JP2008137012A - Laser beam welding method and laser beam welding system for surface treated steel sheet - Google Patents

Laser beam welding method and laser beam welding system for surface treated steel sheet Download PDF

Info

Publication number
JP2008137012A
JP2008137012A JP2006322713A JP2006322713A JP2008137012A JP 2008137012 A JP2008137012 A JP 2008137012A JP 2006322713 A JP2006322713 A JP 2006322713A JP 2006322713 A JP2006322713 A JP 2006322713A JP 2008137012 A JP2008137012 A JP 2008137012A
Authority
JP
Japan
Prior art keywords
laser welding
melting point
point solid
welding
base materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006322713A
Other languages
Japanese (ja)
Inventor
Daiki Fujiwara
大樹 藤原
Takayuki Kakizaki
貴之 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006322713A priority Critical patent/JP2008137012A/en
Publication of JP2008137012A publication Critical patent/JP2008137012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam welding method which is made easily applicable to the welding of a panel having a complicated shape by improved the adhesive property or the fixability to a weld base material of itself by using a solid material having a low melting point as spacers for ensuring a prescribed gap between the weld base materials. <P>SOLUTION: The low melting point solid material 1 such as a brazing filler metal, paraffin wax or the like which are molten by thermal effect during welding are arranged like dots in the vicinity of a weld line Lw. Gas in the plating layer of the base material is discharged through the gap G which is physically ensured between the base materials (plated steel sheets, for example) W1, W2 by interposition of the low melting point solid materials 1. It contributes to the improvement of the adhesiveness between mutual base materials W1, W2 that the low melting point solid material 1 is molten by the thermal effect during welding and is extended in the gap G. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面処理鋼板のレーザ溶接方法とそれに用いるレーザ溶接システムに関し、特に合金化溶融亜鉛めっき鋼板等のめっき鋼板が下側となるような板組のもとでレーザ溶接を施すにあたり、めっき層の蒸発による二次的不具合を防止するべく溶接母材間に所定の隙間を確保した状態で溶接を施すようにした表面処理鋼板のレーザ溶接方法とそれに用いるレーザ溶接システムに関するものである。   TECHNICAL FIELD The present invention relates to a laser welding method for a surface-treated steel sheet and a laser welding system used therefor, and in particular, when performing laser welding under a plate set such that a plated steel sheet such as an alloyed hot-dip galvanized steel sheet is on the lower side, plating is performed. The present invention relates to a laser welding method for a surface-treated steel sheet in which welding is performed in a state in which a predetermined gap is secured between weld base materials in order to prevent secondary problems due to evaporation of layers, and a laser welding system used therefor.

二枚以上の母材を重ね合わせた上でいわゆる重ね継手の形態でレーザ溶接を施す場合、少なくとも下側となる母材が例えば亜鉛めっき鋼板であると溶接時の熱でめっき層が蒸発して気体(亜鉛蒸気)となり、これが溶接ビード内に気泡(ポロシティ)となって残り、結果として溶接強度が低下することになる。なお、この現象は、亜鉛の融点が420℃程度で、鉄の融点1535℃に比べて著しく低いことが原因であるとされている。   When laser welding is performed in the form of a so-called lap joint after stacking two or more base materials, if the base material that is at least the lower side is, for example, a galvanized steel sheet, the plating layer evaporates due to heat during welding. This becomes gas (zinc vapor), which remains as bubbles in the weld bead, resulting in a decrease in welding strength. This phenomenon is attributed to the fact that the melting point of zinc is about 420 ° C., which is significantly lower than the melting point of iron, 1535 ° C.

この対策として、溶接母材間に物理的隙間を設けて、溶接中に発生した気泡を積極的に外部に排出することが有効であるが、上記隙間が大きすぎると逆に母材同士の溶着が阻害されることになるため、例えば特許文献1に記載のように溶接母材同士の重合部にスチールビーズ等の微細固体粒子を溶着固定等の手段にて介在させて、その状態で微細固体粒子を含む母材同士を上下から加圧することで溶接母材間の隙間の大きさを管理することが行われている。そして、その加圧状態をもって公知の方法でレーザビームを照射して溶接を施すことになる。
特開2003−290955号公報
As a countermeasure against this, it is effective to provide a physical gap between the welded base metals and positively discharge the air bubbles generated during welding to the outside. Therefore, for example, as described in Patent Document 1, fine solid particles such as steel beads are interposed in the superposed portion of the welded base materials by means such as welding and fixing, and in that state the fine solid Managing the size of the gap between the welded base materials by pressing the base materials including particles from above and below is performed. Then, welding is performed by irradiating a laser beam with a pressurized state by a known method.
JP 2003-290955 A

しかしながら、上記のように溶接母材間にスチールビーズ等の微細固体粒子を挟み込む方法では、溶接母材間に均一な隙間を確保することが反面、微細固体粒子を溶接母材に確実に固定することが困難であり、適用可能な溶接母材の形状に制約がある。   However, in the method of sandwiching fine solid particles such as steel beads between the welded base materials as described above, it is possible to ensure a uniform gap between the welded base materials, but securely fix the fine solid particles to the welded base material. This is difficult, and the shape of the applicable weld base material is limited.

