JP2008137949A - Manufacturing method of acrolein - Google Patents

Manufacturing method of acrolein Download PDF

Info

Publication number
JP2008137949A
JP2008137949A JP2006325882A JP2006325882A JP2008137949A JP 2008137949 A JP2008137949 A JP 2008137949A JP 2006325882 A JP2006325882 A JP 2006325882A JP 2006325882 A JP2006325882 A JP 2006325882A JP 2008137949 A JP2008137949 A JP 2008137949A
Authority
JP
Japan
Prior art keywords
glycerin
acrolein
gas
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006325882A
Other languages
Japanese (ja)
Other versions
JP4224097B2 (en
Inventor
Yoshio Arita
佳生 有田
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006325882A priority Critical patent/JP4224097B2/en
Priority to EP07832694.9A priority patent/EP2103590A4/en
Priority to PCT/JP2007/072972 priority patent/WO2008066082A1/en
Priority to US12/312,883 priority patent/US7951978B2/en
Priority to CN200780044156.8A priority patent/CN101541727B/en
Publication of JP2008137949A publication Critical patent/JP2008137949A/en
Application granted granted Critical
Publication of JP4224097B2 publication Critical patent/JP4224097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economically advantageous method for manufacturing acrolein in a high yield using glycerin of high concentration as a raw material. <P>SOLUTION: Acrolein is manufactured by subjecting glycerin to a dehydration reaction under a reduced pressure condition. That is, the manufacturing method of acrolein comprises forming acrolein from glycerin using a solid catalyst in a gas phase reaction, where the reaction is carried out under a condition of a pressure at an inlet of the reactor of at least 1 kPa and at most 90 kPa. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、グリセリン脱水用反応に関し、特にグリセリンの脱水によるアクロレイン製造に関するものである。   The present invention relates to a reaction for dehydration of glycerin, and particularly to acrolein production by dehydration of glycerin.

グリセリンの利用の一態様としては、グリセリンをアクロレインの原料に使用することが挙げられる。アクロレインは1,3−プロパンジオール、メチオニン、アクリル酸、3−メチルプロピオンアルデヒド等のアクロレイン誘導体の原料として使用される有用な化合物である。   One embodiment of the use of glycerin includes the use of glycerin as a raw material for acrolein. Acrolein is a useful compound used as a raw material for acrolein derivatives such as 1,3-propanediol, methionine, acrylic acid, and 3-methylpropionaldehyde.

これまで、グリセリンを原料にしたアクロレインの製造方法はすでに知られており、例えば、常圧の気相条件でグリセリン濃度50質量%以下(反応器入口ガス組成でグリセリン濃度16モル%以下)としたグリセリン水溶液を原料としたものであり、グリセリンに比べ多量の水を反応器に供給し反応を実施している(特許文献1参照)。   So far, a process for producing acrolein using glycerin as a raw material has already been known. For example, a glycerin concentration of 50% by mass or less under a normal pressure gas phase condition (a glycerin concentration of 16 mol% or less in a reactor inlet gas composition). A glycerin aqueous solution is used as a raw material, and a larger amount of water than glycerin is supplied to the reactor to carry out the reaction (see Patent Document 1).

また、グリセリン原料として気相脱水しアクロレインを製造し、引き続き2段目の酸化反応を実施することでアクリル酸を製造する方法が開示されている。1段目のグリセリン原料として気相脱水しアクロレインを製造する反応は、常圧の気相条件でグリセリン原料に添加する水量を50質量%以下と規定はされているものの、反応器に供給される反応器入口ガスは、窒素などの不活性ガスを加え、不活性ガス濃度が50モル%以上になる条件(反応器入口ガス組成でグリセリン濃度10〜14モル%)で反応を実施している(特許文献2参照)。   Also disclosed is a method for producing acrylic acid by producing acrolein by vapor phase dehydration as a glycerin raw material, and subsequently carrying out a second stage oxidation reaction. The reaction for producing acrolein by vapor-phase dehydration as the first-stage glycerin raw material is supplied to the reactor although the amount of water added to the glycerin raw material under normal-pressure gas-phase conditions is regulated to 50 mass% or less. As the reactor inlet gas, an inert gas such as nitrogen is added, and the reaction is carried out under the condition that the inert gas concentration becomes 50 mol% or more (glycerin concentration of 10 to 14 mol% in the reactor inlet gas composition) ( Patent Document 2).

水を添加せずにヘリウムガスを希釈ガスとして使用しグリセリンのみを原料した反応も開示されている。明確な収率の記載は無いが、その収量は不十分である(非特許文献1参照)。   A reaction using only glycerin using helium gas as a diluent gas without adding water is also disclosed. Although there is no description of a clear yield, the yield is inadequate (refer nonpatent literature 1).

一般的に、反応原料を高濃度にすることで、生産性の向上や反応器サイズを小さくできることにより固定費の削減、原料の蒸発、加熱、製品の分離精製などに要する変動費の削減が見込め、低濃度原料を使用する場合に比べ多くの利点が予想される。   In general, by increasing the concentration of the reaction raw material, it is possible to reduce fixed costs by reducing productivity and reducing the reactor size, reducing variable costs required for material evaporation, heating, product separation and purification, etc. Many advantages are expected compared to the case of using low concentration raw materials.

特許文献および非特許文献に示された反応器入口ガス組成のように低濃度グリセリンガスを原料とする場合は、生産性の低下や、反応器サイズが大きくなることによる設備費の増加などが懸念される。   When using low-concentration glycerin gas as the raw material of the reactor inlet gas composition shown in the patent literature and non-patent literature, there is concern about the decrease in productivity and the increase in equipment cost due to the increase in reactor size. Is done.

更に、特許文献1および2に示された低濃度のグリセリン水溶液原料として気相反応を行うためには、多量の水を蒸発させるために多くのエネルギーを必要とするばかりでなく、得られたガス状生成物からアクロレインを得るために凝縮捕集する際にも、多量の水蒸気を凝縮させることになり、捕集工程においても多くのエネルギーを必要とする問題点がある。   Furthermore, in order to perform a gas phase reaction as a low concentration glycerin aqueous solution raw material shown in Patent Documents 1 and 2, not only a large amount of energy is required to evaporate a large amount of water, but also the obtained gas When condensing and collecting in order to obtain acrolein from the gaseous product, a large amount of water vapor is condensed, and there is a problem that a large amount of energy is required in the collecting process.

また、非特許文献1に示されたように、ヘリウムガスのような非凝縮ガスを原料ガスに加えた場合、生成物であるアクロレインを凝縮捕集する際にアクロレインの飛散によるロスも懸念される。それらに加えてアクロレイン収率、触媒寿命の面からさらなる改善が望まれている。   In addition, as shown in Non-Patent Document 1, when a non-condensable gas such as helium gas is added to the raw material gas, there is a concern about loss due to scattering of acrolein when condensing and collecting the product acrolein. . In addition to these, further improvements are desired in terms of acrolein yield and catalyst life.

しかし、これらの文献には反応を減圧条件で実施する効果については触れられていない。また、グリセリンからのアクロレイン製造に際して、どのような反応条件を選定すれば、生成物であるアクロレインをより高い収率で製造できるか、生成したアクロレインの捕集効率が向上するか、さらに、工業的見地から生産性を向上させるために、反応収率を落とさずにグリセリン濃度を高められるかについての記述も示唆も無い。   However, these documents do not mention the effect of carrying out the reaction under reduced pressure conditions. In addition, when producing acrolein from glycerin, what kind of reaction conditions should be selected to produce the product acrolein in a higher yield, improve the collection efficiency of the produced acrolein, There is no description or suggestion as to whether the glycerin concentration can be increased without reducing the reaction yield in order to improve productivity from the standpoint.

国際公開WO2006−087084号公報International Publication WO2006-070884 特開2005−213225号公報JP 2005-213225 A Le H.Dao,Reaction of Model Compounds of Biomass−Pyrolysis Oils Over ZSM−5 Zeolite Catalysts,AmericarChemical Society,1988,376,p.32 8−341Le H. Dao, Reaction of Models Compounds of Biomass-Pyrolysis Oils Over ZSM-5 Zeolites Catalysts, American Chemical Society, 1988, 376, p. 32 8-341

上記事情に鑑み、本発明はグリセリンを脱水しアクロレインを製造する際に、高濃度グリセリン原料を使用することで、高効率にアクロレインを製造できる方法とともに、アクロレイン収率および触媒寿命を改善させる方法の提供を目的としている。   In view of the above circumstances, the present invention provides a method for improving acrolein yield and catalyst life as well as a method for producing acrolein with high efficiency by using a high-concentration glycerin raw material when dehydrating glycerin to produce acrolein. The purpose is to provide.

本発明は、工業的実施を想定したときに、生産性が向上するグリセリン高濃度反応条件について鋭意検討した結果、減圧反応条件を選定すれば高濃度グリセリンからのアクロレイン製造において生産性が向上することを見出した。   As a result of intensive investigations on glycerin high-concentration reaction conditions that improve productivity when assuming industrial implementation, the present invention improves productivity in the production of acrolein from high-concentration glycerin if reduced pressure reaction conditions are selected. I found.

すなわち、常圧条件で、高濃度グリセリンを原料とし気相脱水反応によりアクロレインを製造した場合、低濃度条件に比較しアクロレイン収率の低下が起こる。これに対して、特定の減圧条件とし、原料のグリセリンガスに同伴される希釈(同伴)ガスである、非凝縮性ガスおよび凝縮性ガスについては、これらを使用せずに高濃度グリセリンを原料としアクロレインを製造してもアクロレイン収率の低下を防ぐことができることを見出し本発明の完成に至った。   That is, when acrolein is produced by vapor phase dehydration reaction using high-concentration glycerin as a raw material under normal pressure conditions, the acrolein yield is reduced as compared with low-concentration conditions. In contrast, for non-condensable gas and condensable gas, which are dilute (entrained) gas accompanied by the glycerin gas of the raw material under specific decompression conditions, high concentration glycerin is used as the raw material without using them. It has been found that even if acrolein is produced, a decrease in acrolein yield can be prevented, and the present invention has been completed.

通常の脱水反応においては反応系に共存する水は反応に悪影響を及ぼすなど懸念されるが、グリセリンを脱水しアクロレインを製造する反応においては、前記特許文献にも示されているとおり、水が共存することがアクロレイン収率や触媒寿命などの面から望ましく、これは本反応に特有の現象である。   In normal dehydration reactions, water coexisting in the reaction system is a concern, such as adversely affecting the reaction. However, in the reaction of dehydrating glycerin to produce acrolein, water is also present as shown in the patent document. This is desirable from the standpoint of acrolein yield and catalyst life, which is a phenomenon peculiar to this reaction.

しかし、本発明の方法によれば、グリセリンからアクロレインの気相脱水反応を減圧条件で実施することにより、高濃度グリセリン原料を使用して水が共存しない条件においても収率を低下させること無く高収率でアクロレインを製造することができる。   However, according to the method of the present invention, by carrying out the gas phase dehydration reaction of glycerin to acrolein under reduced pressure conditions, a high concentration glycerin raw material can be used without reducing the yield even under conditions where water does not coexist. Acrolein can be produced in a yield.

このため、特許文献で示されたような多量の水の蒸発および液化に伴う多大なエネルギー損失が無く経済的に高効率でアクロレインが製造できる。また、生産性の向上にともない、反応器サイズをコンパクトにすることができるので設備費の低減も見込むことができる。   For this reason, acrolein can be produced economically with high efficiency without the enormous energy loss accompanying evaporation and liquefaction of a large amount of water as shown in the patent literature. Further, as the productivity is improved, the reactor size can be made compact, so that the equipment cost can be reduced.

常圧条件で窒素などの不活性ガスをキャリアーガスとして反応する場合、その濃度制御は難しく、一般的にはグリセリン蒸発器でグリセリンガスを発生させ、発生させたガスは流量コントロールバルブを通して所定量のグリセリンガスを供給する。その後にキャリアーガスと混合し反応器入口ガスを得る。その際、流量コントロールバルブの圧力損失も無視できないことから蒸発器内の圧力は加圧条件となり、それに応じてグリセリンの沸点が上昇するため、蒸発器の温度は高くなり、実際上は300℃以上の温度が必要と予想される。   When an inert gas such as nitrogen is reacted as a carrier gas under normal pressure conditions, it is difficult to control the concentration. Generally, glycerin gas is generated by a glycerin evaporator, and the generated gas passes through a flow rate control valve. Supply glycerin gas. Thereafter, it is mixed with a carrier gas to obtain a reactor inlet gas. At that time, since the pressure loss of the flow control valve cannot be ignored, the pressure in the evaporator becomes a pressurizing condition, and the boiling point of glycerin rises accordingly. Is expected to be required.

これに対して、減圧反応条件においては、減圧度に応じてグリセリン蒸発器の温度を低下させる事が可能となり、蒸発器部分でのグリセリンの分解、重合などによるグリセリンのロスの低減効果を見込む事ができる。   On the other hand, under the reduced pressure reaction conditions, the temperature of the glycerin evaporator can be lowered according to the degree of decompression, and the effect of reducing the loss of glycerin due to decomposition or polymerization of glycerin in the evaporator part is expected. Can do.

また、凝縮ガス成分である添加水や非凝縮ガス成分である窒素などを供給する必要が無く、触媒層での圧力損失も低下、圧力損失によるアクロレイン収率への悪影響を避ける効果についても期待することができる。   In addition, there is no need to supply additional water, which is a condensed gas component, or nitrogen, which is a non-condensed gas component, and the pressure loss in the catalyst layer is also reduced, and the effect of avoiding the negative impact on the acrolein yield due to pressure loss is also expected be able to.

さらに、窒素などの非凝縮性ガスをキャリアーガスとして共存させる必要がない減圧条件では、アクロレインをより容易に凝縮捕集させることができ、より高効率にアクロレインを製造可能となる。   Furthermore, acrolein can be more easily condensed and collected under reduced pressure conditions in which a non-condensable gas such as nitrogen does not need to coexist as a carrier gas, and acrolein can be produced with higher efficiency.

本発明に係るグリセリンの脱水反応によるアクロレイン製造の方法を実施形態に基づき説明する。   A method for producing acrolein by dehydration reaction of glycerin according to the present invention will be described based on an embodiment.

(反応形式)
減圧条件で実施するグリセリンの脱水反応によるアクロレイン製造の反応は、気相反応条件で好適に実施することができる。気相反応の形式は固定床流通形式および流動床流通形式など任意に選択できるが、固定床流通形式が最も簡便で好ましい。
(Reaction format)
The reaction for producing acrolein by dehydration reaction of glycerin performed under reduced pressure conditions can be preferably performed under gas phase reaction conditions. The form of the gas phase reaction can be arbitrarily selected, such as a fixed bed flow form and a fluid bed flow form, but the fixed bed flow form is the simplest and preferable.

固定床反応器に流通させる反応器入口ガスはグリセリン濃度を調整するために希釈(同伴)ガスを含んでいても良い。特に必要なければ希釈ガスを加える必要はない。   The reactor inlet gas that is circulated through the fixed bed reactor may contain a dilute (entrained) gas in order to adjust the glycerin concentration. It is not necessary to add a dilution gas unless particularly necessary.

希釈ガスとしてはグリセリンからアクロレインへの脱水反応に悪影響を与えなければ、凝縮性ガスでも非凝縮性ガスでも任意に使用する事ができるが、アクロレインをより容易に凝縮捕集させる観点から凝縮性ガスの使用が望ましい。   As the diluent gas, any condensable gas or non-condensable gas can be used as long as it does not adversely affect the dehydration reaction from glycerin to acrolein, but condensable gas can be used from the viewpoint of more easily condensing and collecting acrolein. Is desirable.

希釈ガスとして使用できる凝縮性ガスは、アクロレインより高い沸点を有し、常圧条件で200℃以下の沸点を有する化合物のガスであり、例えば水蒸気、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどのアルカン化合物のガス、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼンなどの芳香族化合物のガスを例示することができる。   A condensable gas that can be used as a dilution gas is a gas of a compound having a boiling point higher than that of acrolein and a boiling point of 200 ° C. or less under normal pressure conditions. For example, an alkane compound such as water vapor, hexane, heptane, octane, cyclohexane Examples of the gas include aromatic gases such as gas, benzene, toluene, xylene, mesitylene, and ethylbenzene.

また、非凝縮性ガスとしては、常圧条件で0℃以下の沸点を有する化合物や単体のガスであり、例えば窒素ガス、二酸化炭素ガス、空気などの酸素含有ガス、ヘリウムなどの希ガスをあげることができる。これら凝縮性ガスおよび非凝縮性ガスは単独で使用しても良いし、二種以上の混合ガスとして使用しても良い。   The non-condensable gas is a compound having a boiling point of 0 ° C. or lower under normal pressure conditions or a single gas, for example, nitrogen-containing gas, carbon dioxide gas, oxygen-containing gas such as air, or rare gas such as helium. be able to. These condensable gases and non-condensable gases may be used alone or as a mixture of two or more.

反応圧は任意に設定できるが、1kPa以上90kPa以下、好ましくは、3kPa以上80kPa以下、より好ましくは5kPa以上70kPa以下ととすれば良い。この範囲以下の圧力条件では、気密性の高い反応器などの設備費や製造装置の運転費用に見合うだけの効果が得られない。また、アクロレインの捕集が困難となり収率低下が懸念される。   The reaction pressure can be set arbitrarily, but it may be 1 kPa or more and 90 kPa or less, preferably 3 kPa or more and 80 kPa or less, more preferably 5 kPa or more and 70 kPa or less. Under pressure conditions below this range, it is not possible to obtain an effect that is commensurate with the cost of equipment such as a highly airtight reactor and the operating cost of production equipment. In addition, it is difficult to collect acrolein, and there is a concern about a decrease in yield.

反応器入口ガスにおけるグリセリン濃度は先に示した希釈ガスを使用し任意に設定することができるが、20モル%以上、好ましくは40モル%以上、より好ましくは90モル%以上である。グリセリン濃度をこの範囲内にすれば、アクロレインの生産性の向上ができ、アクロレイン製造に必要なエネルギーを削減できるので好ましい。   The glycerin concentration in the reactor inlet gas can be arbitrarily set using the dilution gas described above, but is 20 mol% or more, preferably 40 mol% or more, more preferably 90 mol% or more. If the glycerin concentration is within this range, it is preferable because productivity of acrolein can be improved and energy required for acrolein production can be reduced.

必要に応じて使用される希釈剤(ガス)使用量は、窒素などの非凝縮性ガスではその濃度が10モル%以下、好ましくは8モル%以下、より好ましくは5モル%以下とすれば良い。また、水などの凝縮性ガスではその濃度が80モル%以下、好ましくは40モル%以下、より好ましくは10モル%以下である。非凝縮性ガス濃度をこの範囲にすれば、ガスを昇温あるいは冷却させる際のエネルギーを削減でき、アクロレインを捕集する際の飛散ロスを低減できるので好ましい。また、凝縮性ガスをこの範囲にすれば非凝縮性ガスの場合と同様にエネルギーを削減できるばかりでなく、希釈剤の分離費用が削減でき好ましい。   The amount of diluent (gas) used as necessary may be 10 mol% or less, preferably 8 mol% or less, more preferably 5 mol% or less for non-condensable gases such as nitrogen. . Further, the concentration of the condensable gas such as water is 80 mol% or less, preferably 40 mol% or less, more preferably 10 mol% or less. If the non-condensable gas concentration is within this range, it is preferable because energy when heating or cooling the gas can be reduced and scattering loss when collecting acrolein can be reduced. In addition, if the condensable gas is within this range, energy can be reduced as in the case of the non-condensable gas, and the separation cost of the diluent can be reduced.

グリセリンを気化させるために必要なグリセリン蒸発器の温度は、蒸発器部分でのグリセリンの分解などによるグリセリンのロスを低減効果するために、下げるほうが好ましい。減圧反応条件においては、減圧度によりグリセリン蒸発器の温度を低減する事ができ、120℃から285℃であると良く、好ましくは160℃から270℃であり、より好ましくは190℃から260℃である。   The temperature of the glycerin evaporator necessary for vaporizing glycerin is preferably lowered in order to reduce the loss of glycerin due to decomposition of glycerin in the evaporator part. Under reduced pressure reaction conditions, the temperature of the glycerin evaporator can be reduced by the degree of reduced pressure, and it may be 120 ° C. to 285 ° C., preferably 160 ° C. to 270 ° C., more preferably 190 ° C. to 260 ° C. is there.

また、反応器入口ガスの流量は、単位触媒容量あたりの常圧換算の反応ガス流量(空間速度、SV)で表すと10〜10000hr−1であると良く、好ましくは30〜5000hr−1、更に好ましくは50〜3000hr−1である。 The flow rate of the reactor inlet gas, the reaction gas flow rate (space velocity, SV) of the atmospheric pressure in terms of per unit catalyst volume may If it is 10~10000Hr -1 Expressed in, preferably 30~5000Hr -1, further Preferably, it is 50 to 3000 hr −1 .

反応ガスを流通させてグリセリンの脱水反応を実施するときの温度は、200〜500℃であると良く、好ましくは、250〜450℃、更に好ましくは300〜400℃である。   The temperature at which the reaction gas is circulated and the dehydration reaction of glycerin is performed is preferably 200 to 500 ° C, preferably 250 to 450 ° C, more preferably 300 to 400 ° C.

(固体触媒)
本発明で使用される固体触媒は常圧条件でグリセリンを気相脱水しアクロレインを製造できるものであれば任意に使用できる。上記触媒例としては、いわゆる固体酸があげられる。固体酸触媒としては、固体酸性を有する化合物であれば良く、(1)結晶性メタロシリケート、(2)金属酸化物、(3)粘土鉱物、(4)鉱酸を担持したもの、(5)リン酸や硫酸の金属塩およびそれらを担持したもの、等が上げられる。
(Solid catalyst)
The solid catalyst used in the present invention can be arbitrarily used as long as it can produce acrolein by vapor-phase dehydration of glycerin under normal pressure conditions. Examples of the catalyst include so-called solid acids. As the solid acid catalyst, any compound having solid acidity may be used. (1) Crystalline metallosilicate, (2) Metal oxide, (3) Clay mineral, (4) Carrying mineral acid, (5) Examples thereof include metal salts of phosphoric acid and sulfuric acid and those carrying them.

(1)結晶性メタロシリケートとしては、Al、B、Fe、Ga等から選ばれる1種または2種以上の元素をT原子とし、その結晶構造としては、LTA、CHA、FER、MFI、MOR、BEA、MTW等が、(2)金属酸化物としては、Al2O3、TiO2、ZrO2、SnO2、V2O5、などの単独の金属酸化物以外に、SiO2−Al2O3、SiO2−TiO2、TiO2−WO3、WO3−ZrO2等の複合酸化物が、(3)粘土鉱物としては、ベントナイト、カオリン、モンモリロナイトなどが、(4)鉱酸を担持したものとしては、リン酸や硫酸をアルミナやシリカ、ジルコニアなどに担持したもの等が、(5)リン酸や硫酸の金属塩としては、MgSO4、Al2(SO4)3、K2SO4、AlPO4、Zr3(PO4)4等が例示される。   (1) As a crystalline metallosilicate, one or more elements selected from Al, B, Fe, Ga and the like are T atoms, and the crystal structure thereof is LTA, CHA, FER, MFI, MOR, BEA, MTW, etc. (2) As the metal oxide, in addition to a single metal oxide such as Al2O3, TiO2, ZrO2, SnO2, V2O5, etc., SiO2-Al2O3, SiO2-TiO2, TiO2-WO3, WO3-ZrO2 (3) As clay minerals, bentonite, kaolin, montmorillonite, etc. (4) As those carrying mineral acids, phosphoric acid or sulfuric acid carried on alumina, silica, zirconia, etc. (5) Metal salts of phosphoric acid and sulfuric acid include MgSO4, Al2 (SO4) 3, K2SO4, AlPO4, Zr3 ( O4) 4 and the like.

具体的には、特許文献1や国際公開WO2006/087083号公報に開示されている固体酸(リン酸、硫酸または酸化タングステンを担持している酸化ジルコニウムなど)を使用することもできる。   Specifically, a solid acid (such as zirconium oxide carrying phosphoric acid, sulfuric acid, or tungsten oxide) disclosed in Patent Document 1 or International Publication WO2006 / 087083 can also be used.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらの実施例のみに限定されるものではない。なお、グリセリン転化率、アクロレイン収率、SV(空間速度)は次の式で算出される値である。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the scope of the present invention is not limited only to these Examples. The glycerin conversion rate, acrolein yield, and SV (space velocity) are values calculated by the following formula.

グリセリン転化率 =(1−(捕集流出物中のグリセリンのモル数)/(30分問で反応器に流入させたグリセリンのモル数))×100
アクロレインの収率 =((捕集流出物中のアクロレインのモル数)/(30分間に反応器に流入させたグリセリンのモル数))×100
SV(空間速度)=(標準条件で換算したガス供給量、L/hr)/(触媒量、L)。
Glycerin conversion rate = (1− (number of moles of glycerin in the collected effluent) / (number of moles of glycerin introduced into the reactor in 30 minutes)) × 100
Yield of acrolein = ((number of moles of acrolein in the collected effluent) / (number of moles of glycerin introduced into the reactor in 30 minutes)) × 100
SV (space velocity) = (gas supply amount converted under standard conditions, L / hr) / (catalyst amount, L).

(触媒調製例1)
次の担持工程、結晶化工程、およびイオン交換工程を実行することにより、各実施例および比較例のH型MFI触媒(T原子がAlであるメタノシリケート成形体)を作製した。
(Catalyst Preparation Example 1)
By executing the following supporting process, crystallization process, and ion exchange process, H-type MFI catalysts (methanosilicate molded bodies in which T atoms are Al) of each Example and Comparative Example were produced.

(担持工程)
1.40gのNaOHと0.47gのNaAlO2を蒸留水15.00gに順次溶解し、更に、10.15gの40質量%水酸化テトラ−n−プロピノレアンモニウム水溶液を蒸留水に添加した。そして、この溶液に蒸留水を加えて、全量が30mlの含浸液を調整した。
(Supporting process)
1.40 g of NaOH and 0.47 g of NaAlO 2 were sequentially dissolved in 15.00 g of distilled water, and 10.15 g of 40 mass% tetra-n-propinoleammonium hydroxide aqueous solution was added to the distilled water. Then, distilled water was added to this solution to prepare an impregnating solution having a total amount of 30 ml.

次に、シリカ成形体にシリカビーズ(富士シリシア化学社製「キャリアクトQ50」、10〜20メッシュ、平均細孔径50nm)を使用し、120℃で1日間乾燥した30gのシリカビーズを含浸液に1時間含浸させた。その後、シリカビーズを100℃の湯浴上に設置した蒸発皿上で乾燥させた後、更に80℃、窒素気流下で7時間乾燥して、結晶化に必要なNa、Al結晶化剤をシリカビーズに担持させ、結晶性メタノシリケート前駆体を得た。   Next, silica beads (“CARTIACT Q50” manufactured by Fuji Silysia Chemical Co., Ltd., 10 to 20 mesh, average pore diameter 50 nm) are used as the silica molded body, and 30 g of silica beads dried at 120 ° C. for 1 day is used as the impregnation liquid. Impregnation for 1 hour. Thereafter, the silica beads were dried on an evaporating dish placed on a 100 ° C. hot water bath, and further dried at 80 ° C. under a nitrogen stream for 7 hours to obtain Na and Al crystallizing agents necessary for crystallization. A crystalline methanosilicate precursor was obtained by supporting it on beads.

(結晶化工程)
担持工程で得た前駆体を容積100mlのテトラフルオロエチレン製のジャケット付坩堝の中空部に配置し、坩堝の底部に1.00gの蒸留水を入れ、この坩堝を180℃の電気炉に8時間静置した。
(Crystallization process)
The precursor obtained in the supporting step is placed in the hollow part of a tetrafluoroethylene jacketed crucible having a volume of 100 ml, and 1.00 g of distilled water is placed at the bottom of the crucible, and this crucible is placed in an electric furnace at 180 ° C. for 8 hours. Left to stand.

(イオン交換工程)
結晶化工程を経た固形物を、60℃の1モル/L硝酸アンモニウム水溶液300gに浸漬して1時間攪拌した後、上澄み液を廃棄した。この操作を複数回繰り返した。その後、固形物を水洗した。
(Ion exchange process)
The solid after the crystallization process was immersed in 300 g of a 1 mol / L ammonium nitrate aqueous solution at 60 ° C. and stirred for 1 hour, and then the supernatant was discarded. This operation was repeated several times. Thereafter, the solid was washed with water.

(焼成工程)
イオン交換工程後の固形物を、空気気流中において540℃で3.5時間焼成した。この焼成により、以下の実施例および比較例で使用したH型MFI触媒を得た。
(Baking process)
The solid after the ion exchange step was baked at 540 ° C. for 3.5 hours in an air stream. By this calcination, an H-type MFI catalyst used in the following Examples and Comparative Examples was obtained.

(実施例1)
減圧条件が可能な固定床反応装置を使用し、次の方法によりグリセリンを脱水し、アクロレインを製造した。
(Example 1)
Using a fixed bed reactor capable of reducing the pressure, glycerol was dehydrated by the following method to produce acrolein.

反応器の入口側には外径3mmのガラス玉を充填した蒸発器を設け、蒸発器の温度制御は蒸発器内に挿入した熱電対で温度をモニターしながら行った。反応圧の制御は真空ポンプと減圧一定装置を使用し、反応器入口に設けた圧力計でモニターしながら行った。   An evaporator filled with glass balls having an outer diameter of 3 mm was provided on the inlet side of the reactor, and the temperature of the evaporator was controlled while monitoring the temperature with a thermocouple inserted in the evaporator. The reaction pressure was controlled using a vacuum pump and a constant pressure reduction device while monitoring with a pressure gauge provided at the reactor inlet.

また、反応器の出口には冷却器を設けた。触媒調製例1で示した触媒15mlをステンレス製反応管(内径10mm、長さ500mm)に充填し、この反応器を360℃の溶融塩浴に浸漬した。反応器内を62kPaまで減圧し、30分間放置した後、80質量%グリセリン水溶液を送液ポンプで蒸発器に供給した。なお、この反応条件において80質量%グリセリン水溶液を蒸発させる際の蒸発器の温度は192℃であった。   A cooler was provided at the outlet of the reactor. 15 ml of the catalyst shown in Catalyst Preparation Example 1 was filled in a stainless steel reaction tube (inner diameter 10 mm, length 500 mm), and this reactor was immersed in a 360 ° C. molten salt bath. After reducing the pressure in the reactor to 62 kPa and allowing it to stand for 30 minutes, an 80 mass% glycerin aqueous solution was supplied to the evaporator with a liquid feed pump. In addition, the temperature of the evaporator at the time of evaporating 80 mass% glycerol aqueous solution on these reaction conditions was 192 degreeC.

80質量%グリセリン水溶液の気化ガスからなる反応器入口ガス(反応器入口ガス組成:グリセリン44モル%、水56モル%)をSV値490hr−1の流量で反応器に流通させた。反応器内に反応器入口ガスを流通させてから0.5〜1時間、2.5〜3時間の間で30分間における流出ガスの全量をドライアイス−メタノールで冷却した受器に捕集し回収した。 Reactor inlet gas (reactor inlet gas composition: glycerin 44 mol%, water 56 mol%) composed of a vaporized gas of an 80 mass% glycerin aqueous solution was circulated through the reactor at a flow rate of SV value 490 hr −1 . After flowing the reactor inlet gas through the reactor, the entire amount of the effluent gas in 30 minutes between 0.5 to 1 hour and 2.5 to 3 hours is collected in a receiver cooled with dry ice-methanol. It was collected.

受器内を常圧に戻し、流出物の一部を採り、ガスクロマトグラフィ(GC)により、流出物の定性および定量分析を行った。GCによる定性分析の結果、グリセリン、アクロレインと共に1−ヒドロキシアセトンなどの副生成物が検出された。また、定量分析結果から、転化率、アクロレイン収率、およびアクロレイン収率を算出した。   The inside of the receiver was returned to normal pressure, a part of the effluent was taken, and qualitative and quantitative analysis of the effluent was performed by gas chromatography (GC). As a result of qualitative analysis by GC, by-products such as 1-hydroxyacetone were detected together with glycerin and acrolein. Further, the conversion rate, acrolein yield, and acrolein yield were calculated from the quantitative analysis results.

得られた反応結果については表1に示した。   The obtained reaction results are shown in Table 1.

(実施例2)
反応器内を27kPaまで減圧し、グリセリン100モル%から成る反応器入口ガスをSV値180hr−1の流量で流通させた以外は実施例1と同様に実施した。得られた反応結果については表1に示した。
(Example 2)
The reaction was carried out in the same manner as in Example 1 except that the pressure in the reactor was reduced to 27 kPa, and the reactor inlet gas consisting of 100 mol% of glycerin was circulated at a flow rate of SV value 180 hr −1 . The obtained reaction results are shown in Table 1.

なお、この反応条件においてグリセリン液を蒸発させる際の蒸発器の温度は244℃であった。   In addition, the temperature of the evaporator at the time of evaporating a glycerol liquid on these reaction conditions was 244 degreeC.

(比較例1)
常圧条件で非凝縮性ガスである窒素ガスを用いて実施例1および2と比較できる条件で反応を行った。窒素ガスをキャリアーガスとする固定床反応装置を使用し、次の方法によりグリセリンを脱水し、アクロレインを製造した。
(Comparative Example 1)
The reaction was carried out under conditions comparable to those of Examples 1 and 2 using nitrogen gas, which is a non-condensable gas, under normal pressure conditions. Using a fixed bed reactor using nitrogen gas as a carrier gas, glycerin was dehydrated by the following method to produce acrolein.

触媒調製例1で示した触媒15mlをステンレス製反応管(内径10mm、長さ500mm)に充填し、この反応器を360℃の溶融塩浴に浸漬した。反応器内に窒素を62ml/minの流量で30分間流通させた後、グリセリン液を送液ポンプで蒸発器に供給した。   15 ml of the catalyst shown in Catalyst Preparation Example 1 was filled in a stainless steel reaction tube (inner diameter 10 mm, length 500 mm), and this reactor was immersed in a 360 ° C. molten salt bath. After circulating nitrogen through the reactor at a flow rate of 62 ml / min for 30 minutes, the glycerin solution was supplied to the evaporator with a feed pump.

なお、この反応条件においてグリセリン液を蒸発させる際の蒸発器の温度は290℃以上であった。   In addition, the temperature of the evaporator at the time of evaporating a glycerol liquid on these reaction conditions was 290 degreeC or more.

得られたグリセリンの気化ガスと窒素からなる反応器入口ガス(反応器入口ガス組成:グリセリン27モル%、窒素73モル%)を650hr−1の流量で流通させた。この反応条件における窒素の分圧分を減圧することで、実施例2に示した条件となる。反応器内に反応器入口ガスを流通させてから0.5〜1時間、2.5〜3時間の間で30分間における流出ガスを水中に吸収し、吸収した液の一部を採り、実施例1に示した方法で流出物の定性および定量分析を行った。 Reactor inlet gas (reactor inlet gas composition: glycerin 27 mol%, nitrogen 73 mol%) composed of the vaporized gas of glycerol and nitrogen was circulated at a flow rate of 650 hr −1 . By reducing the partial pressure of nitrogen under these reaction conditions, the conditions shown in Example 2 are obtained. After flowing the reactor inlet gas through the reactor, the effluent gas for 30 minutes is absorbed in water for 0.5 to 1 hour and 2.5 to 3 hours, and a part of the absorbed liquid is taken and implemented. Qualitative and quantitative analysis of the effluent was performed by the method shown in Example 1.

得られた反応結果については表1に示した。気相反応反応では、原料分圧をあわせればほぼ同じ性能が得られることが通常知られているが、本反応においては、減圧反応条件で特異な効果を見出した。   The obtained reaction results are shown in Table 1. In the gas phase reaction reaction, it is generally known that almost the same performance can be obtained by combining the raw material partial pressures, but in this reaction, a unique effect was found under reduced pressure reaction conditions.

Figure 2008137949
Figure 2008137949

表1に示す通り、グリセリンからのアクロレイン合成の反応においては減圧条件で反応を行うことで高濃度グリセリンガスを原料とし水が共存しない反応条件においても高いアクロレイン収率を得られる事が分かる。 As shown in Table 1, it can be seen that in the reaction of acrolein synthesis from glycerin, a high acrolein yield can be obtained even under reaction conditions in which water is not coexisting using high-concentration glycerin gas as a raw material by performing the reaction under reduced pressure conditions.

本発明の減圧条件でグリセリンの脱水反応によるアクロレインの製造を行うと、水の添加が不要となり、高収率のアクロレインが経済的に効率よく得られる。   When acrolein is produced by dehydration reaction of glycerin under the reduced pressure condition of the present invention, the addition of water becomes unnecessary and a high yield of acrolein can be obtained economically and efficiently.

Claims (4)

固体触媒を用いてグリセリンからアクロレインを生成させる気相反応において、反応器入口の圧力が1kPa以上90kPa以下の条件で反応を行うことを特徴とするアクロレインの製造方法。 A method for producing acrolein, characterized in that, in a gas phase reaction in which acrolein is produced from glycerin using a solid catalyst, the reaction is carried out under a condition where the pressure at the reactor inlet is 1 kPa or more and 90 kPa or less. 反応器入口ガスにおける非凝縮性ガスの濃度が10モル%以下である請求項1記載のアクロレインの製造方法。 The method for producing acrolein according to claim 1, wherein the concentration of the non-condensable gas in the reactor inlet gas is 10 mol% or less. 反応器入口ガスにおけるグリセリン以外の凝縮性ガスの濃度が60モル%以下である請求項1および2記載のアクロレインの製造方法。 The method for producing acrolein according to claim 1 or 2, wherein the concentration of the condensable gas other than glycerin in the reactor inlet gas is 60 mol% or less. グリセリン蒸発器の温度が285℃以下であることを特徴とする請求項1から3記載のアクロレインの製造方法。 The method for producing acrolein according to claim 1, wherein the temperature of the glycerin evaporator is 285 ° C. or lower.
JP2006325882A 2006-12-01 2006-12-01 Acrolein production method Expired - Fee Related JP4224097B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006325882A JP4224097B2 (en) 2006-12-01 2006-12-01 Acrolein production method
EP07832694.9A EP2103590A4 (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition
PCT/JP2007/072972 WO2008066082A1 (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition
US12/312,883 US7951978B2 (en) 2006-12-01 2007-11-28 Process for producing acrolein and glycerin-containing composition
CN200780044156.8A CN101541727B (en) 2006-12-01 2007-11-28 Method for producing acrolein and glycerin-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325882A JP4224097B2 (en) 2006-12-01 2006-12-01 Acrolein production method

Publications (2)

Publication Number Publication Date
JP2008137949A true JP2008137949A (en) 2008-06-19
JP4224097B2 JP4224097B2 (en) 2009-02-12

Family

ID=39599800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325882A Expired - Fee Related JP4224097B2 (en) 2006-12-01 2006-12-01 Acrolein production method

Country Status (2)

Country Link
JP (1) JP4224097B2 (en)
CN (1) CN101541727B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027420A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Preparation of acrolein or aqueous acrolein solution comprises dehydration of a cyclic acetal of glycerol in the presence of a solid catalyst comprising acidic oxides or mixed oxides, natural or synthetic silicate materials
WO2013047479A1 (en) 2011-09-29 2013-04-04 株式会社日本触媒 Method for producing acrolein, acrylic acid, and derivative thereof
JP2013513592A (en) * 2009-12-14 2013-04-22 アルケマ フランス Process for producing acrolein and / or acrylic acid from glycerol
JP2013129631A (en) * 2011-12-21 2013-07-04 Nippon Shokubai Co Ltd Method of manufacturing acrylic acid from glycerol and method of manufacturing hydrophilic resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91993B1 (en) * 2012-05-03 2013-11-04 D 01 P A C Holding Process for the conversion of glycerin to organic salts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842586A (en) * 2003-08-29 2006-10-04 株式会社日本触媒 Method of production of fatty acid alkyl esters and/or glycerine and fatty acid alkyl ester-containing composition
FR2882052B1 (en) * 2005-02-15 2007-03-23 Arkema Sa PROCESS FOR THE DEHYDRATION OF GLYCEROL IN ACROLEIN

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027420A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Preparation of acrolein or aqueous acrolein solution comprises dehydration of a cyclic acetal of glycerol in the presence of a solid catalyst comprising acidic oxides or mixed oxides, natural or synthetic silicate materials
JP2013513592A (en) * 2009-12-14 2013-04-22 アルケマ フランス Process for producing acrolein and / or acrylic acid from glycerol
WO2013047479A1 (en) 2011-09-29 2013-04-04 株式会社日本触媒 Method for producing acrolein, acrylic acid, and derivative thereof
US9422377B2 (en) 2011-09-29 2016-08-23 Nippon Shokubai Co., Ltd. Process for producing acrolein, acrylic acid and derivatives thereof
JP2013129631A (en) * 2011-12-21 2013-07-04 Nippon Shokubai Co Ltd Method of manufacturing acrylic acid from glycerol and method of manufacturing hydrophilic resin

Also Published As

Publication number Publication date
CN101541727A (en) 2009-09-23
JP4224097B2 (en) 2009-02-12
CN101541727B (en) 2013-01-30

Similar Documents

Publication Publication Date Title
de Oliveira et al. Catalytic conversion of glycerol to acrolein over modified molecular sieves: activity and deactivation studies
JP5762963B2 (en) Method for producing acrolein from glycerol
JP2018511459A5 (en)
US7951978B2 (en) Process for producing acrolein and glycerin-containing composition
RU2656599C2 (en) Process for carbonylation of dimethyl ether
JP4224097B2 (en) Acrolein production method
JPWO2010074177A1 (en) Acrylic acid production method
WO2007058221A1 (en) Process for dehydration of polyhydric alcohols
RU2658005C2 (en) Carbonylation method
CN109890782A (en) Produce the single-stage process of butadiene
CN110325497B (en) Process for preparing unsaturated alcohols
US20100036176A1 (en) Two-Stage, Gas Phase Process for the Manufacture of Alkylene Glycol
JP6091310B2 (en) Method for producing butadiene
ES2388587T3 (en) Procedure for the preparation of phenol
JP2008266165A (en) Method for producing acrolein
JP5162128B2 (en) Method for producing acrolein from glycerin
JP5757058B2 (en) Zeolite-palladium complex, method for producing the complex, catalyst containing the complex, and method for producing a coupling compound using the catalyst
JP5069977B2 (en) Method for producing acrolein from glycerin
JP5399383B2 (en) Ammoxidation process
JP5305827B2 (en) Method for producing acrolein and acrylic acid
Lima et al. Effect of sulfatation on the physicochemical and catalytic properties of molecular sieves
JP2010155183A (en) Method for producing acrolein
Jiang et al. Preparation of mesoporous zirconium incorporated MCM-48 solid acid catalyst and its catalytic activity for alkylation of phenol with tert-butyl alcohol
JP5069900B2 (en) Pretreatment method for acrolein production catalyst
JP5793964B2 (en) Phosphorus modified zeolite catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Ref document number: 4224097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees