JP2008136414A - Cell culture facility - Google Patents

Cell culture facility Download PDF

Info

Publication number
JP2008136414A
JP2008136414A JP2006325569A JP2006325569A JP2008136414A JP 2008136414 A JP2008136414 A JP 2008136414A JP 2006325569 A JP2006325569 A JP 2006325569A JP 2006325569 A JP2006325569 A JP 2006325569A JP 2008136414 A JP2008136414 A JP 2008136414A
Authority
JP
Japan
Prior art keywords
gas
liquid nitrogen
outside air
cell culture
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006325569A
Other languages
Japanese (ja)
Other versions
JP4966632B2 (en
Inventor
Atsushi Nakao
敦 中尾
Hiroki Busujima
弘樹 毒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006325569A priority Critical patent/JP4966632B2/en
Publication of JP2008136414A publication Critical patent/JP2008136414A/en
Application granted granted Critical
Publication of JP4966632B2 publication Critical patent/JP4966632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress a rise in humidity in a room in a cell culture facility using a liquid nitrogen tank. <P>SOLUTION: The cell culture facility 1 comprises a freezing preservation container 2 to which liquid nitrogen is supplied from a liquid nitrogen tank 31 through a liquid route 32 and a multi-gas incubator 6 for controlling the feed amount of a nitrogen gas and regulating a gas concentration, performs an operation related to a cell preparation, includes an air conditioner 21 for air-conditioning a room, an outdoor air treating unit 22 for treating outdoor air before introducing it into the air conditioner and a gas route 37 for supplying a nitrogen gas generated in the liquid nitrogen tank to the multi-gas incubator, and carries out heat exchange between the nitrogen gas passing through the gas route and the outdoor air treated by the outdoor air treating unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞や微生物、細菌等(以下、細胞と総称する)が外部に漏れ出ないように構成され、細胞を凍結保存する凍結保存容器や細胞を培養するインキュベータ等が設置される細胞培養施設(CPC:Cell Processing Center)に関するものである。   The present invention is configured so that cells, microorganisms, bacteria, etc. (hereinafter collectively referred to as cells) are not leaked to the outside, and a cell culture in which a cryopreservation container for cryopreserving cells, an incubator for culturing cells, and the like are installed. It relates to a facility (CPC: Cell Processing Center).

近年、細胞を利用した再生医療に関する研究開発が進められており、その成果に大きな期待が寄せられている。再生医療では幹細胞が様々な材料と複合されて増殖され、分化誘導、細胞を張り付かせる等の種々の技術を経て、所定の臓器のかたちへと導かれる。作製された臓器や組織は、個々の患者に移植・輸注されるため、係る細胞の培養操作は、所定の基準、例えば、GMP(Good Manufacturing Practice)基準に定められている封じ込めレベルを充足した環境にて行われることが必要条件とされる。   In recent years, research and development on regenerative medicine using cells has been promoted, and great expectations are placed on the results. In regenerative medicine, stem cells are proliferated by being compounded with various materials, and are guided to the form of a predetermined organ through various techniques such as differentiation induction and cell adhesion. Since the prepared organs and tissues are transplanted and transfused to individual patients, the cell culture operation is performed in an environment that satisfies the containment level defined in a predetermined standard, for example, GMP (Good Manufacturing Practice) standard. It is necessary to be done at

従来より係る細胞の培養操作等を行う細胞培養施設には、室内を所定の清浄度を有する環境とすると共に、作業に従事する関係者や担当者をウイルスから保護し、且つ、室内空気を封じ込めることで、周辺環境の汚染を防止することができる施設が提案されている(特許文献1参照。)。   Conventional cell culture facilities that perform cell culturing operations and the like have a room with a predetermined cleanliness, protect personnel and personnel engaged in work from viruses, and contain room air Thus, a facility that can prevent contamination of the surrounding environment has been proposed (see Patent Document 1).

この細胞培養施設では、上述したように再生治療で使用することのできる細胞の培養が行われるので、無菌的管理・無菌操作が必要となる。そのため、当該細胞培養施設内に形成される各室は、空気の清浄度を維持するため、通常、使用されているクリーンルームの構造が採用されており、外気を導入するための給気系には、中性能フィルタや高性能フィルタ等のフィルタを用いることで、清浄な空気の供給を行っていた。   In this cell culture facility, as described above, cells that can be used for regenerative treatment are cultured, and aseptic control and aseptic operation are required. Therefore, in order to maintain the cleanliness of air, each room formed in the cell culture facility usually adopts the structure of a clean room that is used, and the air supply system for introducing outside air is used. Clean air is supplied by using a filter such as a medium performance filter or a high performance filter.

また、この種細胞培養施設には細胞を超低温で凍結保存するために、液体窒素の気相を利用して保存する凍結保存容器が設置されると共に、細胞培養に必須であるマルチガスインキュベータ等も設置されている。このマルチガスインキュベータでは、窒素ガスや二酸化炭素ガスの供給量が制御され、所定のガス濃度に調整される。このマルチガスインキュベータに供給する窒素ガス源として、従来では窒素ガスボンベが使用されていた。
特開2003−47457号公報 特開2006−81994号公報
In addition, in this seed cell culture facility, in order to cryopreserve cells at an ultra-low temperature, a cryopreservation container for storing using a gas phase of liquid nitrogen is installed, and a multi-gas incubator and the like essential for cell culture are also provided. is set up. In this multi-gas incubator, the supply amount of nitrogen gas or carbon dioxide gas is controlled and adjusted to a predetermined gas concentration. Conventionally, a nitrogen gas cylinder has been used as a nitrogen gas source supplied to the multi-gas incubator.
JP 2003-47457 A JP 2006-81994 A

