JP2008135256A - Method and device for manufacturing membrane electrode assembly - Google Patents

Method and device for manufacturing membrane electrode assembly Download PDF

Info

Publication number
JP2008135256A
JP2008135256A JP2006319765A JP2006319765A JP2008135256A JP 2008135256 A JP2008135256 A JP 2008135256A JP 2006319765 A JP2006319765 A JP 2006319765A JP 2006319765 A JP2006319765 A JP 2006319765A JP 2008135256 A JP2008135256 A JP 2008135256A
Authority
JP
Japan
Prior art keywords
electrode material
electrode
membrane
electric field
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319765A
Other languages
Japanese (ja)
Inventor
Ryuma Kuroda
竜磨 黒田
Masahiro Yamamoto
雅洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN TECHNO CO Ltd
Sumitomo Chemical Co Ltd
Original Assignee
GREEN TECHNO CO Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN TECHNO CO Ltd, Sumitomo Chemical Co Ltd filed Critical GREEN TECHNO CO Ltd
Priority to JP2006319765A priority Critical patent/JP2008135256A/en
Publication of JP2008135256A publication Critical patent/JP2008135256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for manufacturing a membrane electrode assembly capable of manufacturing a high quality electrode in high productivity. <P>SOLUTION: An adhesive layer 9 is formed on the surface of an electrolyte membrane 8, and the electrolyte membrane 8 is bonded to the lower surface of an upper electrode plate 1 so that the adhesive layer 9 faces a lower electrode plate 2. While vibrating a sieve 3 with a vibrating device 4, an electric field is generated between the upper electrode plate 1 and the lower electrode plate 2 with power sources 5, 6, an electrode material 7 on the lower electrode plate 2 is charged by the electric field, and moves toward the upper electrode plate 1 by the force from the electric field. At this point, even if the electrode material 7 is aggregated, it is dispersed by passing through the vibrating sieve 3, and uniformly bonded to the adhesive layer 9 of the electrolyte membrane 8 bonded to the lower surface of the upper electrode plate 1. By drying the adhesive layer 9, the electrode material 7 is fixed to the surface of the electrolyte membrane 8, and the membrane electrode assembly is manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、膜電極接合体の製造方法及び装置に係り、特に固体高分子電解質膜の表面に触媒電極を接合した膜電極接合体を製造する方法及び装置に関する。   The present invention relates to a method and apparatus for manufacturing a membrane electrode assembly, and more particularly to a method and apparatus for manufacturing a membrane electrode assembly in which a catalyst electrode is bonded to the surface of a solid polymer electrolyte membrane.

固体高分子型燃料電池は、プロトン伝導性の電解質膜の両面上に白金等の触媒を担持したカーボン微粒子を含む多孔性の負電極及び正電極を接合した構造を有しており、常温から100℃以下の温度域で作動し、小型軽量で起動性に優れた燃料電池として知られている。負電極側に水素、正電極側に酸素または空気をそれぞれ供給すると、負電極側で水素がプロトン(水素イオン)と電子になり、この電子が外部回路を通って正電極側に流れ、正電極側で電子を受けとった酸素が酸素イオンとなる。負電極側で生成されたプロトンは電解質膜中を正電極側へと移動し、酸素イオンと反応して水となる。   The polymer electrolyte fuel cell has a structure in which a porous negative electrode and a positive electrode including carbon fine particles supporting a catalyst such as platinum are bonded to both surfaces of a proton-conductive electrolyte membrane, and the temperature ranges from room temperature to 100 ° C. It is known as a fuel cell that operates in a temperature range of ℃ or less, is small and lightweight, and has excellent startability. When hydrogen is supplied to the negative electrode side and oxygen or air is supplied to the positive electrode side, hydrogen becomes protons (hydrogen ions) and electrons on the negative electrode side, and these electrons flow to the positive electrode side through an external circuit. Oxygen that has received electrons on the side becomes oxygen ions. Protons generated on the negative electrode side move to the positive electrode side in the electrolyte membrane and react with oxygen ions to become water.

従来、このような固体高分子型燃料電池の電極の製造方法として、触媒担持カーボン微粒子と電解質と溶媒とからなるインクを電解質膜の表面に直接塗布し、乾燥させる方法があったが、生産性が低く、また乾燥時の溶媒の膨張・収縮に起因してクラックを生じやすいという問題があった。   Conventionally, as a method for producing an electrode of such a polymer electrolyte fuel cell, there has been a method in which an ink comprising catalyst-supported carbon fine particles, an electrolyte, and a solvent is directly applied to the surface of the electrolyte membrane and dried. In addition, there is a problem that cracks are likely to occur due to expansion and contraction of the solvent during drying.

そこで、例えば特許文献1には、電極材料を静電的に電解質膜の表面に付着させ、さらに付着した電極材料と電解質膜を熱的に接合して電極を製造する方法が提案されている。   Thus, for example, Patent Document 1 proposes a method of manufacturing an electrode by electrostatically attaching an electrode material to the surface of the electrolyte membrane and thermally joining the attached electrode material and the electrolyte membrane.

特開平11−288728号公報JP-A-11-288728

しかしながら、特許文献1に開示された方法において、電極材料を電解質膜に直接付着させる場合、前記電極材料が前記電解質膜に埋設された膜電極接合体が形成されることから、電解質膜自体の特性を損なう虞があった。また、単に静電気を用いて触媒担持カーボン微粒子等の電極材料の付着を行うのでは、形成された電極と電解質膜との接合強度が十分なものではなく、電極の品質が低下して所望の特性の燃料電池を得ることができなくなるおそれがあった。
この発明はこのような問題点を解消するためになされたもので、高品質の電極を優れた生産性で得ることができる膜電極接合体の製造方法及び装置を提供することを目的とする。
However, in the method disclosed in Patent Document 1, when the electrode material is directly attached to the electrolyte membrane, a membrane electrode assembly in which the electrode material is embedded in the electrolyte membrane is formed. There was a risk of damage. In addition, simply attaching an electrode material such as catalyst-supported carbon particles using static electricity does not provide sufficient bonding strength between the formed electrode and the electrolyte membrane, resulting in a decrease in electrode quality and desired characteristics. There was a risk that the fuel cell could not be obtained.
The present invention has been made to solve such problems, and an object of the present invention is to provide a method and apparatus for manufacturing a membrane electrode assembly that can obtain high-quality electrodes with excellent productivity.

この発明に係る膜電極接合体の製造方法は、固体高分子電解質膜の表面に触媒電極を接合した膜電極接合体を製造する方法において、電解質膜の表面に接着剤層を形成し、粉体状の電極材料を接着剤層に付着させ、接着剤層を乾燥させることにより電極材料を電解質膜の表面に定着させる方法である。   The method for producing a membrane electrode assembly according to the present invention is a method for producing a membrane electrode assembly in which a catalyst electrode is joined to the surface of a solid polymer electrolyte membrane, wherein an adhesive layer is formed on the surface of the electrolyte membrane, and a powder The electrode material is fixed to the surface of the electrolyte membrane by adhering the electrode material to the adhesive layer and drying the adhesive layer.

なお、電極材料の接着剤層への付着は、電極材料を帯電且つ分散し、電極材料を収容する収容手段と電解質膜の表面との間に電界を形成することにより行うことができる。
また、電極材料の分散は、電界からの力を受けて電解質膜の表面へと進行する電極材料を振動フルイに通すことにより、あるいは、帯電された電極材料を流動状態にすることにより、行うことができる。
電極材料の帯電は、収容手段と電解質膜の表面との間に形成された電界によって行うこともでき、あるいは、表面に摩擦帯電用皮膜が形成された網状体を流動状態の電極材料に接触させて振動させることにより行うこともできる。
また、電極材料を摩擦帯電用皮膜上に載置すると共に摩擦帯電用皮膜を振動させることにより電極材料の帯電及び分散を同時に行うこともできる。このとき、電極材料と共に粉砕媒体を摩擦帯電用皮膜上に載置してもよい。
The adhesion of the electrode material to the adhesive layer can be performed by charging and dispersing the electrode material and forming an electric field between the accommodating means for accommodating the electrode material and the surface of the electrolyte membrane.
In addition, the electrode material is dispersed by passing the electrode material that travels to the surface of the electrolyte membrane by receiving a force from an electric field through a vibration fluid, or by bringing the charged electrode material into a fluidized state. Can do.
The electrode material can be charged by an electric field formed between the containing means and the surface of the electrolyte membrane, or a net having a friction charging film formed on the surface is brought into contact with the fluidized electrode material. It can also be performed by vibrating.
In addition, the electrode material can be simultaneously charged and dispersed by placing the electrode material on the friction charging film and vibrating the friction charging film. At this time, the pulverization medium may be placed on the frictional charging film together with the electrode material.

