JP2008136965A - Atomizing head for rotary atomization type coating apparatus - Google Patents

Atomizing head for rotary atomization type coating apparatus Download PDF

Info

Publication number
JP2008136965A
JP2008136965A JP2006326898A JP2006326898A JP2008136965A JP 2008136965 A JP2008136965 A JP 2008136965A JP 2006326898 A JP2006326898 A JP 2006326898A JP 2006326898 A JP2006326898 A JP 2006326898A JP 2008136965 A JP2008136965 A JP 2008136965A
Authority
JP
Japan
Prior art keywords
atomizing head
paint
groove
atomizing
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006326898A
Other languages
Japanese (ja)
Other versions
JP4957219B2 (en
Inventor
Shigenori Kazama
重徳 風間
Osamu Tanaka
修 田中
Hiroyuki Mitomo
裕之 三友
Akikazu Ito
晃数 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006326898A priority Critical patent/JP4957219B2/en
Publication of JP2008136965A publication Critical patent/JP2008136965A/en
Application granted granted Critical
Publication of JP4957219B2 publication Critical patent/JP4957219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an atomizing head which can effectively utilize groove rows in the inside end part even at high-velocity revolution with a peripheral velocity of ≥0.5 Mach to achieve uniform atomization. <P>SOLUTION: The atomizing head 13 is used for a rotary atomization type coating apparatus, and a plurality of grooves 37 are circumferentially formed at a constant pitch P in the end part 32 of a coating diffusing surface 31 inside of the atomizing head. The length L of the grooves 37 is equal to or less than the pitch P of the grooves 37. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転霧化式塗装装置の霧化頭(ベルカップとも言う。)に関し、特に周速度がマッハ0.5以上の高速回転においてもエアーの巻き込みが防止され、均一な微粒化が達成できる霧化頭に関する。   The present invention relates to an atomizing head (also referred to as a bell cup) of a rotary atomizing coating apparatus, and in particular, air entrainment is prevented even at a high speed rotation with a peripheral speed of Mach 0.5 or more, and uniform atomization is achieved. It can be related to the atomizing head.

自動車塗装などで使用されている回転霧化式静電塗装装置は、高速で回転する霧化頭内面に塗料液体を供給し、遠心力を利用して塗料液体を霧化頭の端部にて霧状に微粒化し、霧化頭の背面から供給されるシェーピングエアーによって微粒化された塗粒を被塗物方向に搬送するとともに、高電圧に印加した静電気で塗料粒子を被塗物に付着させる。このような霧化頭は種々の断面形状が実用化されているが、一方でその端部に多数の溝を設けることも提案されている(特許文献1、特許文献2参照)。   Rotating atomizing electrostatic coating equipment used in automobile painting, etc. supplies paint liquid to the inner surface of the atomizing head that rotates at high speed, and uses the centrifugal force to apply the paint liquid at the end of the atomizing head. Atomized atomized particles are transported in the direction of the object to be coated by the shaping air supplied from the back of the atomizing head, and the paint particles are attached to the object by static electricity applied to a high voltage. . Such an atomizing head has been put into practical use in various cross-sectional shapes, but on the other hand, it has also been proposed to provide a large number of grooves at its end (see Patent Document 1 and Patent Document 2).

この種の溝列は、塗料粘度の高い中塗りやクリア塗料において膜状に放出された塗料が微粒子に分裂する際のエアーの巻き込みを防止することが主目的とされている。その構造および作用は上記特許文献1に詳しいが、主として霧化頭の背面から供給されるシェーピングエアーによってエアーを巻き込んだ中空状の塗料粒子が発生することを抑制することに主眼がおかれていた。すなわち、溝列を有しない霧化頭を比較的低い回転数で使用すると、霧化頭から塗料液が膜状に放出されるためにエアーの巻き込みが発生しやすくなるが、多数の溝列によって塗料は液糸状に放出されるので液糸状の塗料から微粒子に分裂する場合にはエアーの巻き込みが防止されるというものである。 The main purpose of this type of groove row is to prevent air entrainment when the paint released in the form of a film in an intermediate or clear paint having a high paint viscosity is broken into fine particles. Although its structure and action are detailed in the above-mentioned patent document 1, the main focus was on suppressing the generation of hollow paint particles entrained with air mainly by shaping air supplied from the back of the atomizing head. . That is, when an atomizing head having no groove row is used at a relatively low rotational speed, the coating liquid is discharged from the atomizing head in a film form, so that air entrainment tends to occur. Since the paint is discharged in the form of a liquid thread, the entrainment of air is prevented when the liquid thread paint is divided into fine particles.

こうした溝列はエアーの巻き込み防止に効果はあるものの、微粒化される塗料粒子の均一性を保障するものではなかった。そこで本発明者らは、塗料粒子の均一性を向上させる目的で、塗料拡散面での塗料液膜流れに注目し、回転霧化頭の塗料拡散面に凸面形状を設けることや拡散面に多数の溝列を設けることを提案し(特許文献3)、これにより、従来の霧化頭よりも均一な微粒化が可能になることを見出した。これはそれ以前に実用化されていた凹面状の形状を有する霧化頭に比べ、微粒化性能が顕著に改善されたが、エアーの巻き込み防止機能に関しては内面端部に溝列を形成することが依然として有効であった。 Although such a groove array is effective in preventing air entrainment, it does not guarantee the uniformity of atomized paint particles. Therefore, the present inventors paid attention to the paint liquid film flow on the paint diffusion surface for the purpose of improving the uniformity of the paint particles, and provided a convex shape on the paint diffusion surface of the rotary atomizing head or a large number on the diffusion surface. (Patent Document 3), and it has been found that this makes it possible to atomize more uniformly than the conventional atomizing head. This is a significant improvement in atomization performance compared to the atomized head having a concave shape that had been put to practical use before that, but with regard to the function of preventing the entrainment of air, a groove row should be formed at the inner edge. Was still effective.

ところが近年になって、自動車用塗装に採用され始めた水系塗料に対しては、均一な微粒化やエアーの巻き込み防止機能に関して、幾つかの問題点があることが判明した。 However, in recent years, it has been found that water-based paints, which have begun to be used in automobile coatings, have several problems with respect to uniform atomization and the function of preventing air entrainment.