ここで、上述した細胞培養施設では空気の清浄度を維持するために室内の空気を高性能フィルタで清浄化しながら循環させ、空調機で室温調整を行うと共に、外気導入量分を排気する方式が採られるため、室内の湿度が高くなってしまい、コンタミネーションによる作業環境の悪化が危惧される。そのため、室内の空調機に導入する以前の外気を処理する外気処理ユニットを設け、この外気処理ユニットにて外気中の水分をできるだけ除去するようにしているが、室内の湿度上昇を抑えるには依然不充分な場合が多かった。   Here, in the above-mentioned cell culture facility, in order to maintain the cleanliness of the air, the indoor air is circulated while being cleaned with a high-performance filter, the room temperature is adjusted with an air conditioner, and the outside air introduction amount is exhausted. Since it is used, the humidity in the room becomes high, and there is a concern that the working environment will deteriorate due to contamination. For this reason, an outside air processing unit that treats the outside air before being introduced into the indoor air conditioner is provided, and this outside air processing unit is designed to remove the moisture in the outside air as much as possible. In many cases, it was insufficient.

一方、凍結保存容器に液体窒素を供給するための液体窒素タンクでは、常時窒素ガスが発生しているため、この液体窒素タンクは大気開放とされている。そこで、前記特許文献2ではこの大気中に排出されている窒素ガスをマルチガスインキュベータに供給することで、窒素ガスの有効利用を図り、窒素ガスボンベを小型化し、ガス使用量を抑制できるようにしている。   On the other hand, in the liquid nitrogen tank for supplying liquid nitrogen to the cryopreservation container, nitrogen gas is constantly generated, so this liquid nitrogen tank is open to the atmosphere. Therefore, in Patent Document 2, the nitrogen gas discharged into the atmosphere is supplied to the multi-gas incubator so that the nitrogen gas can be effectively used, the nitrogen gas cylinder can be downsized, and the amount of gas used can be suppressed. Yes.

本発明は、係る従来の状況を踏まえて成されたものであり、液体窒素タンクを使用する細胞培養施設における室内の湿度上昇を効果的に抑制することを目的とするものである。   The present invention has been made in view of the above-described conventional situation, and an object thereof is to effectively suppress an increase in indoor humidity in a cell culture facility that uses a liquid nitrogen tank.

請求項1の発明の細胞培養施設は、液体窒素タンクから液体経路を介して液体窒素が供給される凍結保存容器と、少なくとも窒素ガスの供給量が制御されてガス濃度が調整されるインキュベータが設置され、細胞調整に関わる作業が行われる施設であって、室内を空調する空調機と、外気を空調機に導入する以前に処理する外気処理ユニットと、液体窒素タンク内に発生した窒素ガスをインキュベータに供給するためのガス経路とを備え、このガス経路を流通する窒素ガスと外気処理ユニットにて処理される外気とを熱交換させることを特徴とする。   The cell culture facility of the invention of claim 1 is provided with a cryopreservation container in which liquid nitrogen is supplied from a liquid nitrogen tank through a liquid path, and an incubator in which the gas concentration is adjusted by controlling the supply amount of at least nitrogen gas This is a facility where work related to cell adjustment is carried out, including an air conditioner that air-conditions the room, an outside air treatment unit that treats the outside air before it is introduced into the air conditioner, and nitrogen gas generated in the liquid nitrogen tank. And a nitrogen gas flowing through the gas path and the outside air to be processed by the outside air processing unit are heat-exchanged.

請求項2の発明の細胞培養施設は、液体窒素タンクから液体供給経路を介して液体窒素が供給される凍結保存容器が設置され、細胞調整に関わる作業が行われる施設であって、室内を空調する空調機と、外気を空調機に導入する以前に処理する外気処理ユニットと、液体窒素タンク内に発生した窒素ガスを排出するためのガス経路とを備え、このガス経路を流通する窒素ガスと外気処理ユニットにて処理される外気とを熱交換させることを特徴とする。   The cell culture facility of the invention of claim 2 is a facility in which a cryopreservation container to which liquid nitrogen is supplied from a liquid nitrogen tank via a liquid supply path is installed, and work related to cell adjustment is performed, and the room is air-conditioned. An air conditioner, an outside air processing unit for treating the outside air before introducing it into the air conditioner, and a gas path for discharging the nitrogen gas generated in the liquid nitrogen tank, and nitrogen gas flowing through the gas path, It is characterized by exchanging heat with the outside air processed by the outside air processing unit.

請求項1の発明によれば、液体窒素タンクから液体経路を介して液体窒素が供給される凍結保存容器と、少なくとも窒素ガスの供給量が制御されてガス濃度が調整されるインキュベータが設置され、細胞調整に関わる作業が行われる細胞培養施設において、室内を空調する空調機と、外気を空調機に導入する以前に処理する外気処理ユニットと、液体窒素タンク内に発生した窒素ガスをインキュベータに供給するためのガス経路とを備えているので、従来単に排出されていた液体窒素タンク内の窒素ガスをインキュベータに供給して有効利用を図り、インキュベータに通常備え付けられている窒素ガスボンベの小型化や、窒素使用量の削減を図ることができるようになる。   According to the invention of claim 1, a cryopreservation container in which liquid nitrogen is supplied from a liquid nitrogen tank via a liquid path, and an incubator in which the gas concentration is adjusted by controlling the supply amount of at least nitrogen gas are installed, In cell culture facilities where work related to cell conditioning is performed, an air conditioner that air-conditions the room, an outside air treatment unit that treats the outside air before it is introduced into the air conditioner, and nitrogen gas generated in the liquid nitrogen tank is supplied to the incubator A gas path for supplying the nitrogen gas in the liquid nitrogen tank that has been simply discharged to the incubator for effective use, and reducing the size of the nitrogen gas cylinder that is normally installed in the incubator, Nitrogen consumption can be reduced.