また、収容手段内に磁性体からなるキャリアを混入することにより電極材料をキャリアとの摩擦により帯電させ、電極材料が付着したキャリアによりマグネットローラ上に電磁ブラシを形成し、収容手段と電解質膜の表面との間に形成された電界により電極材料をキャリアから離脱させて電解質膜の接着剤層に付着させることもできる。
なお、好ましくは、電極材料として、白金担持カーボンと電解質と溶媒とを含むインクをスプレードライ法で粉粒化することにより得られたものが用いられる。
Also, the electrode material is charged by friction with the carrier by mixing a carrier made of a magnetic material in the housing means, and an electromagnetic brush is formed on the magnet roller by the carrier to which the electrode material adheres, and the housing means and the electrolyte membrane The electrode material can also be detached from the carrier by an electric field formed between the surface and attached to the adhesive layer of the electrolyte membrane.
Preferably, an electrode material obtained by atomizing ink containing platinum-supporting carbon, an electrolyte, and a solvent by a spray drying method is used.

この発明に係る膜電極接合体の製造装置は、固体高分子電解質膜の表面に触媒電極を接合した膜電極接合体を製造する装置において、粉体状の電極材料を収容する収容手段と、電極材料を帯電する帯電手段と、電極材料を分散する分散手段と、接着剤層が形成された電解質膜の表面と収容手段との間に電界を形成することにより帯電された電極材料を電解質膜の接着剤層に付着させる電界形成手段とを備えたものである。電解質膜の接着剤層の乾燥により電極材料が電解質膜の表面に定着される。   An apparatus for manufacturing a membrane electrode assembly according to the present invention is an apparatus for manufacturing a membrane electrode assembly in which a catalyst electrode is bonded to the surface of a solid polymer electrolyte membrane. The charging means for charging the material, the dispersing means for dispersing the electrode material, and the electrode material charged by forming an electric field between the surface of the electrolyte membrane on which the adhesive layer is formed and the accommodating means And an electric field forming means for attaching to the adhesive layer. The electrode material is fixed on the surface of the electrolyte membrane by drying the adhesive layer of the electrolyte membrane.

なお、電極材料が載置される電界形成用電極を収容手段に備え、電界形成手段が、電解質膜の表面と電界形成用電極との間に電界を形成するように構成することができる。
さらに、電界形成手段が帯電手段を兼ねていてもよい。この場合、分散手段として、電解質膜の表面と電界形成用電極との間に配置された振動フルイ、あるいは、電界形成用電極上で電極材料を流動状態とする流動化装置を用いることができる。
また、帯電手段及び分散手段として、電界形成用電極の表面上に形成された摩擦帯電用皮膜と、電界形成用電極を振動させる振動装置とを備え、電極材料を摩擦帯電用皮膜上で振動させることにより帯電及び分散を行うこともできる。この場合、粉砕媒体を電極材料と共に電界形成用電極の上に載置してもよい。さらに、粉砕媒体として磁性体からなるキャリアを使用し、電界形成用電極の裏面側にマグネットを配置することもできる。
Note that an electric field forming electrode on which an electrode material is placed can be provided in the housing means, and the electric field forming means can be configured to form an electric field between the surface of the electrolyte membrane and the electric field forming electrode.
Furthermore, the electric field forming means may also serve as the charging means. In this case, as the dispersing means, a vibration fluid disposed between the surface of the electrolyte membrane and the electric field forming electrode, or a fluidizing device for bringing the electrode material into a fluid state on the electric field forming electrode can be used.
Further, as a charging means and a dispersion means, a friction charging film formed on the surface of the electric field forming electrode and a vibration device for vibrating the electric field forming electrode are provided, and the electrode material is vibrated on the friction charging film. Thus, charging and dispersion can be performed. In this case, the grinding medium may be placed on the electric field forming electrode together with the electrode material. Further, a carrier made of a magnetic material can be used as a grinding medium, and a magnet can be disposed on the back side of the electric field forming electrode.

また、分散手段として、電界形成用電極上で電極材料を流動状態とする流動化装置を用い、帯電手段として、流動化装置により流動状態とされた電極材料に接触すると共に表面に摩擦帯電用皮膜が形成された網状体と、この網状体を振動させる振動装置とを使用してもよい。
また、帯電手段及び分散手段として、収容手段に収容され且つ回転駆動されるマグネットローラと、電極材料と共に収容手段に収容された磁性体からなるキャリアとを有し、電極材料をキャリアとの摩擦により帯電し、電極材料が付着したキャリアによりマグネットローラ上に電磁ブラシを形成し、電界形成手段により形成された電界からの力を受けて電極材料がキャリアから離脱するように構成することもできる。
Further, as a dispersion means, a fluidizing device that makes the electrode material in a fluid state on the electric field forming electrode is used. You may use the net-like body in which this was formed, and the vibration apparatus which vibrates this net-like body.
Further, the charging means and the dispersion means include a magnet roller housed in the housing means and driven to rotate, and a carrier made of a magnetic material housed in the housing means together with the electrode material, and the electrode material is caused by friction with the carrier. It is also possible to form an electromagnetic brush on the magnet roller with a carrier charged and to which the electrode material is attached, and to receive the force from the electric field formed by the electric field forming means so that the electrode material is detached from the carrier.

この発明によれば、電解質膜の表面に接着剤層を形成し、粉体状の電極材料を接着剤層に付着させるので、接着剤層が電極材料を付着させる際、バッファ層のように機能し、電解質膜の特性を損なうことなく、且つ電極が電解質膜に十分な強度で接合され、高品質の電極を優れた生産性で得ることが可能となる。   According to this invention, the adhesive layer is formed on the surface of the electrolyte membrane, and the powdered electrode material is attached to the adhesive layer, so that the adhesive layer functions like a buffer layer when attaching the electrode material. In addition, the electrode is bonded to the electrolyte membrane with sufficient strength without impairing the characteristics of the electrolyte membrane, and a high-quality electrode can be obtained with excellent productivity.

以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
図1にこの発明の実施の形態1に係る膜電極接合体の製造装置の構成を示す。電界形成用の上部電極板1と下部電極板2が互いに間隔を隔てて平行に対向配置されている。上部電極板1及び下部電極板2の間には、これら上部電極板1及び下部電極板2に平行に金属製のフルイ3が配置され、フルイ3に振動装置4が連結されている。上部電極板1とフルイ3にはこれらの間に電界を形成するための電源5が接続され、フルイ3と下部電極板2にはこれらの間に電源5による電界と同一方向の電界を形成するための電源6が接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1
FIG. 1 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 1 of the present invention. An upper electrode plate 1 and a lower electrode plate 2 for forming an electric field are arranged opposite to each other in parallel with a space therebetween. Between the upper electrode plate 1 and the lower electrode plate 2, a metal sieve 3 is disposed in parallel with the upper electrode plate 1 and the lower electrode plate 2, and the vibration device 4 is connected to the sieve 3. A power source 5 for forming an electric field between them is connected to the upper electrode plate 1 and the fluid 3, and an electric field in the same direction as the electric field by the power source 5 is formed between the fluid electrode 3 and the lower electrode plate 2. A power source 6 is connected.

上部電極板1、下部電極板2、電源5及び6により上部電極板1と下部電極板2との間に電界を形成する電界形成手段が構成されている。上部電極板1及び下部電極板2は、導電性材料、例えばアルミニウムから形成することができる。
また、下部電極板2は、電極材料7を収容する収容手段としても機能する。
さらに、フルイ3と振動装置4により、電極材料7を分散する分散手段としての振動フルイが構成されている。なお、振動装置4はフルイ3に振動を与えるものであり、バイブレータまたは超音波振動子から形成されている。
Electric field forming means for forming an electric field between the upper electrode plate 1 and the lower electrode plate 2 is constituted by the upper electrode plate 1, the lower electrode plate 2, and the power sources 5 and 6. The upper electrode plate 1 and the lower electrode plate 2 can be formed of a conductive material such as aluminum.
Further, the lower electrode plate 2 also functions as a storage unit that stores the electrode material 7.
Further, the fluid 3 and the vibration device 4 constitute a vibration fluid as a dispersing means for dispersing the electrode material 7. Note that the vibration device 4 applies vibration to the fluid 3, and is formed of a vibrator or an ultrasonic vibrator.

次に、この製造装置を用いて膜電極接合体を製造する方法について説明する。まず、固体高分子電解質膜8の表面上に接着剤を塗布して接着剤層9を形成し、この接着剤層9が下方を向くように、すなわち下部電極板2に対向するように電解質膜8を上部電極板1の下面に貼付する。
一方、下部電極板2の上には、電極材料7を載置する。ここで、電極材料7としては、白金担持カーボンと電解質と溶媒とからなるインクをスプレードライ法で粉粒化したものを用いることができる。
Next, a method for producing a membrane electrode assembly using this production apparatus will be described. First, an adhesive is applied on the surface of the solid polymer electrolyte membrane 8 to form an adhesive layer 9, and the electrolyte membrane 9 is directed downward, that is, facing the lower electrode plate 2. 8 is attached to the lower surface of the upper electrode plate 1.
On the other hand, an electrode material 7 is placed on the lower electrode plate 2. Here, as the electrode material 7, it is possible to use an ink made of platinum-supported carbon, an electrolyte, and a solvent, which is granulated by a spray drying method.

そして、振動装置4によりフルイ3を振動させた状態で、電源5及び6により上部電極板1と下部電極板2との間に電界を形成する。この電界によって下部電極板2の上の電極材料7が帯電され、電界からの力を受けて、図1に矢印で示されるように、上部電極板1に向かって進行する。このとき、上部電極板1と下部電極板2との間にフルイ3が存在するので、上部電極板1に向かう電極材料7はこのフルイ3を通ることとなるが、フルイ3には振動装置4により振動が与えられている。このため、電極材料7が凝集していても、振動するフルイ3を通ることで効果的に分散され、凝集が解消される。その結果、上部電極板1の下面に貼付された電解質膜8の接着剤層9に均一に電極材料7が付着する。   Then, an electric field is formed between the upper electrode plate 1 and the lower electrode plate 2 by the power sources 5 and 6 in a state where the fluid 3 is vibrated by the vibration device 4. The electrode material 7 on the lower electrode plate 2 is charged by this electric field, receives a force from the electric field, and proceeds toward the upper electrode plate 1 as indicated by an arrow in FIG. At this time, since the fluid 3 is present between the upper electrode plate 1 and the lower electrode plate 2, the electrode material 7 directed to the upper electrode plate 1 passes through the fluid 3. The vibration is given by. For this reason, even if the electrode material 7 is aggregated, the electrode material 7 is effectively dispersed by passing through the vibrating sieve 3 and the aggregation is eliminated. As a result, the electrode material 7 uniformly adheres to the adhesive layer 9 of the electrolyte membrane 8 attached to the lower surface of the upper electrode plate 1.

このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、触媒電極が形成される。
同様にして、電解質膜8の他方の面上にも接着剤層9を形成し、電極材料7を付着させて触媒電極を形成することで、電解質膜8の両面に触媒電極を接合した膜電極接合体が製造される。
In this way, by drying the adhesive layer 9 to which the electrode material 7 is adhered, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a catalyst electrode is formed.
Similarly, an adhesive layer 9 is formed on the other surface of the electrolyte membrane 8, and a catalyst electrode is formed by adhering the electrode material 7, thereby forming a membrane electrode in which the catalyst electrode is bonded to both surfaces of the electrolyte membrane 8. A joined body is manufactured.

なお、接着剤層9としては、白金担持カーボンとプロトン伝導性樹脂の分散液を混合して得られた混合液を厚さ10〜100μmに塗布したものを例示することができる。白金担持カーボンとしては、例えば田中貴金属株式会社製のTEC10E60E(白金担持濃度55重量%)を用いることができる。   Examples of the adhesive layer 9 include a mixture obtained by mixing a platinum-carrying carbon and a dispersion of a proton conductive resin to a thickness of 10 to 100 μm. As the platinum-supported carbon, for example, TEC10E60E (platinum support concentration 55% by weight) manufactured by Tanaka Kikinzoku Co., Ltd. can be used.

ここで、本発明に適用する好適なプロトン伝導性樹脂について説明する。本発明では、酸性基を有するプロトン伝導性樹脂、塩基性基を有するプロトン伝導性樹脂のいずれも適用することが可能である。   Here, a suitable proton conductive resin applied to the present invention will be described. In the present invention, either a proton conductive resin having an acidic group or a proton conductive resin having a basic group can be applied.

酸性基を有するプロトン伝導性樹脂は、例えば、−SOH、−COOH、−PO(OH)、−POH(OH)、−SONHSO−、−Ph(OH)(Phはフェニル基を表す)等のイオン交換基を有するものである。中でも、酸性基としては、スルホン酸基(−SOH)またはホスホン酸基(−PO(OH))がさらに好ましい。 Proton conductive resin having an acidic group, for example, -SO 3 H, -COOH, -PO (OH) 2, -POH (OH), - SO 2 NHSO 2 -, - Ph (OH) (Ph represents a phenyl group Having an ion exchange group such as Among them, as the acidic group, sulfonic acid group (-SO 3 H) or phosphonic acid groups (-PO (OH) 2) is more preferable.

かかるプロトン伝導性樹脂の代表例としては、例えば、
(A)主鎖が脂肪族炭化水素からなる高分子にスルホン酸基および/またはホスホン酸基を導入したプロトン伝導性樹脂:
(B)脂肪族炭化水素の水素原子の全てあるいは一部がフッ素原子に置換された高分子にスルホン酸基および/またはホスホン酸基を導入したプロトン伝導性樹脂:
(C)主鎖が芳香環を有する高分子にスルホン酸基および/またはホスホン酸基を導入したプロトン伝導性樹脂:
(D)主鎖に実質的に炭素原子を含まないポリシロキサン、ポリフォスファゼン等の高分子にスルホン酸基および/またはホスホン酸基を導入したプロトン伝導性樹脂:
(E)(A)〜(D)のスルホン酸基および/またはホスホン酸基導入前の高分子を構成する繰り返し単位から選ばれるいずれか2種以上の繰り返し単位からなる共重合体にスルホン酸基および/またはホスホン酸基を導入したプロトン伝導性樹脂:
(F)主鎖あるいは側鎖に、塩基性を有する窒素原子を含み、硫酸やリン酸等の酸性化合物をイオン結合により導入したプロトン伝導性樹脂等が挙げられる。
As a representative example of such proton conductive resin, for example,
(A) Proton conductive resin in which a sulfonic acid group and / or a phosphonic acid group are introduced into a polymer whose main chain is an aliphatic hydrocarbon:
(B) A proton conductive resin in which a sulfonic acid group and / or a phosphonic acid group are introduced into a polymer in which all or part of the hydrogen atoms of an aliphatic hydrocarbon are substituted with fluorine atoms:
(C) Proton conductive resin in which a sulfonic acid group and / or a phosphonic acid group are introduced into a polymer having a main chain having an aromatic ring:
(D) Proton conductive resin in which a sulfonic acid group and / or a phosphonic acid group is introduced into a polymer such as polysiloxane or polyphosphazene substantially free of carbon atoms in the main chain:
(E) A sulfonic acid group is added to a copolymer composed of any two or more repeating units selected from repeating units constituting the sulfonic acid group and / or phosphonic acid group polymer before introduction of (A) to (D). And / or proton conductive resin into which phosphonic acid groups are introduced:
(F) The proton conductive resin etc. which contained the basic nitrogen atom in the principal chain or the side chain, and introduce | transduced acidic compounds, such as a sulfuric acid and phosphoric acid, by the ionic bond, etc. are mentioned.

上記の(A)のプロトン伝導性樹脂としては、例えば、エチレン−ビニルスルホン酸共重合体、ポリエチレンまたはポリ(α−メチルスチレン)にスルホン化剤にてスルホン酸基を導入した樹脂等が挙げられる。ここで、エチレン−ビニルスルホン酸共重合体の場合は、モノマとして用いるエチレンとビニルスルホン酸の共重合比率でイオン交換容量を制御することができる。また、ポリエチレンまたはポリ(α−メチルスチレン)にスルホン化剤にてスルホン酸基を導入した樹脂は、スルホン化剤の使用量でイオン交換容量を制御することができる。   Examples of the proton conductive resin (A) include an ethylene-vinylsulfonic acid copolymer, a resin obtained by introducing a sulfonic acid group into a polyethylene or poly (α-methylstyrene) with a sulfonating agent, and the like. . Here, in the case of an ethylene-vinyl sulfonic acid copolymer, the ion exchange capacity can be controlled by the copolymerization ratio of ethylene and vinyl sulfonic acid used as a monomer. Moreover, the resin which introduce | transduced the sulfonic acid group into the polyethylene or poly ((alpha) -methylstyrene) with the sulfonating agent can control an ion exchange capacity with the usage-amount of a sulfonating agent.

また、上記の(B)のプロトン伝導性樹脂としては、Dupont社製のNafion(登録商標)、旭化成工業株式会社製のAciplex(登録商標)、旭硝子株式会社製のFlemion(登録商標)等がある。また、特開平9−102322号公報に記載された炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成されるスルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE)や、米国特許第4,012,303号または米国特許第4,605,685号に記載された炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られたものに、α,β,β−トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入してプロトン伝導性樹脂としたスルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE等も挙げられる。   Examples of the proton conductive resin (B) include Naponion (registered trademark) manufactured by Dupont, Aciplex (registered trademark) manufactured by Asahi Kasei Kogyo Co., Ltd., and Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd. . Further, a sulfone composed of a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer described in JP-A-9-102322 and a hydrocarbon side chain having a sulfonic acid group. Acid-type polystyrene-graft-ethylene-tetrafluoroethylene copolymer (ETFE) and fluorocarbon vinyl monomers and hydrocarbons described in US Pat. No. 4,012,303 or US Pat. No. 4,605,685 A sulfonic acid type poly (trifluorostyrene) made by copolymerization with α, β, β-trifluorostyrene grafted onto a vinyl monomer, and then introducing a sulfonic acid group into the proton conductive resin. -Graft-ETFE etc. are also mentioned.

上記の(C)のプロトン伝導性樹脂としては、主鎖が酸素原子等のヘテロ原子で中断されているものであってもよく、例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリ(アリーレン・エーテル)、ポリイミド、ポリ((4−フェノキシベンゾイル)−1,4−フェニレン)、ポリフェニレンスルフィド、ポリフェニルキノキサレン等の単位重合体のそれぞれに、スルホン化剤を用いてスルホン酸基が導入されたもの、スルホアリール化ポリベンズイミダゾール、スルホアルキル化ポリベンズイミダゾール、ホスホアルキル化ポリベンズイミダゾール(特開平9−110982号公報)、ホスホン化ポリ(フェニレンエーテル)(J.Appl.Polym.Sci.,18,1969(1974))等が挙げられる。   The proton conductive resin (C) may be one in which the main chain is interrupted by a hetero atom such as an oxygen atom. For example, polyether ether ketone, polysulfone, polyether sulfone, poly (arylene)・ Sulphonic acid groups are introduced into each unit polymer such as ether), polyimide, poly ((4-phenoxybenzoyl) -1,4-phenylene), polyphenylene sulfide, polyphenylquinoxalene, etc. using a sulfonating agent. Sulfoarylated polybenzimidazole, sulfoalkylated polybenzimidazole, phosphoalkylated polybenzimidazole (JP-A-9-110882), phosphonated poly (phenylene ether) (J. Appl. Polym. Sci. , 18, 1969 (1974)) etc. It is.

また、上記の(D)のプロトン伝導性樹脂としては、例えば、ポリフォスファゼンにスルホン酸基が導入されたもの、等が挙げられる。
これら(C)または(D)として例示される樹脂も、上記と同様にしてスルホン化剤の使用量によってイオン交換容量を制御することができる。
Examples of the proton conductive resin (D) include those obtained by introducing a sulfonic acid group into polyphosphazene.
These resins exemplified as (C) or (D) can also control the ion exchange capacity by the amount of the sulfonating agent used in the same manner as described above.

上記の(E)のプロトン伝導性樹脂としては、ランダム共重合体にスルホン酸基および/またはホスホン酸基が導入されたものでも、交互共重合体にスルホン酸基および/またはホスホン酸基を導入されたものでも、ブロック共重合体にスルホン酸基および/またはホスホン酸基を導入されたものでもよい。ランダム共重合体にスルホン酸基が導入されたものとしては、例えば、特開平11−116679号公報に記載のスルホン化ポリエーテルスルホン・ジヒドロキシビフェニル共重合体が挙げられ、かかる共重合体においてもスルホン化剤の使用量によってイオン交換容量を制御することができる。   As the proton conductive resin (E) described above, a sulfonic acid group and / or a phosphonic acid group are introduced into an alternating copolymer even if a random copolymer is introduced with a sulfonic acid group and / or a phosphonic acid group. The sulfonic acid group and / or the phosphonic acid group may be introduced into the block copolymer. Examples of the sulfonic acid group introduced into the random copolymer include a sulfonated polyethersulfone / dihydroxybiphenyl copolymer described in JP-A No. 11-116679. The ion exchange capacity can be controlled by the amount of the agent used.

上記の(E)のプロトン伝導性樹脂の中で、スルホン酸基および/またはホスホン酸基を持つブロック共重合体の具体例としては、例えば特開2001−250567号公報に記載のスルホン酸基を有するセグメント(親水性セグメント)と、イオン交換基を実質的に有さないセグメント(疎水性セグメント)とからなるブロック共重合体が開示されており、このようなブロック共重合体は該親水性セグメントと疎水性セグメントとの組成比によってイオン交換容量を制御することができる。
また、上記の(F)のプロトン伝導性樹脂としては、例えば特表平11−503262号公報に記載の、リン酸を含有せしめたポリベンズイミダゾール等が挙げられ、これは含有させるリン酸量でイオン交換容量を制御することができる。
Specific examples of the block copolymer having a sulfonic acid group and / or a phosphonic acid group in the proton conductive resin (E) described above include, for example, a sulfonic acid group described in JP-A No. 2001-250567. A block copolymer comprising a segment having hydrophilicity (hydrophilic segment) and a segment having substantially no ion exchange group (hydrophobic segment) is disclosed, and such block copolymer is disclosed as the hydrophilic segment. The ion exchange capacity can be controlled by the composition ratio between the hydrophobic segment and the hydrophobic segment.
In addition, examples of the proton conductive resin (F) include polybenzimidazole containing phosphoric acid described in JP-A-11-503262, which is the amount of phosphoric acid to be contained. The ion exchange capacity can be controlled.

プロトン伝導性樹脂の分散液としては、上記プロトン伝導性樹脂の良溶媒によって溶液としたもの、あるいは貧溶媒中にエマルジョン化したものが挙げられ、例えば、5%ナフィオン溶液(5%アルコール水溶液:アルドリッチケミカル社)を示すことができる。分散液の溶媒は、固体高分子電解質膜を溶解させないようなものであることが好ましい。   Examples of the dispersion of the proton conductive resin include a solution obtained by using a good solvent of the above proton conductive resin, and a solution emulsified in a poor solvent. For example, a 5% Nafion solution (5% alcohol aqueous solution: Aldrich) is used. Chemical Company). The solvent of the dispersion is preferably one that does not dissolve the solid polymer electrolyte membrane.

白金担持カーボンとプロトン伝導性樹脂の分散液の混合割合は、乾燥被膜となったときにプロトンと電子の双方が伝導できる程度につながるような割合であればよく、重量比率において、樹脂/カーボン=0.1〜2程度が好適である。また、分散液の固形分濃度は、電極材料7が付着しやすい粘度を有するものであれば特に限定されるものではないが、0.1〜10重量%程度が好適である。これより濃度が低いと、十分な接合強度を生じにくく、これより濃度が高いと、粘度が高くなり、粉体状の電極材料7同士の相互接触を損ないやすくなる。
また、この実施の形態1では、電解質膜8の表面上に接着剤層9を形成した後、この電解質膜8を上部電極板1の下面に貼付したが、これに限るものではなく、上部電極板1の下面に電解質膜8を貼付し、その後、電解質膜8の表面上に接着剤を塗布して接着剤層9を形成してもよい。
下部電極板2として、導電性材料をそのまま使用せずに、導電性材料を絶縁物で被覆したものを用いてもよい。
The mixing ratio of the platinum-supported carbon and the proton conductive resin dispersion may be a ratio that leads to the degree that both protons and electrons can be conducted when the dry film is formed. About 0.1 to 2 is preferable. The solid content concentration of the dispersion is not particularly limited as long as it has a viscosity to which the electrode material 7 is easily attached, but is preferably about 0.1 to 10% by weight. If the concentration is lower than this, it is difficult to produce sufficient bonding strength. If the concentration is higher than this, the viscosity is increased and the mutual contact between the powdered electrode materials 7 tends to be impaired.
In Embodiment 1, after the adhesive layer 9 is formed on the surface of the electrolyte membrane 8, the electrolyte membrane 8 is pasted on the lower surface of the upper electrode plate 1. However, the present invention is not limited to this. The adhesive film 9 may be formed by applying the electrolyte membrane 8 to the lower surface of the plate 1 and then applying an adhesive on the surface of the electrolyte membrane 8.
As the lower electrode plate 2, a conductive material coated with an insulating material may be used without using the conductive material as it is.

実施の形態2
図2にこの発明の実施の形態2に係る膜電極接合体の製造装置の構成を示す。この実施の形態2は、上述した実施の形態1の製造装置において、下部電極板2の代わりに多孔質の下部電極板10を用いると共に下部電極板10の下部にチャンバ11を形成し、チャンバ11に図示しない圧縮ガス源を接続してこれら下部電極板10とチャンバ11と圧縮ガス源により流動化装置を形成したものである。
Embodiment 2
FIG. 2 shows the configuration of a membrane / electrode assembly manufacturing apparatus according to Embodiment 2 of the present invention. The second embodiment uses the porous lower electrode plate 10 instead of the lower electrode plate 2 in the manufacturing apparatus of the first embodiment described above, and forms a chamber 11 below the lower electrode plate 10. A fluidizing device is formed by connecting a compressed gas source (not shown) to the lower electrode plate 10, the chamber 11, and a compressed gas source.

圧縮ガス源からチャンバ11に圧縮空気または圧縮窒素を供給すると、圧縮空気または圧縮窒素は多孔質の下部電極板10を通って下部電極板10の上面から上方へ向かって吹き出される。これにより、下部電極板10の上に載置されている電極材料7が流動状態となる。電極材料7は、この流動化によって分散されると共に、電界により帯電し、上部電極板1に向かって進行する。電極材料7は、さらに振動するフルイ3によって分散され、電解質膜8の接着剤層9に付着される。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。
なお、流動化だけで電極材料7が十分に分散される場合には、フルイ3及び振動装置4を省略してもよい。
When compressed air or compressed nitrogen is supplied from the compressed gas source to the chamber 11, the compressed air or compressed nitrogen is blown upward from the upper surface of the lower electrode plate 10 through the porous lower electrode plate 10. As a result, the electrode material 7 placed on the lower electrode plate 10 is in a fluid state. The electrode material 7 is dispersed by the fluidization, is charged by the electric field, and proceeds toward the upper electrode plate 1. The electrode material 7 is further dispersed by the vibrating sieve 3 and attached to the adhesive layer 9 of the electrolyte membrane 8. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.
In addition, when the electrode material 7 is sufficiently dispersed only by fluidization, the fluid 3 and the vibration device 4 may be omitted.

実施の形態3
図3にこの発明の実施の形態3に係る膜電極接合体の製造装置の構成を示す。この実施の形態3は、上述した実施の形態1の製造装置において、フルイ3、振動装置4、電源5及び6の代わりに、下部電極板2の上面に摩擦帯電用皮膜12を形成すると共に下部電極板2の下面側に下部電極板2を振動させる振動装置13を配置し、上部電極板1と下部電極板2に電源14を接続したものである。
摩擦帯電用皮膜12としては、例えばテフロン(登録商標)が用いられ、振動装置13としては、バイブレータまたは超音波振動子を用いることができる。
Embodiment 3
FIG. 3 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 3 of the present invention. In Embodiment 3, the frictional coating 12 is formed on the upper surface of the lower electrode plate 2 in place of the fluid 3, the vibration device 4, and the power sources 5 and 6 in the manufacturing apparatus of Embodiment 1 described above. A vibration device 13 for vibrating the lower electrode plate 2 is disposed on the lower surface side of the electrode plate 2, and a power source 14 is connected to the upper electrode plate 1 and the lower electrode plate 2.
For example, Teflon (registered trademark) is used as the friction charging film 12, and a vibrator or an ultrasonic vibrator can be used as the vibration device 13.

電極材料7は、下部電極板2の摩擦帯電用皮膜12の上に載置される。この状態で振動装置13により下部電極板2を振動させると、電極材料7が摩擦帯電用皮膜12との摩擦によって帯電すると共に分散される。したがって、電極材料7は、電源14により上部電極板1と下部電極板2との間に形成された電界からの力を受けて上部電極板1に向かって進行し、電解質膜8の接着剤層9に均一に付着する。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。   The electrode material 7 is placed on the friction charging film 12 of the lower electrode plate 2. When the lower electrode plate 2 is vibrated by the vibration device 13 in this state, the electrode material 7 is charged and dispersed by friction with the friction charging film 12. Therefore, the electrode material 7 receives the force from the electric field formed between the upper electrode plate 1 and the lower electrode plate 2 by the power source 14 and proceeds toward the upper electrode plate 1, and the adhesive layer of the electrolyte membrane 8. 9 uniformly adheres. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.

実施の形態4
図4にこの発明の実施の形態4に係る膜電極接合体の製造装置の構成を示す。この実施の形態4は、上述した実施の形態3の製造装置において、電極材料7と共に摩擦帯電用皮膜12の上に粉砕媒体15を載置したものである。
Embodiment 4
FIG. 4 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 4 of the present invention. In the fourth embodiment, the grinding medium 15 is placed on the friction charging film 12 together with the electrode material 7 in the manufacturing apparatus of the third embodiment described above.

粉砕媒体15は、例えばセラミックスから形成されると共に電極材料7に比べて大きな径を有するものである。振動装置13により下部電極板2を振動させると、電極材料7と共に粉砕媒体15にも振動が伝わり、電極材料7に対して粉砕媒体15が相対的に動くことで、電極材料7が凝集していたとしても、粉砕媒体15により分散され、凝集が解消される。このため、電極材料7の分散がより効果的に行われ、電極材料7が電解質膜8の接着剤層9に均一に付着する。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。   The grinding medium 15 is made of, for example, ceramics and has a larger diameter than the electrode material 7. When the lower electrode plate 2 is vibrated by the vibration device 13, the vibration is transmitted to the grinding medium 15 together with the electrode material 7, and the grinding material 15 moves relative to the electrode material 7, so that the electrode material 7 is aggregated. Even so, it is dispersed by the grinding medium 15 and aggregation is eliminated. For this reason, the electrode material 7 is more effectively dispersed, and the electrode material 7 uniformly adheres to the adhesive layer 9 of the electrolyte membrane 8. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.

実施の形態5
図5にこの発明の実施の形態5に係る膜電極接合体の製造装置の構成を示す。この実施の形態5は、上述した実施の形態2の製造装置において、フルイ3、振動装置4、電源5及び6の代わりに、流動化装置の上部に網状体16を配置すると共にこの網状体16に振動装置17を連結し、上部電極板1と下部電極板2に電源14を接続したものである。網状体16の表面にはテフロン(登録商標)等からなる摩擦帯電用皮膜が形成されている。振動装置17としては、バイブレータまたは超音波振動子を用いることができる。
Embodiment 5
FIG. 5 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 5 of the present invention. In the fifth embodiment, in the manufacturing apparatus of the second embodiment described above, instead of the fluid 3, the vibration device 4, and the power sources 5 and 6, a mesh body 16 is disposed on the upper part of the fluidizing device and the mesh body 16 is arranged. The vibration device 17 is connected to the upper electrode plate 1 and the lower electrode plate 2 to which the power source 14 is connected. A frictional charging film made of Teflon (registered trademark) or the like is formed on the surface of the net 16. As the vibration device 17, a vibrator or an ultrasonic transducer can be used.

網状体16は、流動化装置により流動状態とされた電極材料7に接触するような高さに設置されており、この網状体16を振動装置17で振動させることにより、電極材料7が網状体16との摩擦によって帯電し、電源14により上部電極板1と下部電極板2との間に形成された電界からの力を受けて上部電極板1に向かって進行する。電極材料7は、流動化によって分散されているが、網状体16を通ることでさらに分散され、電解質膜8の接着剤層9に均一に付着される。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。   The mesh body 16 is installed at a height such that the mesh body 16 is brought into contact with the electrode material 7 that has been brought into a fluid state by the fluidizing device. 16 is charged by friction with 16 and receives a force from the electric field formed between the upper electrode plate 1 and the lower electrode plate 2 by the power source 14 and travels toward the upper electrode plate 1. The electrode material 7 is dispersed by fluidization, but is further dispersed by passing through the mesh 16 and is uniformly attached to the adhesive layer 9 of the electrolyte membrane 8. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.

実施の形態6
図6にこの発明の実施の形態6に係る膜電極接合体の製造装置の構成を示す。この実施の形態6は、上述した実施の形態4の製造装置において、セラミックスからなる粉砕媒体15の代わりに磁性体からなるキャリア18を粉砕媒体として用い、下部電極板2の下面側にマグネット19を配置し、上部電極板1及び下部電極板2の間に金網20を配置し、電源14の代わりに上部電極板1と金網20に電源5を接続すると共に金網20と下部電極板2に電源6を接続したものである。
Embodiment 6
FIG. 6 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 6 of the present invention. In this sixth embodiment, in the manufacturing apparatus of the fourth embodiment described above, a carrier 18 made of a magnetic material is used as a grinding medium instead of the grinding medium 15 made of ceramics, and a magnet 19 is provided on the lower surface side of the lower electrode plate 2. The wire mesh 20 is disposed between the upper electrode plate 1 and the lower electrode plate 2, the power source 5 is connected to the upper electrode plate 1 and the wire mesh 20 instead of the power source 14, and the power source 6 is connected to the metal mesh 20 and the lower electrode plate 2. Are connected.

振動装置13により下部電極板2を振動させると、電極材料7が摩擦帯電用皮膜12との摩擦及びキャリア18との摩擦によって帯電すると共に、キャリア18にも振動が伝わり、電極材料7に対してキャリア18が相対的に動くことで、電極材料7が凝集していたとしても、キャリア18により分散され、凝集が解消される。また、マグネット19からの磁気力によりキャリア18が連なって下部電極板2と金網20との間で電磁ブラシを形成し、このキャリア18に帯電した電極材料7が付着する。電磁ブラシが振動装置13による振動を受けると共に電極材料7が金網20と下部電極板2との間に形成されている電界から力を受け、電極材料7は電磁ブラシを形成するキャリア18から離脱する。金網20を通った電極材料7は、さらに上部電極板1と金網20との間に形成されている電界から力を受け、上部電極板1に向かって進行し、電解質膜8の接着剤層9に均一に付着する。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。   When the lower electrode plate 2 is vibrated by the vibration device 13, the electrode material 7 is charged by friction with the friction charging film 12 and friction with the carrier 18, and vibration is also transmitted to the carrier 18, and When the carrier 18 moves relatively, even if the electrode material 7 is aggregated, it is dispersed by the carrier 18 and the aggregation is eliminated. Further, the carrier 18 is connected by the magnetic force from the magnet 19 to form an electromagnetic brush between the lower electrode plate 2 and the wire mesh 20, and the charged electrode material 7 adheres to the carrier 18. The electromagnetic brush is vibrated by the vibration device 13 and the electrode material 7 receives a force from the electric field formed between the wire mesh 20 and the lower electrode plate 2, and the electrode material 7 is detached from the carrier 18 forming the electromagnetic brush. . The electrode material 7 that has passed through the wire mesh 20 further receives a force from the electric field formed between the upper electrode plate 1 and the wire mesh 20, travels toward the upper electrode plate 1, and the adhesive layer 9 of the electrolyte membrane 8. It adheres evenly. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.

なお、振動装置13を省略してマグネット19を回転させるように構成してもよい。マグネット19の回転によって電磁ブラシを形成するキャリア18が移動し、このキャリア18との摩擦により、あるいは電界により電極材料7が帯電してキャリア18に付着する。電磁ブラシがマグネット19の回転により移動すると共に電極材料7が金網20と下部電極板2との間に形成されている電界から力を受け、電極材料7がキャリア18から離脱し、電解質膜8の接着剤層9に付着する。   Note that the vibration device 13 may be omitted and the magnet 19 may be rotated. The carrier 18 forming the electromagnetic brush moves by the rotation of the magnet 19, and the electrode material 7 is charged by the friction with the carrier 18 or by the electric field and adheres to the carrier 18. The electromagnetic brush is moved by the rotation of the magnet 19 and the electrode material 7 receives a force from the electric field formed between the wire mesh 20 and the lower electrode plate 2, so that the electrode material 7 is detached from the carrier 18, It adheres to the adhesive layer 9.

実施の形態7
図7に、この発明の実施の形態7に係る膜電極接合体の製造装置の構成を示す。容器21の上部にホッパ22が設置されると共に容器21の一端に開口部23が形成されている。容器21内には混合ドラム24が回転自在に設けられると共に開口部23の近傍に回転シェル25が回転自在に配設されている。回転シェル25の内側にはマグネット26が固設され、これら回転シェル25及びマグネット26によりマグネットローラが構成されている。また、回転シェル25の外周面に近接してドクターブレード27が容器21内に固定されている。容器21内には磁性体からなる所定量のキャリア28が収容されている。容器21の開口部23の前方に電界形成用の電極板29が配置され、この電極板29と回転シェル25にはこれらの間に電界を形成するための電源30が接続されている。
Embodiment 7
FIG. 7 shows the configuration of a membrane electrode assembly manufacturing apparatus according to Embodiment 7 of the present invention. A hopper 22 is installed on the top of the container 21 and an opening 23 is formed at one end of the container 21. A mixing drum 24 is rotatably provided in the container 21, and a rotary shell 25 is rotatably disposed near the opening 23. A magnet 26 is fixed inside the rotary shell 25, and the rotary shell 25 and the magnet 26 constitute a magnet roller. A doctor blade 27 is fixed in the container 21 in the vicinity of the outer peripheral surface of the rotary shell 25. A predetermined amount of carrier 28 made of a magnetic material is accommodated in the container 21. An electrode plate 29 for forming an electric field is disposed in front of the opening 23 of the container 21, and a power source 30 for forming an electric field is connected between the electrode plate 29 and the rotating shell 25.

まず、電解質膜8の表面上に接着剤層9を形成し、この接着剤層9が容器21の開口部23を向くように電解質膜8を電極板29に貼付する。回転シェル25を所定の速度で回転させると共に電源30により回転シェル25と電極板29との間に電界を形成し、この状態で、ホッパ22から電極材料7を容器21内に供給しつつ混合ドラム24を回転駆動させると、電極材料7はキャリア28との摩擦により帯電すると共に分散する。また、マグネット26からの磁気力により回転シェル25の表面上にキャリア28が連なって電磁ブラシ31を形成し、このキャリア28に帯電した電極材料7が付着する。このようにして形成された電磁ブラシ31が回転シェル25と共に回転して容器21の開口部23に至ると、回転シェル25と電極板29との間に形成されている電界によって電極材料7がキャリア28から離脱し、電極板29に向かって進行し、電解質膜8の接着剤層9に均一に付着する。このようにして電極材料7が付着された接着剤層9を乾燥することにより、電極材料7が電解質膜8の表面に定着し、膜電極接合体が形成される。
なお、回転シェル25の回転数を調整することにより、電極材料7の供給速度を制御することができる。
First, the adhesive layer 9 is formed on the surface of the electrolyte membrane 8, and the electrolyte membrane 8 is attached to the electrode plate 29 so that the adhesive layer 9 faces the opening 23 of the container 21. The rotating shell 25 is rotated at a predetermined speed, and an electric field is formed between the rotating shell 25 and the electrode plate 29 by the power source 30. In this state, the electrode material 7 is supplied from the hopper 22 into the container 21, and the mixing drum When 24 is driven to rotate, the electrode material 7 is charged and dispersed by friction with the carrier 28. Further, the magnetic force from the magnet 26 causes the carrier 28 to continue on the surface of the rotary shell 25 to form the electromagnetic brush 31, and the charged electrode material 7 adheres to the carrier 28. When the electromagnetic brush 31 formed in this way rotates together with the rotating shell 25 and reaches the opening 23 of the container 21, the electrode material 7 is transferred to the carrier by the electric field formed between the rotating shell 25 and the electrode plate 29. Detach from 28, proceed toward the electrode plate 29, and uniformly adhere to the adhesive layer 9 of the electrolyte membrane 8. By drying the adhesive layer 9 to which the electrode material 7 is attached in this manner, the electrode material 7 is fixed on the surface of the electrolyte membrane 8, and a membrane electrode assembly is formed.
The supply speed of the electrode material 7 can be controlled by adjusting the rotation speed of the rotary shell 25.

上述した各実施の形態に示すように、本発明の製造方法によれば、電解質膜の特性を損なうことなく、電解質膜上に電極材料が均一且つ十分な接合強度で定着された電極が形成される。前記電解質膜の両面に、このような電極を形成してなる膜電極接合体は、この膜電極接合体の電極に水素等の燃料ガス、空気(または酸素)等の酸化剤ガスを効率的に供給するガス拡散層及びセパレータ、ガスの噴出を防止するシール剤と組み合わせることで燃料電池が形成される。
本発明により得られる膜電極接合体は、電極材料が不均一に凝集した凝集体をほとんど有さない電極を有するため、電極材料単位面積当たりの白金の表面積が従来の電極よりも広く、燃料電池に係る電極反応を効率的に進めることができるので、発電性能に優れた燃料電池を得ることができる。
また、本発明の製造方法により得られる電極は、前記特許文献1に開示された電極のように、電解質膜に電極材料が埋設されることがないため、電解質膜自体を著しく損なうことがなく、前記膜電極接合体の信頼性を向上し、生産性に優れた燃料電池の製造方法を提供することができる。
As shown in each of the embodiments described above, according to the manufacturing method of the present invention, an electrode in which an electrode material is fixed uniformly and with sufficient bonding strength is formed on the electrolyte membrane without impairing the characteristics of the electrolyte membrane. The A membrane electrode assembly in which such electrodes are formed on both surfaces of the electrolyte membrane efficiently supplies a fuel gas such as hydrogen and an oxidant gas such as air (or oxygen) to the electrodes of the membrane electrode assembly. A fuel cell is formed by combining a gas diffusion layer to be supplied, a separator, and a sealant that prevents gas ejection.
Since the membrane / electrode assembly obtained by the present invention has an electrode that has almost no aggregate in which the electrode material is non-uniformly aggregated, the surface area of platinum per unit area of the electrode material is wider than that of the conventional electrode, and the fuel cell Therefore, it is possible to efficiently advance the electrode reaction according to the above, so that a fuel cell having excellent power generation performance can be obtained.
In addition, the electrode obtained by the manufacturing method of the present invention does not embed the electrode material in the electrolyte membrane unlike the electrode disclosed in Patent Document 1, so that the electrolyte membrane itself is not significantly damaged, The reliability of the said membrane electrode assembly can be improved, and the manufacturing method of the fuel cell excellent in productivity can be provided.

この発明の実施の形態1に係る膜電極接合体の製造装置の構成を示す断面図である。It is sectional drawing which shows the structure of the manufacturing apparatus of the membrane electrode assembly which concerns on Embodiment 1 of this invention. 実施の形態2に係る膜電極接合体の製造装置の構成を示す断面図である。6 is a cross-sectional view showing a configuration of a manufacturing apparatus for a membrane / electrode assembly according to Embodiment 2. FIG. 実施の形態3に係る膜電極接合体の製造装置の構成を示す断面図である。6 is a cross-sectional view showing a configuration of a manufacturing apparatus for a membrane / electrode assembly according to Embodiment 3. FIG. 実施の形態4に係る膜電極接合体の製造装置の構成を示す断面図である。6 is a cross-sectional view showing a configuration of a manufacturing apparatus for a membrane electrode assembly according to Embodiment 4. FIG. 実施の形態5に係る膜電極接合体の製造装置の構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a manufacturing apparatus for a membrane / electrode assembly according to Embodiment 5. 実施の形態6に係る膜電極接合体の製造装置の構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a manufacturing apparatus for a membrane / electrode assembly according to Embodiment 6. 実施の形態7に係る膜電極接合体の製造装置の構成を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration of a manufacturing apparatus for a membrane / electrode assembly according to Embodiment 7.

符号の説明Explanation of symbols

1 上部電極板、2,10 下部電極板、3 フルイ、4 振動装置、5,6,14,30 電源、7 電極材料、8 電解質膜、9 接着剤層、11 チャンバ、12 摩擦帯電用皮膜、13,17 振動装置、15 粉砕媒体、16 網状体、18,28 キャリア、19,26 マグネット、20 金網、21 容器、22 ホッパ、23 開口部、24 混合ドラム、25 回転シェル、27 ドクターブレード、29 電極板、31 電磁ブラシ。   DESCRIPTION OF SYMBOLS 1 Upper electrode plate, 2,10 Lower electrode plate, 3 Fluid, 4 Vibration apparatus, 5, 6, 14, 30 Power supply, 7 Electrode material, 8 Electrolyte film, 9 Adhesive layer, 11 Chamber, 12 Friction charging film, 13, 17 Vibration device, 15 Grinding medium, 16 Net body, 18, 28 Carrier, 19, 26 Magnet, 20 Wire mesh, 21 Container, 22 Hopper, 23 Opening, 24 Mixing drum, 25 Rotating shell, 27 Doctor blade, 29 Electrode plate, 31 electromagnetic brush.

Claims (20)

固体高分子電解質膜の表面に触媒電極を接合した膜電極接合体を製造する方法において、
電解質膜の表面に接着剤層を形成し、
粉体状の電極材料を前記接着剤層に付着させ、
前記接着剤層を乾燥させることにより前記電極材料を前記電解質膜の表面に定着させる
ことを特徴とする膜電極接合体の製造方法。
In a method for producing a membrane electrode assembly in which a catalyst electrode is joined to the surface of a solid polymer electrolyte membrane,
Forming an adhesive layer on the surface of the electrolyte membrane,
Adhering a powdered electrode material to the adhesive layer;
A method for producing a membrane electrode assembly, comprising drying the adhesive layer to fix the electrode material on the surface of the electrolyte membrane.
前記電極材料の前記接着剤層への付着は、
前記電極材料を帯電且つ分散し、
前記電極材料を収容する収容手段と前記電解質膜の表面との間に電界を形成する
ことにより行われる請求項1に記載の膜電極接合体の製造方法。
The adhesion of the electrode material to the adhesive layer is
Charging and dispersing the electrode material;
The method for producing a membrane / electrode assembly according to claim 1, wherein the method is performed by forming an electric field between a storage unit that stores the electrode material and a surface of the electrolyte membrane.
電界からの力を受けて前記電解質膜の表面へと進行する前記電極材料を振動フルイに通すことにより前記電極材料が分散される請求項2に記載の膜電極接合体の製造方法。   The method for producing a membrane / electrode assembly according to claim 2, wherein the electrode material is dispersed by passing the electrode material that travels to the surface of the electrolyte membrane under a force from an electric field through a vibration fluid. 帯電された前記電極材料を流動状態にすることにより分散がなされる請求項2に記載の膜電極接合体の製造方法。   The manufacturing method of the membrane electrode assembly according to claim 2, wherein dispersion is performed by bringing the charged electrode material into a fluid state. 前記収容手段と前記電解質膜の表面との間に形成された電界により前記電極材料を帯電させる請求項2〜4のいずれか一項に記載の膜電極接合体の製造方法。   The manufacturing method of the membrane electrode assembly as described in any one of Claims 2-4 which charges the said electrode material with the electric field formed between the said accommodating means and the surface of the said electrolyte membrane. 表面に摩擦帯電用皮膜が形成された網状体を流動状態の前記電極材料に接触させて振動させることにより前記電極材料を帯電させる請求項4に記載の膜電極接合体の製造方法。   5. The method for producing a membrane electrode assembly according to claim 4, wherein the electrode material is charged by bringing a mesh body having a frictional charging film formed on the surface thereof into contact with the fluidized electrode material and vibrating. 前記電極材料を摩擦帯電用皮膜上に載置すると共に前記摩擦帯電用皮膜を振動させることにより前記電極材料の帯電及び分散を行う請求項2に記載の膜電極接合体の製造方法。   3. The method for producing a membrane electrode assembly according to claim 2, wherein the electrode material is placed on the frictional charging film and the electrode material is charged and dispersed by vibrating the frictional charging film. 電極材料と共に粉砕媒体を前記摩擦帯電用皮膜上に載置する請求項7に記載の膜電極接合体の製造方法。   The manufacturing method of the membrane electrode assembly according to claim 7, wherein a grinding medium is placed on the friction charging film together with an electrode material. マグネットローラを備えた収容手段内に磁性体からなるキャリアを混入することにより前記電極材料を前記キャリアとの摩擦により帯電させ、
前記電極材料が付着した前記キャリアにより前記マグネットローラ上に電磁ブラシを形成し、
前記収容手段と前記電解質膜の表面との間に形成された電界により前記電極材料を前記キャリアから離脱させる請求項2に記載の膜電極接合体の製造方法。
Charging the electrode material by friction with the carrier by mixing a carrier made of a magnetic material in a receiving means having a magnet roller;
An electromagnetic brush is formed on the magnet roller by the carrier to which the electrode material is attached,
The method for producing a membrane electrode assembly according to claim 2, wherein the electrode material is separated from the carrier by an electric field formed between the housing means and the surface of the electrolyte membrane.
前記電極材料は、白金担持カーボンと電解質と溶媒とを含むインクをスプレードライ法で粉粒化することにより得られた請求項1〜9のいずれか一項に記載の膜電極接合体の製造方法。   The said electrode material is a manufacturing method of the membrane electrode assembly as described in any one of Claims 1-9 obtained by granulating the ink containing platinum carrying | support carbon, electrolyte, and a solvent by the spray-drying method. . 固体高分子電解質膜の表面に触媒電極を接合した膜電極接合体を製造する装置において、
粉体状の電極材料を収容する収容手段と、
前記電極材料を帯電する帯電手段と、
前記電極材料を分散する分散手段と、
接着剤層が形成された電解質膜の表面と前記収容手段との間に電界を形成することにより帯電された前記電極材料を前記電解質膜の接着剤層に付着させる電界形成手段と
を備え、前記電解質膜の接着剤層の乾燥により前記電極材料が前記電解質膜の表面に定着することを特徴とする膜電極接合体の製造装置。
In an apparatus for manufacturing a membrane electrode assembly in which a catalyst electrode is bonded to the surface of a solid polymer electrolyte membrane,
Storage means for storing powdered electrode material;
Charging means for charging the electrode material;
A dispersing means for dispersing the electrode material;
Electric field forming means for adhering the electrode material charged by forming an electric field between the surface of the electrolyte membrane on which the adhesive layer is formed and the housing means to the adhesive layer of the electrolyte membrane, and An apparatus for manufacturing a membrane electrode assembly, wherein the electrode material is fixed on the surface of the electrolyte membrane by drying the adhesive layer of the electrolyte membrane.
前記収容手段は、前記電極材料が載置される電界形成用電極を有し、
前記電界形成手段は、前記電解質膜の表面と前記電界形成用電極との間に電界を形成する請求項11記載の膜電極接合体の製造装置。
The housing means has an electric field forming electrode on which the electrode material is placed,
12. The apparatus for manufacturing a membrane electrode assembly according to claim 11, wherein the electric field forming means forms an electric field between a surface of the electrolyte membrane and the electric field forming electrode.
前記電界形成手段は、前記帯電手段を兼ねている請求項12に記載の膜電極接合体の製造装置。   13. The apparatus for manufacturing a membrane electrode assembly according to claim 12, wherein the electric field forming unit also serves as the charging unit. 前記分散手段は、前記電解質膜の表面と前記電界形成用電極との間に配置された振動フルイからなる請求項13に記載の膜電極接合体の製造装置。   The membrane electrode assembly manufacturing apparatus according to claim 13, wherein the dispersing means is a vibrating screen disposed between a surface of the electrolyte membrane and the electric field forming electrode. 前記分散手段は、前記電界形成用電極上で前記電極材料を流動状態とする流動化装置からなる請求項13に記載の膜電極接合体の製造装置。   14. The apparatus for manufacturing a membrane electrode assembly according to claim 13, wherein the dispersing means comprises a fluidizing device that causes the electrode material to flow on the electric field forming electrode. 前記帯電手段及び前記分散手段は、前記電界形成用電極の表面上に形成された摩擦帯電用皮膜と、前記電界形成用電極を振動させる振動装置とを含み、前記電極材料を前記摩擦帯電用皮膜上で振動させることにより帯電及び分散が行われる請求項12に記載の膜電極接合体の製造装置。   The charging means and the dispersing means include a friction charging film formed on the surface of the electric field forming electrode and a vibration device for vibrating the electric field forming electrode, and the electrode material is used as the friction charging film. 13. The apparatus for producing a membrane electrode assembly according to claim 12, wherein charging and dispersion are performed by vibrating above. 前記電極材料と共に前記電界形成用電極の上に載置された粉砕媒体をさらに含む請求項16に記載の膜電極接合体の製造装置。   The apparatus for manufacturing a membrane electrode assembly according to claim 16, further comprising a grinding medium placed on the electric field forming electrode together with the electrode material. 前記電界形成用電極の裏面側に配置されたマグネットをさらに含み、
前記粉砕媒体として、磁性体からなるキャリアが用いられる請求項17に記載の膜電極接合体の製造装置。
It further includes a magnet disposed on the back side of the electric field forming electrode,
The apparatus for manufacturing a membrane electrode assembly according to claim 17, wherein a carrier made of a magnetic material is used as the grinding medium.
前記分散手段は、前記電界形成用電極上で前記電極材料を流動状態とする流動化装置からなり、
前記帯電手段は、前記流動化装置により流動状態とされた前記電極材料に接触すると共に表面に摩擦帯電用皮膜が形成された網状体と、前記網状体を振動させる振動装置とを含む請求項12に記載の膜電極接合体の製造装置。
The dispersing means comprises a fluidizing device for bringing the electrode material into a fluidized state on the electric field forming electrode,
13. The charging means includes a mesh body that is in contact with the electrode material that has been fluidized by the fluidizing device and has a friction charging film formed on a surface thereof, and a vibration device that vibrates the mesh body. The manufacturing apparatus of the membrane electrode assembly as described in 2.
前記帯電手段及び前記分散手段は、前記収容手段に収容され且つ回転駆動されるマグネットローラと、前記電極材料と共に前記収容手段に収容された磁性体からなるキャリアとを有し、
前記電極材料は前記キャリアとの摩擦により帯電し、前記電極材料が付着した前記キャリアにより前記マグネットローラ上に電磁ブラシが形成され、
前記電界形成手段により形成された電界からの力を受けて前記電極材料が前記キャリアから離脱する請求項11に記載の膜電極接合体の製造装置。
The charging unit and the dispersion unit include a magnet roller housed in the housing unit and driven to rotate, and a carrier made of a magnetic material housed in the housing unit together with the electrode material,
The electrode material is charged by friction with the carrier, an electromagnetic brush is formed on the magnet roller by the carrier to which the electrode material is attached,
12. The apparatus for manufacturing a membrane electrode assembly according to claim 11, wherein the electrode material is detached from the carrier in response to a force from an electric field formed by the electric field forming means.
JP2006319765A 2006-11-28 2006-11-28 Method and device for manufacturing membrane electrode assembly Pending JP2008135256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319765A JP2008135256A (en) 2006-11-28 2006-11-28 Method and device for manufacturing membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319765A JP2008135256A (en) 2006-11-28 2006-11-28 Method and device for manufacturing membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2008135256A true JP2008135256A (en) 2008-06-12

Family

ID=39559968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319765A Pending JP2008135256A (en) 2006-11-28 2006-11-28 Method and device for manufacturing membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2008135256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187216A (en) * 2010-03-05 2011-09-22 Kuraray Co Ltd Distribution type inorganic el element, manufacturing method thereof, and manufacturing device of inorganic el light-emitting layer
JP2014186969A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Powder feeding device and electrode manufacturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281221A (en) * 2003-03-14 2004-10-07 Toyota Motor Corp Apparatus and method for manufacturing electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281221A (en) * 2003-03-14 2004-10-07 Toyota Motor Corp Apparatus and method for manufacturing electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187216A (en) * 2010-03-05 2011-09-22 Kuraray Co Ltd Distribution type inorganic el element, manufacturing method thereof, and manufacturing device of inorganic el light-emitting layer
JP2014186969A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Powder feeding device and electrode manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP4626514B2 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP3481010B2 (en) Polymer solid electrolyte membrane / electrode integrated body and method for producing the same
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
WO2004006364A1 (en) Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
JPWO2006123529A1 (en) Membrane electrode assembly and direct liquid fuel fuel cell
JP2007214102A (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly, and fuel cell
US10875814B2 (en) Core-shell particles, polymer electrolyte membrane comprising same, fuel cell or electrochemical cell comprising polymer electrolyte membrane, and method for manufacturing core-shell particles
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP4649705B2 (en) Polymer electrolyte fuel cell
WO2004075331A1 (en) Fuel cell and method for manufacturing same
JP2009238388A (en) Paste for micropore layer, membrane electrode assembly, and fuel cell
JP6070564B2 (en) Catalyst particles, catalyst ink, production method thereof, and production method of each of fuel cell electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
US20060159982A1 (en) Electrode for fuel cell and fuel cell using same
JP2008135256A (en) Method and device for manufacturing membrane electrode assembly
JP2005085544A (en) Polyelectrolyte membrane and membrane electrode assembly
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2009059522A (en) Cross-linked polymer electrolyte membrane, membrane electrode assembly using it, its manufacturing method, and fuel cell
JP4863721B2 (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly, fuel cell
KR101229597B1 (en) Membrane electrode assembly for fuel cell and Method of preparing the same and Fuel cell comprising the same
JP2005150002A (en) Fuel cell
JP2011233483A (en) Electrode for fuel cell and fuel cell
JP4214918B2 (en) Fuel cell
JP2003178770A (en) Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
KR100709191B1 (en) Membrane-electrode assembly for fuel cell, method of preparing polymer membrane and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009