すなわち、水系ベース塗料の塗料粘度は有機溶剤系クリア塗料や有機溶剤系中塗り塗料よりも高いので、当然ながらエアーの巻き込み効果が抑制されると期待された。しかしながら、従来よりもはるかに高速で回転する回転霧化式塗装装置においては、内面端部に溝列を有しない霧化頭が採用されているのが実状である。これは、内面端部の溝列はエアーの巻き込み防止機能が有効でないばかりか、溝列があることによって霧化頭の洗浄性が悪化するという問題があるためである。 That is, since the paint viscosity of the water-based base paint is higher than that of the organic solvent-based clear paint or the organic solvent-based intermediate paint, it is naturally expected that the air entrainment effect is suppressed. However, in a rotary atomizing coating apparatus that rotates at a much higher speed than in the past, the actual condition is that an atomizing head that does not have groove rows at the inner surface end is employed. This is because the groove row at the inner surface edge has a problem that the air entrainment prevention function is not effective and the cleaning property of the atomizing head deteriorates due to the groove row.

ここで、高速回転か否かは、霧化頭の「周長さ」と「毎秒の回転数」の積である「周速度」が概ねマッハ0.5(=170m/s)を境界として判別することができる。すなわち、従来の回転霧化塗装機の周速度は速くてもマッハ0.4程度であり(直径が50mmの霧化頭であれば52000rpm程度)、この速度域までは内面端部に溝列を設けることが有効と考えられる。 Here, whether or not it is rotating at high speed is determined based on the boundary between the “peripheral speed”, which is the product of the “circumferential length” of the atomizing head and the “rotational speed per second”, approximately Mach 0.5 (= 170 m / s). can do. That is, even if the peripheral speed of the conventional rotary atomizing coater is fast, it is about Mach 0.4 (about 52000 rpm for an atomizing head having a diameter of 50 mm). It is considered to be effective.

これに対して、マッハ0.5以上の高速回転域では、内面端部に溝列を設けなくてもエアーの巻き込みがほとんど発生しない。これは、塗料が霧化頭の端部から液膜状ではなく、液糸状に放出されているからと推察されるが、その理由については、はっきりとは解明されていない。 On the other hand, in a high-speed rotation region of Mach 0.5 or more, air is hardly trapped even if a groove row is not provided at the inner surface edge. This is presumably because the paint is discharged from the end of the atomizing head in the form of a liquid rather than in the form of a liquid film, but the reason is not clearly understood.

内面端部に溝列を有しない霧化頭の欠点として、マッハ0.4程度以下の低速回転では、微粒化が極端に悪化してエアーの巻き込みなども発生すること、および得られる微粒子の粒径分布が比較的広く、これを改善するには回転数を高くするしかないなどの問題点がある。 Disadvantages of atomizing heads that do not have groove rows at the inner surface edge are that, at low speed rotation of about Mach 0.4 or less, atomization becomes extremely worse and air entrainment occurs, and the resulting fine particles There is a problem that the diameter distribution is relatively wide, and the only way to improve this is to increase the rotational speed.

すなわち、高速回転で生成する微粒子には細かい成分が多く、シェーピングエアーを強くすると塗着効率が低下するという欠点がある。これは従来の有機溶剤系塗料と同様の傾向である。このため、高速回転で微粒化する場合には、一般的にシェーピングエアーを弱くして使用する場合が多く、パターン幅が広くなる傾向にあり、これが塗装方法の制約になるという欠点もある。 That is, the fine particles generated by high-speed rotation have many fine components, and there is a drawback that the coating efficiency decreases when the shaping air is strengthened. This is the same tendency as the conventional organic solvent-based paint. For this reason, when atomizing by high-speed rotation, generally, the shaping air is often used with weakening, and the pattern width tends to be widened, which has a drawback that it becomes a limitation of the coating method.

特公昭55−41825号公報Japanese Patent Publication No.55-41825 特公平4−37743号公報Japanese Patent Publication No. 4-37743 特開平10−52658号公報JP-A-10-52658

本発明が解決しようとする課題は、周速度がマッハ0.5以上の高速回転においても、内面端部の溝列を有効に活用することができ、均一な微粒化を達成し得る霧化頭を提供することである。 The problem to be solved by the present invention is that the atomization head capable of effectively utilizing the groove row at the inner surface end portion and achieving uniform atomization even at high speed rotation with a peripheral speed of Mach 0.5 or more. Is to provide.

上記目的を達成するために、本発明の回転霧化式塗装装置の霧化頭は、回転霧化式塗装装置に用いられ、霧化頭内面の塗料拡散面の端部に複数の溝が円周方向に一定ピッチで形成された霧化頭であって、前記溝の長さが前記溝のピッチ以下であることを特徴とする。 In order to achieve the above object, the atomizing head of the rotary atomizing coating apparatus of the present invention is used in the rotary atomizing coating apparatus, and a plurality of grooves are circular at the end of the paint diffusion surface on the inner surface of the atomizing head. An atomizing head formed at a constant pitch in the circumferential direction, wherein the length of the groove is equal to or less than the pitch of the groove.

霧化頭内面の塗料拡散面の端部に形成する溝の長さを溝のピッチ以下にすることで、溝の抵抗成分が減少し、溝によって塗料液膜の流れが阻害されることがなくなり、その結果、エアーの巻き込みを防止するとともに均一な微粒化を達成することができる。 By setting the length of the groove formed at the end of the paint diffusion surface on the inner surface of the atomizing head to be equal to or less than the pitch of the groove, the resistance component of the groove is reduced, and the flow of the coating liquid film is not hindered by the groove. As a result, air entrainment can be prevented and uniform atomization can be achieved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1実施形態》
図1は、本発明の第1実施形態に係る霧化頭が適用される回転霧化式塗装装置10の先端部の構造を示す断面図、図2は、本発明の第1実施形態に係る霧化頭13を拡大して示す半断面図、図3は本発明の第1実施形態に係る霧化頭13の内周端部をさらに拡大して示す半断面図である。
<< First Embodiment >>
FIG. 1 is a cross-sectional view showing a structure of a tip portion of a rotary atomizing coating apparatus 10 to which an atomizing head according to a first embodiment of the present invention is applied, and FIG. 2 relates to the first embodiment of the present invention. FIG. 3 is a half sectional view showing the atomizing head 13 in an enlarged manner, and FIG. 3 is a half sectional view showing the inner peripheral end portion of the atomizing head 13 in accordance with the first embodiment of the present invention.