特に、インキュベータに窒素ガスを供給するガス経路を流通する窒素ガスと、外気処理ユニットにて処理される外気とを熱交換させるようにしたので、室内に導入される外気中の湿気を、ガス経路内を流れる極低温の窒素ガスにより冷却して凝結させ、除去することができるようになる。これにより、細胞培養施設の室内湿度の上昇を効果的に抑制し、清浄且つ快適な作業環境を実現することができるようになる。   In particular, since the nitrogen gas flowing through the gas path for supplying the nitrogen gas to the incubator and the outside air to be processed by the outside air processing unit are heat-exchanged, the humidity in the outside air introduced into the room is changed to the gas path. It can be cooled and condensed by the cryogenic nitrogen gas flowing inside and removed. As a result, an increase in indoor humidity of the cell culture facility can be effectively suppressed, and a clean and comfortable working environment can be realized.

また、インキュベータに供給される窒素ガスの温度を上昇させることができるので、低温の窒素ガスがインキュベータに供給されることによって生じる培養環境への悪影響も解消できる効果がある。   In addition, since the temperature of the nitrogen gas supplied to the incubator can be increased, the adverse effect on the culture environment caused by the supply of low-temperature nitrogen gas to the incubator can be eliminated.

請求項2の発明によれば、液体窒素タンクから液体供給経路を介して液体窒素が供給される凍結保存容器が設置され、細胞調整に関わる作業が行われる細胞培養施設において、室内を空調する空調機と、外気を空調機に導入する以前に処理する外気処理ユニットと、液体窒素タンク内に発生した窒素ガスを排出するためのガス経路とを備え、このガス経路を流通する窒素ガスと外気処理ユニットにて処理される外気とを熱交換させるようにしたので、室内に導入される外気中の湿気を、ガス経路内を流れる極低温の窒素ガスにより冷却して凝結させ、除去することができるようになる。これにより、従来単に排出されていた液体窒素タンク内の窒素ガスを有効利用して、細胞培養施設の室内湿度の上昇を効果的に抑制し、清浄且つ快適な作業環境を実現することができるようになる。   According to the second aspect of the present invention, in a cell culture facility where a cryopreservation container to which liquid nitrogen is supplied from a liquid nitrogen tank via a liquid supply path is installed and work related to cell adjustment is performed, air conditioning for air conditioning the room And an outside air treatment unit for treating the outside air before introducing it into the air conditioner, and a gas path for discharging the nitrogen gas generated in the liquid nitrogen tank. Heat exchange with the outside air processed in the unit allows the moisture in the outside air introduced into the room to be cooled and condensed by the cryogenic nitrogen gas flowing in the gas path and removed. It becomes like this. As a result, it is possible to effectively use the nitrogen gas in the liquid nitrogen tank that has been simply exhausted so as to effectively suppress an increase in the room humidity of the cell culture facility and realize a clean and comfortable working environment. become.

以下、図面に基づき本発明の一実施形態を詳述する。図1は本発明を適用した細胞培養施設1の液体窒素供給、窒素ガス供給、並びに、空調方式を説明する概略説明図、図2は同細胞培養施設1全体のレイアウトを説明する平面図をそれぞれ示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view for explaining the liquid nitrogen supply, nitrogen gas supply, and air conditioning system of the cell culture facility 1 to which the present invention is applied, and FIG. 2 is a plan view for explaining the layout of the cell culture facility 1 as a whole. Show.

図2において、細胞培養施設1は例えば大学の研究室や病院等再生医療や体外受精医療の現場となる建物に設置されるものであり、その内部には再生医療や体外受精医療における目的検体となる細胞(例えば、ドナー細胞)を凍結保存する凍結保存容器2・・や超低温フリーザ3が設置された細胞保存室4や、細胞培養を行うためのマルチガスインキュベータ6が設置された複数の細胞培養室7・・の他、エントランス室8、モニタリング室9、一次ガウニング室11、サプライ室12、アイソレータ室13、二次ガウニング室14、デガウニング室16等が区画形成されている。   In FIG. 2, the cell culture facility 1 is installed in a building that is a site of regenerative medicine or in vitro fertilization medicine, such as a university laboratory, a hospital, and a target specimen in regenerative medicine or in vitro fertilization medicine. A plurality of cell cultures in which a cryopreservation container 2 for storing cryopreserved cells (for example, donor cells), a cell storage chamber 4 in which an ultra-low temperature freezer 3 is installed, and a multi-gas incubator 6 for performing cell culture are installed In addition to the chamber 7..., An entrance chamber 8, a monitoring chamber 9, a primary chambering chamber 11, a supply chamber 12, an isolator chamber 13, a secondary chambering chamber 14, a degauning chamber 16 and the like are defined.

各室は空気清浄度がA乃至Dの4つに分けられたグレードで区別され、グレードDは清浄度が最も高くCLASS100未満、グレードCは清浄度がDの次に高くCLASS10000未満、グレードBは清浄度がCの次に高くCLASS100000未満、グレードAは清浄度が最も低くCLASS100000以上とされる(図2参照)。各室内の空気清浄と空調は後述する如く各室毎の空調機21とその前段の外気処理ユニット22によって行われることになる。また、各室のレイアウトは人と物の動線を考慮し、コンタミネーションや空気清浄度の変化を極力抑制するべく設計されている。   Each room is distinguished by four grades of air cleanliness, A to D. Grade D has the highest cleanliness less than CLASS100, Grade C has the second highest cleanliness after D and less than CLASS10000, Grade B The cleanliness is next to C and is less than CLASS100,000, and Grade A has the lowest cleanliness and is CLASS100000 or more (see FIG. 2). The air cleaning and air conditioning in each room is performed by the air conditioner 21 for each room and the outdoor air processing unit 22 in the previous stage as described later. In addition, the layout of each room is designed to minimize changes in contamination and air cleanliness in consideration of the flow of people and things.

