) or (2) above, wherein the formwork is removed.

(4)前記型枠が、補強層と接する面に離型層を有することを特徴とする前記(1)〜(3)のいずれかに記載の柱の補強方法。   (4) The column reinforcing method according to any one of (1) to (3), wherein the mold has a release layer on a surface in contact with the reinforcing layer.

(5)前記(D)工程において、柱と補強層の隙間に、上部から充填材を注入することを特徴とする前記(1)〜(4)のいずれかに記載の柱の補強方法。   (5) The column reinforcing method according to any one of (1) to (4), wherein in the step (D), a filler is injected from above into the gap between the column and the reinforcing layer.

本発明の補強方法によれば、水中作業を行うことなく、特殊な施工機械を必要とせず、水中に立脚し、かつ補強部位の一部が水中部分を含む柱の補強が容易に可能となる。また、使用材料も軽量であるため、人力もしくは軽微なクレーン付トラックなどによって、柱上部に位置する構造物上から材料搬入が簡単である。さらに工期や施工コストの問題を生じる大掛かりな締切り工や搬入作業を実施することがないため、安価で短期間に水中に立脚する柱を補強することが可能となる。   According to the reinforcing method of the present invention, it is possible to easily reinforce a pillar that does not need a special construction machine, does not need a special construction machine, stands in water, and a part of the reinforcing portion includes an underwater part. . Moreover, since the material used is also light, it is easy to carry in the material from above the structure located at the upper part of the column by manpower or a light truck with a crane. Furthermore, since there is no need to carry out large-scale cut-off work or carrying-in work that causes problems in terms of construction period or construction cost, it is possible to reinforce the pillars that stand in water in a short time.

また、補強層と接する型枠表面に離型層を有することで、脱型枠が容易でき、脱型枠にかかる施工時間を短縮することができる。   Moreover, by having a mold release layer on the mold surface in contact with the reinforcing layer, the mold release can be facilitated, and the construction time for the mold release frame can be shortened.

以下、本発明の実施形態を一実施例の図面に基づいて具体的に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings of one example.

本発明によれば、水中に立脚し、補強部位の一部が水中部分を含む既設柱に対して、水面よりも高い位置で柱の周囲に補強層を形成する工程と、補強層の下部に既設柱との間を埋める止水材を設置する工程と、補強層と止水材を柱の補強部位まで下降させる工程と、補強層と柱の隙間に硬化性の材料を充填する工程を経る補強方法である。   According to the present invention, a step of forming a reinforcing layer around the pillar at a position higher than the water surface with respect to an existing pillar that is standing in water and a part of the reinforcing portion includes the underwater part, and a lower part of the reinforcing layer A step of installing a water-stopping material between the existing pillars, a step of lowering the reinforcing layer and the water-stopping material to the reinforcing part of the column, and a step of filling the gap between the reinforcing layer and the column with a curable material It is a reinforcement method.

図1は、本発明に係る水中に立脚し、一部の補強部位が水中部分を含む既設柱の補強方法の一実施形態を示す断面図であり、補強部位(A−AとA’−A’間の範囲)が水面(B−B)を跨ぐ位置にある既設柱1に対して、水面より高い位置にある施工足場上で連続繊維強化プラスチック補強層2を形成した状態の一実施形態を示す断面図である。図2は、一部の補強部位が水中部分を含む既設柱1の補強部位へ連続繊維強化プラスチック補強層2を移動した状態の一実施形態を示す断面図である。図3は、既設柱1の補強部位へ補強層を固定した状態の一実施形態を示す断面図である。図4は、型枠下部の断面図である。図5は、フィルムを有した型枠3と連続繊維強化プラスチック補強層2の断面図である。   FIG. 1 is a cross-sectional view showing an embodiment of a method for reinforcing an existing pillar that is standing in water and includes a portion of the underwater part that is underwater according to the present invention, and includes a reinforcing part (AA and A′-A). An embodiment in which a continuous fiber reinforced plastic reinforcement layer 2 is formed on a construction scaffold located at a position higher than the water surface with respect to the existing pillar 1 located at a position across the water surface (BB). It is sectional drawing shown. FIG. 2 is a cross-sectional view showing an embodiment in which the continuous fiber reinforced plastic reinforcing layer 2 is moved to the reinforcing part of the existing pillar 1 in which a part of the reinforcing part includes an underwater part. FIG. 3 is a cross-sectional view showing an embodiment in a state where a reinforcing layer is fixed to a reinforcing portion of the existing pillar 1. FIG. 4 is a cross-sectional view of the lower part of the formwork. FIG. 5 is a sectional view of the mold 3 having a film and the continuous fiber reinforced plastic reinforcing layer 2.

図1に示すように(A)水面よりも高い位置で既設柱1の周囲に補強層2を形成する工程を経る。   As shown in FIG. 1, (A) a step of forming a reinforcing layer 2 around the existing pillar 1 at a position higher than the water surface is performed.

初めに水中に立脚し、補強部位の一部が水中部分を含む既設柱1に対して、水面(B−B)より上へ突出する空間に、既設柱1の外周面を囲うように施工足場5を設置する。この施工足場5は、例えば水上に簡易的な柱を立てた仮桟橋や、船舶、上部構造物8から吊るしたゴンドラ式足場が挙げられるが、施工足場5の設営が容易、施工足場設置費が安いことからゴンドラ式を用いるのが好ましい。   Construction scaffolding so as to surround the outer peripheral surface of the existing pillar 1 in a space that first stands in water and a part of the reinforcement part protrudes above the water surface (BB) with respect to the existing pillar 1 including the underwater part. 5 is installed. Examples of the construction scaffold 5 include a temporary pier with a simple pillar on the water, a ship, and a gondola type scaffold suspended from the upper structure 8, but the construction scaffold 5 is easy to set up and the construction scaffold installation cost is high. It is preferable to use a gondola type because of its low cost.

次に、上記施工足場5上にて、図4に示すように既設柱1の外周面に補強層を形成するための型枠3を設置する。   Next, on the construction scaffold 5, as shown in FIG. 4, a mold 3 for forming a reinforcing layer on the outer peripheral surface of the existing pillar 1 is installed.

補強層2としては、既設柱の補強効果を得るための材料として、連続繊維強化プラスチックまたは金属材などを挙げることができる。   Examples of the reinforcing layer 2 include a continuous fiber reinforced plastic or a metal material as a material for obtaining the reinforcing effect of the existing columns.

連続繊維強化プラスチックの場合、強化材になる連続繊維シートとしては、炭素繊維シート、アラミド繊維シート、ガラス繊維シート、ポリパラフェニレンベンズオキサゾール(PBO)繊維シートおよび高強度ポリエチレン繊維シートからなる群から選ばれる少なくとも一種の連続繊維が好ましい。中でも引張弾性係数が245kN/mm〜440kN/mmの範囲となる炭素繊維シートを使用することが好ましい。炭素繊維シートは高価ではあるが、連続繊維シートの中でも強度および弾性率に優れるため好ましい。 In the case of continuous fiber reinforced plastic, the continuous fiber sheet used as the reinforcing material is selected from the group consisting of carbon fiber sheet, aramid fiber sheet, glass fiber sheet, polyparaphenylene benzoxazole (PBO) fiber sheet, and high-strength polyethylene fiber sheet. At least one continuous fiber is preferred. Among these it is preferable that the tensile modulus of elasticity using a carbon fiber sheet in the range of 245kN / mm 2 ~440kN / mm 2 . Although a carbon fiber sheet is expensive, it is preferable among continuous fiber sheets because of its excellent strength and elastic modulus.

また、連続繊維強化プラスチック補強層2の母材となる含浸接着樹脂は、例えば、エポキシ系、アクリル系、ウレタン系、ビニルエステル系、ポリエステル系などの種々の硬化性樹脂系の含浸接着剤が挙げられるが、河川の水面上の環境下で早期硬化を考慮すると、アクリル樹脂系の含浸接着剤が好ましい。   Examples of the impregnated adhesive resin used as the base material of the continuous fiber reinforced plastic reinforcing layer 2 include various curable resin-based impregnated adhesives such as epoxy, acrylic, urethane, vinyl ester, and polyester. However, an acrylic resin-based impregnated adhesive is preferable in consideration of early curing in an environment on the water surface of a river.

金属材の場合、構造用鋼材、鋳鉄材、ステンレス材、チタン材、アルミニウム合金材などを用いてもよい。なかでも建設資材で一般的に使われている一般構造用圧延鋼材、溶接構造用圧延鋼材、もしくは溶接構造用耐候性熱間圧延鋼材を用いることが好ましい。なお、金属材を使用する場合、工場などで補強対象柱に合わせた形状および寸法で加工および現場搬入されるため、通常型枠3は不用である。   In the case of a metal material, structural steel material, cast iron material, stainless steel material, titanium material, aluminum alloy material, or the like may be used. Among these, it is preferable to use a general structural rolled steel, a welded structural rolled steel or a welded weathering hot rolled steel generally used in construction materials. In addition, when using a metal material, since it is processed and carried in the field by the shape and dimension matched with the pillar for reinforcement in a factory etc., the normal formwork 3 is unnecessary.

さらに連続繊維強化プラスチックと金属材を比較する。本発明での補強部位の一部が水中部分にあることを考慮すると、金属材で形成された補強層(以後、金属材補強層という)は、腐食することが懸念され、何らかの腐食対策が必要となる。また、金属材補強層は、連続繊維強化プラスチックで形成された補強層(以後、連続繊維強化プラスチック補強層という)に比べて、密度が高いため、補強層自身が重くなるため、補強層を仮固定もしくは吊るす機材が大きくなる。そのため、連続繊維強化プラスチックを用いることがなおさら好ましい。   In addition, we compare continuous fiber reinforced plastics with metal materials. Considering that a part of the reinforcing part in the present invention is in the underwater part, the reinforcing layer formed of a metal material (hereinafter referred to as a metal material reinforcing layer) is concerned about corrosion, and some measures against corrosion are necessary. It becomes. Further, since the metal material reinforcing layer is higher in density than the reinforcing layer formed of continuous fiber reinforced plastic (hereinafter referred to as continuous fiber reinforced plastic reinforcing layer), the reinforcing layer itself becomes heavier. The equipment to be fixed or suspended becomes larger. Therefore, it is even more preferable to use a continuous fiber reinforced plastic.

補強部位(A−AとA’−A’間の範囲)は、例えば「日本道路公団 設計要領第二集 橋梁・擁壁・カルバート編」に記載する既設橋脚の補強設計に準拠して計算された範囲とする。   The reinforcement part (range between AA and A'-A ') is calculated based on the reinforcement design of existing piers described in, for example, “Japan Road Public Corporation Design Guidelines Vol. 2 Bridges, Retaining Walls, and Calverts”. Range.

連続繊維強化プラスチック補強層2の場合、現地で補強層の形状を築くために、型枠3を設置する。型枠3の範囲は、経済性の観点から既設柱1の補強部位(A−AとA’−A’間の範囲)と同じとするのが最も好ましいが、次に行う連続繊維強化プラスチック補強層2の施工性を考慮した場合、天井方向に50cmまでは広めにとってもよい。また型枠3の形状は、河川阻害率を極力小さくすること、充填材7を注入できる幅を残すことから厚み5mm〜10mmとすることが好ましい。   In the case of the continuous fiber reinforced plastic reinforcing layer 2, the formwork 3 is installed in order to build the shape of the reinforcing layer locally. The range of the mold 3 is most preferably the same as the reinforcing part (the range between AA and A′-A ′) of the existing pillar 1 from the viewpoint of economy, but the continuous fiber reinforced plastic reinforcement performed next is performed. In consideration of the workability of the layer 2, it may be wide up to 50 cm in the ceiling direction. Further, the shape of the mold 3 is preferably 5 mm to 10 mm in order to make the river inhibition rate as small as possible and leave a width where the filler 7 can be injected.

次に、型枠3の周囲に、連続繊維強化プラスチック補強層2を形成するために、含浸接着樹脂を塗布し、その上に補強計算によって算定した補強量となる連続繊維シートを貼り付ける。その後、連続繊維シートに接着樹脂を含浸させ、連続繊維強化プラスチック補強層2を形成する。   Next, in order to form the continuous fiber reinforced plastic reinforcement layer 2 around the mold 3, an impregnated adhesive resin is applied, and a continuous fiber sheet having a reinforcement amount calculated by the reinforcement calculation is pasted thereon. Thereafter, the continuous fiber sheet is impregnated with an adhesive resin to form the continuous fiber reinforced plastic reinforcing layer 2.

さらに本発明では、連続繊維強化プラスチック補強層2の形成後の容易な脱型枠を目的として、図5のように型枠3と連続繊維強化プラスチック補強層2の間に離型層6を介在させ、型枠3と簡易的に一体化を行う方法を提案している。この離型層6として油脂やフィルムなどがあるが、連続繊維強化プラスチック補強層2との相性からフィルムを用いることが好ましい。この離型層6のフィルム材質は、ポリエステル、ポリプロピレン、ポリフェニレンサルファイド(PPS)、ポリカーボネート、ポリエチレン、フッ素、シリコンのいずれかであることが好ましいが、東レ(株)製のポリエステルフィルム(例えば「ルミラー」(登録商標))を用いることが好ましい。型枠3とフィルムとの接合には、人間の手で簡単に剥ぐことのできる程度の接着力を有する接着剤もしくは両面テープで、フィルムと連続繊維強化プラスチック補強層2の自重で剥がれない程度に接着させることが好ましい。   Further, in the present invention, for the purpose of easy demolding after the continuous fiber reinforced plastic reinforcing layer 2 is formed, a release layer 6 is interposed between the mold 3 and the continuous fiber reinforced plastic reinforcing layer 2 as shown in FIG. And a method of simply integrating with the mold 3 is proposed. The release layer 6 includes oils and fats and films, but it is preferable to use a film because of compatibility with the continuous fiber reinforced plastic reinforcement layer 2. The film material of the release layer 6 is preferably polyester, polypropylene, polyphenylene sulfide (PPS), polycarbonate, polyethylene, fluorine, or silicon, but a polyester film (for example, “Lumirror”) manufactured by Toray Industries, Inc. (Registered trademark)) is preferably used. For joining the formwork 3 and the film, an adhesive or double-sided tape that has an adhesive strength that can be easily peeled off by human hands, so that the film and the continuous fiber reinforced plastic reinforcing layer 2 cannot be peeled off by their own weight. Adhesion is preferred.

次に図4に示すように、(B)工程である補強層2と既設柱1の隙間を埋める止水材4を設置する工程を経る。   Next, as shown in FIG. 4, a process of installing a water blocking material 4 that fills the gap between the reinforcing layer 2 and the existing pillar 1, which is a process (B), is performed.

この止水材4は後述の(C)で水面下へ下降した際に、既設柱1と補強層2の間に水が浸入することを防ぐために設置するものである。連続繊維強化プラスチック補強層2の場合、型枠3を設置後もしくは連続繊維強化プラスチック補強層2を設置後に、連続繊維強化プラスチック補強層2もしくは型枠3の下部に設置するが、型枠3の設置後に設置することが好ましい。金属材補強層の場合、型枠3を必要としないため、金属材補強層を設置した後に補強層の下部に既設柱1との間を埋める止水材4を設置するか、もしくは、予め工場や加工場などで金属材補強層の下部に設置するが、施工現場での作業手間を省略できることから、予め工場や加工場などで金属材補強層の下部に設置することが好ましい。   The water blocking material 4 is installed to prevent water from entering between the existing pillar 1 and the reinforcing layer 2 when the water blocking material 4 is lowered below the water surface in (C) described later. In the case of the continuous fiber reinforced plastic reinforcing layer 2, after the mold 3 is installed or after the continuous fiber reinforced plastic reinforcing layer 2 is installed, it is installed under the continuous fiber reinforced plastic reinforcing layer 2 or the mold 3. It is preferable to install after installation. In the case of the metal material reinforcing layer, the formwork 3 is not required, and therefore, after the metal material reinforcing layer is installed, a water stop material 4 that is buried between the existing pillars 1 is installed below the reinforcing layer, or in advance a factory However, since it is possible to save work work at the construction site, it is preferable to install it below the metal material reinforcement layer in advance at a factory or processing site.

補強層2と既設柱1の間を埋める止水材4の材質としては、ゴム製、プラスチック樹脂製を用いてもよい。なかでも柔軟性を有するゴム製を用いることが好ましい。   As a material of the water blocking material 4 filling the space between the reinforcing layer 2 and the existing pillar 1, rubber or plastic resin may be used. Among these, it is preferable to use a rubber having flexibility.

次に図2に示すように(C)工程である補強層2を既設柱1の補強部位(A−AとA’−A’間の範囲)に下降する工程を経る。   Next, as shown in FIG. 2, the step (C) of lowering the reinforcing layer 2 to the reinforcing portion of the existing pillar 1 (the range between AA and A′-A ′) is performed.

連続繊維強化プラスチック補強層2の場合、連続繊維強化プラスチック補強層2と型枠3を分離させ、既設柱1と連続繊維強化プラスチック補強層2との間に空間を設ける。脱型枠後に連続繊維強化プラスチック補強層2がずり落ちないように、上部構造物8や滑車などを使って吊るしておく。また、連続繊維強化プラスチック補強層2下部にある止水材4と既設柱1が完全に密着していることを確認し、徐々に既設柱1の補強部位(A−AとA’−A’間の範囲)まで下降させる。   In the case of the continuous fiber reinforced plastic reinforcing layer 2, the continuous fiber reinforced plastic reinforcing layer 2 and the formwork 3 are separated, and a space is provided between the existing pillar 1 and the continuous fiber reinforced plastic reinforcing layer 2. The continuous fiber reinforced plastic reinforcing layer 2 is suspended by using the upper structure 8 or a pulley so that the continuous fiber reinforced plastic reinforcing layer 2 does not slide down after the demolding frame. In addition, it is confirmed that the water stop material 4 and the existing pillar 1 at the lower part of the continuous fiber reinforced plastic reinforcing layer 2 are in close contact with each other, and gradually the reinforcing portions (AA and A′-A ′) of the existing pillar 1 To the range between).

金属材補強層の場合、金属材補強層下部にある止水材4と既設柱1が完全に密着していることを確認し、徐々に既設柱1の補強部位(A−AとA’−A’間の範囲)まで下降させる。   In the case of a metal material reinforcement layer, it is confirmed that the water stop material 4 and the existing pillar 1 at the lower part of the metal material reinforcement layer are completely in close contact with each other, and gradually the reinforcement part of the existing pillar 1 (AA and A′− (Range between A ').

最後に図3に示すように、(D)工程である補強層2と既設柱1の隙間に充填材を充填する工程を経る。   Finally, as shown in FIG. 3, the step (D) of filling the gap between the reinforcing layer 2 and the existing pillar 1 with a filler is performed.

補強層と既設柱1を完全固定するために、既設柱1と補強層2の間に出来た隙間に充填材7を充填し、既設柱1と一体化を行う。   In order to completely fix the reinforcing layer and the existing pillar 1, the gap formed between the existing pillar 1 and the reinforcing layer 2 is filled with the filler 7 and integrated with the existing pillar 1.

連続繊維強化プラスチック補強層2の場合、連続繊維強化プラスチック補強層2と既設柱1とを一体化するために、両者の隙間に硬化性の材料などの充填材7を充填する。この硬化性の材料としては、例えばエポキシ樹脂などの硬化性樹脂を主成分とするものや、あるいはセメント、コンクリート、モルタル、発泡性コンクリート、発泡性モルタルなどを用いてもよいが、既設柱1とのなじみ、コスト、充填能力を考慮すると発泡性コンクリートや発泡性モルタルを用いるのが好ましい。   In the case of the continuous fiber reinforced plastic reinforcing layer 2, in order to integrate the continuous fiber reinforced plastic reinforcing layer 2 and the existing pillar 1, a filler 7 such as a curable material is filled in a gap therebetween. As the curable material, for example, a material mainly composed of a curable resin such as an epoxy resin, or cement, concrete, mortar, expandable concrete, expandable mortar, or the like may be used. Considering familiarity, cost, and filling capacity, it is preferable to use expandable concrete or expandable mortar.

金属材補強層の場合、金属材補強層に孔を開け、アンカーボルトを用いて既設柱1に定着させ、その後、アンカーボルトと金属材補強層を溶接で固定させた後に、金属材補強層と既設柱1の隙間に硬化性の材料などの充填材7を充填する。硬化性の材料としては、例えばエポキシ樹脂などの硬化性樹脂を主成分とするものや、あるいはセメント、コンクリート、モルタル、発泡性コンクリート、発泡性モルタルなどを用いてもよいが、既設柱1とのなじみ、コスト、充填能力を考慮すると発泡性コンクリートや発泡性モルタルを用いるのが好ましい。   In the case of a metal material reinforcing layer, a hole is made in the metal material reinforcing layer and fixed to the existing pillar 1 using an anchor bolt, and then the anchor bolt and the metal material reinforcing layer are fixed by welding, The gap between the existing pillars 1 is filled with a filler 7 such as a curable material. As the curable material, for example, a material mainly composed of a curable resin such as an epoxy resin, or cement, concrete, mortar, expandable concrete, expandable mortar, or the like may be used. In consideration of familiarity, cost, and filling capacity, it is preferable to use expandable concrete or expandable mortar.

既設柱の水面より高い位置にある施工足場上で連続繊維強化プラスチック補強層を形成した断面図である。It is sectional drawing which formed the continuous fiber reinforced plastic reinforcement layer on the construction scaffold in the position higher than the water surface of an existing pillar. 一部の補強部位が水中部分を含む既設柱の補強部位へ連続繊維強化プラスチック補強層を下降した断面図である。It is sectional drawing which descended the continuous fiber reinforced plastic reinforcement layer to the reinforcement site | part of the existing pillar in which one reinforcement site | part contains an underwater part. 水中に立脚する既設柱へ連続繊維強化プラスチック補強層を固定した断面図である。It is sectional drawing which fixed the continuous fiber reinforced plastic reinforcement layer to the existing pillar which stands in water. 型枠下面の断面図である。It is sectional drawing of a mold frame lower surface. フィルムを有した型枠と連続繊維強化プラスチック補強層の断面図である。It is sectional drawing of a formwork and a continuous fiber reinforced plastic reinforcement layer which have a film.

符号の説明Explanation of symbols

1:既設柱
2:補強層
3:型枠
4:止水材
5:施工足場
6:離型層
7:硬化性の充填材
8:上部構造物
A−A:補強部位の上端位置
A’−A’:補強部位の下端位置
B−B:水面位置
1: Existing column 2: Reinforcement layer 3: Formwork 4: Water-stopping material 5: Construction scaffold 6: Release layer 7: Curable filler 8: Upper structure AA: Upper end position A′- of the reinforcement part A ′: Lower end position of the reinforcing part BB: Water surface position

Claims (5)

水中に立脚する柱の、補強部位の一部が水中部分を含む補強方法であって、次の(A)、(B)、(C)および(D)の工程を経ることを特徴とする柱の補強方法。
(A)水面よりも高い位置で柱の周囲に補強層を形成する工程、
(B)補強層の下部に柱との間に水の浸入を防ぐための止水材を設置する工程、
(C)補強層と止水材を柱の補強部位まで下降させる工程、
(D)補強層と柱の隙間に該補強層と柱とを一体化するための充填材を充填する工程。
A column of a pillar that stands in water is a reinforcement method in which a part of the reinforcement part includes an underwater part, and the column is characterized by undergoing the following steps (A), (B), (C), and (D) Reinforcement method.
(A) forming a reinforcing layer around the pillar at a position higher than the water surface;
(B) a step of installing a water stop material for preventing water from entering between the columns at the bottom of the reinforcing layer;
(C) a step of lowering the reinforcing layer and the water stop material to the reinforcing portion of the column,
(D) A step of filling a gap between the reinforcing layer and the column with a filler for integrating the reinforcing layer and the column.
前記補強層が連続繊維強化プラスチックまたは金属材からなることを特徴とする請求項1に記載の柱の補強方法。 The column reinforcing method according to claim 1, wherein the reinforcing layer is made of a continuous fiber reinforced plastic or a metal material. 前記(A)工程において、柱の外周に予め型枠を設置し、当該型枠の外周に補強層を形成した後、前記(C)工程で補強層を移動させるまでの間に前記型枠を取り除くことを特徴とする請求項1または2に記載の柱の補強方法。 In the step (A), after the mold is set in advance on the outer periphery of the column and the reinforcing layer is formed on the outer periphery of the mold, the mold is moved until the reinforcing layer is moved in the step (C). The column reinforcing method according to claim 1, wherein the column reinforcing method is removed. 前記型枠が、補強層と接する面に離型層を有することを特徴とする請求項1〜3のいずれかに記載の柱の補強方法。 The column reinforcing method according to claim 1, wherein the mold has a release layer on a surface in contact with the reinforcing layer. 前記(D)工程において、柱と補強層の隙間に、上部から充填材を注入することを特徴とする請求項1〜4のいずれかに記載の柱の補強方法。 5. The column reinforcing method according to claim 1, wherein, in the step (D), a filler is injected from above into a gap between the column and the reinforcing layer.
JP2006326580A 2006-12-04 2006-12-04 Method of reinforcing column standing in water Pending JP2008138460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326580A JP2008138460A (en) 2006-12-04 2006-12-04 Method of reinforcing column standing in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326580A JP2008138460A (en) 2006-12-04 2006-12-04 Method of reinforcing column standing in water

Publications (1)

Publication Number Publication Date
JP2008138460A true JP2008138460A (en) 2008-06-19

Family

ID=39600220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326580A Pending JP2008138460A (en) 2006-12-04 2006-12-04 Method of reinforcing column standing in water

Country Status (1)

Country Link
JP (1) JP2008138460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167473A (en) * 2011-02-14 2012-09-06 Oriental Shiraishi Corp Reinforcement structure and reinforcement method of columnar structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167473A (en) * 2011-02-14 2012-09-06 Oriental Shiraishi Corp Reinforcement structure and reinforcement method of columnar structure

Similar Documents

Publication Publication Date Title
US8650831B2 (en) Reconstruction methods for structural elements
WO2022037219A1 (en) Grouting-free dry-type prestressed bolt segment-assembled prefabricated concrete tower
JP6802748B2 (en) Reinforcement and fixing method and reinforcement and fixing structure
US8272181B2 (en) Grout sleeve for foundation anchor bolts and method for protection of anchor bolts for a vertical structure, including wind turbines
JP6619204B2 (en) Deadline method and water barrier structure
AU2021106549B4 (en) A construction method for an unbonded prestressed large-diameter reinforced-concrete thin-walled circular tank
JP2009057713A (en) Wind power generation hybrid tower, and its construction method
CN109281250B (en) Arch ring linearity and prestress control construction method for deck type external cable multi-arch bridge
KR20130143096A (en) Mounting base
JP2022504053A (en) TP-free monopile and its formation method
KR20110139482A (en) Ocean pile having frp pipe for splash zone corrosion protection and construction method thereof
CN104405165B (en) The assembled mixing station storage bin partition wall of a kind of repeatable utilization and construction method thereof
CN110565676B (en) Cantilever type tower crane foundation structure and construction method thereof
JP2007009482A (en) Reinforcing structure and reinforcing method of concrete structure
JP5001399B2 (en) Foundation member for outdoor equipment installation and fixing method for foundation member
JP6027389B2 (en) Foundation structure built using the frame of an existing structure
WO2021189751A1 (en) Prestress string annular support system, and deformation control method thereof
CA2590516C (en) Method and apparatus for securing a scaffold to a building
JP2010189857A (en) Concrete structure reinforcing structure
JP2008138460A (en) Method of reinforcing column standing in water
CN202969414U (en) Bridge-culvert foundation
JP3975240B2 (en) Renovation method for high structures
JP3228524U (en) Anticorrosion steel pipe column
JP2006152635A (en) Omnidirectional earthquake resistance reinforcing method of pier in existing bridge and earthquake resistance reinforcing structure
JPH11241314A (en) Reinforcing construction method of underwater structure