図1を参照して回転霧化式静電塗装装置の一例を説明すると、同図に示す回転霧化式の静電塗装装置10は、ハウジング11内に設けられた図示しないエアーモータによって回転される中空シャフト12と、中空シャフト12の先端側にねじ締結されて回転駆動されるとともに塗料を噴霧する霧化頭(ベルカップ)13と、中空シャフト12の中心孔12a内の回転中心上に配置され塗料を霧化頭13に供給する非回転のフィードチューブ14と、を有する。なお、ハウジング11の外周は、電気絶縁性材料から形成されたハウジング16によって覆われている。 An example of a rotary atomizing electrostatic coating apparatus will be described with reference to FIG. 1. A rotary atomizing electrostatic coating apparatus 10 shown in FIG. 1 is rotated by an air motor (not shown) provided in a housing 11. The hollow shaft 12 is screwed to the distal end side of the hollow shaft 12 and is rotationally driven, and the atomizing head (bell cup) 13 that sprays the paint is disposed on the rotational center in the center hole 12a of the hollow shaft 12. And a non-rotating feed tube 14 for supplying paint to the atomizing head 13. The outer periphery of the housing 11 is covered with a housing 16 made of an electrically insulating material.

静電塗装装置10は、図示しない高圧電源からの印加によって帯電した塗料粒子を、被塗物との間に形成された静電界に沿って飛行させて当該被塗物に塗着させる。高圧印加は、高圧電源をハウジング内に設けて霧化頭に印加する内部印加型、または高圧電源を霧化頭の周囲に設けて霧化頭から飛び出した塗粒に印加する外部印加型の何れも採用することができる。 The electrostatic coating apparatus 10 causes paint particles charged by application from a high-voltage power source (not shown) to fly along an electrostatic field formed between the objects and to be applied to the object. The high voltage application is either an internal application type in which a high voltage power source is provided in the housing and applied to the atomizing head, or an external voltage application type in which a high voltage power source is provided around the atomizing head and applied to the particles ejected from the atomizing head. Can also be adopted.

さらに、霧化頭13の背面側からシェーピングエアーと称される空気流をエアー吐出口17から吐出し、霧化頭13で微粒化された塗料粒子を、霧化頭13の前方に位置する被塗物に向かう方向に偏向させる。塗料粒子は、シェーピングエアーによっても、被塗物にまで達するのに必要な運動量が付与される。符号18は、エアー吐出口17から吐出されたシェーピングエアーを霧化頭13に向けてガイドするエアガイドを示している。このエアー吐出口17は、第1エアーリング41と、第2エアーリング42との間に環状に形成され、エアガイド18は、第1エアーリング41の外周面により形成されている。第1エアーリング41は、ハウジング16の先端部に取り付けられている。ハウジング11とハウジング16との間には環状のエアー通路が形成され、第1エアーリング41には、エアー吐出口17とエアー通路とを連通するエアー導入孔43が形成されている。そして、図示しないエアー配管を介してエアー通路に供給されたエアーは、エアー導入孔43を通り、エアー吐出口17からシェーピングエアーとして噴出される。 Further, an air flow called shaping air is discharged from the back side of the atomizing head 13 from the air discharge port 17, and the paint particles atomized by the atomizing head 13 are placed in front of the atomizing head 13. Deflection in the direction toward the paint. The paint particles are imparted with the momentum necessary to reach the object even by the shaping air. Reference numeral 18 denotes an air guide that guides the shaping air discharged from the air discharge port 17 toward the atomizing head 13. The air discharge port 17 is formed in an annular shape between the first air ring 41 and the second air ring 42, and the air guide 18 is formed by the outer peripheral surface of the first air ring 41. The first air ring 41 is attached to the distal end portion of the housing 16. An annular air passage is formed between the housing 11 and the housing 16, and an air introduction hole 43 that connects the air discharge port 17 and the air passage is formed in the first air ring 41. Then, the air supplied to the air passage via an air pipe (not shown) passes through the air introduction hole 43 and is ejected as shaping air from the air discharge port 17.

フィードチューブ14は、内管20と、当該内管20が挿通される外管21とを備える二重配管から構成され、内管20には塗料が供給され、外管21には自動洗浄用シンナー(有機溶剤系塗料の場合)または自動洗浄用水(水系塗料の場合)が供給される。フィードチューブ14の先端は、中空シャフト12の先端から露出し、霧化頭13の内部に向けて延在している。フィードチューブ14の基端側には塗料弁が設けられ、この塗料弁は塗料パイプを介して塗料タンク(いずれも図示せず)に連通している。 The feed tube 14 is composed of a double pipe including an inner pipe 20 and an outer pipe 21 through which the inner pipe 20 is inserted. The inner pipe 20 is supplied with a paint, and the outer pipe 21 is an automatic cleaning thinner. (For organic solvent-based paints) or automatic cleaning water (for water-based paints) is supplied. The distal end of the feed tube 14 is exposed from the distal end of the hollow shaft 12 and extends toward the inside of the atomizing head 13. A paint valve is provided on the base end side of the feed tube 14, and this paint valve communicates with a paint tank (both not shown) via a paint pipe.

霧化頭13は、略カップ形状をなし、金属などの導電性材料から形成され、カップ状の外面30と、内面の塗料拡散面31と、内面の先端に位置する塗料が放出される端部32とを有する。霧化頭13には、ベルハブ部33により塗料流入室34が区画形成され、この塗料流入室34に、フィードチューブ14の先端開口が連通している。ベルハブ部33には、中央部に位置する中央開口35と、周縁部に位置する複数の塗料出口孔36とが形成されて、複数の塗料出口孔36は、所定の間隔で円周状に配置されている。霧化頭13は、塗装時において、例えば周速度マッハ0.5以上の超高速で回転する。 The atomizing head 13 has a substantially cup shape and is made of a conductive material such as metal. The cup-shaped outer surface 30, the inner-surface paint diffusing surface 31, and the end where the paint located at the inner-surface tip is discharged. 32. In the atomizing head 13, a paint inflow chamber 34 is defined by a bell hub portion 33, and the tip opening of the feed tube 14 communicates with the paint inflow chamber 34. The bell hub portion 33 is formed with a central opening 35 located at the central portion and a plurality of paint outlet holes 36 located at the peripheral portion, and the plurality of paint outlet holes 36 are arranged circumferentially at predetermined intervals. Has been. The atomizing head 13 rotates at an ultra high speed of, for example, a peripheral speed Mach 0.5 or more during painting.