細胞培養室7に設置されたマルチガスインキュベータ6は、前面に開口を有する断熱箱体と、この開口を開閉自在に閉塞する断熱扉とでその内部に培養室を構成しており、培養室内の温度、二酸化炭素濃度、酸素濃度などのガス濃度を一定に保持し、内部を無菌状態として培養対象である細胞(試料)の培養を行う。窒素ガスはこのガス濃度の制御のために用いられる。また、細胞の培養に当たっては培養室内の温度調節のための加熱ヒータや制御装置が設けられている。この培養室の内部は複数の棚により上下に区画されており、培養室の底面には加湿のための水が貯留された加湿皿が配置され、ステンレス製の内箱外側に設けられたヒータによって加熱されて水を蒸発させる。また、断熱扉の内側には内扉が設けられる。   The multi-gas incubator 6 installed in the cell culture chamber 7 is configured with a heat insulation box having an opening on the front surface and a heat insulation door for closing the opening so as to be openable and closable. A cell (sample) to be cultured is cultured while maintaining a constant gas concentration such as temperature, carbon dioxide concentration, oxygen concentration, etc., and the inside is aseptic. Nitrogen gas is used to control this gas concentration. In addition, when culturing cells, a heater and a control device for adjusting the temperature in the culture chamber are provided. The inside of this culture chamber is divided vertically by a plurality of shelves, and a humidifying dish in which water for humidification is stored is disposed on the bottom surface of the culture chamber, and is provided by a heater provided outside the stainless steel inner box. Heat to evaporate water. An inner door is provided inside the heat insulating door.

細胞培養室7内には係るマルチガスインキュベータ6の他、薬品を保冷する薬用保冷庫23や作業空間内がCLASS100未満とされるバイオハザードキャビネット24、遠心分離器26等が設置されている。   In the cell culture chamber 7, in addition to the multi-gas incubator 6, a medical cool box 23 that keeps the medicine cool, a biohazard cabinet 24 in which the working space is less than CLASS 100, a centrifuge 26, and the like are installed.

この細胞培養施設1の屋外には、−195.8℃の沸点を有する液体窒素を圧力を加えて保存する液体窒素タンク31が設置され、その内底部まで差し込まれた液体経路(真空断熱配管から成る)32を介して細胞保存室4内の凍結保存容器2及び超低温フリーザ3に分岐接続されている。液体窒素タンク31内では常に液体窒素が自然蒸発しているので、内部の圧力は高くなっており、液体経路32にはこの蒸発圧力で液体窒素が押し出され、各凍結保存容器2や超低温フリーザ3に液体窒素が搬送されることになる(液体窒素タンク31には所定の危険圧力以上で大気開放する図示しない圧力弁(安全弁)が設けられている)。この場合、分岐した一方の液体経路32にはバルブ33が介設されており、自動供給制御装置36がこのバルブ33を制御することで、液体窒素タンク31から各凍結保存容器2への液体窒素(LN2)の供給が制御される。即ち、自動供給制御装置36はバルブ33を制御して凍結保存容器2内の液体窒素の液位を所定の値に制御する。凍結保存容器2は真空断熱容器から構成されており、内部に収納された細胞(試料)は、蒸発した極低温の窒素ガスによって−190℃程で凍結保存される。   Outside the cell culture facility 1, a liquid nitrogen tank 31 for storing liquid nitrogen having a boiling point of -195.8 ° C. by applying pressure is installed, and a liquid path (from a vacuum insulation pipe) is inserted to the bottom of the tank. And the cryopreservation container 2 and the ultra-low temperature freezer 3 in the cell storage chamber 4. Since the liquid nitrogen is always spontaneously evaporated in the liquid nitrogen tank 31, the internal pressure is high, and the liquid nitrogen is pushed out to the liquid path 32 by this evaporation pressure, and each cryopreservation container 2 and the ultra-low temperature freezer 3. The liquid nitrogen is conveyed to the liquid nitrogen tank (the liquid nitrogen tank 31 is provided with a pressure valve (safety valve) (not shown) that opens to the atmosphere above a predetermined dangerous pressure). In this case, a valve 33 is provided in one of the branched liquid paths 32, and the automatic supply control device 36 controls the valve 33 so that the liquid nitrogen from the liquid nitrogen tank 31 to each cryopreservation container 2 is controlled. The supply of (LN2) is controlled. That is, the automatic supply control device 36 controls the valve 33 to control the liquid nitrogen level in the cryopreservation container 2 to a predetermined value. The cryopreservation container 2 is composed of a vacuum heat insulating container, and the cells (samples) housed inside are cryopreserved at about −190 ° C. by evaporated cryogenic nitrogen gas.

また、分岐した他方の液体経路32にはバルブ34が介設されており、超低温フリーザ3がこのバルブ34を制御することで、液体窒素タンク31から当該超低温フリーザ3への液体窒素の供給が制御される。この超低温フリーザ3はコンプレッサを備えた多元多段冷媒回路によって貯蔵室内を−150℃以下の極低温に冷却するものであるが、この冷媒回路に故障が発生した場合、超低温フリーザ3はバルブ34を開いて貯蔵室内に液体窒素を供給する。これにより、貯蔵室内を引き続き極低温に維持して係る非常事態に対処できるように構成されている。   Further, a valve 34 is interposed in the other branched liquid path 32, and the supply of liquid nitrogen from the liquid nitrogen tank 31 to the ultralow temperature freezer 3 is controlled by the ultralow temperature freezer 3 controlling the valve 34. Is done. This ultra-low temperature freezer 3 cools the storage chamber to an extremely low temperature of −150 ° C. or lower by a multi-source multi-stage refrigerant circuit equipped with a compressor. When a failure occurs in this refrigerant circuit, the ultra-low temperature freezer 3 opens the valve 34. Supply liquid nitrogen into the storage chamber. Thereby, it is comprised so that the emergency can be coped with by maintaining the storage room at a very low temperature.

尚、超低温フリーザ3には従来より係る異常事態に対処するための液体窒素タンクが別途備えられていたが、実施例のように凍結保存容器2用の液体窒素タンク31から液体窒素を供給できるようにしたことにより、係る超低温フリーザ用の液体窒素タンクを使用する必要が無くなった。   Although the ultra-low temperature freezer 3 has conventionally been provided with a separate liquid nitrogen tank for dealing with such abnormal situations, liquid nitrogen can be supplied from the liquid nitrogen tank 31 for the cryopreservation container 2 as in the embodiment. As a result, it is no longer necessary to use a liquid nitrogen tank for the ultra-low temperature freezer.

ここで、屋外の温度を平均+20℃と考えた場合、液体窒素タンク31内外の温度差は実に220deg程になるため、前述した如く液体窒素タンク31内の液体窒素は常に自然蒸発している。しかも、液体窒素タンク31内の圧力が上昇し過ぎると爆発の危険性があるため、所定圧力以上となった場合には、この自然蒸発で発生した窒素ガスを定期的に排出する必要があった。   Here, when the outdoor temperature is considered to be an average of + 20 ° C., the temperature difference between the inside and outside of the liquid nitrogen tank 31 is actually about 220 deg. Therefore, the liquid nitrogen in the liquid nitrogen tank 31 is always naturally evaporated as described above. In addition, if the pressure in the liquid nitrogen tank 31 increases too much, there is a danger of explosion, so when the pressure exceeds the predetermined pressure, it is necessary to periodically discharge the nitrogen gas generated by this natural evaporation. .

そこで、本発明では液体窒素タンク31内上部と各マルチガスインキュベータ6・・とを連通するガス経路37を設ける。このガス経路37は更に凍結保存容器2内上部にも連通しており、液体窒素タンク31と凍結保存容器2の双方の内部で蒸発発生した窒素ガスが流入する構成とされる。そして、前述したマルチガスインキュベータ6の制御装置によりこのガス経路37からの窒素ガス供給量を制御することで、各マルチガスインキュベータ6内のガス濃度が制御される。   Therefore, in the present invention, a gas path 37 that communicates between the upper part of the liquid nitrogen tank 31 and each multi-gas incubator 6 is provided. The gas path 37 further communicates with the upper part of the cryopreservation container 2 so that nitrogen gas generated by evaporation inside both the liquid nitrogen tank 31 and the cryopreservation container 2 flows. And the gas concentration in each multi-gas incubator 6 is controlled by controlling the nitrogen gas supply amount from this gas path 37 by the control apparatus of the multi-gas incubator 6 mentioned above.

これにより、これまで定期的に排出されていた液体窒素タンク31内の窒素ガスや凍結保存容器2内の窒素ガスをガス経路37によりマルチガスインキュベータ6に供給して窒素ガスの有効利用を図ると共に、マルチガスインキュベータ6に常備されている窒素の圧縮ガスを封入した窒素ガスボンベの小型化と窒素使用量の削減を図ることができるようになる。   As a result, the nitrogen gas in the liquid nitrogen tank 31 or the nitrogen gas in the cryopreservation container 2 that has been regularly discharged until now is supplied to the multi-gas incubator 6 through the gas path 37 to effectively use the nitrogen gas. Therefore, it is possible to reduce the size and the amount of nitrogen used in a nitrogen gas cylinder filled with a compressed nitrogen gas that is always provided in the multi-gas incubator 6.

尚、ガス経路37の途中には圧力バルブ38が設けられ、窒素ガスの圧力が所定値以上に上昇した場合には、ガス経路37の分岐経路37Aより外部に排出するように構成されている。また、ガス経路37の後述する熱交換器37B下流側にはバックアップ用の窒素ガスボンベ40が連通接続される。   A pressure valve 38 is provided in the middle of the gas path 37 so that when the pressure of the nitrogen gas rises above a predetermined value, the gas path 37 is discharged from the branch path 37A of the gas path 37 to the outside. In addition, a backup nitrogen gas cylinder 40 is connected to the downstream side of the heat exchanger 37B (described later) of the gas path 37.

次に、細胞培養施設1の空調方式について説明する。外気処理ユニット22には比較的大成る塵埃を除去するプレフィルタ41、送風機42、比較的小さい塵埃を除去する中性能フィルタ43、熱交換器44が設けられている。熱交換器44はコンプレッサを備えた図示しない冷媒回路の蒸発器を構成する。また、この外気処理ユニット22の空気吸込側には、前記ガス経路37の一部を構成する熱交換器37Bが配置され、送風機42によって外気処理ユニット22内に吸い込まれる外気と熱交換するように構成されている。尚、この熱交換器37Bに至るまでのガス経路37は断熱材37Cによって断熱されている。また、46は外気処理ユニット22から出た空気を加熱する再熱ヒータ(電気ヒータ)である。   Next, the air conditioning system of the cell culture facility 1 will be described. The outside air processing unit 22 is provided with a pre-filter 41 that removes relatively large dust, a blower 42, a medium-performance filter 43 that removes relatively small dust, and a heat exchanger 44. The heat exchanger 44 constitutes an evaporator of a refrigerant circuit (not shown) provided with a compressor. Further, a heat exchanger 37B constituting a part of the gas path 37 is arranged on the air suction side of the outside air processing unit 22 so as to exchange heat with outside air sucked into the outside air processing unit 22 by the blower 42. It is configured. The gas path 37 leading to the heat exchanger 37B is thermally insulated by a heat insulating material 37C. Reference numeral 46 denotes a reheat heater (electric heater) that heats the air emitted from the outside air processing unit 22.

外気処理ユニット22及び再熱ヒータ46を経た空気(外気)はダクト47を経て各室の空調機(図1では細胞培養室7の空調機を示す)21に入る。この空調機21は送風機48、熱交換器49、HEPAフィルタ(高性能フィルタ)51を備えている。尚、熱交換器49はコンプレッサを備えた図示しない冷媒回路の蒸発器、若しくは、凝縮器を構成する。送風機48はダクト47からの空気(外気)と共に、ダクト52から細胞培養室7内の空気を吸い込み、熱交換器49、HEPAフィルタ51を経て細胞培養室7内に吐出する。また、細胞培養室7内の空気は更にダクト53を介し、排気用の送風機54によって外部に排出される構成とされている。   The air (outside air) that has passed through the outside air processing unit 22 and the reheat heater 46 enters the air conditioners (showing the air conditioner of the cell culture chamber 7 in FIG. 1) 21 through the duct 47. The air conditioner 21 includes a blower 48, a heat exchanger 49, and a HEPA filter (high performance filter) 51. The heat exchanger 49 constitutes an evaporator or condenser of a refrigerant circuit (not shown) provided with a compressor. The blower 48 sucks air in the cell culture chamber 7 from the duct 52 together with air from the duct 47 (outside air), and discharges it into the cell culture chamber 7 through the heat exchanger 49 and the HEPA filter 51. In addition, the air in the cell culture chamber 7 is further discharged to the outside by an exhaust fan 54 via a duct 53.

以上の構成で、送風機42が運転されると外気が外気処理ユニット22内に導入される。この導入外気はガス経路37に設けられた熱交換器37Bと熱交換する。この熱交換器37B内には極低温の窒素ガスが前述した如く流通しているので、この熱交換器37Bと熱交換した外気中の水分は凝結し、熱交換器37B表面に結露として付着する。この結露は図示しない排水経路で排出されるので、外気処理ユニット22内に導入される外気は除湿され、その絶対湿度は著しく低下することになる。   With the above configuration, when the blower 42 is operated, outside air is introduced into the outside air processing unit 22. The introduced outside air exchanges heat with a heat exchanger 37B provided in the gas path 37. Since the cryogenic nitrogen gas circulates in the heat exchanger 37B as described above, moisture in the outside air exchanged with the heat exchanger 37B condenses and adheres to the surface of the heat exchanger 37B as condensation. . Since this dew condensation is discharged through a drainage passage (not shown), the outside air introduced into the outside air processing unit 22 is dehumidified, and its absolute humidity is significantly reduced.

このように除湿された外気はプレフィルタ41及び中性能フィルタ43で塵埃が除去された後、熱交換器44で冷却されることで更に水分が凝結除去される。そして、再熱ヒータ46に送られ、+22℃程の温度まで加熱された後、空調機21に送られる。送風機48が運転されると、この再熱ヒータ46からの空気(外気)が熱交換器49に導入され、HEPAフィルタ51でミクロ単位の塵の除去やウイルスが除去された後、細胞培養室7内に吐出される。この細胞培養室7内の空気は更にダクト52を介して送風機48に吸い込まれ、熱交換器49、HEPAフィルタ51を経て再度細胞培養室7に戻される循環を繰り返す。これにより、細胞培養室7内は前述した清浄度に維持されると共に、温度は熱交換器49との熱交換で所定温度に維持されることになる。   The dehumidified outside air is further condensed and removed by being cooled by the heat exchanger 44 after dust is removed by the pre-filter 41 and the medium performance filter 43. Then, it is sent to the reheat heater 46, heated to a temperature of about + 22 ° C., and then sent to the air conditioner 21. When the blower 48 is operated, air (outside air) from the reheat heater 46 is introduced into the heat exchanger 49, and after removing microscopic dust and viruses with the HEPA filter 51, the cell culture chamber 7 It is discharged inside. The air in the cell culture chamber 7 is further sucked into the blower 48 through the duct 52 and is repeatedly returned to the cell culture chamber 7 through the heat exchanger 49 and the HEPA filter 51. Thereby, the inside of the cell culture chamber 7 is maintained at the above-described cleanliness, and the temperature is maintained at a predetermined temperature by heat exchange with the heat exchanger 49.

送風機54は一定風速で細胞培養室7内の空気を排出するが、この排気と外気処理ユニット22からの外気の導入量を調整することで、実施例では図2の左右の細胞培養室7の室圧を例えば+30Pa、中央の細胞培養室7は−10Paとなるように制御している。尚、この室力はそれに限らず、使用目的により例えば0Pa(大気圧)に制御してもよい。尚、図1では細胞培養室7のみ示しているが、他の室の空調も同様である。実施例では細胞保存室4は−10Pa、エントランス室8は0Pa、モニタリング室9も0Pa、一次ガウニング室11は+5Pa、サプライ室12は+15Pa、アイソレータ室13は+20Pa、二次ガウニング室14は+15Pa、デガウニング室16は+10Paとされる。   The blower 54 discharges the air in the cell culture chamber 7 at a constant air speed. By adjusting this exhaust and the amount of outside air introduced from the outside air processing unit 22, in the embodiment, the left and right cell culture chambers 7 in FIG. For example, the chamber pressure is controlled to +30 Pa, and the central cell culture chamber 7 is controlled to −10 Pa. The room force is not limited to this, and may be controlled to 0 Pa (atmospheric pressure), for example, depending on the purpose of use. Although only the cell culture chamber 7 is shown in FIG. 1, the air conditioning in the other chambers is the same. In the examples, the cell storage chamber 4 is −10 Pa, the entrance chamber 8 is 0 Pa, the monitoring chamber 9 is also 0 Pa, the primary chambering chamber 11 is +5 Pa, the supply chamber 12 is +15 Pa, the isolator chamber 13 is +20 Pa, the secondary chambering chamber 14 is +15 Pa, The degauning chamber 16 is set to +10 Pa.

ここで、細胞培養室7等は上述したように空気を循環させながらその清浄度を維持し、略排気量分だけの外気が導入されることから、どうしても湿度が高くなり、チャタテ虫や真菌などが繁殖する問題が発生する。しかしながら、本発明では前述したように外気処理ユニット22の空気導入側に液体窒素タンク31や凍結保存容器2で発生した窒素ガスが流れるガス配管37途中の熱交換器37Bを配置し、マルチガスインキュベータ6に供給される窒素ガスと外気処理ユニット22にて処理される外気とを熱交換させるようにしたので、細胞培養室7内に導入される外気中の湿気を、ガス経路37内を流れる極低温の窒素ガスにより冷却して凝結させ、除去することができるようになる。これにより、細胞培養施設の細胞培養室7内や他の室内の湿度の上昇を効果的に抑制し、清浄且つ快適な作業環境を実現することができるようになる。   Here, the cell culture chamber 7 and the like maintain its cleanness while circulating air as described above, and since the outside air is introduced in an amount substantially equal to the displacement, the humidity is inevitably increased, such as a scallop insect and a fungus. The problem of breeding occurs. However, in the present invention, as described above, the heat exchanger 37B in the middle of the gas pipe 37 through which the nitrogen gas generated in the liquid nitrogen tank 31 and the cryopreservation container 2 flows is arranged on the air introduction side of the outside air processing unit 22, and a multi-gas incubator. Since the nitrogen gas supplied to 6 and the outside air processed by the outside air processing unit 22 are heat-exchanged, the moisture in the outside air introduced into the cell culture chamber 7 is used as the pole that flows in the gas path 37. It becomes possible to cool and condense with a low-temperature nitrogen gas and remove it. As a result, it is possible to effectively suppress an increase in humidity in the cell culture room 7 of the cell culture facility and other rooms, and to realize a clean and comfortable working environment.

特に、マルチガスインキュベータ6に供給される窒素ガスの温度は熱交換器37Bで外気から吸熱して上昇することになるので、低温の窒素ガスがマルチガスインキュベータ6に供給されて内部の温度が低下してしまう不都合を防止することもできるようになる。   In particular, the temperature of the nitrogen gas supplied to the multi-gas incubator 6 rises by absorbing heat from the outside air in the heat exchanger 37B, so that low-temperature nitrogen gas is supplied to the multi-gas incubator 6 and the internal temperature decreases. It is also possible to prevent inconvenience.

尚、実施例ではインキュベータとしてマルチガスインキュベータ6を採り上げたが、それに限らず、窒素ガスを用いてガス濃度を制御するインキュベータであれば差し支えない。また、実施例ではマルチガスインキュベータ6に液体窒素タンク31等から窒素ガスを供給する場合について説明したが、請求項2の発明ではそれに限らず、単に分岐経路37Aから窒素ガスを排出する(マルチガスインキュベータ6に供給せずに)場合でも、有効に外気中の水分を除去する効果を得ることができるものである。   In the embodiment, the multi-gas incubator 6 is used as an incubator. However, the present invention is not limited to this, and any incubator that controls the gas concentration using nitrogen gas may be used. In the embodiment, the case where nitrogen gas is supplied from the liquid nitrogen tank 31 or the like to the multi-gas incubator 6 has been described. However, the invention of claim 2 is not limited thereto, and the nitrogen gas is simply discharged from the branch path 37A (multi-gas). Even without the supply to the incubator 6), it is possible to effectively remove the moisture in the outside air.

本発明を適用した細胞培養施設の液体窒素供給、窒素ガス供給、並びに、空調方式を説明する概略説明図である。It is a schematic explanatory drawing explaining the liquid nitrogen supply of the cell culture facility to which this invention is applied, nitrogen gas supply, and an air-conditioning system. 図1の細胞培養施設全体のレイアウトを説明する平面図である。It is a top view explaining the layout of the whole cell culture facility of FIG.

符号の説明Explanation of symbols

1 細胞培養施設
2 凍結保存容器
3 超低温フリーザ
4 細胞保存室
6 マルチガスインキュベータ
7 細胞培養室
21 空調機
22 外気処理ユニット
31 液体窒素タンク
32 液体経路
37 ガス経路
37B 熱交換器
DESCRIPTION OF SYMBOLS 1 Cell culture facility 2 Cryopreservation container 3 Ultra-low temperature freezer 4 Cell storage room 6 Multi gas incubator 7 Cell culture room 21 Air conditioner 22 Outside air processing unit 31 Liquid nitrogen tank 32 Liquid path 37 Gas path 37B Heat exchanger

Claims (2)

液体窒素タンクから液体経路を介して液体窒素が供給される凍結保存容器と、少なくとも窒素ガスの供給量が制御されてガス濃度が調整されるインキュベータが設置され、細胞調整に関わる作業が行われる細胞培養施設であって、
室内を空調する空調機と、
外気を前記空調機に導入する以前に処理する外気処理ユニットと、
前記液体窒素タンク内に発生した窒素ガスを前記インキュベータに供給するためのガス経路とを備え、
該ガス経路を流通する窒素ガスと前記外気処理ユニットにて処理される外気とを熱交換させることを特徴とする細胞培養施設。
A cell in which work related to cell adjustment is performed by installing a cryopreservation container in which liquid nitrogen is supplied from a liquid nitrogen tank through a liquid path and an incubator in which at least the supply amount of nitrogen gas is controlled to adjust the gas concentration A culture facility,
An air conditioner that air-conditions the room;
An outside air processing unit for treating outside air before introducing it into the air conditioner;
A gas path for supplying nitrogen gas generated in the liquid nitrogen tank to the incubator,
A cell culture facility characterized in that heat exchange is performed between nitrogen gas flowing through the gas path and outside air to be treated by the outside air treatment unit.
液体窒素タンクから液体供給経路を介して液体窒素が供給される凍結保存容器が設置され、細胞調整に関わる作業が行われる細胞培養施設であって、
室内を空調する空調機と、
外気を前記空調機に導入する以前に処理する外気処理ユニットと、
前記液体窒素タンク内に発生した窒素ガスを排出するためのガス経路とを備え、
該ガス経路を流通する窒素ガスと前記外気処理ユニットにて処理される外気とを熱交換させることを特徴とする細胞培養施設。
A cell culture facility in which a cryopreservation container to which liquid nitrogen is supplied from a liquid nitrogen tank via a liquid supply path is installed, and work related to cell adjustment is performed,
An air conditioner that air-conditions the room;
An outside air processing unit for treating outside air before introducing it into the air conditioner;
A gas path for discharging the nitrogen gas generated in the liquid nitrogen tank,
A cell culture facility characterized in that heat exchange is performed between nitrogen gas flowing through the gas path and outside air to be treated by the outside air treatment unit.
JP2006325569A 2006-12-01 2006-12-01 Cell culture facility Expired - Fee Related JP4966632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325569A JP4966632B2 (en) 2006-12-01 2006-12-01 Cell culture facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325569A JP4966632B2 (en) 2006-12-01 2006-12-01 Cell culture facility

Publications (2)

Publication Number Publication Date
JP2008136414A true JP2008136414A (en) 2008-06-19
JP4966632B2 JP4966632B2 (en) 2012-07-04

Family

ID=39598518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325569A Expired - Fee Related JP4966632B2 (en) 2006-12-01 2006-12-01 Cell culture facility

Country Status (1)

Country Link
JP (1) JP4966632B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093114A (en) * 2014-11-13 2016-05-26 清水建設株式会社 Cell culture method and cell culture facility
CN106520553A (en) * 2017-01-06 2017-03-22 昆明理工大学 Cell culture room
JPWO2015111544A1 (en) * 2014-01-24 2017-03-23 パナソニックヘルスケア株式会社 Incubator, cell culture system equipped with the same, and method for supplying humidified water
JP2017176129A (en) * 2016-03-31 2017-10-05 三機工業株式会社 Incubator enclosure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140621A (en) * 1981-02-20 1982-08-31 Nippon Sanso Kk Generation of low temperature air
JPH0735368A (en) * 1993-07-22 1995-02-07 Fujitsu Ltd Device and method for supplying clean air
JP2006081994A (en) * 2004-09-15 2006-03-30 Sanyo Electric Co Ltd System for automatically supplying liquid nitrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140621A (en) * 1981-02-20 1982-08-31 Nippon Sanso Kk Generation of low temperature air
JPH0735368A (en) * 1993-07-22 1995-02-07 Fujitsu Ltd Device and method for supplying clean air
JP2006081994A (en) * 2004-09-15 2006-03-30 Sanyo Electric Co Ltd System for automatically supplying liquid nitrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015111544A1 (en) * 2014-01-24 2017-03-23 パナソニックヘルスケア株式会社 Incubator, cell culture system equipped with the same, and method for supplying humidified water
JP2016093114A (en) * 2014-11-13 2016-05-26 清水建設株式会社 Cell culture method and cell culture facility
JP2017176129A (en) * 2016-03-31 2017-10-05 三機工業株式会社 Incubator enclosure
CN106520553A (en) * 2017-01-06 2017-03-22 昆明理工大学 Cell culture room

Also Published As

Publication number Publication date
JP4966632B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2787295B1 (en) Forced evaporative humidifier for nanosteam
JP4632806B2 (en) Cell culture facility
JP4647018B2 (en) House ventilation system and house air conditioning system
JP6333002B2 (en) Apparatus and method for handling at least one container
JP4966632B2 (en) Cell culture facility
JP2006115798A (en) Automatic cell-culturing device by utilizing autoclave disinfection and method for using the same
JP2008054690A (en) Automatic cell-culturing device and method for using the same
WO2019027824A1 (en) Fan coil for greenhouse
WO2015166554A1 (en) Decontamination system
JP2013255439A (en) Plant cultivation device and plant cultivation method
EP3374102A1 (en) Laminar air flow workstation with temperature control
JP7330611B2 (en) Sample storage device and sample storage system
JP5421203B2 (en) Cell culture facility
KR100886561B1 (en) Airconditioning system for operating room
KR102079353B1 (en) Chilled Beam Unit For Hospital
FI126430B (en) Cold treatment system
JP6111087B2 (en) Decontamination system
CN206709271U (en) A kind of fresh air dehumidification corollary system
JP2006125801A (en) Air conditioner and operation method therefor
JP4583119B2 (en) Liquid nitrogen automatic supply system
WO2022163594A1 (en) Plant growing system
CN111876325B (en) Photoelectric comprehensive test platform capable of providing culture environment for microorganisms
CN219428566U (en) Scion bin
JP7425647B2 (en) Clean rooms and how to use them
Elsworth Chapter IV Treatment of Process Air for Deep Culture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R151 Written notification of patent or utility model registration

Ref document number: 4966632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees