JP2008137047A - High electrically conductive object to be joined and its diffusion welding method - Google Patents

High electrically conductive object to be joined and its diffusion welding method Download PDF

Info

Publication number
JP2008137047A
JP2008137047A JP2006326676A JP2006326676A JP2008137047A JP 2008137047 A JP2008137047 A JP 2008137047A JP 2006326676 A JP2006326676 A JP 2006326676A JP 2006326676 A JP2006326676 A JP 2006326676A JP 2008137047 A JP2008137047 A JP 2008137047A
Authority
JP
Japan
Prior art keywords
highly conductive
annular projection
bonded
diffusion
diffusion bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006326676A
Other languages
Japanese (ja)
Other versions
JP5037102B2 (en
Inventor
Koji Sasaki
佐々木  広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2006326676A priority Critical patent/JP5037102B2/en
Publication of JP2008137047A publication Critical patent/JP2008137047A/en
Application granted granted Critical
Publication of JP5037102B2 publication Critical patent/JP5037102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high electrically conductive object to be joined having a structure by which a welding result with a high welding strength can be easily obtained at a low cost and also to provide a diffusion welding method. <P>SOLUTION: The high electrically conductive object to be joined forms a diffusion welding face by being diffusion welded with other object to be joined. This high electrically conductive object is equipped with an annular projection projecting from its joining side face. In the center region surrounded with the annular projection, there are provided a recess or an inner peripheral groove that houses a plastically fluidized metallic material of the annular projection when the high electrically conductive object and other object are diffusion welded. The high electrically conductive object to be joined is characterized in that the recess or the inner peripheral groove has a depth which becomes lower than the joining side face of the high electrically conductive object, making the annular projection be diffusion welded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、様々な同種又は異種の金属材料からなる被接合物、特に導電性が高い銅部材と銅部材など従来の溶接方法では接合が極めて困難とされていた高導電性被接合物同士、あるいは高導電性被接合物とこれよりも導電性が低い他の被接合物とを拡散接合するのに適したプロジェクション構造を有する高導電性被溶接物及びその拡散接合方法に関する。   The present invention is a highly conductive joints made of various kinds of metal materials of the same or different types, particularly highly conductive copper members and copper members that have been considered to be extremely difficult to join by conventional welding methods such as copper members, Alternatively, the present invention relates to a highly conductive workpiece having a projection structure suitable for diffusion-bonding a highly conductive workpiece and another workpiece having lower conductivity than that and a diffusion bonding method thereof.

同種の金属材料同士や、鉄系材料とステンレス材料、あるいは鉄系材料と銅材料、又は鉄系材料とアルミニウム材料、更には銅材料又はアルミニウム材料と鉄系材料、ステンレス材料、黄銅など、融点や導電率など特性の異なる異種金属材料を接合する方法が種々提案されているが、異種金属材料の接合は硬ロウによる接合、あるいは超音波接合、又はかしめ、ボルト締めなど機械的な結合などによって、接合される場合が多かった。また、同種の金属材料同士の接合でも、導電率が非常に良好な銅材料と銅材料同士、又はアルミニウム材料とアルミニウム材料同士の接合なども同様の手段で行われていたが、このような接合方法では、導電率が非常に良好な銅材料、アルミニウム材料を用いるという用途から見て、それらの接合部の抵抗を無視できるほどには小さくできない。このような理由もあって、導電率が非常に良好な銅材料同士、アルミニウム材料同士、又は銅材料とアルミニウム材料との拡散接合は特に難しいとされている中、界面抵抗を小さくできる抵抗溶接を行う努力が既に行われており、下記のような処理工程を予め行うことによって銅材料とアルミニウム材料との抵抗溶接を可能にする改良技術も開示されている(例えば、特許文献1参照)。   The same kind of metal materials, iron-based material and stainless steel material, or iron-based material and copper material, or iron-based material and aluminum material, and further copper material or aluminum material and iron-based material, stainless steel material, brass, etc. Various methods of joining dissimilar metal materials having different characteristics such as conductivity have been proposed. Joining of dissimilar metal materials can be achieved by joining by hard soldering, ultrasonic joining, or mechanical joining such as caulking and bolting. Often joined. In addition, even when joining the same kind of metal materials, the joining of copper materials and copper materials having very good electrical conductivity, or joining between aluminum materials and aluminum materials has been performed by the same means. In the method, from the viewpoint of using a copper material or an aluminum material having a very good conductivity, the resistance of the junction cannot be made small enough to be ignored. For these reasons, it is considered that diffusion bonding between copper materials with very good electrical conductivity, aluminum materials, or copper materials and aluminum materials is particularly difficult. Efforts have already been made, and an improved technique is disclosed that enables resistance welding between a copper material and an aluminum material by performing the following processing steps in advance (see, for example, Patent Document 1).

この方法は、銅材料とアルミニウム材料とを直接抵抗溶接することはできないので、抵抗溶接前に予め銅材料の接合表面にスズ膜を形成し、更に処理を行ってその銅材料とスズとの界面に銅とスズとの固溶を生成させたスズ被覆層を形成した後に、そのスズ被覆層とアルミニウム材料とを接触させ、その固溶生成させたスズ被覆層を銅材料とアルミニウム材料との間に介在させた状態で加圧し、溶接電流を流して抵抗溶接を行うものである。この抵抗溶接方法を実現するのは、コンデンサ式溶接機ではなくインバータ式溶接機を用いて、高周波の溶接電流を銅材料とアルミニウム材料とに流し、銅材料とアルミニウム材料との接合部を溶融させて溶融した銅とアルミニウムとを互いに混じり合わせたナゲットを形成して溶接を行うものである。また、異種金属の接合に当たっては、予め異種金属の拡散接合部を最適な特殊形状に加工することによって良好な接合結果が得られる拡散接合方法、及び接合装置が既に報告されている(例えば、特許文献2〜5参照)。また、拡散接合時にアルミニウム又はマグネシウムなどの接合面の酸化膜や汚れを除去する酸洗いなどの前処理を不要にするために、被接合物の双方にプロジェクションを形成し、それらプロジェクションの頂部同士を当接させて接合する方法も開示されている(例えば、特許文献6参照)。
特開2001−087866公報 特開平08−118040号公報 特開平10−128550号公報 特開平10−156548号公報 特開平11−033737号公報 特開2002−103056公報
Since this method cannot directly resistance weld a copper material and an aluminum material, a tin film is previously formed on the bonding surface of the copper material before resistance welding, and further processing is performed to obtain an interface between the copper material and tin. After forming a tin coating layer in which a solid solution of copper and tin is formed, the tin coating layer is brought into contact with the aluminum material, and the tin coating layer formed in the solid solution is placed between the copper material and the aluminum material. Pressure is applied in a state of being interposed between the electrodes and resistance welding is performed by passing a welding current. This resistance welding method is realized by using an inverter-type welding machine instead of a capacitor-type welding machine to flow a high-frequency welding current between the copper material and the aluminum material, thereby melting the joint between the copper material and the aluminum material. Then, welding is performed by forming a nugget in which molten copper and aluminum are mixed with each other. In addition, when bonding dissimilar metals, a diffusion bonding method and a bonding apparatus have been already reported in which good bonding results can be obtained by processing a diffusion bonding portion of dissimilar metals into an optimal special shape in advance (for example, patents). Reference 2-5). Also, in order to eliminate the need for pretreatment such as pickling to remove the oxide film or dirt on the bonding surface such as aluminum or magnesium during diffusion bonding, projections are formed on both of the objects to be bonded, and the tops of the projections are connected to each other. A method of joining by abutting is also disclosed (for example, see Patent Document 6).
JP 2001-087866 A Japanese Patent Laid-Open No. 08-1118040 Japanese Patent Laid-Open No. 10-128550 Japanese Patent Laid-Open No. 10-156548 Japanese Patent Laid-Open No. 11-033737 JP 2002-103056 A

しかし、前掲特許文献1で開示された抵抗溶接方法にあっては、銅材料の接合表面にスズ膜を形成し、更に銅とスズとの固溶層を形成した上で銅材料とアルミニウム材料との接合部にナゲットを形成する溶接方法であるので、溶接前に低融点金属膜であるスズ膜を形成しなければならない。このことはスズ膜をメッキなどで形成した上で銅とスズとの固溶層を形成する工程が必要であること、及び銅材料とアルミニウム材料との溶接部にスズ材料が混入するために、溶接部での抵抗が大きくなるという欠点がある。また、相互の導電性の高い金属を溶融させてナゲットを形成するには極めて大きな溶接電流を流さなければならず、この点も大きな問題であるが、溶融することによって形成されるナゲットの熱によって溶融部のスズがチリとなって勢いよく飛散するという問題点もある。   However, in the resistance welding method disclosed in Patent Document 1, the tin film is formed on the bonding surface of the copper material, and the solid solution layer of copper and tin is further formed, and then the copper material and the aluminum material are formed. Therefore, a tin film, which is a low melting point metal film, must be formed before welding. This means that a step of forming a solid solution layer of copper and tin after forming a tin film by plating or the like is necessary, and because the tin material is mixed into the welded portion of the copper material and the aluminum material, There is a drawback in that the resistance at the weld becomes large. In addition, a very large welding current must be passed to form a nugget by melting highly conductive metals, and this point is also a major problem, but the heat of the nugget formed by melting There is also a problem that tin in the molten part becomes dust and scatters vigorously.

前掲の特許文献2〜5に記載されている接合部の構造は特定の構造の異種金属材料からなる被接合物に適しているが、特に銅材料と銅材料、又はアルミニウム材料とアルミニウム材料、あるいは銅材料とアルミニウム材料との拡散接合、あるいは銅材料又はアルミニウム材料とそれらよりも導電性の低い金属材料との拡散接合にはそのまま適用することが難しく、前掲特許文献4又は前記特許文献5に開示されている接合装置をもってしても安定な接合結果を得難い。前掲の特許文献6に記載されているように、銅材料とアルミニウム材料との双方にプロジェクションを設けて互いに突合せて接合しても、アルミニウム材料と銅材料の塑性流動化に時間的なずれが生じるために十分に安定な接合結果が得られず、また、プロジェクション同士の位置合わせを行い、その位置合わせ状態を保持しながら接合を行わねばならないなどの問題があり、実際の製造ラインに特許文献6に記載されている拡散接合方法を用いることは難しい場合が多い。   The structures of the joints described in the above-mentioned patent documents 2 to 5 are suitable for objects to be joined made of different kinds of metal materials having a specific structure, but in particular, copper materials and copper materials, or aluminum materials and aluminum materials, or It is difficult to apply as it is to diffusion bonding between a copper material and an aluminum material, or between a copper material or an aluminum material and a metal material having a lower conductivity, and disclosed in Patent Document 4 or Patent Document 5 described above. It is difficult to obtain a stable bonding result even with a bonding apparatus. As described in the above-mentioned Patent Document 6, even if projections are provided on both a copper material and an aluminum material and they are butt-joined to each other, a time lag occurs in the plastic fluidization of the aluminum material and the copper material. Therefore, a sufficiently stable joining result cannot be obtained, and there is a problem that the projections must be aligned, and the bonding must be performed while maintaining the alignment state. It is often difficult to use the diffusion bonding method described in.

本発明は前述の問題点を解決し、拡散接合面にスズ膜のような低融点金属膜を形成しなくても、銅材料又はアルミニウム材料などの導電率が非常に高い高導電性被接合物同士の拡散接合、又はこのような高導電性被接合物とこれよりも導電性の低いステンレス、鉄又は黄銅などの金属材料からなる他の被接合物との拡散接合が可能であり、かつ簡単で安価に接合強度の高い接合結果が得られる構造を有する高導電性被接合物及び拡散接合方法を提供することを主目的としている。   The present invention solves the above-described problems, and a highly conductive object such as a copper material or an aluminum material has a very high conductivity without forming a low melting point metal film such as a tin film on the diffusion bonding surface. Diffusion bonding between each other, or diffusion bonding between such highly conductive objects to be bonded and other objects made of metal materials such as stainless steel, iron, or brass having lower conductivity is possible and simple. The main object of the present invention is to provide a highly conductive object to be bonded and a diffusion bonding method having a structure capable of obtaining a bonding result with high bonding strength at low cost.

第1の発明は、他の被接合物と拡散接合されて拡散接合面を形成する高導電性被接合物であって、この高導電性被接合物はその接合側面から突出する環状のプロジェクションを備え、前記環状のプロジェクションに囲まれた中央面域には、前記高導電性被接合物と前記他の被接合物とが拡散接合されるときに、前記環状のプロジェクションの塑性流動化した金属材料を収容する凹所又は内周溝を備え、その凹所又は内周溝は前記高導電性被接合物の前記接合側面よりも低くなる深さを有し、前記プロジェクションの根元面域が前記拡散接合面域になることを特徴とする高導電性被接合物を提供する。   The first invention is a highly conductive object that is diffusion bonded to another object to form a diffusion bonding surface, and the high conductivity bonding object has an annular projection protruding from the bonding side surface. A metal material that is plastically fluidized in the annular projection when the highly conductive object to be bonded and the other object to be bonded are diffusion-bonded to a central surface area surrounded by the annular projection. A recess or an inner peripheral groove, the recess or the inner peripheral groove has a depth lower than the bonding side surface of the highly conductive workpiece, and a base surface area of the projection is the diffusion Provided is a highly conductive object to be bonded.

第2の発明は、前記第1の発明において、前記高導電性被接合物は銅又は銅合金、あるいはアルミニウム又はアルミニウム合金であることを特徴とする高導電性被接合物を提供する。   According to a second invention, in the first invention, the highly conductive object to be bonded is copper or a copper alloy, or aluminum or an aluminum alloy.

第3の発明は、前記第1の発明又は前記第2の発明において、前記環状のプロジェクションの縦断面の開き角度は60〜120度の範囲にあることを特徴とする高導電性被接合物を提供する。   According to a third aspect of the present invention, there is provided the highly conductive bonded object according to the first aspect or the second aspect, wherein an opening angle of a longitudinal section of the annular projection is in a range of 60 to 120 degrees. provide.

第4の発明は、接合側面から突出する環状のプロジェクションを備える高導電性被接合物と他の被接合物との間に接合電流を通電し、前記高導電性被接合物と前記他の被接合物とを拡散接合して拡散接合面を形成する拡散接合方法であって、前記環状のプロジェクションの根元面域が前記拡散接合面域となるような加圧力を前記高導電性被接合物と前記他の被接合物との間に印加した状態で、前記接合電流を通電することを特徴とする高導電性被接合物の拡散接合方法を提供する。   According to a fourth aspect of the present invention, a bonding current is passed between a highly conductive object having an annular projection protruding from a bonding side surface and another object to be bonded, and the highly conductive object to be bonded and the other object. A diffusion bonding method in which a diffusion bonding surface is formed by diffusion bonding with a bonded object, and a pressure is applied so that a root surface area of the annular projection becomes the diffusion bonding surface area. Provided is a diffusion bonding method for a highly conductive object to be bonded, wherein the bonding current is applied while being applied to the other object to be bonded.

第5の発明は、前記第4の発明において、前記接合電流は、電流がピーク値までに立ち上がるのに要する時間が10ms以下のパルス状電流であることを特徴とする高導電性被接合物の拡散接合方法を提供する。   According to a fifth aspect of the present invention, in the fourth aspect, the junction current is a pulsed current having a time required for the current to rise to a peak value of 10 ms or less. A diffusion bonding method is provided.

第6の発明は、前記第4の発明又は前記第5の発明において、前記加圧力は弾性力が重畳された圧力であり、前記塑性流動化した前記環状のプロジェクションに影響されることなく所要の加圧力を前記拡散接合面に印加することを特徴とする高導電性被接合物の拡散接合方法を提供する。   According to a sixth invention, in the fourth invention or the fifth invention, the applied pressure is a pressure on which an elastic force is superimposed, and the required pressure is not affected by the plastic fluidized annular projection. Provided is a diffusion bonding method for a highly conductive object to be bonded, wherein a pressure is applied to the diffusion bonding surface.

前記第1の発明及び前記第2の発明によれば、塑性流動化した金属材料がその環状のプロジェクションに囲まれた中央面域の凹所又は内周溝に収容されるので、高導電性被接合物と他の被接合物との拡散接合面が前記環状のプロジェクションの根元面域になるため、拡散接合面が大きくなると共に、所要の加圧力を拡散接合面に印加することができる。したがって、拡散接合部の接合強度を効率よく向上させることができ、接合強度を安定化させることが可能な高導電性被接合物を提供できる。また、銅、銅合金、アルミニウム、アルミニウム合金に適用できる。   According to the first and second aspects of the invention, the plastic fluidized metal material is accommodated in the recess or inner peripheral groove of the central surface area surrounded by the annular projection, so that the highly conductive coating is provided. Since the diffusion bonding surface between the bonded object and the other object to be bonded becomes the base surface area of the annular projection, the diffusion bonding surface becomes large, and a required pressure can be applied to the diffusion bonding surface. Therefore, it is possible to efficiently improve the bonding strength of the diffusion bonding portion and to provide a highly conductive object that can stabilize the bonding strength. Moreover, it is applicable to copper, copper alloy, aluminum, and aluminum alloy.

また、前記第3の発明によれば、前記第1の発明又は前記第2の発明で得られる効果の他に、高導電性被接合物と他の被接合物とをより確実に拡散接合することができ、環状のプロジェクションの縦断面の開き角度を60〜120度の範囲で小さく選定することによって、接合強度を低下させることなく高導電性被接合物と他の被接合物との間に印加する加圧力をより小さくすることができる。   Further, according to the third invention, in addition to the effects obtained by the first invention or the second invention, the highly conductive object to be bonded and the other object to be bonded are more securely diffusion bonded. By selecting a small opening angle of the longitudinal cross section of the annular projection in the range of 60 to 120 degrees, it is possible to connect between a highly conductive object to be bonded and another object to be bonded without reducing the bonding strength. The applied pressure can be further reduced.

前記第4の発明によれば、プロジェクションの形状にかかわらず、接合電流の通電する際、高導電性被接合物と他の被接合物との拡散接合面が前記環状のプロジェクションの根元面域に等しくなるために、拡散接合面を大きくでき、かつ加圧面積がプロジェクションの塑性流動化した金属材料に分散されないから所要の加圧力を拡散接合面に印加することができる。したがって、拡散接合部の接合強度を効率よく向上させることができ、接合強度を安定化させることが可能である。   According to the fourth invention, regardless of the shape of the projection, when energizing the junction current, the diffusion junction surface between the highly conductive object to be bonded and the other object to be bonded is in the root surface area of the annular projection. In order to make them equal, the diffusion bonding surface can be enlarged, and the required pressure can be applied to the diffusion bonding surface because the pressure area is not dispersed in the plastic fluidized metal material of the projection. Therefore, the bonding strength of the diffusion bonding portion can be improved efficiently, and the bonding strength can be stabilized.

前記第5の発明によれば、前記第4の発明で得られる効果の他に、パルス状の接合電流がごく短い10ms程度以下の時間でピーク値まで達するので、導電性が非常に高い銅又はアルミニウムのような高導電性被接合物であっても、より安定かつ良好に拡散接合することができる。また、拡散接合部が変色しないので接合物の美観を損なうことがない。   According to the fifth invention, in addition to the effects obtained in the fourth invention, the pulsed junction current reaches a peak value in a very short time of about 10 ms or less, so that copper or copper having very high conductivity can be obtained. Even a highly conductive object such as aluminum can be diffusion-bonded more stably and satisfactorily. Further, since the diffusion bonding portion does not change color, the appearance of the bonded material is not impaired.

前記第6の発明によれば、前記第4の発明又は前記第5の発明で得られる効果の他に、塑性流動化したプロジェクションの金属材料に影響されることなく所要の加圧力を拡散接合面に印加することができるので、高導電性被接合物を安定かつ良好に拡散接合することができる。   According to the sixth invention, in addition to the effects obtained in the fourth invention or the fifth invention, the required pressure can be applied to the diffusion bonding surface without being affected by the metal material of the plastic fluidized projection. Therefore, the highly conductive object to be bonded can be diffusion-bonded stably and satisfactorily.

[実施形態1]
金属材料の拡散接合は、接合電流が流れるときに金属材料同士の当接面での接触抵抗及び金属材料の有する抵抗が生じる発熱によって双方の金属材料の当接面で塑性流動化、つまり軟化が起こり、接合が行われる。しかしながら、銅材料又はアルミニウム材料の抵抗率は極めて小さいためにその抵抗及び接触抵抗により発熱する発熱量が不足し、要求される接合強度が極めて小さい場合を除いて、満足の行く拡散接合強度を得るのは難しい。要求される接合強度が極めて小さい拡散接合は可能であっても、現実に要求される接合強度を満足するには、銅材料又はアルミニウム材料からなる高導電性被接合物の接合部の形状や表面状態、接合電流の条件、接合装置の諸々の特性など種々の制約が厳しいので実際の製造ラインに適用することは難しかった。
[Embodiment 1]
In diffusion bonding of metal materials, when the bonding current flows, the contact resistance between the metal materials and the heat generated by the resistance of the metal material cause plastic fluidization, that is, softening at the contact surfaces of both metal materials. Occurs and bonding takes place. However, since the resistivity of copper material or aluminum material is extremely small, the amount of heat generated due to the resistance and contact resistance is insufficient, and satisfactory diffusion bonding strength is obtained unless the required bonding strength is extremely small. Is difficult. Diffusion bonding with extremely low required bonding strength is possible, but in order to satisfy the actual required bonding strength, the shape and surface of the joint of a highly conductive workpiece made of copper material or aluminum material It was difficult to apply to an actual production line because various restrictions such as conditions, conditions of the junction current, and various characteristics of the bonding apparatus were severe.

本発明では、高導電性被接合物同士の拡散接合、あるいは高導電性被接合物とステンレス材料、黄銅(真鍮)、鉄などのような他の金属材料との拡散接合のメカニズムについて研究した結果、ある接合条件下では拡散接合強度を向上させることができることを確認した。この点について、図1によって本発明に係る高導電性被接合物W1の実施形態1を説明しながら述べる。図1(A)は高導電性被接合物W1を上面から見た図であり、図1(B)は図1(A)の切断線X−X’での縦断面を示す図である。先ず、本発明が適用できる範囲は一般的な様々な同種の金属材料からなる被接合物同士、あるいは様々な異種の金属材料からなる被接合物などの拡散接合であるが、特に実施形態1では拡散接合が極めて難しいとされている銅又は銅合金(以下、銅材料という。)、あるいはアルミニウム又はアルミニウム合金(以下、アルミニウム材料という。)からなる高導電性被接合物W1の拡散接合を例として以下に説明する。   In the present invention, as a result of research on diffusion bonding between highly conductive objects to be bonded or diffusion bonding between a highly conductive object to be bonded and other metal materials such as stainless steel, brass (brass), iron, etc. It was confirmed that the diffusion bonding strength can be improved under certain bonding conditions. This point will be described with reference to FIG. 1 while explaining Embodiment 1 of the highly conductive object W1 according to the present invention. FIG. 1A is a view of the highly conductive object W1 as viewed from above, and FIG. 1B is a view showing a longitudinal section taken along a cutting line X-X ′ in FIG. First, the range to which the present invention can be applied is diffusion bonding such as bonding objects made of various common metal materials or bonding objects made of various different metal materials. For example, diffusion bonding of a highly conductive workpiece W1 made of copper or a copper alloy (hereinafter referred to as a copper material) or aluminum or an aluminum alloy (hereinafter referred to as an aluminum material), which is considered to be extremely difficult to perform diffusion bonding. This will be described below.

図1(A)、(B)において、高導電性被接合物W1の接合側面S1には接合側面S1から突出する円環状のプロジェクションPが形成されている。円環状のプロジェクションPは、小さな円環状幅の頂部面P1、内周傾斜面P2、外周傾斜面P3を有する。環状のプロジェクションPの場合には、環状の頂部面P1と他の被接合物W2との接触面積が従来の円錐台形状のプロジェクションと同程度の大きさであっても、環状のプロジェクションPの環状の線接触面積は従来の点状面積の場合に比べて実質的に広い面域となり、拡散接合面積を大きくすることができ、熱バランスもよいので接合強度を向上させることができる。したがって、この実施形態1では高導電性被接合物W1に縦断面が台形状の円環状プロジェクションPを形成している。   In FIGS. 1A and 1B, an annular projection P protruding from the bonding side S1 is formed on the bonding side S1 of the highly conductive object W1. The annular projection P has a top surface P1, an inner peripheral inclined surface P2, and an outer peripheral inclined surface P3 having a small annular width. In the case of the annular projection P, even if the contact area between the annular top surface P1 and the other object W2 is the same size as the conventional frustoconical projection, the annular projection P has an annular shape. The line contact area is substantially wider than that of the conventional dot area, the diffusion bonding area can be increased, and the heat balance is good, so that the bonding strength can be improved. Therefore, in the first embodiment, an annular projection P having a trapezoidal longitudinal section is formed on the highly conductive workpiece W1.

円環状のプロジェクションPに囲まれた面域には内周傾斜面P2に近接して接合側面S1よりも深い円筒状の凹所Aが形成されている。凹所Aは、拡散接合時に塑性流動化する円環状のプロジェクションPの金属材料を収容するに足りる容積を有する。凹所Aの形状は限定されるものでなく、拡散接合時に塑性流動化する円環状のプロジェクションPの金属材料が加圧力によって凹所Aに入り易い構造であればよい。好ましくは、拡散接合時に塑性流動化する円環状のプロジェクションPの金属材料がほぼすべて凹所Aに収容され、かつ凹所Aは空部が生じない程度の容積を有するのが好ましい。   In the surface area surrounded by the annular projection P, a cylindrical recess A deeper than the joint side surface S1 is formed in the vicinity of the inner peripheral inclined surface P2. The recess A has a volume sufficient to accommodate the annular projection P metal material that is plastically fluidized during diffusion bonding. The shape of the recess A is not limited as long as the metal material of the annular projection P that is plastically fluidized at the time of diffusion bonding can easily enter the recess A by the applied pressure. Preferably, almost all of the metal material of the annular projection P that plastically fluidizes during diffusion bonding is accommodated in the recess A, and the recess A has a volume that does not cause a void.

ここで、円環状のプロジェクションPについてもう少し詳しく説明する。図1(B)に破線で示した内周傾斜面P2の延長線と外周傾斜面P3の延長線とが交わる角度を、ここでは環状のプロジェクションPの縦断面の開き角度θと言う。この開き角度θは60〜120度の範囲内にあるのが好ましい。開き角度θが60度を下回る場合には、高導電性被接合物W1の接合側面S1とほぼ同じ水平面にある円環状のプロジェクションPの根元面域P4(破線で示す)と頂部面P1の面積との差が小さいために、プロジェクションとして十分に作用せず、接合電流のピーク値を調整しても環状のプロジェクションPの根元面域P4で良好に拡散接合が行われず、所望の拡散接合強度を得難いという問題がある。   Here, the annular projection P will be described in a little more detail. The angle at which the extension line of the inner peripheral inclined surface P2 and the extension line of the outer peripheral inclined surface P3 intersect shown by the broken line in FIG. 1B is referred to herein as the opening angle θ of the longitudinal section of the annular projection P. The opening angle θ is preferably in the range of 60 to 120 degrees. When the opening angle θ is less than 60 degrees, the area of the root surface area P4 (shown by a broken line) and the top face P1 of the annular projection P in the same horizontal plane as the joining side surface S1 of the highly conductive workpiece W1. Therefore, even when the peak value of the junction current is adjusted, diffusion bonding is not performed satisfactorily at the root surface area P4 of the annular projection P, and the desired diffusion junction strength is obtained. There is a problem that it is difficult to obtain.

また、開き角度Θが120度を上回る場合には、高導電性被接合物W1の接合側面S1と同じ水平面にある環状のプロジェクションPの根元面域P4(破線で示す)と頂部面P1の面積との差が大き過ぎるために、プロジェクションPの塑性流動化の過程で所要の加圧力をかけられないこともあり、接合電流のピーク値を調整しても環状のプロジェクションPの根元面域P4で良好に拡散接合が行われず、所望の拡散接合強度を得難いという問題がある。したがって、実施形態1の高導電性被接合物は、好ましくはこのような範囲で比較的小さな角度を有する円環状のプロジェクションPを備えると共に、その円環状のプロジェクションPに囲まれた面域に凹所Aを有するから、拡散接合時に塑性流動化したプロジェクションPの金属材料が凹所Aに収容され、良好な拡散接合を行われるので、拡散接合強度を向上させることができる。   When the opening angle Θ exceeds 120 degrees, the area of the root surface area P4 (shown by a broken line) and the top surface P1 of the annular projection P on the same horizontal plane as the bonding side surface S1 of the highly conductive workpiece W1. Is too large, the required pressure may not be applied in the process of plastic fluidization of the projection P. Even if the peak value of the junction current is adjusted, the root surface area P4 of the annular projection P There is a problem that diffusion bonding is not performed well and it is difficult to obtain desired diffusion bonding strength. Therefore, the highly conductive workpiece of the first embodiment preferably includes an annular projection P having a relatively small angle in such a range, and is recessed in a surface area surrounded by the annular projection P. Since the metal A of the projection P plasticized and fluidized at the time of diffusion bonding is accommodated in the recess A and good diffusion bonding is performed, the diffusion bonding strength can be improved.

[実施形態2]
図2によって本発明に係る高導電性被接合物W1の実施形態2について説明する。図2は高導電性被接合物W1の縦断面を示している。基本的には実施形態1の高導電性被接合物W1と同じであるので、異なる箇所について説明する。高導電性被接合物W1に形成された円環状のプロジェクションPは、円環状の小さな幅の頂部面P1、ほぼ垂直な内周面P2’、外周傾斜面P3を有する。円環状のプロジェクションPに囲まれた高導電性被接合物W1には逆円錐状の凹所Aが形成されている。凹所Aは円環状のプロジェクションPの塑性流動化した金属材料をほぼ全部収容できる程度の容積を有するのが好ましい。
[Embodiment 2]
Embodiment 2 of the highly conductive object W1 according to the present invention will be described with reference to FIG. FIG. 2 shows a longitudinal section of the highly conductive workpiece W1. Since it is basically the same as the highly conductive workpiece W1 of the first embodiment, different points will be described. An annular projection P formed on the highly conductive workpiece W1 has an annular small top portion P1, a substantially vertical inner peripheral surface P2 ′, and an outer peripheral inclined surface P3. An inverted conical recess A is formed in the highly conductive workpiece W1 surrounded by the annular projection P. The recess A preferably has a volume that can accommodate almost all the plastic fluidized metal material of the annular projection P.

実施形態2の円環状のプロジェクションPは、内周面P2’がほぼ垂直で、外周傾斜面P3がなす開き角度、つまり外周傾斜面P3の延長線が交わる点を頂点とする円錐形状の開き角度が60〜120度の範囲内の傾斜面であることから、拡散接合時に円環状のプロジェクションPの外周側に比べて内周側が塑性流動化し易く、円環状のプロジェクションPの塑性流動化した金属材料は凹所Aに入り込みやすいので、その塑性流動化した金属材料のほぼ全部が凹所Aに収容される。したがって、実施形態2の高導電性被接合物は円環状のプロジェクションPの根元面域P4により等しい又はより近傍の円環状の面域で拡散接合が良好に行われ、所望の接合強度を得ることができる。実施形態2の高導電性被接合物は、比較的加圧力を小さく抑えたい場合、あるいは比較的接合強度が小さくてもよい場合に適する。   The annular projection P according to the second embodiment has a conical opening angle with the inner peripheral surface P2 'being substantially vertical and the opening angle formed by the outer peripheral inclined surface P3, that is, the point where the extended lines of the outer peripheral inclined surface P3 intersect. Is an inclined surface within a range of 60 to 120 degrees, and therefore, the inner peripheral side is more easily plastically fluidized than the outer peripheral side of the annular projection P during diffusion bonding, and the plastic fluidized metal material of the annular projection P Can easily enter the recess A, so that almost all of the plastic fluidized metal material is accommodated in the recess A. Therefore, the highly conductive workpiece of the second embodiment can achieve the desired bonding strength by performing the diffusion bonding well in the annular surface area that is equal or closer to the base surface area P4 of the annular projection P. Can do. The highly conductive object of Embodiment 2 is suitable when it is desired to keep the applied pressure relatively small, or when the bonding strength may be relatively small.

[実施形態3]
図3によって本発明に係る高導電性被接合物W1の実施形態3について説明する。図3は高導電性被接合物W1の断面を示している。実施形態1、2は円環状のプロジェクションPの外径がほぼ10mm以下、好ましくは7mm以下の場合に適しているが、実施形態3は大きな接合強度が要求され、その要求に応えるために円環状のプロジェクションPの外径がほぼ10mmを越える場合に適している。この実施形態3の高導電性被接合物W1も基本的には実施形態1、2の高導電性被接合物W1と同じであるので、異なる箇所について説明する。高導電性被接合物W1に形成された円環状のプロジェクションPは、円環状の幅の頂部面P1、ほぼ垂直な内周面P2’、外周傾斜面P3がなす開き角度、つまり外周傾斜面P3の延長線が交わる点を頂点とする円錐形状の開き角度が60〜120度の範囲内にあって比較的大きな傾斜角度を有する外周傾斜面P3を有する。円環状のプロジェクションPに囲まれた高導電性被接合物W1には円環状のプロジェクションPに沿って円環状の内周溝A’が形成されている。
[Embodiment 3]
Embodiment 3 of the highly conductive object W1 according to the present invention will be described with reference to FIG. FIG. 3 shows a cross section of the highly conductive workpiece W1. The first and second embodiments are suitable when the outer diameter of the annular projection P is approximately 10 mm or less, preferably 7 mm or less, but the third embodiment requires a large bonding strength, and an annular shape is required to meet the demand. This is suitable when the outer diameter of the projection P exceeds approximately 10 mm. Since the highly conductive object W1 of the third embodiment is basically the same as the highly conductive object W1 of the first and second embodiments, different parts will be described. The annular projection P formed on the highly conductive workpiece W1 has an opening angle formed by the top surface P1, the substantially vertical inner peripheral surface P2 ′, and the outer peripheral inclined surface P3, that is, the outer peripheral inclined surface P3. An outer peripheral inclined surface P3 having a relatively large inclination angle with a cone-shaped opening angle within a range of 60 to 120 degrees having a vertex at a point where the extension lines intersect. An annular inner peripheral groove A ′ is formed along the annular projection P in the highly conductive workpiece W1 surrounded by the annular projection P.

円環状の内周溝A’は、円環状のプロジェクションPの塑性流動化した金属材料をほとんどすべて収容できる大きさの容積を有するように形成されている。したがって、この実施形態3においても、接合電流の通電によって塑性流動化する円環状のプロジェクションPの金属材料は円環状の内周溝A’に容易に入り込んで収容されるので、高導電性被接合物W1と被接合物W2との拡散接合は、高導電性被接合物W1の接合側面S1にほぼ等しい円環状のプロジェクションPの円環状の根元面域P4で行われる。実施形態3では、実施形態1、2に比べて円環状のプロジェクションPの径、及び外周傾斜面P3の開き角度を大きくしているから、円環状のプロジェクションPの円環状の根元面域P4を大きくすることができ、したがって、実施形態3は実施形態1、2に比べて大きな接合強度を得たい場合に適する。この場合には、当然に接合電流及び加圧力を大きくすることが必要である。   The annular inner circumferential groove A ′ is formed to have a volume that can accommodate almost all the plastic fluidized metal material of the annular projection P. Accordingly, also in the third embodiment, the metal material of the annular projection P that is plastically fluidized by energization of the joining current easily enters the annular inner peripheral groove A ′ and is accommodated therein. The diffusion bonding between the object W1 and the object to be bonded W2 is performed in an annular base surface area P4 of the annular projection P that is substantially equal to the bonding side surface S1 of the highly conductive object W1. In the third embodiment, since the diameter of the annular projection P and the opening angle of the outer peripheral inclined surface P3 are larger than those in the first and second embodiments, the annular root surface area P4 of the annular projection P is set to be larger. Therefore, the third embodiment is suitable when it is desired to obtain a larger bonding strength than the first and second embodiments. In this case, naturally, it is necessary to increase the junction current and the applied pressure.

以上の実施形態1〜3に示した円環状のプロジェクションP、凹所A、内周溝A’の形状は例であって、それらの形状に限定されるものではない。例えば、環状のプロジェクションPは2段形のプロジェクション、つまり下側に接合強度を決める1段目のプロジェクションと、そのプロジェクションの上に塑性流動化し易い2段目のプロジェクションとからなるものであってもよい。なお、他の被溶接物W2が高導電性被接合物W1と同じ金属材料からなる場合には、被溶接物W2の拡散接合面には比較的抵抗の値が大きなスズ膜のような低融点金属膜を形成してあった方が、更に容易に拡散接合を行うことができる。また、他の被溶接物W2が銅材料又はアルミニウム材料よりも導電性の低いステンレス、黄銅、鉄などの金属材料からなる場合には、高導電性被接合物W1の少なくとも円環状のプロジェクションPの頂部面P1に前述のような低融点金属膜を予め形成しておけば、更に容易に拡散接合を行うことができる。   The shapes of the annular projection P, the recess A, and the inner circumferential groove A ′ shown in the above first to third embodiments are examples, and are not limited to these shapes. For example, the annular projection P may be composed of a two-stage projection, that is, a first-stage projection that determines the bonding strength on the lower side and a second-stage projection that easily plastically fluidizes on the projection. Good. When the other workpiece W2 is made of the same metal material as the highly conductive workpiece W1, a low melting point such as a tin film having a relatively large resistance value is formed on the diffusion bonding surface of the workpiece W2. If the metal film is formed, diffusion bonding can be performed more easily. Further, when the other work piece W2 is made of a metal material such as stainless steel, brass, or iron having lower conductivity than the copper material or the aluminum material, at least the annular projection P of the highly conductive work piece W1. If a low melting point metal film as described above is formed in advance on the top surface P1, diffusion bonding can be performed more easily.

[実施形態4]
次に、実施形態2で説明した形状の円環状のプロジェクションPを備える高導電性被接合物W1の拡散接合例を図4によって説明する。円環状の小さな幅の頂部面P1、ほぼ垂直な内周面P2’、外周傾斜面P3を有する円環状のプロジェクションP、円筒状の凹所Aを接合側面S1に備える高導電性被接合物W1が、図4(A)に示すように下部側の接合電極1の上に配置され、他方の被接合物W2がその円環状のプロジェクションPに当接するように配置される。他方の被接合物W2は銅材料又はアルミニウム材料であってもよいが、これらよりも導電性の低いステンレス、黄銅、鉄などであってもよい。上部側の接合電極2が降下、又は接合電極1が上昇することにより、高導電性被接合物W1と他方の被接合物W2との間に加圧力がかけられる。この加圧力は初期にはプロジェクションPの頂部面P1に相当する面域に印加され、接合電流は当然に初期にはプロジェクションPの頂部面P1に相当する面域に集中してプロジェクションPを通して流れる。
[Embodiment 4]
Next, an example of diffusion bonding of the highly conductive workpiece W1 including the annular projection P having the shape described in the second embodiment will be described with reference to FIG. A highly conductive object W1 having an annular small top surface P1, an almost vertical inner peripheral surface P2 ′, an annular projection P having an outer peripheral inclined surface P3, and a cylindrical recess A on the joint side S1. However, as shown in FIG. 4 (A), it is disposed on the lower bonding electrode 1, and the other object W2 is disposed so as to contact the annular projection P. The other workpiece W2 may be a copper material or an aluminum material, but may be stainless steel, brass, iron or the like having a lower conductivity than these. When the bonding electrode 2 on the upper side is lowered or the bonding electrode 1 is raised, pressure is applied between the highly conductive workpiece W1 and the other workpiece W2. This applied pressure is initially applied to a surface area corresponding to the top surface P1 of the projection P, and the junction current naturally flows through the projection P in a concentrated manner in the surface area corresponding to the top surface P1 of the projection P.

環状のプロジェクションPの頂部面P1とその頂部面P1に当接する他方の被接合物W2の面との接触抵抗を流れる接合電流による発熱で、先ず環状のプロジェクションPの頂部面P1から塑性流動化が始まり、環状のプロジェクションPは接合側面S1から突出しているためにその熱は横方向に逃げないから、環状のプロジェクションPの抵抗による発熱も作用して環状のプロジェクションPの金属材料が塑性流動化する。塑性流動化したその金属材料は加圧力によって図面横方向に拡がり、凹所Aに入り込み、収容される。塑性流動化した環状のプロジェクションPの金属材料はほぼすべて凹所Aに収容されるから、拡散接合が行われた状態では図4(B)に示すように、高導電性被接合物W1と被接合物W2は少なくとも環状のプロジェクションPの内外の近傍の面が互いに当接する。この際、その当接直前まで環状のプロジェクションPに前記所要の加圧力が印加される。   Heat generated by the junction current flowing through the contact resistance between the top surface P1 of the annular projection P and the surface of the other workpiece W2 in contact with the top surface P1, and plastic fluidization is first generated from the top surface P1 of the annular projection P. At first, since the annular projection P protrudes from the joining side surface S1, the heat does not escape in the lateral direction. Therefore, heat generated by the resistance of the annular projection P also acts, and the metal material of the annular projection P is plastically fluidized. . The plastic fluidized metal material spreads in the lateral direction of the drawing by the applied pressure, enters the recess A, and is accommodated. Since almost all the metal material of the plastic projection annular projection P is accommodated in the recess A, in the state in which diffusion bonding is performed, as shown in FIG. The joint W2 comes into contact with at least the inner and outer surfaces of the annular projection P. At this time, the required pressure is applied to the annular projection P until just before the contact.

この拡散接合では結局、接合電流の通電初期から拡散接合が行われるまで集中して電流密度の大きな接合電流が流れ、かつ前記所要の加圧力が印加されるのは、環状のプロジェクションPの根元面域P4であり、環状のプロジェクションPの根元面域P4とそれに当接する被接合物W2との間で拡散接合が行われる。本発明の高導電性被接合物W1にあっては、環状のプロジェクションPの根元面域P4が円環状の面域であり、その円環状の根元面域P4にほぼ等しい円環状の拡散接合面Uで拡散接合が行われるので、大きな拡散接合面が得られ、大きな接合強度を得ることができる。凹所Aに収容された金属材料と被接合物W2との接触面では拡散接合が行われておらず、実質的に接合強度を高める働きは行わない。なお、この拡散接合の過程において、被接合物W2も当然に発熱により高導電性被接合物W1のプロジェクションPに当接する面域が塑性流動化し、高導電性被接合物W1と被接合物W2との双方が当接部分で塑性流動化するので、高導電性被接合物W1と被接合物W2との間で良好な拡散接合が行われる。良好な拡散接合を行うことができる具体例については後述する。   Eventually, in this diffusion bonding, a junction current having a large current density flows from the beginning of energization of the junction current until the diffusion bonding is performed, and the required pressure is applied to the root surface of the annular projection P. In the region P4, diffusion bonding is performed between the root surface region P4 of the annular projection P and the workpiece W2 in contact therewith. In the highly conductive workpiece W1 of the present invention, the root surface area P4 of the annular projection P is an annular surface area, and an annular diffusion bonding surface substantially equal to the annular root surface area P4. Since diffusion bonding is performed at U, a large diffusion bonding surface can be obtained and a large bonding strength can be obtained. Diffusion bonding is not performed on the contact surface between the metal material accommodated in the recess A and the workpiece W2, and the function of substantially increasing the bonding strength is not performed. In this diffusion bonding process, the surface area of the workpiece W2 that comes into contact with the projection P of the highly conductive workpiece W1 is naturally fluidized by heat generation, and the highly conductive workpiece W1 and the workpiece W2 are joined. Both of them are plastically fluidized at the abutting portion, so that good diffusion bonding is performed between the highly conductive workpiece W1 and the workpiece W2. Specific examples capable of performing good diffusion bonding will be described later.

ここでもし、高導電性被接合物W1に凹所Aが形成されておらず平坦であるものとすれば、図4(C)に示すように、前述したように塑性流動化した環状のプロジェクションPの金属材料は加圧力によって図面横方向に拡がる。塑性流動化した環状のプロジェクションPの金属材料を収容する凹所が存在しないので、塑性流動化した環状のプロジェクションPの金属材料は高導電性被接合物W1の接合側面S1上に盛り上がった堆積層Pwを形成する。図4(C)に示すような状態になる過程において、接合電流の通電初期から拡散接合が行われるまで集中して電流密度の大きな接合電流が流れるのは、環状のプロジェクションPの根元面域P4に達しない途中の面域であり、その面域が円環状の拡散接合面Zとなる。   Here, if the recess A is not formed in the highly conductive workpiece W1, and it is flat, as shown in FIG. 4C, the annular projection formed by plastic fluidization as described above. The metal material of P expands in the horizontal direction of the drawing by the applied pressure. Since there is no recess that accommodates the plastic fluidized annular projection P metal material, the plastic fluidized annular projection P metal material is raised on the joining side S1 of the highly conductive workpiece W1. Pw is formed. In the process as shown in FIG. 4C, the junction current having a large current density flows from the initial stage of energization of the junction current until the diffusion junction is performed, and the root plane area P4 of the annular projection P flows. This is a surface area in the middle of not reaching, and the surface area becomes an annular diffusion bonding surface Z.

環状のプロジェクションPが頂部面P1、内周傾斜面P2、外周傾斜面P3からなることを考えれば、当然に円環状の拡散接合面Zの面積は図4(B)の拡散接合面Uよりも小さくなり、かつ結果的に有効な拡散接合時間が短くなるので、本発明の高導電性被接合物W1で得られる接合強度に比べて大幅に接合強度が低下する。なお、図4(C)に示す状態に至ると、接合電流及び加圧力は堆積層Pwに分散されるから、単位面積あたりの接合電流、加圧力は大幅に小さくなる。したがって、図4(C)に示す状態では拡散接合が実質的に進捗せず、円環状の拡散接合面Zを除く堆積層Pwの当接面では拡散接合が実質的に行われず、接合強度の向上に実質的に寄与しない。以上述べたように、本発明では高導電性被接合物W1に縦断面が台形状の円環状プロジェクションPを形成し、その円環状のプロジェクションPの根元面域P4とほぼ等しい面域で高導電性被接合物W1と他の被接合物W2との拡散接合が行われているので、大きな接合強度を得ることができ、また接合面の平坦性を向上させることができる。   Considering that the annular projection P includes the top surface P1, the inner peripheral inclined surface P2, and the outer peripheral inclined surface P3, the area of the annular diffusion bonding surface Z is naturally larger than that of the diffusion bonding surface U in FIG. Since the effective diffusion bonding time is shortened as a result, the bonding strength is greatly reduced as compared with the bonding strength obtained with the highly conductive workpiece W1 of the present invention. When the state shown in FIG. 4C is reached, since the junction current and the applied pressure are dispersed in the deposited layer Pw, the junction current and the applied pressure per unit area are significantly reduced. Therefore, in the state shown in FIG. 4C, diffusion bonding does not substantially progress, and diffusion bonding is not substantially performed on the contact surface of the deposited layer Pw excluding the annular diffusion bonding surface Z, and the bonding strength is high. Does not substantially contribute to improvement. As described above, in the present invention, the annular projection P having a trapezoidal cross section is formed on the highly conductive workpiece W1, and the high conductivity is obtained in a surface area substantially equal to the root surface area P4 of the annular projection P. Since the diffusion bonding between the bonding object W1 and the other bonding object W2 is performed, a large bonding strength can be obtained and the flatness of the bonding surface can be improved.

[実施形態5]
次に、このような環状のプロジェクションPが形成された高導電性被接合物W1と他の被接合物W2との拡散接合を実現するのに好適なコンデンサ式接合装置の一例を示す図5を用いて、具体的な拡散接合の実施形態5について説明する。前述した高導電性被接合物W1と他の被接合物W2とは、図4(A)で示したように、接合電極1と接合電極2との間に配置される。この接合装置が設置される床又はベース部材3に支持機構4が固定されている。支持機構4にはシリンダ装置などからなる加圧機構5が取り付けられ、加圧機構5の先端部には金属材料からなる可動ブロック6が取り付けられている。スプリング又は電磁加圧装置のような加圧補助部材7が可動ブロック6と支持部材8との間に備えられ、接合電極の加圧応答性を向上させる補助的な役割を行っている。加圧補助部材7は加圧機構5の加圧力に弾性力を重畳する形となり、高導電性被接合物W1と被接合物W2との間には弾性力が重畳された圧力が印加される。
[Embodiment 5]
Next, FIG. 5 showing an example of a capacitor-type bonding apparatus suitable for realizing diffusion bonding between a highly conductive object W1 formed with such an annular projection P and another object W2. A specific diffusion bonding embodiment 5 will be described. The high-conductivity object W1 and the other object W2 described above are disposed between the bonding electrode 1 and the bonding electrode 2 as shown in FIG. A support mechanism 4 is fixed to a floor or base member 3 on which the joining device is installed. A pressurizing mechanism 5 made of a cylinder device or the like is attached to the support mechanism 4, and a movable block 6 made of a metal material is attached to the tip of the pressurizing mechanism 5. A pressurizing auxiliary member 7 such as a spring or an electromagnetic pressurizing device is provided between the movable block 6 and the support member 8 to perform an auxiliary role of improving the pressurization response of the joining electrode. The pressure auxiliary member 7 has a shape in which an elastic force is superimposed on the pressure applied by the pressure mechanism 5, and a pressure in which the elastic force is superimposed is applied between the highly conductive workpiece W <b> 1 and the workpiece W <b> 2. .

高導電性被接合物W1の拡散接合ではこの加圧補助部材7の働きが大きい。ここで、支持部材8は直接又は間接的に加圧補助部材7の下端部に結合され、給電部としても作用する銅のような金属材料からなる。上部側の接合電極2は支持部材8に支承されており、その接合電極2と向かい合った位置には下部側の接合電極1が存在する。加圧補助部材7の伸縮の影響を受けない高さに位置する可動ブロック6にはL字形の中間接続部材9が固定されている。支持部材8とL字形中間接続部材9との間を接続する撓み易い第1のフレキシブル導電部材10が備えられ、L字形の中間接続部材9と一方の給電導体12との間は第2のフレキシブル導電部材11によって接続されている。接合電極1と接合電極2とは、例えば銅合金である黄銅からなる。   The function of the pressure auxiliary member 7 is large in diffusion bonding of the highly conductive workpiece W1. Here, the support member 8 is made of a metal material such as copper which is directly or indirectly coupled to the lower end portion of the pressure assisting member 7 and also functions as a power feeding portion. The upper joining electrode 2 is supported by the support member 8, and the lower joining electrode 1 exists at a position facing the joining electrode 2. An L-shaped intermediate connecting member 9 is fixed to the movable block 6 located at a height that is not affected by the expansion and contraction of the pressure assisting member 7. A flexible first flexible conductive member 10 is provided to connect between the support member 8 and the L-shaped intermediate connection member 9, and a second flexible conductor is provided between the L-shaped intermediate connection member 9 and one power supply conductor 12. They are connected by the conductive member 11. The joining electrode 1 and the joining electrode 2 are made of brass, which is a copper alloy, for example.

給電導体12と、接合電極1に接続された他方の給電導体13との間に接合用トランス14の2次巻線N2が接続され、これに磁気的に結合された1次巻線N1にはインバータ回路又は半導体スイッチ回路のような放電回路15が接続される。放電回路15にはエネルギー蓄積用コンデンサ16とそのコンデンサを充電する充電回路17とが接続されている。拡散接合にあっては、接合に寄与する接合電流のほとんどは立ち上がりからピーク値近傍までの電流であるので、実施形態4の拡散接合では接合電流がピーク値近傍まで立ち上がる時間が10ms程度以下、特に7ms以下であることが好ましい。そして、この接合装置では上部側の接合電極2が僅かな外力で上下方向に上下動できる支持部材8に支えられていると同時に、即応性の高い弾性力を与えることができる加圧補助部材7に結合されているので、環状のプロジェクションPの塑性流動化に伴う接合電極2と被接合物W2との間の微妙な加圧力の変化に対して、接合電極2が即応することができる。なお、記号18〜20は3相交流入力端子を示す。   The secondary winding N2 of the junction transformer 14 is connected between the power supply conductor 12 and the other power supply conductor 13 connected to the bonding electrode 1, and the primary winding N1 magnetically coupled thereto is connected to the primary winding N1. A discharge circuit 15 such as an inverter circuit or a semiconductor switch circuit is connected. Connected to the discharge circuit 15 are an energy storage capacitor 16 and a charging circuit 17 for charging the capacitor. In the diffusion junction, most of the junction current that contributes to the junction is the current from the rise to the vicinity of the peak value. Therefore, in the diffusion junction of the fourth embodiment, the time for the junction current to rise to the vicinity of the peak value is about 10 ms or less. It is preferable that it is 7 ms or less. In this bonding apparatus, the upper bonding electrode 2 is supported by the support member 8 that can move up and down with a slight external force, and at the same time, the pressure assisting member 7 that can provide highly responsive elastic force. Therefore, the bonding electrode 2 can immediately respond to a slight change in the applied pressure between the bonding electrode 2 and the workpiece W2 due to plastic fluidization of the annular projection P. Symbols 18 to 20 represent three-phase AC input terminals.

次に、この接合装置を用いて図1又は図2に示した高導電性被接合物W1と他の被接合物W2とを拡散接合する方法について述べる。先ず、高導電性被接合物W1を下部側の接合電極1上に載置し、その上に被接合物W2を載置する。この状態で、図5の加圧機構5が下方向に動作し、これに伴い、可動ブロック6、加圧補助部材7、支持部材8及び上部側の接合電極2からなる上部接合ヘッド全体が下降し、接合電極2が被接合物W2に所要の加圧力を加える。このとき、被接合物W2の下面の一部面域は高導電性被接合物W1の環状のプロジェクションPの頂部面P1に当接する。そして、接合電極2と支持部材8とはその位置で停止するが、加圧機構5がさらに下降するのに伴い、加圧補助部材7が収縮され、可動ブロック6は加圧機構5と一緒に下降する。また、可動ブロック6が下降するのに伴い、第2のフレキシブル導電部材11は撓み、第1のフレキシブル導電部材10は可動ブロック6と一緒に動くので、前述のように支持部材8が停止した状態で、可動ブロック6が加圧補助部材7を収縮させながら下降するとき、最初の状態から変形する。しかし、前述のように第1のフレキシブル導電部材10は第2のフレキシブル導電部材11に比べて撓み易く作られているから、支持部材8と上部側の接合電極2との動きに対する抵抗が軽減される。したがって、上部側の接合電極2の即応性が改善される。   Next, a method of diffusion bonding the highly conductive object W1 shown in FIG. 1 or 2 and another object W2 using this bonding apparatus will be described. First, the highly conductive workpiece W1 is placed on the lower joining electrode 1, and the workpiece W2 is placed thereon. In this state, the pressurizing mechanism 5 shown in FIG. 5 operates downward, and accordingly, the entire upper joining head composed of the movable block 6, the pressurizing auxiliary member 7, the support member 8, and the upper joining electrode 2 is lowered. Then, the bonding electrode 2 applies a required pressure to the workpiece W2. At this time, a partial surface area of the lower surface of the workpiece W2 contacts the top surface P1 of the annular projection P of the highly conductive workpiece W1. The joining electrode 2 and the support member 8 stop at that position, but as the pressurizing mechanism 5 further descends, the pressurizing auxiliary member 7 is contracted, and the movable block 6 is moved together with the pressurizing mechanism 5. Descend. Further, as the movable block 6 descends, the second flexible conductive member 11 bends and the first flexible conductive member 10 moves together with the movable block 6, so that the support member 8 is stopped as described above. Thus, when the movable block 6 is lowered while contracting the pressure assisting member 7, it is deformed from the initial state. However, as described above, since the first flexible conductive member 10 is made to be more easily bent than the second flexible conductive member 11, resistance to movement between the support member 8 and the upper joining electrode 2 is reduced. The Therefore, the responsiveness of the bonding electrode 2 on the upper side is improved.

このように、加圧機構5が動作して下降運動を行っている過程で加圧補助部材7が収縮し、そして接合電極1と接合電極2との間の圧力が予め決められた傾斜で上昇している途中で、あるいは加圧力がほぼ一定になった段階で、放電回路15がオンして、充電回路17により既にエネルギー蓄積用コンデンサ16に充電されている電荷を、接合トランス14の1次巻線N1に放出する。これに伴い、1次巻線N1に比べて巻数が大幅に少ない1ターン又2ターン程度の2次巻線N2に大きな電流が発生し、接合電極1と接合電極2とその間に挟まれている高導電性被接合物W1と被接合物W2とを介して急峻なパルス状の接合電流が流れる。   In this manner, the pressure assisting member 7 contracts during the downward movement of the pressure mechanism 5 and the pressure between the bonding electrode 1 and the bonding electrode 2 increases at a predetermined inclination. During the operation, or when the applied pressure becomes substantially constant, the discharge circuit 15 is turned on, and the charge already stored in the energy storage capacitor 16 by the charging circuit 17 is transferred to the primary of the junction transformer 14. Release to winding N1. Along with this, a large current is generated in the secondary winding N2 having one or two turns, which has a significantly smaller number of turns than the primary winding N1, and is sandwiched between the junction electrode 1 and the junction electrode 2. A steep pulsed junction current flows through the highly conductive workpiece W1 and the workpiece W2.

前述のようなパルス状の接合電流は、先ず高導電性被接合物W1の円環状のプロジェクションP2の頂部面P1とこれに当接している被接合物W2の面域とに集中して短時間流れる。円環状のプロジェクションPを流れる接合電流は電流密度が高いから、先ずプロジェクションPの頂部面Pでの接触抵抗による発熱で円環状のプロジェクションPはその頂部面P1で塑性流動化を始め、円環状のプロジェクションP2に発熱した熱は横方向に実質的に熱伝達されないので、環状のプロジェクションP2を温度上昇させ、塑性流動化させる。環状のプロジェクションP2の塑性流動化した金属材料は、前述したように加圧力によって凹所Aに入り込み、収容される。このことは、加圧補助部材7が弾性力を常に上部側の接合電極2に与えている、つまり高導電性被接合物W1と被接合物W2との間には弾力性を含む加圧力が印加されているので速やかに行われ、接合電流がピーク値近傍まで立ち上がる10ms程度以下の短い時間での拡散接合を可能にしており、接合強度の大きな拡散接合を可能にしている。   The pulse-like junction current as described above is first concentrated on the top surface P1 of the annular projection P2 of the highly conductive workpiece W1 and the surface area of the workpiece W2 in contact therewith for a short time. Flowing. Since the junction current flowing through the annular projection P has a high current density, the annular projection P starts plastic fluidization at the top surface P1 due to heat generated by the contact resistance at the top surface P of the projection P, and the annular projection P Since the heat generated in the projection P2 is not substantially transferred in the lateral direction, the temperature of the annular projection P2 is raised and plastic fluidized. As described above, the plastic fluidized metal material of the annular projection P2 enters the recess A by the applied pressure and is accommodated. This is because the pressure assisting member 7 always applies an elastic force to the upper joining electrode 2, that is, a pressure including elasticity is applied between the highly conductive object W <b> 1 and the object W <b> 2. Since it is applied, it is performed promptly, and diffusion bonding can be performed in a short time of about 10 ms or less when the bonding current rises to the vicinity of the peak value, and diffusion bonding with high bonding strength is possible.

この加圧補助部材7の応答速度が速ければ速いほど、パルス幅の短いパルス接合電流を、つまり短時間に電流エネルギーを集中して高導電性被接合物W1と被接合物W2との間に流すことができ、銅材料のような熱伝導の極めて良好なものでも、好ましい状態に塑性流動化させることができ、このことが高導電性被接合物同士又は高導電性被接合物と他の金属材料からなる被接合物との間でも満足の行く拡散接合をできる一因となっている。なお、この拡散接合方法は高導電性被接合物同士、又は高導電性被接合物と他の金属材料からなる被接合物との拡散接合の他に、それ以外の金属材料、例えば通常の鋼板同士、あるいはステンレス部材と鋼板などの同種、異種の金属材料などにも適用でき、満足の行く拡散接合結果を得ることができる。また、高導電性被接合物は板状の部材に限られず、パイプ状、丸棒状、角棒状など種々の形状であっても同様に大きな接合強度を得ることができる。   The faster the pressure assisting member 7 has a higher response speed, the shorter the pulse width of the pulse junction current, that is, the current energy is concentrated in a short time between the highly conductive workpiece W1 and the workpiece W2. Even a material having a very good thermal conductivity such as a copper material can be plastically fluidized to a preferable state, and this can be performed between the highly conductive objects to be bonded or between the highly conductive objects to be bonded and other materials. This is one of the reasons why a satisfactory diffusion bonding can be achieved with an object to be bonded made of a metal material. In addition, this diffusion bonding method is not limited to diffusion bonding between highly conductive objects to be bonded or between a highly conductive object to be bonded and an object to be bonded made of another metal material, other metal materials, for example, normal steel plates. It can be applied to the same or different metal materials such as stainless steel members and steel plates, and satisfactory diffusion bonding results can be obtained. Further, the highly conductive object to be joined is not limited to a plate-like member, and high joint strength can be obtained even in various shapes such as a pipe shape, a round bar shape, and a square bar shape.

本発明の実施形態1に係る高導電性被接合物を示す図である。It is a figure which shows the highly conductive to-be-joined object which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る高導電性被接合物の断面を示す図である。It is a figure which shows the cross section of the highly conductive to-be-joined object which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る高導電性被接合物の断面を示す図である。It is a figure which shows the cross section of the highly conductive to-be-joined object which concerns on Embodiment 3 of this invention. 本発明に係る拡散接合方法を説明するための図である。It is a figure for demonstrating the diffusion bonding method which concerns on this invention. 本発明に係る具体的な拡散接合方法を実現するための実接合装置の一例を示す図である。It is a figure which shows an example of the actual joining apparatus for implement | achieving the concrete diffusion bonding method which concerns on this invention.

符号の説明Explanation of symbols

W1・・・高導電性被接合物
W2・・・別の被接合物
P・・・環状のプロジェクション
P1・・・プロジェクションPの頂部面
P2・・プロジェクションPの内周傾斜面
P2’・・プロジェクションPの内周面
P3・・プロジェクションPの外周傾斜面
P4・・・プロジェクションPの根元面域
Pw・・・プロジェクションPの堆積層
U・・・拡散接合面域
Z・・・拡散接合面域
S1・・・高導電性被接合物W1の接合側面
A・・・凹所
A’ ・・・円環状の内周溝
1・・・下部側の接合電極
2・・・上部側の接合電極
3・・・ベース部材
4・・・支持機構
5・・・加圧機構
6・・・可動ブロック
7・・・加圧補助部材
8・・・支持部材
9・・・L字形の中間接続部材
10・・・第1のフレキシブル導電部材
11・・・第2のフレキシブル導電部材
12、13・・・給電導体
14・・・接合用トランス
15・・・放電回路
16・・・エネルギー蓄積用コンデンサ
17・・・充電回路
18〜20・・・3相交流入力端子
W1... Highly conductive object W2. Another object to be bonded P... Annular projection P1... Top surface of projection P P2 .. inner peripheral inclined surface of projection P P2 '. P inner peripheral surface P3 ··· An outer peripheral inclined surface of the projection P P4 ··· A base surface area of the projection P Pw ··· a deposition layer of the projection P U · · · diffusion bonding surface region Z · · · diffusion bonding surface region S1 ... Joint side surface of highly conductive workpiece W1 A ... Recess A '... Annular inner circumferential groove 1 ... Lower side joining electrode 2 ... Upper side joining electrode 3. ··· Base member 4 ··· Support mechanism 5 ··· Pressurizing mechanism 6 ··· Movable block 7 · · · Pressurizing auxiliary member 8 · · · Support member 9 · · · L-shaped intermediate connection member 10 ···・ First flexible conductive member 11... Kishiburu conductive members 12, 13 ... feeding conductor 14 ... bonding transformer 15 ... discharge circuit 16 ... energy storage capacitor 17 ... charging circuit 18-20 ... 3-phase AC input terminal

Claims (6)

他の被接合物と拡散接合されて拡散接合面を形成する高導電性被接合物であって、該高導電性被接合物はその接合側面から突出する環状のプロジェクションを備え、
前記環状のプロジェクションに囲まれた中央面域には、前記高導電性被接合物と前記他の被接合物とが拡散接合されるときに、前記環状のプロジェクションの塑性流動化した金属材料を収容する凹所又は内周溝を備え、
該凹所又は内周溝は前記高導電性被接合物の前記接合側面よりも低くなる深さを有し、
前記プロジェクションの根元面域が前記拡散接合面域になることを特徴とする高導電性被接合物。
A highly conductive object that is diffusion-bonded with another object to form a diffusion bonding surface, and the high-conductive object includes an annular projection that protrudes from the bonding side surface.
The central surface area surrounded by the annular projection accommodates the metal material obtained by plastic fluidization of the annular projection when the highly conductive object to be bonded and the other object to be bonded are diffusion bonded. Provided with a recess or inner circumferential groove,
The recess or inner circumferential groove has a depth that is lower than the bonding side surface of the highly conductive workpiece.
A highly conductive object to be bonded, wherein a base area of the projection is the diffusion bonding area.
請求項1において、
前記高導電性被接合物は銅又は銅合金、あるいはアルミニウム又はアルミニウム合金であることを特徴とする高導電性被接合物。
In claim 1,
The highly conductive object to be bonded is copper or a copper alloy, or aluminum or an aluminum alloy.
請求項1又は請求項2において、
前記環状のプロジェクションの縦断面の開き角度は60〜120度の範囲にあることを特徴とする高導電性被接合物。
In claim 1 or claim 2,
An opening angle of a longitudinal section of the annular projection is in a range of 60 to 120 degrees.
接合側面から突出する環状のプロジェクションを備える高導電性被接合物と他の被接合物との間に接合電流を通電し、前記高導電性被接合物と前記他の被接合物とを拡散接合して拡散接合面を形成する拡散接合方法であって、
前記環状のプロジェクションの根元面域が前記拡散接合面域となるような加圧力を前記高導電性被接合物と前記他の被接合物との間に印加した状態で、前記接合電流を通電することを特徴とする高導電性被接合物の拡散接合方法。
A junction current is passed between a highly conductive object having an annular projection protruding from the joining side surface and another object to be bonded, and the highly conductive object and the other object to be bonded are diffusion bonded. A diffusion bonding method for forming a diffusion bonding surface,
The joining current is applied in a state where a pressure is applied between the highly conductive object to be joined and the other object to be joined so that the base surface area of the annular projection becomes the diffusion joining surface area. A diffusion bonding method for a highly conductive object to be bonded.
請求項4において、
前記接合電流は、電流がピーク値までに立ち上がるのに要する時間が10ms以下のパルス状電流であることを特徴とする高導電性被接合物の拡散接合方法。
In claim 4,
A diffusion bonding method for a highly conductive object to be bonded, wherein the bonding current is a pulsed current having a time required for the current to rise to a peak value of 10 ms or less.
請求項4又は請求項5において、
前記加圧力は弾性力が重畳された圧力であり、前記塑性流動化した前記環状のプロジェクションに影響されることなく所要の加圧力を前記拡散接合面に印加することを特徴とする高導電性被接合物の拡散接合方法。
In claim 4 or claim 5,
The pressurizing force is a pressure in which an elastic force is superimposed, and a high conductive covering is applied to the diffusion bonding surface without being affected by the plastic fluidized annular projection. Diffusion bonding method for joints.
JP2006326676A 2006-12-04 2006-12-04 Diffusion bonding method for highly conductive workpieces Active JP5037102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326676A JP5037102B2 (en) 2006-12-04 2006-12-04 Diffusion bonding method for highly conductive workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326676A JP5037102B2 (en) 2006-12-04 2006-12-04 Diffusion bonding method for highly conductive workpieces

Publications (2)

Publication Number Publication Date
JP2008137047A true JP2008137047A (en) 2008-06-19
JP5037102B2 JP5037102B2 (en) 2012-09-26

Family

ID=39599053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326676A Active JP5037102B2 (en) 2006-12-04 2006-12-04 Diffusion bonding method for highly conductive workpieces

Country Status (1)

Country Link
JP (1) JP5037102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786866B2 (en) * 2010-12-14 2015-09-30 日産自動車株式会社 Conductive material assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143218A (en) * 1983-12-29 1985-07-29 マツダ株式会社 Clamping tool for welding
JP2002103056A (en) * 2000-09-26 2002-04-09 Origin Electric Co Ltd Method for diffusion bonding of butted projections and welded article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143218A (en) * 1983-12-29 1985-07-29 マツダ株式会社 Clamping tool for welding
JP2002103056A (en) * 2000-09-26 2002-04-09 Origin Electric Co Ltd Method for diffusion bonding of butted projections and welded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786866B2 (en) * 2010-12-14 2015-09-30 日産自動車株式会社 Conductive material assembly

Also Published As

Publication number Publication date
JP5037102B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5064688B2 (en) Resistance welding equipment
CN100425384C (en) Method for connecting heterogeneous metals by large-facula laser and electric arc combined heat source
JP5789497B2 (en) One-side spot welding equipment
JP4550086B2 (en) Projection welding method for highly conductive workpieces
CN108406071A (en) A kind of thin plate and ultra thin plate resistance spot welding connection method
JP5261984B2 (en) Resistance spot welding method
JP2019136748A (en) Resistance spot welding method
US20110253681A1 (en) Method of controlling an indentation depth of an electrode into a metal substrate during welding
JP7353329B2 (en) Welding device and method for friction stir welding and resistance welding
JP4825056B2 (en) Highly conductive workpiece and resistance welding method thereof
JP4757651B2 (en) Resistance welding method for highly conductive metal materials
JP5037102B2 (en) Diffusion bonding method for highly conductive workpieces
JP4940334B2 (en) Projection welding method for highly conductive workpieces
JP2013078806A (en) Resistance spot welding method
JP4994982B2 (en) Diffusion bonding method for copper thin-walled pipe
JP2009193928A (en) Connecting method and connecting structure of electric component, and power conversion device using the connection structure
JP5491093B2 (en) Resistance welding equipment
JP2008200750A (en) One side arc spot welding method
JP4785768B2 (en) Highly conductive object and diffusion bonding method thereof
JP3647577B2 (en) Workpiece and resistance welding method thereof
JP5906618B2 (en) Resistance spot welding method
JPH1133737A (en) Welding material and welding method thereof
CN107900503A (en) A kind of dissimilar material joining device based on auxiliary sample
US7053330B2 (en) Projection weld-bonding system and method
JP5094948B2 (en) Resistance welding method for highly conductive metal materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250