特に、本実施形態の霧化頭13の内面の端部32には、塗料拡散面31に沿って液膜状に広がった塗料を微粒化するための、微細な溝37が形成されている。この溝37を図3に拡大して示す。 In particular, a fine groove 37 for atomizing the paint spreading in the form of a liquid film along the paint diffusion surface 31 is formed at the end 32 of the inner surface of the atomizing head 13 of the present embodiment. The groove 37 is shown enlarged in FIG.

本例の溝37は霧化頭13の内面31と端部32との境界に形成され、一定のピッチPで端部32の円周方向に並んで形成されている。そして、溝37の霧化頭13の半径方向に沿う長さLが、隣り合う溝37とのピッチPと等しいか、それより短く形成されている(すなわち、L≦P)。 The groove 37 of this example is formed at the boundary between the inner surface 31 and the end portion 32 of the atomizing head 13, and is formed side by side in the circumferential direction of the end portion 32 at a constant pitch P. The length L of the groove 37 along the radial direction of the atomizing head 13 is equal to or shorter than the pitch P between the adjacent grooves 37 (that is, L ≦ P).

絶対的な溝37の長さLとしては、直径が30〜50mmの霧化頭において、0.3mm以下、好ましくは0.1〜0.2mmである。また、溝37のピッチPは、溝37の長さL以上であるとの条件(L≦P)を満たしたうえで、0.05mm〜0.3mmであることが好ましい。溝37の長さLが0.1mmよりも短いと溝37を加工形成する時間が長くなりコスト高になることに加え、溝37の長さLが短いと必然的に溝の深さが浅くなるので、溝37による作用効果が期待できないからである。逆に、溝37の長さLが0.3mmより長いと、上述した従来例の問題点を解消することができない。 The absolute length L of the groove 37 is 0.3 mm or less, preferably 0.1 to 0.2 mm in an atomizing head having a diameter of 30 to 50 mm. Moreover, it is preferable that the pitch P of the groove | channel 37 is 0.05 mm-0.3 mm, after satisfy | filling the conditions (L <= P) that it is more than the length L of the groove | channel 37. FIG. If the length L of the groove 37 is shorter than 0.1 mm, the time for processing and forming the groove 37 becomes longer and the cost is increased, and if the length L of the groove 37 is short, the depth of the groove is inevitably shallow. This is because the effect of the groove 37 cannot be expected. On the contrary, when the length L of the groove 37 is longer than 0.3 mm, the above-described problems of the conventional example cannot be solved.

なお、本例のように溝37の長さLを溝37のピッチPより短くすると、従来ホイールカッターなどによる機械研削加工によらずとも、ローレット加工などで溝337を形成することが可能となるので加工時間を短縮でき、コスト低減を図ることもできる。 If the length L of the grooves 37 is shorter than the pitch P of the grooves 37 as in this example, the grooves 337 can be formed by knurling or the like without using conventional mechanical grinding with a wheel cutter or the like. Therefore, the processing time can be shortened and the cost can be reduced.

次に、作用を説明する。 Next, the operation will be described.

エアーモータによって中空シャフト12および霧化頭13を高速回転させる。塗料は、フィードチューブ14を通って塗料流入室34に案内され、中央開口35および塗料出口孔36から霧化頭13の前面に供給される。霧化頭13の前面に供給された塗料は、霧化頭13の回転による遠心力により、塗料拡散面31に沿って薄く引伸ばされ、複数の溝37を通過したのち端部32から霧状に微粒化されて放出される。 The hollow shaft 12 and the atomizing head 13 are rotated at high speed by an air motor. The paint is guided to the paint inflow chamber 34 through the feed tube 14 and supplied to the front surface of the atomizing head 13 from the central opening 35 and the paint outlet hole 36. The paint supplied to the front surface of the atomizing head 13 is thinly stretched along the paint diffusing surface 31 by the centrifugal force generated by the rotation of the atomizing head 13, passes through the plurality of grooves 37, and then forms a mist from the end portion 32. To be atomized and released.

放出される塗料粒子は、遠心力によって径方向外方に飛び出そうとする。しかし、エアー吐出口17から噴出されるシェーピングエアーによって、放出された塗料粒子は、前方に向けて絞り込まれるように所望のパターンにコントロールないし整形され、被塗物に向けて運ばれる。 The discharged paint particles try to jump out radially outward by centrifugal force. However, the discharged paint particles are controlled or shaped into a desired pattern so as to be squeezed forward by the shaping air ejected from the air discharge port 17, and are carried toward the object to be coated.

同時に、塗料粒子は帯電しているので、アースに接続された被塗物に向けて飛行し、クーロン力によって効率よく被塗物の表面に付着する。 At the same time, since the paint particles are charged, the paint particles fly toward the object connected to the ground, and efficiently adhere to the surface of the object by the Coulomb force.

ここで、本例の溝37の作用効果について考察する。   Here, the effect of the groove 37 of this example will be considered.

上記特許文献1の第2図に示されるように、従来の霧化頭の内面端部に形成された溝の長さは、溝ピッチの2倍以上の長さを有することが一般的であり、本発明者らも比較的低回転で塗装される有機溶剤系塗料について、溝ピッチの5倍から10倍の長さの溝を内面端部に形成することにより安定した微粒化性能が得られることは確認している。 As shown in FIG. 2 of the above-mentioned Patent Document 1, the length of the groove formed on the inner surface end of the conventional atomizing head is generally more than twice the groove pitch. The inventors of the present invention can obtain stable atomization performance by forming a groove having a length of 5 to 10 times the groove pitch at the inner end of the organic solvent-based paint to be applied at a relatively low rotation. I have confirmed that.

しかしながら、水系ベース塗料に対して、たとえば周速度がマッハ0.5以上の超高速回転型の霧化頭を適用する場合には、これらの溝列はほとんど機能せず、溝列を形成しない場合と同程度か、むしろ若干微粒化性能が悪化するという問題点があった。本発明者らはこれを詳しく検討した結果、溝の形成されている方向と塗料液膜の流れ方向に大きな角度差があることが原因であることを見出し、本発明を完成するに至った。 However, for example, when an ultra-high speed rotation type atomizing head having a peripheral speed of Mach 0.5 or more is applied to the water-based base paint, these groove rows hardly function and the groove rows are not formed. However, there is a problem that the atomization performance is slightly deteriorated. As a result of detailed investigations by the present inventors, it was found that the cause is that there is a large angle difference between the direction in which the grooves are formed and the flow direction of the coating liquid film, and the present invention has been completed.

すなわち、従来の溝は回転軸中心から放射状の方向に直線状の溝が加工されることが一般的である。しかしながら、高速で回転する霧化頭の塗料拡散面上の塗料は、回転方向の後方側に大きくすべる傾向があり、塗料・液膜の流れる方向は霧化頭の端部に対して90°未満の角度となる。このような傾向は比較的低回転で塗装される有機溶剤系塗料でも見られたが、通常その角度差は5°以内であり、ほとんど問題にならなかった。 That is, the conventional groove is generally processed into a linear groove in a radial direction from the center of the rotation axis. However, the paint on the paint diffusion surface of the atomizing head that rotates at high speed tends to slide greatly backward in the direction of rotation, and the direction in which the paint / liquid film flows is less than 90 ° with respect to the end of the atomizing head. It becomes the angle of. Such a tendency was also observed in organic solvent-based paints applied at a relatively low rotation, but the angle difference was usually within 5 °, which was hardly a problem.

ところが、超高速回転型の霧化頭では塗料の液膜流れ方向と溝の延在方向に大きな角度差が発生し、溝が塗料の流れを阻害することが判明した。すなわち、塗料拡散面31上を流れてきた塗料液は各溝37に分配されたのち、溝37の中にいったん蓄積されるように挙動し、この蓄積された塗料が不定期に霧化頭の端部32から放出されることになるため、溝37によってかえって安定した塗料流れが形成されなくなる。 However, it has been found that in an ultra-high-speed rotation type atomizing head, a large angle difference occurs between the liquid film flow direction of the paint and the extension direction of the groove, and the groove impedes the flow of the paint. That is, the coating liquid flowing on the coating material diffusing surface 31 is distributed to each groove 37 and then behaves so as to be temporarily accumulated in the groove 37. The accumulated coating material is irregularly formed on the atomizing head. Since it will be discharged | emitted from the edge part 32, a stable paint flow will no longer be formed by the groove | channel 37 on the contrary.

本発明では、塗料拡散面31で薄く広げられた塗料液膜流れの方向が、霧化頭13が超高速で回転しているために回転方向とは反対側に大きく傾いた流れを形成することに着目し、しかもこの角度は塗料の吐出量や選択した回転数の大きさによって変化するために、通常の長さの溝37では対応できる特定の吐出量や特定の回転数のみでしか機能しないのに対し、溝37の長さLを溝37のピッチPより短くすることによって、逆により広い範囲で溝37が有効に機能することを見出したものである。 In the present invention, the direction of the paint liquid film flow thinly spread on the paint diffusion surface 31 forms a flow that is greatly inclined to the side opposite to the rotation direction because the atomizing head 13 is rotating at an ultra-high speed. In addition, since this angle changes depending on the discharge amount of the paint and the size of the selected rotation speed, the groove 37 having a normal length functions only with a specific discharge amount and a specific rotation speed that can be handled. On the other hand, it has been found that the groove 37 functions effectively in a wider range by making the length L of the groove 37 shorter than the pitch P of the groove 37.

本発明においては溝37の長さLが結果的に短くなるため、塗料を溝37の中に蓄積する機能が弱く、溝列の開始部(霧化頭13の中心側)に供給された塗料はほぼ直ちに霧化頭13の端部32から放出されることになる。すなわち、溝37の抵抗成分が減少し、円滑に溝37を流れることになる。   In the present invention, since the length L of the groove 37 is shortened as a result, the function of accumulating the paint in the groove 37 is weak, and the paint supplied to the start of the groove row (center side of the atomizing head 13). Will be released almost immediately from the end 32 of the atomizing head 13. That is, the resistance component of the groove 37 decreases, and the groove 37 flows smoothly.

したがって、霧化頭13が周速度マッハ0.5以上の超高速で回転する場合においても、溝37によって塗料液膜の流れが阻害されることがなくなり、その結果、エアーの巻き込みが防止されるとともに、均一な微粒化(微粒化分布幅が小さくなる)を達成することができる。   Therefore, even when the atomizing head 13 rotates at an ultra-high speed of the peripheral speed Mach 0.5 or more, the flow of the coating liquid film is not inhibited by the groove 37, and as a result, the entrainment of air is prevented. At the same time, uniform atomization (small atomization distribution width) can be achieved.

図6は、霧化頭13を周速度がマッハ0.3〜0.8になるように回転させたときの塗粒の平均粒径を測定したもので、直径が40mmの霧化頭13の内面端部32に長さLが0.2mmの溝37を0.2mmピッチで形成した実施例1に係る霧化頭と、同じく直径が40mmの霧化頭13の内面端部32に長さLが2mmの溝37を0.3mmピッチで形成した比較例1と、同じく直径が40mmの霧化頭13の内面端部32に溝37を形成しない比較例2との結果をそれぞれ示す。   FIG. 6 shows the measurement of the average particle diameter of the coating grains when the atomizing head 13 is rotated so that the peripheral speed is Mach 0.3 to 0.8. The diameter of the atomizing head 13 having a diameter of 40 mm is measured. The length of the atomizing head according to Example 1 in which grooves 37 having a length L of 0.2 mm are formed in the inner surface end portion 32 at a pitch of 0.2 mm, and the inner surface end portion 32 of the atomizing head 13 having a diameter of 40 mm. The results of Comparative Example 1 in which grooves 37 having L of 2 mm are formed at a pitch of 0.3 mm and Comparative Example 2 in which grooves 37 are not formed in the inner surface end 32 of the atomizing head 13 having a diameter of 40 mm are shown.

同図の結果のうち比較例1及び比較例2によれば、周速度がマッハ0.5以上の超高速回転域においては、内面端部32に溝37があってもなくても微粒化の程度に有意差はない。しかしながら、本発明に係る実施例1によれば、この超高速回転域において微粒化が促進されていることが理解される。   According to Comparative Example 1 and Comparative Example 2 among the results shown in the figure, in the ultra-high speed rotation region where the peripheral speed is Mach 0.5 or more, the atomization can be achieved regardless of whether or not the inner surface end portion 32 has the groove 37. There is no significant difference in degree. However, according to Example 1 which concerns on this invention, it understands that atomization is accelerated | stimulated in this super-high-speed rotation area.

《第2実施形態》
図4は本発明の第2実施形態に係る霧化頭の端部を拡大して示す半断面図である。
<< Second Embodiment >>
FIG. 4 is an enlarged half sectional view showing an end portion of an atomizing head according to the second embodiment of the present invention.

上述した第1実施形態では、霧化頭13の内面端部32に形成した溝37の延在方向を霧化頭13の半径方向と一致させた(図4のα=0°)が、本例では、図4に示すように、霧化頭13の中心から半径方向の直線に対する溝37の傾斜角αが、回転方向の後側に向かって5°〜35°、さらに好ましくは20°±5°とされている。回転方向の後側に向かう傾斜とは、たとえば霧化頭13が左回転する場合には、霧化頭13の内面31に対面した状態で、溝37の先端側を右、基端側を左に傾ける状態を言う。傾斜角αが5°より小さいと傾斜による効果が期待できず、逆に傾斜角αが35°より大きいと形成できる溝37の本数が必然的に少なくなり、あるいは溝37のピッチPが短くなるといった欠点がある。   In the first embodiment described above, the extending direction of the groove 37 formed in the inner surface end portion 32 of the atomizing head 13 is matched with the radial direction of the atomizing head 13 (α = 0 ° in FIG. 4). In the example, as shown in FIG. 4, the inclination angle α of the groove 37 with respect to the straight line in the radial direction from the center of the atomizing head 13 is 5 ° to 35 °, more preferably 20 ° ± toward the rear side in the rotation direction. It is set to 5 °. For example, when the atomizing head 13 rotates counterclockwise, the tip side of the groove 37 is set to the right and the base end side is set to the left side when the atomizing head 13 rotates counterclockwise. Say to tilt. If the inclination angle α is smaller than 5 °, the effect of the inclination cannot be expected. Conversely, if the inclination angle α is larger than 35 °, the number of grooves 37 that can be formed is inevitably reduced, or the pitch P of the grooves 37 is reduced. There are disadvantages.

このように溝37を回転方向の後側に向かって傾斜させることで、塗料拡散面31で薄く広げられた塗料液膜流れの方向とより一致することになるので、溝37によって塗料液膜の流れがより阻害されることがなくなり、その結果、エアーの巻き込みが防止されるとともに、均一な微粒化(微粒化分布幅が小さくなる)を達成することができる。   By inclining the groove 37 toward the rear side in the rotation direction in this manner, the direction of the coating liquid film flow that is thinly spread on the coating material diffusion surface 31 is more closely matched. As a result, the flow is not further inhibited, and as a result, the entrainment of air can be prevented and uniform atomization (the atomization distribution width can be reduced) can be achieved.

《第3実施形態》
図5は本発明の第3実施形態に係る霧化頭を拡大して示す半断面図である。
<< Third Embodiment >>
FIG. 5 is an enlarged half sectional view showing an atomizing head according to the third embodiment of the present invention.

上述した第1および第2実施形態に係る霧化頭13は、その内面である塗料拡散面31が凹状曲面であり、また内面端部32には上述したように複数の溝37が形成されているものの、塗料拡散面31は平滑面であるのに対し、本例の霧化頭13では、その塗料拡散面31が霧化頭13の回転軸に向かって凸状とされている。換言すれば、霧化頭13の回転軸に対する断面接線の傾きが、霧化頭13の中心部側より外縁部側の方が大きくされている。 In the atomizing head 13 according to the first and second embodiments described above, the coating material diffusion surface 31 which is the inner surface thereof is a concave curved surface, and the inner surface end portion 32 is formed with a plurality of grooves 37 as described above. Although the paint diffusing surface 31 is a smooth surface, in the atomizing head 13 of this example, the paint diffusing surface 31 is convex toward the rotation axis of the atomizing head 13. In other words, the inclination of the cross-sectional tangent to the rotation axis of the atomizing head 13 is larger on the outer edge side than on the center side of the atomizing head 13.

こうした凸状の塗料拡散面31上では、塗料が第1および第2実施形態に係る霧化頭13とは異なる挙動をし、塗料拡散面31での塗料の液膜厚さが均一に薄くなるものと考えられ、後述する第2の溝38の作用に加え、面形状によっても塗料の微細化効果を促進することができる。 On such a convex paint diffusing surface 31, the paint behaves differently from the atomizing head 13 according to the first and second embodiments, and the liquid film thickness of the paint on the paint diffusing surface 31 is uniformly thin. The effect of refining the paint can be promoted by the surface shape in addition to the action of the second groove 38 described later.

すなわち、霧化頭13の中心部に位置する塗料出口孔36から供給された塗料は、霧化頭13が高速回転することによって生じる遠心力によって外方へと向い塗料拡散面31へと到達するが、塗料拡散面31の開始部分(すなわち回転軸側末端部分)は、霧化頭13の回転軸となす角度が小さいため、遠心力の大部分は供給された塗料液の液面を周方向に広げるように働く。一方、わずかに半径方向への分力があるために霧化頭13の半径方向外方(外縁部方向)へも押し出される。この時点で塗料液面が周方向にほぼ均一化され、塗料出口孔36の工作精度を極端に高くしなくとも塗料供給液量を周方向全体にわたり均一化する効果が得られる。次いで、塗料液は、変曲部において後述する第2の溝38によって分裂され、遠心力によってより端部32側に運ばれるが、これより端部32側では塗料拡散面31の回転軸に対する傾きが中心部側の傾きよりも大きいために、多数の糸状に供給された塗料は、急激に引き延ばされ、端部32に近づくにしたがって塗料液の膜厚が薄くなる。このため同等の回転数では、本例に係る霧化頭13の方が第1および第2実施形態に係る霧化頭13に比べ微細化能力がより高いという効果が得られる。   That is, the paint supplied from the paint outlet hole 36 located at the center of the atomizing head 13 faces outward and reaches the paint diffusing surface 31 due to the centrifugal force generated by the high speed rotation of the atomizing head 13. However, since the angle formed between the starting portion of the paint diffusing surface 31 (that is, the end portion on the rotating shaft side) and the rotating shaft of the atomizing head 13 is small, most of the centrifugal force is in the circumferential direction of the liquid surface of the supplied paint liquid. Work to spread. On the other hand, since there is a slight component force in the radial direction, the atomizing head 13 is also pushed outward in the radial direction (outer edge direction). At this time, the coating liquid level is substantially uniform in the circumferential direction, and the effect of uniformizing the coating liquid supply amount over the entire circumferential direction can be obtained without extremely increasing the working accuracy of the coating material outlet hole 36. Next, the coating liquid is split by a second groove 38 to be described later at the inflection portion, and is further transported to the end portion 32 side by centrifugal force. From this, the end portion 32 side is inclined with respect to the rotation axis of the coating material diffusion surface 31. Is larger than the inclination on the center side, the coating material supplied in the form of a large number of threads is stretched abruptly, and as the end portion 32 is approached, the coating liquid becomes thinner. For this reason, at the same rotation speed, the effect that the atomization head 13 according to the present example has higher refining capability than the atomization head 13 according to the first and second embodiments is obtained.

塗料拡散面31の凸状とされた頂部域には、霧化頭13の半径方向に中心線を有する複数の第2の溝38が円周方向に一定ピッチで形成されている。第2の溝38の本数としては、霧化頭13の内面上に塗料を供給する塗料出口孔36の個数のよりも多いことが、より効果的に塗料流を分裂させる上で望まれる。すなわち、当該第2の溝38の配置位置によっても左右されるため一概には規定できないが、例えば塗料出口孔36の個数の2〜50倍、より好ましくは5〜10倍程度である。 A plurality of second grooves 38 having a center line in the radial direction of the atomizing head 13 are formed at a constant pitch in the circumferential direction in the convex top region of the paint diffusing surface 31. The number of the second grooves 38 is preferably larger than the number of the paint outlet holes 36 that supply the paint onto the inner surface of the atomizing head 13 in order to divide the paint flow more effectively. That is, although it depends on the arrangement position of the second groove 38 and cannot be defined unconditionally, it is, for example, 2 to 50 times, more preferably about 5 to 10 times the number of the paint outlet holes 36.

また、第2の溝38の延在方向の長さとしては、少なくとも1mm程度以上あればよく、それ以上の長さであれば長くなるほど塗料の微粒化という観点からはより優れた効果が期待できるが、溝38が極端に長いものとなるとその形成加工が困難となるといった問題や、塗料中に含まれる顔料、金属片といったビヒクル成分が溝38内に詰まるといった不具合が発生しやすくなる傾向が生じる。このため、通常は、1〜5mm程度、より好ましくは1.5〜3mm以内とされる。   Further, the length of the second groove 38 in the extending direction may be at least about 1 mm, and the longer the length, the better the effect can be expected from the viewpoint of atomization of the paint. However, when the groove 38 is extremely long, the formation process thereof becomes difficult, and a problem that a vehicle component such as a pigment or a metal piece contained in the paint is clogged in the groove 38 tends to occur. . For this reason, it is usually about 1 to 5 mm, more preferably within 1.5 to 3 mm.

また、第2の溝38の幅は、当該溝列の配置位置にもよるが、通常は、塗料出口孔36の開口径と同等ないしこれよりも狭いものとされることが望ましく、例えば、塗料出口孔36の開口径の1/2〜1/20倍、より好ましくは1/3〜1/5倍程度である。さらに具体的には、溝幅は例えば0.5〜0.05mm、より好ましくは0.3〜0.2mm程度とされる。   Further, although the width of the second groove 38 depends on the arrangement position of the groove row, it is usually desirable that the width is equal to or smaller than the opening diameter of the paint outlet hole 36. The opening diameter of the outlet hole 36 is 1/2 to 1/20 times, more preferably about 1/3 to 1/5 times. More specifically, the groove width is, for example, about 0.5 to 0.05 mm, more preferably about 0.3 to 0.2 mm.

また、第2の溝38の深さは、特に限定されるものではないが、例えば0.05〜3mm、より好ましくは0.1〜0.2mm程度が通常は望ましい。   Further, the depth of the second groove 38 is not particularly limited, but it is usually desirable to be, for example, 0.05 to 3 mm, more preferably about 0.1 to 0.2 mm.

以上のように構成された本例の霧化頭13によれば、内面端部32に形成された溝37は上述した第1および第2実施形態と同様の作用効果を奏するが、これに加え塗料拡散面31を凸状に形成するとともにここに第2の溝38を設けることで、より塗粒の微粒化を促進することができる。 According to the atomizing head 13 of the present example configured as described above, the groove 37 formed in the inner surface end portion 32 has the same function and effect as those of the first and second embodiments described above. By forming the paint diffusing surface 31 in a convex shape and providing the second groove 38 therein, atomization of the coating grains can be further promoted.

ちなみに、本例において内面端部に形成する溝37は図3に示す形態および図4に示す形態の何れをも採用することができる。 Incidentally, in the present example, the groove 37 formed at the inner surface end can adopt either the form shown in FIG. 3 or the form shown in FIG. 4.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

本発明の実施形態に係る霧化頭が適用される回転霧化式塗装装置の先端部の構造を示す断面図である。It is sectional drawing which shows the structure of the front-end | tip part of the rotary atomization type coating apparatus with which the atomization head which concerns on embodiment of this invention is applied. 本発明の第1実施形態に係る霧化頭を拡大して示す半断面図である。It is a half sectional view expanding and showing the atomization head concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る霧化頭の内周端部をさらに拡大して示す半断面図である。It is a half sectional view which expands further and shows the inner peripheral end part of the atomization head concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る霧化頭の端部を拡大して示す半断面図である。It is a half sectional view which expands and shows the end of the atomization head concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る霧化頭を拡大して示す半断面図である。It is a half sectional view expanding and showing the atomization head concerning a 3rd embodiment of the present invention. 霧化頭を周速度がマッハ0.3〜0.8になるように回転させたときの周速度と塗粒の平均粒径との関係を示すグラフである。It is a graph which shows the relationship between the peripheral speed when rotating the atomization head so that the peripheral speed may be Mach 0.3-0.8, and the average particle diameter of a coating grain.

符号の説明Explanation of symbols

13…霧化頭
31…塗料拡散面
32…端部
37…溝
L…溝の長さ
P…溝のピッチ
α…溝の傾斜角
38…第2の溝
13 ... Atomizing head 31 ... Paint diffusing surface 32 ... End 37 ... Groove L ... Groove length P ... Groove pitch α ... Groove inclination angle 38 ... Second groove

Claims (7)

回転霧化式塗装装置に用いられ、霧化頭内面の塗料拡散面の端部に複数の溝が円周方向に一定ピッチで形成された霧化頭であって、前記溝の長さが前記溝のピッチ以下であることを特徴とする霧化頭。 The atomizing head is used in a rotary atomizing coating apparatus, and a plurality of grooves are formed at a constant pitch in the circumferential direction at the end of the paint diffusion surface on the inner surface of the atomizing head, and the length of the grooves is An atomizing head having a pitch equal to or less than the pitch of the groove. 前記霧化頭は、前記回転霧化式塗装装置によりマッハ0.5以上の周速度で回転することを特徴とする請求項1記載の霧化頭。 The atomizing head according to claim 1, wherein the atomizing head is rotated at a peripheral speed of 0.5 or more by Mach by the rotary atomizing type coating device. 前記溝の長さが、0.1mm〜0.3mmであることを特徴とする請求項1または2記載の霧化頭。 The atomizing head according to claim 1 or 2, wherein the groove has a length of 0.1 mm to 0.3 mm. 前記溝のピッチが、0.05mm〜0.3mmであることを特徴とする請求項1〜3の何れかに記載の霧化頭。 The atomization head according to any one of claims 1 to 3, wherein a pitch of the groove is 0.05 mm to 0.3 mm. 霧化頭の中心から半径方向の直線に対する前記溝の傾斜角が、回転方向の後側に向かって5°〜35°であることを特徴とする請求項1〜4の何れかに記載の霧化頭。 The mist according to any one of claims 1 to 4, wherein an inclination angle of the groove with respect to a straight line in the radial direction from the center of the atomizing head is 5 ° to 35 ° toward the rear side in the rotation direction. Head. 前記塗料拡散面が霧化頭の回転軸に向かって凸状に形成され、当該塗料拡散面に、霧化頭の半径方向に中心線を有する複数の第2の溝が円周方向に一定ピッチで形成されていることを特徴とする請求項1〜5の何れかに記載の霧化頭。 The coating material diffusion surface is formed in a convex shape toward the rotation axis of the atomizing head, and a plurality of second grooves having a center line in the radial direction of the atomizing head are formed on the coating material diffusion surface at a constant pitch in the circumferential direction. The atomizing head according to any one of claims 1 to 5, wherein 請求項1〜6の何れかに記載の霧化頭と、前記霧化頭を回転駆動する手段と、前記霧化頭に塗料を供給する手段と、前記霧化頭に供給された塗料に電圧を印加する手段とを備えたことを特徴とする回転霧化式静電塗装装置。 The atomizing head according to any one of claims 1 to 6, means for rotationally driving the atomizing head, means for supplying paint to the atomizing head, and voltage applied to the paint supplied to the atomizing head And a rotary atomizing electrostatic coating apparatus.
JP2006326898A 2006-12-04 2006-12-04 Atomizing head of rotary atomizing coating equipment Active JP4957219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326898A JP4957219B2 (en) 2006-12-04 2006-12-04 Atomizing head of rotary atomizing coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326898A JP4957219B2 (en) 2006-12-04 2006-12-04 Atomizing head of rotary atomizing coating equipment

Publications (2)

Publication Number Publication Date
JP2008136965A true JP2008136965A (en) 2008-06-19
JP4957219B2 JP4957219B2 (en) 2012-06-20

Family

ID=39598980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326898A Active JP4957219B2 (en) 2006-12-04 2006-12-04 Atomizing head of rotary atomizing coating equipment

Country Status (1)

Country Link
JP (1) JP4957219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155089A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 Rotary atomization type electrostatic coating machine and bell cup
CN108273672A (en) * 2017-01-05 2018-07-13 都林安川机器人有限公司 Coating jeting device nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147740A (en) * 1977-05-31 1978-12-22 Ransburg Japan Ltd Rotary atomizing apparatus for electrostatic coating of liquid paint
JPH1052658A (en) * 1996-08-12 1998-02-24 Nissan Motor Co Ltd Rotary atomization electrostatic coating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147740A (en) * 1977-05-31 1978-12-22 Ransburg Japan Ltd Rotary atomizing apparatus for electrostatic coating of liquid paint
JPH1052658A (en) * 1996-08-12 1998-02-24 Nissan Motor Co Ltd Rotary atomization electrostatic coating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155089A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 Rotary atomization type electrostatic coating machine and bell cup
CN108273672A (en) * 2017-01-05 2018-07-13 都林安川机器人有限公司 Coating jeting device nozzle
KR20180080976A (en) * 2017-01-05 2018-07-13 두림야스카와(주) Spray nozzle for spray painting apparatus
KR102039412B1 (en) * 2017-01-05 2019-11-01 두림야스카와(주) Spray nozzle for spray painting apparatus
CN108273672B (en) * 2017-01-05 2020-10-20 都林安川机器人有限公司 Nozzle for paint spraying device

Also Published As

Publication number Publication date
JP4957219B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
CA2688090C (en) Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
WO2016163178A1 (en) Rotary atomizer head-type coater
JP6614757B2 (en) Rotary atomizing head type coating machine
KR20150122247A (en) Coating machine having rotary atomizing head
US20180185859A1 (en) Painting method and device for same
WO2014054438A1 (en) Bell cup for rotary atomizing type electrostatic coating device
CN109590120B (en) Coating device
US10343179B2 (en) Painting device
JPS5867368A (en) Method and device for electrostatic painting
JP2019217473A (en) Rotary atomization head and coating application device
JP4957219B2 (en) Atomizing head of rotary atomizing coating equipment
JP4584291B2 (en) Rotating atomizing electrostatic coating machine and rotating atomizing coating method
CA2202671C (en) Rotary atomizing electrostatic coating apparatus
JP2022508190A (en) Rotating atomizer
JP2009045518A (en) Atomization head for rotation atomization type coating apparatus
JP6314735B2 (en) Bell cup of rotary atomizing coating equipment
JP2622611B2 (en) Bell type rotary coating equipment
JP3562361B2 (en) Rotary atomizing coating equipment
JP2006263554A (en) Atomizing head for rotary atomization type coating apparatus
US20230097329A1 (en) Rotary atomizing coating device
US20220362787A1 (en) Rotary atomization type painting apparatus
CN110650808B (en) Bell-shaped cup of rotary atomizing coating device
JP2018126716A (en) Rotary atomization head
JPH0824721A (en) Spray head of rotary spray coating apparatus
JP3622869B2 (en) Rotating atomizing electrostatic coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150