より詳しくは、特許文献1に記載の技術では、溶接母材上に散布した微細固体粒子をレーザビームの照射にて溶着するようにしているものであるが、微細固体粒子そのものが転がりやすいために微細固体粒子の付着性または定着性が悪く、例えば溶接母材が傾斜部や所定の曲率を有した複雑な三次元形状の車体パネル等である場合には、微細固体粒子を散布してから溶着するまでの間に微細固体粒子が転がり、必要な部位に必要な量の微細固体粒子をとどめておくことが難しく、十分な効果を期待することができない。   More specifically, in the technique described in Patent Document 1, fine solid particles dispersed on a welding base material are welded by laser beam irradiation, but the fine solid particles themselves are easy to roll. For example, if the weld base material is a slanted part or a complex three-dimensional body panel having a predetermined curvature, the fine solid particles are deposited or deposited. Until then, the fine solid particles roll, and it is difficult to keep the necessary amount of fine solid particles in a necessary part, and a sufficient effect cannot be expected.

例えば微細固体粒子の付着量または定着量が少ないと母材同士の間に必要な大きさの隙間を確保することができずになおもポロシティが発生するほか、微細固体粒子の付着量または定着量が多すぎると溶接ビードに穴あき、凹凸等の欠陥が発生して、必要な溶接強度を確保することができなくなる。   For example, if the amount of fine solid particles adhering or fixing is small, a gap of the required size cannot be secured between the base materials, and porosity still occurs, and the amount of fine solid particles adhering or fixing If the amount is too large, the weld bead will be perforated and defects such as irregularities will occur, making it impossible to ensure the required welding strength.

本発明はこのような課題に着目してなされたものであり、転がりやすい微細固体粒子に代えて低融点固形物を用いることで、上記従来技術の持つ不具合を解決しようとするものである。すなわち、本発明は溶接母材間に所定の隙間を確保するための間隙材として低融点固形物を用いることで、それ自体の溶接母材に対する付着性または定着性を改善し、複雑形状のパネルの溶接にも容易に適用することができるようにしたレーザ溶接方法とレーザ溶接システムを提供するものである。   The present invention has been made paying attention to such a problem, and intends to solve the above-mentioned problems of the prior art by using a low-melting-point solid material instead of the fine solid particles that are easy to roll. That is, the present invention uses a low-melting-point solid material as a gap material for securing a predetermined gap between weld base materials, thereby improving the adhesion or fixability to the weld base material itself, and a panel having a complicated shape The present invention provides a laser welding method and a laser welding system that can be easily applied to the welding of a laser beam.

本発明は、表面処理鋼板が下側となるようにその表面処理鋼板を含む少なくとも二枚の母材同士を重ね合わせた上で重ね継手の形態でレーザ溶接を施す方法であって、いずれか一方の母材の接合面に、溶接時の熱的影響で溶融可能な低融点固形物が溶融したものを塗布して固化させ、母材同士を重ね合わせてその母材同士の間に低融点固形物を挟み込むことにより所定の隙間を確保した状態でレーザ溶接を施すことを特徴とする。   The present invention is a method of performing laser welding in the form of a lap joint after superposing at least two base materials including the surface-treated steel sheet so that the surface-treated steel sheet is on the lower side. Apply a solid melted low melting point solid that can be melted due to the thermal effect during welding to the joint surface of the base metal, solidify the base materials, and overlap the base materials with each other. Laser welding is performed in a state where a predetermined gap is secured by sandwiching an object.

本発明によれば、いずれか一方の母材の接合面に低融点固形物が溶融したものを塗布して固化させることで定着保持させるようにしているので、母材の形状を問わず間隙材として機能することになる低融点固形物の定着保持性が良く、必要な部位に必要な量の低融点固形物をとどめておくことができることから、その低融点固形物による溶接母材間の隙間確保が確実に行え、ポロシティの発生や溶接強度不足の発生を未然に防止して溶接品質が向上する。   According to the present invention, since the low melting point solid is melted on the joining surface of any one of the base materials and solidified by being solidified, the gap material is used regardless of the shape of the base material. The low-melting-point solid that will function as a good fixing retention and can retain the required amount of the low-melting-point solid in the required part, so the gap between the welded base metal due to the low-melting solid Securement can be ensured, and it is possible to prevent the occurrence of porosity and insufficient welding strength and improve the welding quality.

また、低融点固形物が溶接時の熱的影響で溶け出して拡がり、母材同士の隙間を埋めることになるので、溶接によりめっき層等の表面処理層が剥離または薄くなった場合でもその部分を溶け出した低融点固形物が覆うことで防錆性能が回復し、防錆性の向上に寄与できる。   In addition, since the low melting point solid material melts and spreads due to the thermal effect during welding and fills the gaps between the base materials, even if the surface treatment layer such as the plating layer is peeled or thinned by welding The low-melting-point solid material that melts out rust covers the rust-proof performance and can contribute to the improvement of the rust-proof property.

図1以下の図面は本発明に係るレーザ溶接方法のより具体的な実施の形態を示しており、特に図1はそのレーザ溶接に供される溶接システム全体の概略を示している。   1 and the following drawings show a more specific embodiment of the laser welding method according to the present invention, and in particular, FIG. 1 shows an outline of the whole welding system used for the laser welding.

ここでは、表面処理鋼板であるところの例えば合金化溶融亜鉛めっき鋼板を母材として二枚の母材W1,W2同士を重ね継手の形態で連続的に溶接する場合を示しており、実際の溶接に先立って二枚の母材W1,W2同士の間に微小隙間を確保する手段に特徴がある。   Here, a case where two base materials W1 and W2 are continuously welded in the form of a lap joint using, for example, an alloyed hot-dip galvanized steel plate as a base material, which is a surface-treated steel plate, is shown. Prior to this, there is a feature in means for securing a minute gap between the two base materials W1, W2.

そして、母材W1,W2同士を重ね合わせた状態で直線状の溶接線Lwに沿って連続溶接を施すことを前提とした場合、下側の母材W1に上側の母材W2を重ね合わせる前に、その下側の母材W1上に、母材W1,W2同士に間に所定の隙間G(図2参照)を確保するための間隙材として低融点固形物1を付着または定着保持させる。より具体的には、図2に示すように、下側の母材W1上において溶接線Lwの両側近傍の複数箇所にその溶接線Lwをはさんで互いに対向するように低融点固形物1を点状に付着または定着保持させる。   And when it presupposes performing continuous welding along the linear welding line Lw in the state which piled up base materials W1 and W2, before superposing upper base material W2 on lower base material W1 On the lower base material W1, the low-melting-point solid material 1 is adhered or fixed and held as a gap material for securing a predetermined gap G (see FIG. 2) between the base materials W1 and W2. More specifically, as shown in FIG. 2, the low-melting-point solid material 1 is placed on the lower base material W1 so as to face each other across the weld line Lw at a plurality of locations near both sides of the weld line Lw. Adhered or fixed in a dot shape.

ここで使用する低融点固形物1としては、溶接時の伝導熱で溶融して液体となる一方で常温では固体となるような融点が80℃以下の低融点固体材料、例えばろう材やパラフィンワックス等とする。   The low-melting-point solid material 1 used here is a low-melting-point solid material having a melting point of 80 ° C. or lower, such as a brazing material or paraffin wax, which melts by conduction heat during welding and becomes a liquid while becoming a solid at room temperature Etc.

低融点固形物1を下側の母材W1上に付着または定着保持させる手段としては、図1に示すように低融点固形物1を溶融状態としたもの(ここでは、低融点固形物の溶融液1aと称する)を保温機能付きのタンク2に貯留しておく一方、塗布手段として機能するシーリングロボット3には塗布ガン4を持たせて、タンク2から定量供給される低融点固形物の溶融液1aをそのシーリングロボット3の自律動作により下側の母材W1上に点状に塗布する。そして、低融点固形物の溶融液1aを塗布したならば所定時間そのまま放置し、低融点固形物の溶融液1aが固化または凝固して低融点固形物1と化するのを待つ。この低融点固形物1は、下側の母材W1上にて固化または凝固する過程で強固に固定されて定着保持されることから、例えば下側の母材W1が複雑な三次元形状を呈していたとしても、その母材W1上での低融点固形物1の移動を未然に防止して、溶接までの間、所定の位置に低融点固形物1を安定してとどめておくことができる。   As a means for attaching or fixing and holding the low melting point solid 1 on the lower base material W1, the low melting point solid 1 is melted as shown in FIG. 1 (here, the low melting point solid is melted). (Referred to as liquid 1a) is stored in a tank 2 with a heat-retaining function, while a sealing robot 3 that functions as a coating means is provided with a coating gun 4 to melt a low-melting-point solid substance quantitatively supplied from the tank 2 The liquid 1a is applied in the form of dots on the lower base material W1 by the autonomous operation of the sealing robot 3. When the low melting point solid melt 1a is applied, the low melting point solid melt 1a is allowed to stand for a predetermined time, and waits for the low melting point solid melt 1a to solidify or solidify into the low melting point solid 1. Since the low melting point solid 1 is firmly fixed and held in the process of solidifying or solidifying on the lower base material W1, for example, the lower base material W1 has a complicated three-dimensional shape. Even if it is, the movement of the low melting point solid 1 on the base material W1 can be prevented in advance, and the low melting point solid 1 can be stably kept at a predetermined position until the welding. .

ここで、低融点固形物1の配置位置としては、溶接による母材W1,W2の溶融の影響を直接受けることなく、且つ溶接により発生した伝導熱で溶け始める温度(先に述べたように、低融点固形物1の融点を80℃以下としているので、ここでは温度は100℃以下)まで上昇する位置が望ましい。本発明者が種々実験を行った結果では、図3に示すように溶接線Lwたる溶接ビードBeからの距離mとしておおよそm=5mm以内の範囲が好ましいことが判明した。なお、同図における符号Pは溶接に伴う熱的影響で母材W1,W2の表面のめっき層が剥離または薄くなる範囲を示している。   Here, the arrangement position of the low melting point solid 1 is not directly affected by the melting of the base materials W1 and W2 by welding, and starts to melt by the conduction heat generated by welding (as described above, Since the melting point of the low-melting-point solid 1 is 80 ° C. or lower, the position where the temperature rises to 100 ° C. or lower is desirable here. As a result of various experiments conducted by the present inventor, it has been found that a range of approximately m = 5 mm or less is preferable as the distance m from the weld bead Be as the weld line Lw as shown in FIG. In addition, the code | symbol P in the figure has shown the range from which the plating layer of the surface of base material W1, W2 peels or becomes thin with the thermal influence accompanying welding.

また、低融点固形物1による母材W1,W2同士の間の隙間Gの量を正確且つ容易に制御するためには、低融点固形物1に例えばガラスビーズのほか、酸化チタンやアルミナ等のいわゆる無機酸化物の微小固体粒子を予め混ぜ合わせておくのが望ましい。この場合、低融点固形物1に混ぜる微小固体粒子の融点は低融点固形物1のそれよりも高いものとする。また、低融点固形物1の塗布膜厚を例えば100〜200μm程度としたならば、それに混ぜ合わせるガラスビーズや酸化チタン等の微小固体粒子の粒径は50〜100μm程度とするのが望ましい。   In addition, in order to accurately and easily control the amount of the gap G between the base materials W1, W2 due to the low melting point solid 1, the low melting point solid 1 may be made of, for example, glass beads, titanium oxide, alumina or the like. It is desirable to mix so-called inorganic oxide fine solid particles in advance. In this case, the melting point of the fine solid particles mixed in the low melting point solid 1 is higher than that of the low melting point solid 1. Moreover, if the coating film thickness of the low melting point solid 1 is set to about 100 to 200 μm, for example, it is desirable that the particle size of the fine solid particles such as glass beads and titanium oxide to be mixed is about 50 to 100 μm.

こうして下側の母材W1上に点状に低融点固形物1を定着保持させたならば、それらの上から上側の母材W2を重ね合わせて、二枚の母材W1,W2同士の間に複数の点状の低融点固形物1を介在させる。この時、上側の母材W2を重ね合わせたとしても複数の低融点固形物1は不動であり、上下の母材W1,W2同士の間に介在して、低融点固形物1の塗布厚に相当する所定の隙間Gが上下の母材W1,W2間に確保されることになる。   When the low melting point solid material 1 is fixed and held in a dot-like manner on the lower base material W1, the upper base material W2 is superposed on the lower base material W1 so that the two base materials W1 and W2 are placed between each other. A plurality of point-like low-melting-point solids 1 are interposed. At this time, even if the upper base material W2 is superposed, the plurality of low melting point solids 1 are immobile, and are interposed between the upper and lower base materials W1 and W2 so that the coating thickness of the low melting point solids 1 is increased. A corresponding predetermined gap G is secured between the upper and lower base materials W1, W2.

この状態で、図2に示すように、母材W1,W2とレーザ加工ヘッド7とを相対移動させて(図2での相対移動方向は紙面と直交方向)、例えば母材W1,W2側を固定側としたならばレーザ加工ヘッド7を溶接線Lwに沿って所定速度で連続的に移動させて、上側の母材W2側よりレーザビーム8を照射することにより母材W1,W2同士を溶接する。より具体的には、図1に示すように、レーザ溶接手段たる溶接ロボット5のアーム6先端に持たせたレーザ加工ヘッド7を溶接線Lwに沿って連続的に移動させることにより母材W1,W2同士を溶接する。なお、必要に応じて溶接線Lwの近傍を図示外のクランプ手段にて加圧拘束したり、あるいはレーザ加工ヘッド7に予め付帯させてある加圧ピンや加圧ローラにて溶接線Lwの近傍を加圧拘束するものとする。   In this state, as shown in FIG. 2, the base materials W1 and W2 and the laser processing head 7 are moved relative to each other (the relative movement direction in FIG. 2 is a direction perpendicular to the paper surface). If the fixed side is used, the laser processing head 7 is continuously moved at a predetermined speed along the welding line Lw, and the base materials W1 and W2 are welded together by irradiating the laser beam 8 from the upper base material W2 side. To do. More specifically, as shown in FIG. 1, by moving a laser processing head 7 provided at the tip of an arm 6 of a welding robot 5 as laser welding means continuously along a welding line Lw, a base material W1, Weld W2 together. If necessary, the vicinity of the weld line Lw is pressure-restrained by a clamping means (not shown) or the vicinity of the weld line Lw by a pressure pin or a pressure roller attached to the laser processing head 7 in advance. Shall be restrained under pressure.

この場合において、溶接対象となる母材W1,W2同士が合金化溶融亜鉛めっき鋼板であるため、溶接部での母材W1,W2自体の溶融に伴いその母材W1,W2の表面のめっき層が蒸発してガス(亜鉛蒸気)が発生することは周知のとおりであるが、これらのガスは母材W1,W2同士の間に予め確保されている隙間Gを通して外部にスムーズに排出されることから、溶接ビードBe(図3参照)にポロシティや未溶着等の不具合が発生することはない。   In this case, since the base materials W1 and W2 to be welded are alloyed hot-dip galvanized steel plates, the plating layers on the surfaces of the base materials W1 and W2 are melted as the base materials W1 and W2 themselves melt at the welded portion. As is well known, gas (zinc vapor) is generated by evaporation of these gases, but these gases are smoothly discharged to the outside through a gap G secured in advance between the base materials W1 and W2. Therefore, defects such as porosity and non-welding do not occur in the weld bead Be (see FIG. 3).

その一方、溶接の開始点や終了点(溶接ビードBeの始終端部)では溶接状態が不安定となり、溶接不良や穴あき等の不具合が発生しやすいことが知られており、特に溶接線Lwに変化をつけた場合や溶接線Lwが短い場合(例えば溶接線Lwの長さが30mm以下となった場合)にはその傾向が一段と顕著となる。   On the other hand, it is known that the welding state becomes unstable at the start and end points of welding (the start and end portions of the weld bead Be), and problems such as poor welding and perforation are likely to occur. When the welding line Lw is changed or when the welding line Lw is short (for example, when the length of the welding line Lw is 30 mm or less), the tendency becomes more remarkable.

本実施の形態では、溶接に伴って発生する熱(伝導熱)の影響で溶接線Lwたる溶接ビードBeの周辺が温められるため、それまで母材W1,W2同士の間に隙間Gを確保するための間隙材として機能していた低融点固形物1が溶け出して上記隙間Gに拡がることで当該隙間Gを埋めることとなり、結果的に母材W1,W2同士の密着性が向上することになる。   In the present embodiment, since the periphery of the weld bead Be, which is the weld line Lw, is warmed by the influence of heat (conduction heat) generated during welding, a gap G is secured between the base materials W1 and W2 until then. The low-melting-point solid material 1 functioning as a gap material for melting melts and spreads into the gap G, thereby filling the gap G. As a result, the adhesion between the base materials W1 and W2 is improved. Become.

その上、低融点固形物1が溶け出して上記隙間Gに拡がることで、とかく溶接不良を起こしやすい溶接線Lw(溶接ビードBe)の始終端部をも覆うことから、例えば一旦は穴あき等が発生した場合でも溶け出した低融点固形物1が穴埋めをする役目をすることになる。さらに、母材W1,W2同士の接合面において上記のように溶接時の熱的影響を受けた部分では、めっき層が薄くなったり剥離したりして防錆性能が低下することになる(図3に符号Pを付した部分)。その一方、上記のように溶け出した低融点固形物1がめっき層が薄くなったり剥離した部分Pを覆うことになるため、防錆性能が回復し、防錆性能を低下をもたらさないで済むことになる。   In addition, since the low-melting-point solid material 1 melts and spreads into the gap G, it covers the start and end portions of the weld line Lw (weld bead Be) that easily causes poor welding. Even when this occurs, the melted low melting point solid material 1 serves to fill the hole. Furthermore, in the part which received the thermal influence at the time of welding as mentioned above in the joint surface of base materials W1 and W2, a plating layer becomes thin or peels, and rust prevention performance falls. 3 is a part marked with a symbol P). On the other hand, since the low melting point solid 1 that has melted as described above covers the portion P where the plating layer is thinned or peeled off, the rust prevention performance is recovered and the rust prevention performance is not reduced. It will be.

ここで、本発明者はポロシティの発生防止の観点から溶接線Lwに対する低融点固形物1の最適な配置を実験によって求めてみた。   Here, the present inventor tried to find the optimal arrangement of the low-melting-point solid 1 with respect to the weld line Lw from the viewpoint of preventing the occurrence of porosity.

母材は板厚が1.0mmの合金化溶融亜鉛めっき鋼板(SP783)とし、二枚の母材を重ね継手の形態でレーザ溶接を行った。使用したレーザはYAGレーザで出力3.6kWとし、溶接速度は5m/minとした。   The base material was an alloyed hot-dip galvanized steel sheet (SP783) with a plate thickness of 1.0 mm, and the two base materials were laser welded in the form of a lap joint. The laser used was a YAG laser with an output of 3.6 kW and a welding speed of 5 m / min.

図4の(A)のパターン(1)に示すように、直線型の溶接線Lw(溶接ビードBe)の場合であって、且つその溶接線Lwの長さが10mm以下の場合には、溶接線Lwの延長線上においてその始終両端部に低融点固形物1を配置するか、または溶接線Lwをはさんで対称に配置するとポロシティの発生がないことが判明した。   As shown in the pattern (1) in FIG. 4A, in the case of a linear weld line Lw (weld bead Be) and the length of the weld line Lw is 10 mm or less, welding is performed. It has been found that no porosity is generated when the low-melting-point solids 1 are arranged at both ends of the line Lw on the extended line or symmetrically arranged across the weld line Lw.

一方、直線型の溶接線Lwの場合であって、且つその溶接線Lwが長さが10mm〜30mm程度と長くなった場合には、図4の(A)のパターン(2)に示すように、溶接線Lwの延長線上の始終両端部に加えて、長手方向中央部に溶接線Lwをはさんで対称に低融点固形物1を配置するとポロシティの発生がないことが判明した。なお、溶接線Lwの長さが30mm以上に一段と長くなる場合には、10〜15mmのスパンで対称配置の低融点固形物1の数を増やすことで対処する。また、図4の(A)にパターン(2)として示した低融点固形物1の配置は、パターン(1)のように溶接線Lwの長さが10mm以下の場合にも適用可能である。   On the other hand, in the case of the linear weld line Lw and the length of the weld line Lw is as long as about 10 mm to 30 mm, as shown in a pattern (2) in FIG. It has been found that when the low melting point solid 1 is placed symmetrically across the weld line Lw at the center in the longitudinal direction in addition to the both ends of the weld line Lw on the extended line, no porosity is generated. In addition, when the length of the welding line Lw becomes longer to 30 mm or more, it copes with increasing the number of the low melting point solid objects 1 of symmetrical arrangement with a span of 10 to 15 mm. Moreover, arrangement | positioning of the low melting point solid substance 1 shown as a pattern (2) in (A) of FIG. 4 is applicable also when the length of the welding line Lw is 10 mm or less like a pattern (1).

一方、同図の(B)に示すように、溶接線Lwがφ8〜10mm程度のO型あるにはC字型の場合には、溶接線Lwのサークルの中央部に低融点固形物1を配置するとポロシティの発生がないことが判明した。さらに、溶接線Lwのサークル径がさらに大きい場合には、同図(B)の右端に示すように、サークルの中央部に加えて始終端部にも低融点固形物1を配置すると、ポロシティの発生防止の上で有効であることが判明した。   On the other hand, as shown in (B) of the figure, when the weld line Lw is O-shaped with a diameter of about 8 to 10 mm or C-shaped, the low-melting-point solid material 1 is placed at the center of the circle of the weld line Lw. It was found that there was no porosity when placed. Furthermore, when the circle diameter of the weld line Lw is larger, as shown at the right end of FIG. 4B, when the low melting point solid 1 is arranged at the start and end portions in addition to the center portion of the circle, It was proved effective in preventing the occurrence.

また、同図の(C)に示すように、溶接線Lwがφ4〜5mm程度の不完全サークルを二つつなぎ合わせたようないわゆるS字型の場合には、各サークルの中央部に低融点固形物1を配置するか、または各サークルの中央部の配置に加えて溶接線Lwの始終端部に低融点固形物1を配置するとポロシティの発生がないことが判明した。   Also, as shown in (C) of the figure, in the case of a so-called S-shape in which two incomplete circles having a weld line Lw of about 4 to 5 mm are connected, a low melting point is formed at the center of each circle. It has been found that when the solid material 1 is disposed, or the low melting point solid material 1 is disposed at the start and end portions of the weld line Lw in addition to the central portion of each circle, no porosity is generated.

なお、上記実施の形態では、母材W1,W2が共に合金化溶融亜鉛めっき鋼板である場合の板組について説明したが、少なくとも下側の母材W1がめっき鋼板等の表面処理鋼板でさえあれば他の板組の溶接にも本発明を適用することができる。   In the above embodiment, the plate assembly in which the base materials W1 and W2 are both alloyed hot-dip galvanized steel plates has been described. However, at least the lower base material W1 may be a surface-treated steel plate such as a plated steel plate. For example, the present invention can be applied to welding other plate sets.

本発明のレーザ溶接に供される溶接システム全体の概略説明図。The schematic explanatory drawing of the whole welding system with which the laser welding of this invention is provided. 図1における溶接部の要部拡大断面説明図。The principal part expanded sectional explanatory drawing of the welding part in FIG. 図2のさらなる拡大説明図。FIG. 3 is a further enlarged explanatory view of FIG. 2. 溶接線とその近傍の低融点固形物との好ましい配置関係を示す説明図。Explanatory drawing which shows the preferable arrangement | positioning relationship between a welding line and the low melting point solid substance of the vicinity.

符号の説明Explanation of symbols

1…低融点固形物
3…シーリングロボット(塗布手段)
4…塗布ガン
5…溶接ロボット
7…レーザ加工ヘッド
8…レーザビーム
Be…溶接ビード
G…隙間
Lw…溶接線
W1…母材(合金化溶融亜鉛めっき鋼板)
W2…母材(合金化溶融亜鉛めっき鋼板)
1 ... Low melting point solid 3 ... Sealing robot (coating means)
DESCRIPTION OF SYMBOLS 4 ... Coating gun 5 ... Welding robot 7 ... Laser processing head 8 ... Laser beam Be ... Welding bead G ... Gap Lw ... Welding line W1 ... Base material (alloyed hot-dip galvanized steel sheet)
W2 ... Base material (alloyed hot-dip galvanized steel sheet)

Claims (6)

表面処理鋼板が下側となるようにその表面処理鋼板を含む少なくとも二枚の母材同士を重ね合わせた上で重ね継手の形態でレーザ溶接を施す方法であって、
いずれか一方の母材の接合面に、溶接時の熱的影響で溶融可能な低融点固形物が溶融したものを塗布して固化させ、
母材同士を重ね合わせてその母材同士の間に低融点固形物を挟み込むことにより所定の隙間を確保した状態でレーザ溶接を施すことを特徴とする表面処理鋼板のレーザ溶接方法。
A method of performing laser welding in the form of a lap joint after overlapping at least two base materials including the surface-treated steel sheet so that the surface-treated steel sheet is on the lower side,
Apply and solidify the melted low melting point solid that can be melted by the thermal effect during welding on the joint surface of either one of the base materials,
A laser welding method for a surface-treated steel sheet, characterized in that laser welding is performed in a state in which a predetermined gap is secured by superposing base materials and sandwiching a low melting point solid material between the base materials.
母材同士の間の溶接線近傍位置に低融点固形物を挟み込むことにより所定の隙間を確保した状態で、上記溶接線に沿ってレーザ溶接を施すことを特徴とする請求項1に記載の表面処理鋼板のレーザ溶接方法。   2. The surface according to claim 1, wherein laser welding is performed along the weld line in a state in which a predetermined gap is secured by sandwiching a low-melting-point solid substance at a position in the vicinity of the weld line between the base materials. Laser welding method for treated steel plate. 低融点固形物が溶融したものを下側となる母材の上に塗布して固化させた後にその上から上側となる母材を重ね合わせて、その上側の母材側よりレーザビームを照射してレーザ溶接を施すことを特徴とする請求項1または2に記載の表面処理鋼板のレーザ溶接方法。   After the melted low-melting-point solid material is applied onto the lower base material and solidified, the upper base material is overlaid from above, and a laser beam is irradiated from the upper base material side. The laser welding method for a surface-treated steel sheet according to claim 1, wherein laser welding is performed. 母座同士の間であって且つ少なくとも溶接線の始終端部近傍位置に低融点固形物を挟み込むことを特徴とする請求項1〜3のいずれかに記載の表面処理鋼板のレーザ溶接方法。   The method of laser welding a surface-treated steel sheet according to any one of claims 1 to 3, wherein the low-melting-point solid material is sandwiched between the bases and at least in the vicinity of the start / end portion of the weld line. 上記低融点固形物の中に当該低融点固形物よりも融点の高い微小固体粒子を予め混ぜ合わせてあることを特徴とする請求項1〜4のいずれかに記載の表面処理鋼板のレーザ溶接方法。   The laser-welding method for a surface-treated steel sheet according to any one of claims 1 to 4, wherein fine solid particles having a melting point higher than that of the low-melting-point solid are mixed in the low-melting-point solid in advance. . 請求項1〜6のいずれかに記載のレーザ溶接方法に用いるレーザ溶接システムであって、
下側となる母材の上に低融点固形物が溶融したものを塗布する塗布手段と、低融点固形物が固化した後に下側の母材の上に上側となる母材を重ね合わせた状態で当該上側の母材側よりレーザビームを照射してレーザ溶接を施すレーザ溶接手段と、を備えていて、
上記レーザ溶接手段は、上下の母材同士の間に低融点固形物の厚みに相当する隙間が確保されている状態で予め設定されている溶接線に沿ってレーザ溶接を施すものであることを特徴とするレーザ溶接システム。
A laser welding system used for the laser welding method according to claim 1,
A state in which the upper base material is overlaid on the lower base material after the low melting point solid has solidified after the low melting point solid material is applied on the lower base material. And laser welding means for performing laser welding by irradiating a laser beam from the upper base metal side,
The laser welding means performs laser welding along a preset welding line in a state where a gap corresponding to the thickness of the low melting point solid is secured between the upper and lower base materials. A featured laser welding system.
JP2006322713A 2006-11-30 2006-11-30 Laser beam welding method and laser beam welding system for surface treated steel sheet Pending JP2008137012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322713A JP2008137012A (en) 2006-11-30 2006-11-30 Laser beam welding method and laser beam welding system for surface treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322713A JP2008137012A (en) 2006-11-30 2006-11-30 Laser beam welding method and laser beam welding system for surface treated steel sheet

Publications (1)

Publication Number Publication Date
JP2008137012A true JP2008137012A (en) 2008-06-19

Family

ID=39599022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322713A Pending JP2008137012A (en) 2006-11-30 2006-11-30 Laser beam welding method and laser beam welding system for surface treated steel sheet

Country Status (1)

Country Link
JP (1) JP2008137012A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971457A1 (en) * 2006-01-11 2008-09-24 Aleris Aluminum Koblenz GmbH Method of manufacturing a brazed assembly
US8227112B2 (en) 2008-12-12 2012-07-24 Toyota Jidosha Kabushiki Kaisha Sealed battery and manufacturing method thereof, vehicle mounting the sealed battery, and battery mounting device mounting the sealed battery
CN103128444A (en) * 2011-11-29 2013-06-05 三河世原汽车科技有限公司 Lap joint laser welding method for galvanized steel sheets and car body component manufactured by utilization of the same
WO2018154731A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Elevator panel and method for manufacturing elevator panel
WO2018154732A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Elevator panel and method for manufacturing elevator panel
KR20180117336A (en) * 2017-04-19 2018-10-29 한국생산기술연구원 Welding method for zinc plated steel using the gap paste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971457A1 (en) * 2006-01-11 2008-09-24 Aleris Aluminum Koblenz GmbH Method of manufacturing a brazed assembly
US8227112B2 (en) 2008-12-12 2012-07-24 Toyota Jidosha Kabushiki Kaisha Sealed battery and manufacturing method thereof, vehicle mounting the sealed battery, and battery mounting device mounting the sealed battery
CN103128444A (en) * 2011-11-29 2013-06-05 三河世原汽车科技有限公司 Lap joint laser welding method for galvanized steel sheets and car body component manufactured by utilization of the same
WO2018154731A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Elevator panel and method for manufacturing elevator panel
WO2018154732A1 (en) * 2017-02-24 2018-08-30 三菱電機株式会社 Elevator panel and method for manufacturing elevator panel
JPWO2018154732A1 (en) * 2017-02-24 2019-06-27 三菱電機株式会社 Elevator panel and method of manufacturing elevator panel
KR20180117336A (en) * 2017-04-19 2018-10-29 한국생산기술연구원 Welding method for zinc plated steel using the gap paste
KR102027770B1 (en) * 2017-04-19 2019-10-02 한국생산기술연구원 Welding method for zinc plated steel using the gap paste

Similar Documents

Publication Publication Date Title
EP1982789B1 (en) Laser welding process of welding together overlapped plated steel sheets
JP5071451B2 (en) Joining materials, joints and car bodies
JP2008137012A (en) Laser beam welding method and laser beam welding system for surface treated steel sheet
KR102489467B1 (en) Method for welding metal-based materials that cannot be directly welded to each other using spacers
WO2016189855A1 (en) Laser welding method
JP2004261870A (en) Joint design for laser welding zinc coated steel
JP2010023047A (en) Laser beam welding method for thin plate
JP6699007B2 (en) Laser joining method of galvanized steel sheet
JP3115456B2 (en) Laser welding method for galvanized steel sheet
JP2981738B2 (en) Laser welding method and apparatus
JP2007330972A (en) Method, device and structure for joining dissimilar material
EP2783788B1 (en) Welding process and welding system
JP4764786B2 (en) Laser welding method
US11110539B2 (en) Methods and joints for welding sheets of dissimilar materials
JP6720604B2 (en) Laser welding machine
JP4337721B2 (en) High energy density beam welding product, high energy density beam welding method, and welding auxiliary device used therefor
CN110369868B (en) Laser welding method for coated metal workpiece
JP4931506B2 (en) Dissimilar material joining method
JP2006095602A (en) Method of welding galvanized steel component
JP4232024B2 (en) Weld bead structure and welding method
JP4409038B2 (en) Laminated laser welding method for plated steel sheets
JP2005169418A (en) Method and device for joining dissimilar materials
JP4334725B2 (en) Laminated laser welding structure of plated steel sheets
WO2021065067A1 (en) Welding method, plate-shaped member, and elevator equipment
JP4099642B2 (en) Laser welding method for surface-treated steel sheet