JP2008137013A - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP2008137013A
JP2008137013A JP2006322735A JP2006322735A JP2008137013A JP 2008137013 A JP2008137013 A JP 2008137013A JP 2006322735 A JP2006322735 A JP 2006322735A JP 2006322735 A JP2006322735 A JP 2006322735A JP 2008137013 A JP2008137013 A JP 2008137013A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
solidification
point
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322735A
Other languages
Japanese (ja)
Other versions
JP3958787B1 (en
Inventor
Eiko Yamada
山田榮子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006322735A priority Critical patent/JP3958787B1/en
Application granted granted Critical
Publication of JP3958787B1 publication Critical patent/JP3958787B1/en
Publication of JP2008137013A publication Critical patent/JP2008137013A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the risk of the development in operating technology on a real production scale in a continuous casting method by which a hollow slab is pressure-welded so as to produce a solid slab and which has not been performed heretofore. <P>SOLUTION: Equipment designing is performed in such a manner that a hollow slab press-welding system is made possible in a drawing locus composed of a 3/4 circumference and rectilinear propagation by curved type continuous casting. In the equipment, the dimensions/shape of a mold and a drawing rate are suitably set, and a slab is perfectly solidified to the center part thereof. The cross-sectional aspect ratio or the like in the slab are optimized for securing efficiency of the casting. Rolling straightening is acted for solving bending strain to the circular arc radius which is too small. In this way, the conventional ordinary production and production in the new method are suitably changed over. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼の湾曲式連続鋳造方法に関している。 The present invention relates to a curved continuous casting method of steel.

溶鋼から鋼片を製造するに際して、連続鋳造方法の採用により総合コストは大幅に低減されているが問題も多々ある。例えば、スラブの場合設備費が極めて大きい。断面形状を問わず中心偏析、多孔質、内部ワレ等連続鋳造固有の欠陥も充分解決されていない。 When manufacturing a steel slab from molten steel, the total cost is greatly reduced by adopting the continuous casting method, but there are many problems. For example, in the case of a slab, the equipment cost is extremely high. Regardless of the cross-sectional shape, defects inherent to continuous casting such as center segregation, porosity and internal cracks have not been sufficiently solved.

特許文献1,特許文献2には、1)鋳造能率を飛躍的に向上させ、且つ2)内部欠陥を解消する連続鋳造方法が提起されている。その原理は、『溶鋼が鋳型に鋳込まれ外皮が形成された鋳片を鋳型から下方に円弧に沿って連続的に引抜き、該鋳片中心部が凝固するまでに半円を越えさらに鋳込面から大気圧相当静鉄圧高さ(約1.4m)を越えて上方に引抜くことによって中空鋳片を形成し、次ぎに圧接圧延機により該鋳片を圧下して内面を互いに圧接して中実鋳片とする連続鋳造方法』である。
品質に関して、凝固終点が無いことから芯部欠陥は解消され、且つ実質柱状晶から成りより均質になる。
操業に関して凝固区間長さが従来方法と同一の場合には鋳造能率は数倍に向上する。
Patent Documents 1 and 2 propose a continuous casting method that 1) dramatically improves casting efficiency and 2) eliminates internal defects. The principle is that slabs in which molten steel is cast into the mold and the outer skin is formed are continuously drawn downward along the arc from the mold, and beyond the semicircle until the center part of the slab is solidified A hollow cast slab is formed by pulling upward from the surface over a static iron equivalent height of about atmospheric pressure (about 1.4 m), and then the slab is pressed by a pressure rolling mill to press the inner surfaces together. Is a continuous casting method using solid slabs.
In terms of quality, since there is no solidification end point, the core defect is eliminated, and it consists of substantially columnar crystals and becomes more homogeneous.
When the solidification section length is the same as that of the conventional method, the casting efficiency is improved several times.

特許文献3には、該連続鋳造方法の構造が低機高であり、溶解炉から鋳片搬出までの一連の物流を一新させることが開示されている。鋳片引抜軌跡は3/4円周と以後の水平引き出しから成る。該方法によると溶解炉の直下で溶鋼を受けた台車上のレードルはGL(グランドレベル)を走行する該台車から直接連続鋳造機内のレードル架台に移送・懸架される。鋳片は湾曲して地下1階の最下点を通過した後上昇して地上2階の3/4円周点で伸直され水平走行する。
当該方法の場合、1)通常の連続鋳造方法では不可欠であるレードル・クレーンは不要となる。2)従って製鋼工場の建屋は極めて軽量、低設部費になる。3)レードルハンドリングの自動化が容易になる。4)物流の交錯する溶解炉と鋳造機間のレイアウトが簡素、安全になる。5)鋳片の搬出と圧延床が同一レベルになりメンテナンスが容易等の効果が生まれる。
Patent Document 3 discloses that the structure of the continuous casting method is low in machine height, and a series of physical distribution from the melting furnace to the slab unloading is renewed. The slab drawing locus consists of 3/4 circumference and subsequent horizontal drawing. According to this method, the ladle on the carriage that has received the molten steel immediately below the melting furnace is directly transferred and suspended from the carriage traveling on the GL (ground level) to the ladle rack in the continuous casting machine. The slab is curved, passes through the lowest point on the first basement floor, rises, stretches at the 3/4 circle point on the second floor above the ground, and travels horizontally.
In the case of this method, 1) a ladle crane which is indispensable in a normal continuous casting method is not required. 2) Therefore, the steel factory building is extremely light and has low installation costs. 3) Automation of ladle handling becomes easy. 4) The layout between the melting furnace and the casting machine where the logistics are mixed becomes simple and safe. 5) The unloading of the slab and the rolling floor are at the same level, and effects such as easy maintenance are produced.

特許文献4には、該連続鋳造方法に改良を加えた新規方法によりスラブから任意の寸法のブルーム、ビレットを効率よく低コスト、高能率で製造する方法が開示されている。
当該方法により鋳片断面寸法は製鋼工程にとって最適形状とし、サイジング・ミルにより圧延にとって最適形状に調節することができる。
Patent Document 4 discloses a method for efficiently producing low-cost and high-efficiency blooms and billets of arbitrary dimensions from a slab by a novel method obtained by improving the continuous casting method.
By this method, the slab cross-sectional dimension can be adjusted to the optimum shape for the steelmaking process, and can be adjusted to the optimum shape for rolling by a sizing mill.

特許文献5には、当該方法においてスラブ状の中空鋳片の長片と短片の両方向を同時に圧下・圧接してビームブランクを効率的に製造する方法が開示されている。
特許文献6には当該方法に改良を加えて同心的組織に改質して精密焼入鋼とする方法が開示されている。
Patent Document 5 discloses a method of efficiently manufacturing a beam blank by simultaneously reducing and pressing both the long and short pieces of a slab-shaped hollow cast piece in the method.
Patent Document 6 discloses a method of improving the method and modifying it to a concentric structure to obtain a precision hardened steel.

以上の如く該連続鋳造方法は極めて優れた特徴と大きな効果が期待される革新的方法であるにもかかわらず未だ実用されていない。その理由は、研究開発段階は完了しているが量産技術の開発のためには実生産規模(50〜100t/h)の設備による開発と操業経験の蓄積が必要であり、そのための初期設備費用及び実験操業費用の負担とリスクの双方を過大視するためである。従って該リスクを下げ、負担が負担とならずに生産にそのまま寄与することができれば極めて好都合である。 As described above, the continuous casting method is not yet put into practical use even though it is an innovative method that is expected to have extremely excellent characteristics and great effects. The reason for this is that although the research and development stage has been completed, development of mass production technology requires the development of actual production scale equipment (50 to 100 t / h) and the accumulation of operational experience, and the initial equipment costs for that. This is to overestimate both the burden of experimental operation costs and the risk. Therefore, it would be extremely advantageous if the risk can be reduced and the burden can be directly contributed to production without burden.

特許公報第2989737Patent Publication No.2989737 特許公報第3218361Patent Publication No. 3218361 特許公報第3684731Japanese Patent Publication No.3684731 特許公報第3677572Japanese Patent Publication No.3677572 特許公開2001-205397Patent Publication 2001-205397 特許公開2002-346710Patent Publication 2002-346710

上記のように、該革新的連続鋳造方法『溶鋼が鋳型に鋳込まれ外皮が形成された鋳片を鋳型から下方に円弧に沿って連続的に引抜き、該鋳片中心部が凝固するまでに半円を越えさらに鋳込面から大気圧相当静鉄圧高さ(約1.4m)を越えて上方に引抜くことによって中空鋳片を形成し、次ぎに圧接圧延機により該鋳片を圧下して内面を互いに圧接して中実鋳片とする連続鋳造方法』の実用化は、実操業技術の開発に当たり初期設備費用と実験操業費用に対する大きな負担とリスクのため停滞しており、本発明は該負担とリスクを大幅に軽減することを課題とする。 As described above, the innovative continuous casting method “from the time when the molten steel is cast into the mold and the outer slab is formed is continuously drawn downward along the arc from the mold until the center of the slab is solidified. A hollow slab is formed by pulling upward beyond the semi-circle and further exceeding the atmospheric pressure equivalent static iron pressure height (about 1.4 m) from the casting surface, and then the slab is reduced by a pressure rolling mill. Practical application of `` continuous casting method in which the inner surfaces are pressed against each other to form solid slabs '' has been stagnant due to the large burden and risk of initial equipment costs and experimental operation costs in developing actual operation technology, and the present invention The task is to significantly reduce the burden and risk.

上記問題の解決のため以下の基本的な策が講じられる。
1) 該革新的連続鋳造方法と同様の構造の連続鋳造機を使用し、
2) 適切な鋳造条件のもとで一般的な完全凝固方式の連続鋳造鋳片を日常生産に供し、3) 鋳造条件を変更して該革新的方法による実生産規模の生産試験を適宜行う。
The following basic measures are taken to solve the above problems.
1) Using a continuous casting machine having the same structure as the innovative continuous casting method,
2) A general fully solidified continuous cast slab is subjected to daily production under appropriate casting conditions, and 3) The production test on an actual production scale by the innovative method is appropriately performed by changing the casting conditions.

本発明は、鋳型から下方に円弧に沿って連続的に引き抜かれた鋳片が最下点Mを超えて上向きに転じ3/4円周点Tにおいて伸直されて水平に引き出される引抜軌跡をもつ鋼の連続鋳造方法において、1)円弧半径Rを3〜5mとし、2)鋳片中心部が凝固する位置を3/8円周点Pと1/2円周点+1.4mの位置Q点の間とし、3)T点において一対のロールにより圧下率2%以上の圧下を作用させつつ伸直することを特徴とする連続鋳造方法である。
又本発明において鋳造能率の増強を鋳片断面アスペクト比の増加によって図ることを特徴とする連続鋳造方法である。
The present invention provides a drawing locus in which a slab continuously drawn out along a circular arc downward from a mold turns upward beyond the lowest point M, is stretched at a 3/4 circumferential point T, and is drawn horizontally. In the continuous casting method of steel, 1) the arc radius R is set to 3 to 5 m, and 2) the position at which the center portion of the slab solidifies is 3/8 circle point P and 1/2 circle point +1.4 m position Q. 3) It is a continuous casting method characterized in that stretching is performed while applying a reduction of 2% or more by a pair of rolls at a point T.
In the present invention, the casting efficiency is enhanced by increasing the aspect ratio of the slab cross section.

上記の発明によると同一連続鋳造機でそれぞれ適切な鋳造条件を設定することにより一般的な完全凝固方式の連続鋳造と中空鋳片圧接方式の革新的連続鋳造の双方を実生産規模の生産能率で操業することができる。前者では製品は日常生産に供され、後者の操業では量産上の問題点の摘出や改善策の探求が容易になる。即ち生産しつつ適宜新技術開発に利用でき、しかも開発された技術によりそのまま新製品として量産化に移行することが容易になる。 According to the above invention, by setting appropriate casting conditions in the same continuous casting machine, both general continuous solidification type continuous casting and hollow continuous slab pressure welding type innovative continuous casting can be achieved at a production scale production efficiency. Can operate. In the former, products are used for daily production, and in the latter operation, it is easy to identify problems in mass production and search for improvement measures. In other words, it can be used for new technology development as appropriate while being produced, and it is easy to shift to mass production as a new product as it is with the developed technology.

第2の効果として、従来方式の生産にもかかわらず特許文献3に開示された上下及び水平レイアウト上の効果が得られる。即ち、1)通常の連続鋳造方法では不可欠であるレードル・クレーンは不要となる。2)従って製鋼工場の建屋は極めて軽量、低設部費になる。3)レードルハンドリングの自動化が容易になる。4)物流の交錯する溶解炉と鋳造機間のレイアウトが簡素、安全になる。5)鋳片の搬出と圧延床が同一レベルになりメンテナンスが容易等の効果が生まれる。 As a second effect, the effect on the vertical and horizontal layout disclosed in Patent Document 3 can be obtained despite the production of the conventional method. That is, 1) A ladle crane which is indispensable in a normal continuous casting method is not required. 2) Therefore, the steel factory building is extremely light and has low installation costs. 3) Automation of ladle handling becomes easy. 4) The layout between the melting furnace and the casting machine where the logistics are mixed becomes simple and safe. 5) The unloading of the slab and the rolling floor are at the same level, and effects such as easy maintenance are produced.

以下実施の形態について図面を参照しつつ説明する。
図1は本発明を実施する連続鋳造方法を例示する概略側面図である。
タンディシュ1から溶鋼2が長方形断面の湾曲鋳型3に鋳込まれる。鋳型3により外皮が形成された鋳片4はピンチロール6により下方に円弧に沿って引き抜かれ、2次冷却帯5を貫通して一層冷却され、3/8周点Pを超え、半円を越えさらに鋳込面から大気圧相当静鉄圧高さ(約1.4m)Q点を越えて上方に引抜かれ、3/4周点Tより配置された伸直機7により伸直され且つ水平に引き出され、切断機8により切断されて鋼片とされる。
Hereinafter, embodiments will be described with reference to the drawings.
FIG. 1 is a schematic side view illustrating a continuous casting method embodying the present invention.
Molten steel 2 is cast from the tundish 1 into a curved mold 3 having a rectangular cross section. The slab 4 with the outer shell formed by the mold 3 is drawn down along the arc by the pinch roll 6 and further cooled through the secondary cooling zone 5, exceeding the 3/8 round point P, and forming a semicircle. Furthermore, it is drawn upward from the casting surface beyond the point Q corresponding to the atmospheric pressure equivalent to the static iron pressure (about 1.4 m), straightened by the straightening machine 7 arranged from the 3/4 round point T, and horizontal. And is cut by a cutting machine 8 into a steel piece.

上記連続鋳造方法において円弧半径Rは3〜5mに設定される。鋳片中心部の凝固がP点とQ点の間で終了するよう鋳型寸法(直径又は短辺寸法)に対応して引抜速度Vと2次冷却帯の冷却強度を調節する。機長(=鋳込面から凝固終了点までの長さ)Lはπ×R+1.4mとなる。鋳片中心まで凝固するので中実鋳片10が引き抜かれ伸直機7に案内される。 In the continuous casting method, the arc radius R is set to 3 to 5 m. The drawing speed V and the cooling strength of the secondary cooling zone are adjusted according to the mold size (diameter or short side size) so that the solidification of the slab center ends between the points P and Q. The machine length (= the length from the casting surface to the solidification end point) L is π × R + 1.4 m. Since it solidifies to the center of the slab, the solid slab 10 is pulled out and guided to the straightening machine 7.

該伸直機7は前後2台以上のロール対から成り、先頭ロール対はT点に配置され圧延機9として機能する。2番ロール以後は該圧延機9と相互に作用して曲がりを矯正し案内する機能を持つ。中実鋳片10の伸直に際して圧延機9により2%以上の圧下率で圧下しつつ矯正する。 The straightening machine 7 is composed of two or more roll pairs in the front and rear, and the leading roll pair is arranged at a point T and functions as a rolling mill 9. After the second roll, it interacts with the rolling mill 9 to have a function of correcting and guiding the bending. When the solid slab 10 is straightened, it is corrected while being reduced by a rolling mill 9 at a reduction rate of 2% or more.

本発明では鋳造能率は通常の生産水準が確保されることが前提条件になる。鋳造能率に直結する機長は既述の湾曲半径の大きさに起因して従来の高能率連続鋳造機より小さい。その結果能率には不利になる。対策として鋳型断面寸法が適切に設定される。能率向上には長方形が望ましく断面アスペクト比が決定的条件となる。
以上の設備と作業方法により従来と同様の完全凝固方式の連続鋳造が従来同様の鋳造能率で行われる。
In the present invention, the casting efficiency is premised on ensuring a normal production level. The machine length directly linked to the casting efficiency is smaller than that of the conventional high-efficiency continuous casting machine due to the size of the bending radius. As a result, efficiency is disadvantageous. As a countermeasure, the mold cross-sectional dimensions are set appropriately. A rectangular shape is desirable for improving efficiency, and the cross-sectional aspect ratio is a decisive condition.
With the above equipment and working method, the same continuous solidification type continuous casting as in the past is performed with the same casting efficiency as in the past.

図2に示すように、上記設備において鋳型寸法(短辺寸法又は直径)と引抜速度と2次冷却帯冷却強度の3者を適切に組み合わせると、凝固はQ点で終了せずQ点以後では溶融芯11が離脱して中空鋳片12となる。該中空鋳片は圧延機9により圧下されて凝固殻内面が互いに圧接して中実鋳片13となる。即ち本発明の連続鋳造方法は鋳造条件の変更のみにより容易に公知の中空鋳片圧接方式の連続鋳造方法に転用可能となる。 As shown in FIG. 2, solidification does not end at the Q point and the solidification does not end at the Q point when the three dimensions of the mold size (short side size or diameter), the drawing speed, and the secondary cooling zone cooling strength are appropriately combined in the above equipment. The molten core 11 is detached to form a hollow slab 12. The hollow slab is reduced by a rolling mill 9 so that the solidified shell inner surfaces are pressed against each other to form a solid slab 13. That is, the continuous casting method of the present invention can be easily converted to a known continuous casting method of a hollow slab pressure welding system only by changing the casting conditions.

以下発明の主旨、要素、特定された条件等の背景、理由、根拠等を説明する。
1基の連続鋳造機で2方式の連続鋳造方法が容易に切替できる操業、即ち一方で飛躍的品質向上と能率向上が期待できる中空圧接方式を使用し、他方で従来の品質と能率を持つ完全凝固方式を操業する理由は以下である。
前者方式に関して開発基礎は完了しているが未だ実用されていない。実生産規模により操業技術の開発、改良、蓄積が必要だが、開発試験だけの設備としては余りに割高でリスクを強く感ずるからである。試験機が従来同様の日常生産に問題なく共用できるならリスク軽減策として極めて効果的である。本発明の主旨・目的はここに在る。
The gist, elements, background of the specified conditions, reasons, grounds, etc. will be described below.
Operation that can easily switch between two continuous casting methods with one continuous casting machine, that is, on the one hand, a hollow pressure welding system that can be expected to dramatically improve quality and efficiency, and on the other hand, complete with conventional quality and efficiency The reason for operating the solidification method is as follows.
Although the development basis for the former method has been completed, it has not yet been put into practical use. It is necessary to develop, improve, and accumulate operation technology depending on the actual production scale, but it is too expensive as a facility for development testing only, and it feels very risky. If the test machine can be shared with daily production without any problems, it is extremely effective as a risk mitigation measure. This is the main point / object of the present invention.

上記目的からどちらの方式で操業するにしろ鋳造能率は実生産規模(例:50〜100t/h、一部特殊鋼では20〜30t/h)が前提となる。中空方式の場合の鋳造能率は特許文献1及び2に開示されているように、円弧半径Rが4.5mあれば鋳片断面形状が円形、正方形、長方形ともに上記能率は容易に得られると開示されている。
従って第1の問題として完全凝固方式の場合においても実用的条件下において上記能率が得られることを証明しなければならない。
Regardless of which method is used for the above purpose, the casting efficiency is premised on the actual production scale (eg, 50 to 100 t / h, and in some special steels, 20 to 30 t / h). As disclosed in Patent Documents 1 and 2, the casting efficiency in the case of the hollow method is disclosed that if the arc radius R is 4.5 m, the above-described efficiency can be easily obtained for the slab cross-sectional shape of a circle, square, or rectangle. Has been.
Therefore, as a first problem, it is necessary to prove that the above efficiency can be obtained under practical conditions even in the case of the complete solidification system.

完全凝固方式の場合の鋳造能率Pcは以下の計算に基づいて設定される。
鋳造能率Pc=鋳片断面積S×密度ρ×引抜速度V
鋳片断面積S=(鋳片短辺寸法B)×鋳片断面アスペクト比β
引抜速度V=機長L/凝固時間t
即ち鋳片寸法に対して凝固時間が解れば能率は容易に算出される。
The casting efficiency Pc in the case of the complete solidification method is set based on the following calculation.
Casting efficiency Pc = Cross section area S × density ρ × drawing speed V
Slab cross-sectional area S = (Cast slab short side dimension B) 2 x Slab cross-sectional aspect ratio β
Drawing speed V = machine length L / coagulation time t
That is, if the solidification time is known for the slab dimensions, the efficiency can be easily calculated.

まず凝固殻厚式を検討する。片側無限の1次元凝固の場合、周知の如く殻厚dは時間tと(1)式の関係になる。比例係数kは冷却強さに依存する凝固定数である。
d=k√t −−−−−−−−−−(1)
実際の連続鋳造ではほぼ2次元凝固になるので上式は正確ではない。凝固速度は鋳型断面形状によっても異なる。正方形の場合上式は殻厚比(=既凝固厚/終局凝固厚)が約0.5までは近似することができる。
First, consider the solidified shell thickness formula. In the case of infinite one-dimensional solidification on one side, as is well known, the shell thickness d is in the relationship of time t and equation (1). The proportional coefficient k is a solidification constant depending on the cooling strength.
d = k√t ---------- (1)
In actual continuous casting, the above equation is not accurate because it is almost two-dimensionally solidified. The solidification rate varies depending on the mold cross-sectional shape. In the case of a square, the above equation can be approximated up to a shell thickness ratio (= solidified thickness / final solidified thickness) of about 0.5.

円断面鋳片の2次元凝固の近似式は中空円柱の定常伝熱式(2)から誘導される。
Q=2πλ(θ−θ)/(lnr−lnr)−−−(2)
ここで、Q:半径方向熱流束、λ:熱伝導率、θ :内面温度、θ:外面温度、r1,2:内、外半径である。微小時間Δtで微小殻厚Δrの凝固が進む。
冷却表面温度Tsを一定とし、λ(Tm−Ts)/H/ρ=Kとすると
r×ln(Ro/r)×Δr=K×Δt −−−−(3)
ここで、Tm:凝固殻内面温度、Ts:鋳片表面温度、H:凝固潜熱、ρ:密度、r:凝固殻内面半径、Ro:鋳片断面半径である。
(3)式は該近似式であり、逐次計算法により凝固の進行を算出することができる。
An approximate expression for the two-dimensional solidification of the circular cross-section slab is derived from the steady heat transfer expression (2) of the hollow cylinder.
Q = 2πλ (θ 12 ) / (lnr 1 -lnr 2 ) --- (2)
Here, Q: radial heat flux, λ: thermal conductivity, θ 1 : inner surface temperature, θ 2 : outer surface temperature, r 1,2 : inner, outer radius. Solidification with a minute shell thickness Δr proceeds in a minute time Δt.
When the cooling surface temperature Ts is constant and λ (Tm−Ts) / H / ρ = K
r × ln (Ro / r) × Δr = K × Δt (3)
Here, Tm: solidified shell inner surface temperature, Ts: slab surface temperature, H: solidification latent heat, ρ: density, r: solidified shell inner surface radius, Ro: slab section radius.
Expression (3) is an approximate expression, and the progress of coagulation can be calculated by a sequential calculation method.

図3は円断面鋳片の各種の直径について2次元凝固式(3)による凝固の進行を1次元凝固式(1)と比較して示す。凝固の前半は両曲線は近似するが後半では急速に乖離し、凝固終了時間はどの寸法でも約0.5倍になる。 FIG. 3 shows the progress of solidification by the two-dimensional solidification formula (3) for various diameters of the circular cross-section slab in comparison with the one-dimensional solidification formula (1). In the first half of solidification, both curves approximate, but in the second half, they deviate rapidly, and the solidification end time is about 0.5 times for all dimensions.

図4は直径160mmの円断面鋳片と厚さ160mmの鋳片の凝固の進行を1次元凝固と比較して示す。
正方形断面の凝固の進行は円断面の場合と1次元の場合の間、長方形では更に正方形と1次元凝固の間に位置することは容易に推測される。正方形の場合の凝固殻の内側形状を実際のブレイクアウト鋳片から実測すると殻厚比0.7でほぼ円形になっている。計算と実態から凝固終了時間は1次元凝固の約0.7倍と概算される。ここから長方形では約0.8と見なされる。
凝固終了時間のみを問題として途中経過を無視するなら、断面形状に対応した凝固係数kと該k値の基づく凝固時間tを算出する簡単な近似式が代用される。
FIG. 4 shows the progress of solidification of a 160 mm diameter circular slab and a 160 mm thick slab in comparison with one-dimensional solidification.
The progress of solidification of the square cross section is easily assumed to be located between the case of the circular cross section and the one-dimensional case, and further between the square and the one-dimensional solidification in the rectangle. When the internal shape of the solidified shell in the case of a square is measured from an actual breakout slab, it is almost circular with a shell thickness ratio of 0.7. From the calculation and actual condition, the solidification end time is estimated to be about 0.7 times of one-dimensional solidification. From here, the rectangle is considered to be about 0.8.
If only the solidification end time is a problem and the progress is ignored, a simple approximate expression for calculating the solidification coefficient k corresponding to the cross-sectional shape and the solidification time t based on the k value is substituted.

即ち、片側無限1次元凝固の凝固定数kを断面形状に対応してk1,2,に修正すればよい。図4と各種実測データから修正して結果のみを示すと以下になる。
円断面 k=1/√0.5×k=1.4k −−−−−−−−(4)
正方形 k=1/√0.7×k=1.2k −−−−−−−−(5)
長方形 k=1/√0.8×k=1.1k −−−−−−−−(6)
各形状の凝固時間tは上記式から誘導される。
円断面 t=D/4k −−−−−−−−(7)
正方形 t=B/4k −−−−−−−−(8)
長方形 t=B/4k −−−−−−−−(9)
各形状の鋳造能率Pは同様に上記式ら誘導される。
円断面 P=πρk L −−−−−−−−(10)
正方形 P=4ρk L −−−−−−−−(11)
長方形 P=4ρk Lβ −−−−−−−−(12)
ここでDは直径、Bは短辺厚、ρは鋼密度、Lは機長、βは長方形のアスペクト比を表す。
式の構造から鋳造能率は鋳片断面寸法に無関係と解る。
That is, the solidification constant k for one-sided infinite one-dimensional solidification may be corrected to k 1, k 2, k 3 corresponding to the cross-sectional shape. FIG. 4 and various actual measurement data are corrected to show only the result as follows.
Circular cross section k 1 = 1 / √0.5 × k = 1.4k -------- (4)
Square k 2 = 1 / √0.7 × k = 1.2k -------- (5)
Rectangular k 3 = 1 / √0.8 × k = 1.1k -------- (6)
The solidification time t for each shape is derived from the above equation.
Circular cross section t 1 = D 2 / 4k 1 2 -------- (7)
Square t 2 = B 2 / 4k 2 2 -------- (8)
Rectangular t 3 = B 2 / 4k 3 2 -------- (9)
Similarly, the casting efficiency P of each shape is derived from the above formula.
Circular section P 1 = πρk 1 2 L -------- (10)
Square P 2 = 4ρk 2 2 L -------- (11)
Rectangular P 3 = 4ρk 3 2 Lβ -------- (12)
Here, D is the diameter, B is the short side thickness, ρ is the steel density, L is the machine length, and β is the rectangular aspect ratio.
From the structure of the formula, it is understood that the casting efficiency is independent of the cross-sectional dimension of the slab.

図5は上記式から得られた鋳造能率に及ぼす円弧半径と鋳片断面アスペクト比の影響を示す。図からR=4mの場合、円形、正方形とも25t/h程度しか得られない。他方アスペクト比を2以上の長方形にすると凝固時間が多少増加して引抜速度は低下させなければならないが断面積はアスペクト比に比例して増加するので容易に必要能率が得られる。 FIG. 5 shows the influence of the arc radius and the slab section aspect ratio on the casting efficiency obtained from the above equation. From the figure, in the case of R = 4 m, only about 25 t / h can be obtained for both a circle and a square. On the other hand, if the aspect ratio is a rectangle of 2 or more, the solidification time slightly increases and the drawing speed has to be reduced. However, since the cross-sectional area increases in proportion to the aspect ratio, the required efficiency can be easily obtained.

以上の説明から3/4円周と直線から成る引抜軌跡を持つ連続鋳造方法において、円弧半径が約4mもあれば、中空圧接方式の場合は鋳片断面形状にかかわらず50t/h以上の鋳造能率が得られ、他方完全凝固方式の場合には断面を適切な長方形にすることにより同等の能率が得られる。
鋳片断面形状が鋼片の所望断面形状と異なる場合には、特許文献4に開示されたサイジング工程を後続させれば任意の断面寸法に修正することができる。
From the above description, in the continuous casting method having a drawing trajectory composed of a 3/4 circumference and a straight line, if the arc radius is about 4 m, in the case of the hollow pressure welding method, casting of 50 t / h or more regardless of the cross-sectional shape of the slab. On the other hand, in the case of the complete solidification system, an equivalent efficiency can be obtained by making the cross section into an appropriate rectangle.
If the cross-sectional shape of the slab is different from the desired cross-sectional shape of the steel slab, it can be corrected to an arbitrary cross-sectional dimension by following the sizing process disclosed in Patent Document 4.

第2の問題として円弧半径に関わる問題点について検討する。湾曲式連続鋳造方法では曲げを伸直する際湾曲内面は引張加工される。鋳片表皮が脆弱な場合ワレが発生する。その防止のため湾曲半径の大きさが規制される。その値は製造品種と要求水準に依存するが通常1%以下に設計される。多段に矯正して曲げ歪みをより一層小さく制限することもある。垂直に鋳込んで曲げる場合も全く同様である。 As a second problem, the problems related to the arc radius will be examined. In the curved continuous casting method, the curved inner surface is pulled when the bending is straightened. Cracking occurs when the slab skin is fragile. In order to prevent this, the size of the bending radius is restricted. The value depends on the production type and the required level, but is usually designed to be 1% or less. In some cases, the bending distortion may be further reduced by correcting in multiple stages. The same applies when casting vertically and bending.

曲げ歪みは次式により算出される。
曲げ歪み=鋳片厚さ/円弧直径
現在実用されている連続鋳造機の円弧半径は上記条件に従い6m以上で設計されている。
既述の特許文献一連の新方式連続鋳造方法の湾曲半径Rは従来の湾曲式に対して相対的に小さいと言う特徴がある。実施上6m以下が妥当である。既述の関連特許文献では当曲げ歪みの問題は言及ないし開示がなされてこなかった。
The bending strain is calculated by the following formula.
Bending strain = slab thickness / arc diameter The arc radius of a continuous casting machine currently in practical use is designed to be 6 m or more according to the above conditions.
The curvature radius R of the new continuous casting method described in the series of patent documents described above is characterized by being relatively small compared to the conventional bending method. In practice, 6 m or less is appropriate. In the related patent documents described above, the problem of bending strain has not been mentioned or disclosed.

本発明では当曲げ問題は圧延により解決される。即ち伸直に当たり単純曲げ加工とせずにT点において圧延を付加する。長方形断面の場合の圧延では、拡幅は大きくないので圧下の大部分が延伸になり、曲げによる円弧内側表面の引張応力を解消ないし軽減する。
厳密には脆弱部が開口するのは引張応力そのものではなく該応力勾配である。圧延により表皮全体が延伸するので該勾配は小さくなり開口を抑制する。
In the present invention, the bending problem is solved by rolling. That is, rolling is applied at the T point without performing simple bending during straightening. In rolling in the case of a rectangular section, since the widening is not large, most of the reduction is stretched, and the tensile stress on the inner surface of the arc due to bending is eliminated or reduced.
Strictly speaking, it is not the tensile stress itself but the stress gradient that opens the fragile portion. Since the entire skin is stretched by rolling, the gradient is reduced to suppress the opening.

本発明において円弧半径Rを3〜5mと特定した理由は、中空圧接方式の連続鋳造方法を実施するに当たっての適正条件に相当しており、且つ従来の完全凝固方式も諸施策により実生産に適する範囲であるからである。5mを超えると後者の方式に対しては余裕を持つことができるが、前者に対しては設備・作業とも冗長になる。3m未満では後者の方式では生産能率が低下して実用的ではない。 The reason why the arc radius R is specified as 3 to 5 m in the present invention corresponds to appropriate conditions for carrying out the hollow pressure welding type continuous casting method, and the conventional complete solidification method is also suitable for actual production by various measures. This is because it is a range. If the length exceeds 5 m, there is room for the latter method, but facilities and work are redundant for the former method. If it is less than 3 m, the latter method is not practical because the production efficiency is lowered.

凝固終点の位置をPQ間と特定した理由は、P点より上流では機長が不足し、鋳造能率が不足する。Q点より下流ではQ点で溶融芯が離脱し、空洞が生成され先行の中空圧接方式に該当するからである。 The reason for specifying the position of the solidification end point as between PQ is that the machine length is insufficient upstream from the point P and the casting efficiency is insufficient. This is because the molten core is detached at the Q point downstream from the Q point and a cavity is generated, which corresponds to the preceding hollow pressure welding method.

圧下率を2%以上とした理由は以下である。鋳片曲げ歪みは既述の円弧半径と想定される鋳片厚から1〜4%になる。該歪みを従来同様1%以下に低下させるには圧延が有効である。圧下率が10%以下の場合、圧下歪みの多くは延伸歪みになる。長方形断面では拡幅は僅かでほとんど延伸になる。圧延応力は表皮部では圧延方向には圧縮である。従って圧縮されつつ延伸し、曲げ引張り歪みを積極的に緩和する。圧下率が2%未満でも条件次第で有効だが製造条件の変動を勘案し下限を2%とした。上限は特に設けないが連続鋳造インライン圧延の事例から10〜30%が実施されている。 The reason why the rolling reduction is 2% or more is as follows. The slab bending strain is 1 to 4% from the slab thickness assumed to be the aforementioned arc radius. Rolling is effective for reducing the strain to 1% or less as in the prior art. When the rolling reduction is 10% or less, most of the rolling strain becomes stretching strain. In the rectangular cross section, the widening is slight and almost stretched. The rolling stress is compression in the rolling direction at the skin portion. Accordingly, the film is stretched while being compressed, and the bending tensile strain is actively relieved. Even if the rolling reduction is less than 2%, it is effective depending on the conditions, but the lower limit is set to 2% in consideration of fluctuations in manufacturing conditions. Although there is no particular upper limit, 10 to 30% is implemented from the case of continuous casting inline rolling.

曲げにおいてワレが出やすい、又は再加熱後の圧延において表面割れの出やすいAl,Ti,B等を添加した鋼種にも上記対策は有効であるが、ロール表面を凹凸加工して鋳片表皮の圧縮歪みをミクロ的に増加させると、又は更に再結晶させるとより効果的になる。 The above measures are also effective for steel types to which Al, Ti, B, etc., which are prone to cracking during bending, or to which surface cracks are likely to occur during rolling after reheating, are processed on the surface of the slab skin by roughening the roll surface. Increasing the compressive strain microscopically or further recrystallizing makes it more effective.

本発明の実態を裏返すと、中空鋳片圧接方式の連続鋳造機を使用しつつ、該方法に比較して低鋳造能率で且つ低品質になる従来の完全凝固方式の作業を改良し、確実・妥当に実施することにある。あえて進歩から後退するような方法を採用する理由は、既述されたように従来同様の日常生産を維持しつつ革新的な前者の方法の操業技術を開発するためである。 To reverse the actual situation of the present invention, while using a continuous casting machine of the hollow slab pressure welding method, the work of the conventional complete solidification method, which has a lower casting efficiency and lower quality compared with the method, is improved. It is to be implemented appropriately. The reason for adopting a method that retreats from progress is to develop an innovative operation technique of the former method while maintaining daily production as before, as described above.

中空圧接方式は原則として単ストランドで設計される。従来方式は必要鋳造能率を確保するため通常多ストランドで設計される。本発明は発明の主旨から単ストランドである。 The hollow pressure welding method is designed as a single strand in principle. Conventional methods are usually designed with multiple strands to ensure the required casting efficiency. The present invention is a single strand for the purpose of the invention.

実施例として実験例ではないが、設計条件と期待性能を整理した結果を従来の事例と比較して表1に示す。表から鋳片短辺厚、鋳片断面アスペクト比、引抜速度及び冷却強度を適切に設定することにより両方式の連続鋳造方法が実生産規模でなし得ることが解る。 Although it is not an experimental example as an example, Table 1 shows the result of arranging the design conditions and expected performance in comparison with the conventional case. It can be seen from the table that both types of continuous casting methods can be achieved on an actual production scale by appropriately setting the slab short side thickness, the slab cross-sectional aspect ratio, the drawing speed and the cooling strength.

Figure 2008137013
Figure 2008137013

上記の表において、中空圧接の場合、2次冷却帯の冷却強度を弱く設定して引抜速度は多少下げている。本発明の場合には引抜速度は可能上限に近い値を採用している。
従来方式の引抜速度は設備性能より多少小さく設定されている。その理由は鋳片品質に絡むものである。
In the above table, in the case of hollow pressure welding, the cooling strength of the secondary cooling zone is set weak, and the drawing speed is slightly reduced. In the case of the present invention, the drawing speed is close to the upper limit possible.
The drawing speed of the conventional method is set slightly smaller than the equipment performance. The reason is related to slab quality.

本発明の連続鋳造方法によると、従来同様の製品が従来同様の鋳造能率で生産することができる。鋳造条件を適切に組み合わせると革新的な中空鋳片圧接方式の連続鋳造方法が実生産規模で実施することができる。その結果後者の操業技術が開発され実用化と普及が加速される。開発・改良に併行して製品・製造が旧方式から新方式に順次移行し、品質向上・新製品開発等が進展する。実質的に経営上のリスクが無く新方式を採用することができる。 According to the continuous casting method of the present invention, a conventional product can be produced with a conventional casting efficiency. If the casting conditions are appropriately combined, an innovative hollow slab pressure welding continuous casting method can be implemented on an actual production scale. As a result, the latter operation technology will be developed, and its practical application and spread will be accelerated. In parallel with development and improvement, products and manufacturing will gradually shift from the old method to the new method, and quality improvement and new product development will progress. There is virtually no management risk and the new method can be adopted.

本発明の連続鋳造方法を例示する概略側面図である。It is a schematic side view which illustrates the continuous casting method of this invention. 本発明の設備を使用して中空圧接方式の連続鋳造を行う概略側面図である。It is a schematic side view which performs the continuous casting of a hollow pressure welding system using the installation of this invention. 円断面鋳片の凝固の進行を表す図である。It is a figure showing progress of solidification of a circular section slab. 種々の断面形状の凝固の進行を表す図である。It is a figure showing progress of coagulation of various cross-sectional shapes. 鋳造能率と円弧半径、断面アスペクト比の関係を示す図である。It is a figure which shows the relationship between a casting efficiency, a circular arc radius, and a cross-sectional aspect ratio.

符号の説明Explanation of symbols

1:タンディシュ 2:溶鋼 3:鋳型 4:鋳片 5:2次冷却帯 6:ピンチロール 7:伸直機 8:切断機 9:圧延機 10:中実鋳片 11:溶融芯 12:中空鋳片 13:中実鋳片 1: Tundish 2: Molten steel 3: Mold 4: Cast slab 5: Secondary cooling zone 6: Pinch roll 7: Straightening machine 8: Cutting machine 9: Rolling mill 10: Solid slab 11: Molten core 12: Hollow casting Piece 13: Solid slab

Claims (2)

鋳型から下方に円弧に沿って連続的に引き抜かれた鋳片が最下点Mを超えて上向きに転じ3/4円周点Tにおいて伸直されて水平に引き出される引抜軌跡をもつ鋼の連続鋳造方法において、1)円弧半径Rを3〜5mとし、2)鋳片中心部が凝固する位置を3/8円周点Pと1/2円周点+1.4mの位置Q点の間とし、3)T点において一対のロールにより圧下率2%以上の圧下を作用させつつ伸直することを特徴とする連続鋳造方法。 A continuous steel with a drawing locus in which a slab continuously drawn out along a circular arc downward from a mold turns upward beyond the lowest point M and is stretched at a 3/4 circumferential point T and drawn horizontally. In the casting method, 1) the arc radius R is 3 to 5 m, and 2) the position where the center of the slab solidifies is between the 3/8 circle point P and the 1/2 circle point +1.4 m position Q point. 3) A continuous casting method characterized by stretching at a T point while applying a reduction of 2% or more with a pair of rolls. 鋳造能率の増強を鋳片断面アスペクト比の増加によって図ることを特徴とする請求項1に記載の連続鋳造方法。 The continuous casting method according to claim 1, wherein the casting efficiency is increased by increasing the cross-sectional aspect ratio of the slab.
JP2006322735A 2006-11-30 2006-11-30 Continuous casting method Expired - Fee Related JP3958787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322735A JP3958787B1 (en) 2006-11-30 2006-11-30 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322735A JP3958787B1 (en) 2006-11-30 2006-11-30 Continuous casting method

Publications (2)

Publication Number Publication Date
JP3958787B1 JP3958787B1 (en) 2007-08-15
JP2008137013A true JP2008137013A (en) 2008-06-19

Family

ID=38456458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322735A Expired - Fee Related JP3958787B1 (en) 2006-11-30 2006-11-30 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3958787B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085054B1 (en) * 2016-06-07 2017-02-22 山田 榮子 Continuous casting and rolling method for steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686729B1 (en) * 2009-12-09 2011-05-25 山田 榮子 Manufacturing method of large section steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085054B1 (en) * 2016-06-07 2017-02-22 山田 榮子 Continuous casting and rolling method for steel

Also Published As

Publication number Publication date
JP3958787B1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
CN104399923B (en) A kind of method producing special heavy plate continuous casting billet
JP6115735B2 (en) Steel continuous casting method
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
Li et al. Effect of a novel hot-core heavy reduction rolling process after complete solidification on deformation and microstructure of casting steel
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP3958787B1 (en) Continuous casting method
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP6036125B2 (en) Steel continuous casting method
JP4205652B2 (en) Method for producing bloom slab with few cracks
JP6439663B2 (en) Steel continuous casting method
JP2004167561A (en) Method for continuously casting high carbon steel bloom
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JP2009248115A (en) Continuous casting method for thick plate material
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP7460894B2 (en) HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS
Zhang et al. Creep Straightening Technology of Continuous Casting Slab Based on High-temperature Creep Property
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JP3275828B2 (en) Continuous casting method
JP3356091B2 (en) Continuous casting of thin slabs
JP2000117405A (en) Method for continuously casting billet and apparatus therefor
JP2007253214A (en) Method of evaluating high temperature embrittlement of continuous cast slab and method of continuously casting steel
JP4259424B2 (en) Method for producing high chromium steel large section billet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees