JP2008135149A - Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING GATE FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM - Google Patents

Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING GATE FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM Download PDF

Info

Publication number
JP2008135149A
JP2008135149A JP2007218256A JP2007218256A JP2008135149A JP 2008135149 A JP2008135149 A JP 2008135149A JP 2007218256 A JP2007218256 A JP 2007218256A JP 2007218256 A JP2007218256 A JP 2007218256A JP 2008135149 A JP2008135149 A JP 2008135149A
Authority
JP
Japan
Prior art keywords
reflective film
information recording
recording medium
optical information
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007218256A
Other languages
Japanese (ja)
Other versions
JP4099517B1 (en
Inventor
Takayuki Tsubota
隆之 坪田
Takeshi Owaki
武史 大脇
Hideo Fujii
秀夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007218256A priority Critical patent/JP4099517B1/en
Application granted granted Critical
Publication of JP4099517B1 publication Critical patent/JP4099517B1/en
Publication of JP2008135149A publication Critical patent/JP2008135149A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ag alloy reflection film for optical recording medium which can maintain environmental resistance such as excellent moisture and heat resistance and light resistance for long term even when a metal reflection film and the resin layer directly have contact with each other, an optical information recording medium comprising the reflection film, and a sputtering target for making the reflection film. <P>SOLUTION: Regarding the Ag alloy reflection film for optical information recording medium, a specific element selected from Sm, Er, Tm, and Tb is included to improve the environmental resistance such as light resistance and moisture and heat resistance, and maintain the high environmental resistance for long term by inhibiting deterioration mode in which the Ag of the reflection film is diffused and aggregated into the adjacent resin layer when the Ag alloy reflection film and the resin layer directly contact with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光情報記録媒体用Ag合金反射膜、このAg合金反射膜を有している光情報記録媒体およびこのAg合金反射膜形成用のスパッタリングターゲットに関する。本発明で言う反射膜とは、反射膜および半透過反射膜(半透過膜)を含む包括的な表現である。本発明は、特に耐光性や耐湿熱性などの耐環境性が優れ、この耐環境性が要求される、反射膜、この反射膜を備えた光情報記録媒体、及びこの反射膜の形成用のスパッタリングターゲットに好適である。   The present invention relates to an Ag alloy reflective film for an optical information recording medium, an optical information recording medium having the Ag alloy reflective film, and a sputtering target for forming the Ag alloy reflective film. The reflective film referred to in the present invention is a comprehensive expression including a reflective film and a semi-transmissive reflective film (semi-transmissive film). INDUSTRIAL APPLICABILITY The present invention is particularly excellent in environmental resistance such as light resistance and wet heat resistance, and this environmental resistance is required, a reflective film, an optical information recording medium provided with the reflective film, and sputtering for forming the reflective film Suitable for target.

Ag合金系の反射膜材料は、光ディスク(以下、光情報記録媒体とも言う)などの反射膜として、他の材料に比して、高反射率、高透過率、低吸収率〔吸収率=100%−(反射率+透過率)〕、高熱伝導率などの優れた特性を有する。   The Ag alloy-based reflective film material is a reflective film for an optical disc (hereinafter also referred to as an optical information recording medium) or the like, and has a high reflectance, a high transmittance, and a low absorptivity [absorption rate = 100] compared to other materials. %-(Reflectance + transmittance)] and high thermal conductivity.

ただ、このようなAg合金反射膜を有する光ディスクにおいては、これら高性能を長期に亙って維持できる、長期信頼性を向上させることが重要な技術課題となっている。そして、この長期信頼性に最も影響を与えるのが、Ag合金反射膜の耐湿熱性や耐光性などの耐環境性の向上である。   However, in an optical disk having such an Ag alloy reflective film, it is an important technical problem to improve long-term reliability that can maintain these high performances over a long period of time. And, the long-term reliability is most affected by the improvement in environmental resistance such as moisture and heat resistance and light resistance of the Ag alloy reflective film.

例えば、光ディスクの使用が、高温高湿の環境下になるほど、Ag合金反射膜から、反射膜に接する樹脂層側へのAgの拡散、凝集が生じやすくなる。このAgの拡散、凝集は、Ag合金反射膜の表面の粗度増加や不連続膜化を生じ、反射率が低下して、反射膜や半透過反射膜としての機能が著しく劣化する、という問題がある。   For example, as the use of the optical disk is in a high temperature and high humidity environment, Ag diffusion and aggregation from the Ag alloy reflective film to the resin layer side in contact with the reflective film are more likely to occur. The diffusion and aggregation of Ag causes an increase in roughness and discontinuity of the surface of the Ag alloy reflective film, resulting in a problem that the reflectance is lowered and the function as a reflective film or a semi-transmissive reflective film is remarkably deteriorated. There is.

また、光ディスクの使用が、蛍光灯などの紫外線の光照射環境下になっても、この光照射によって、上記Ag合金反射膜から、反射膜に接する樹脂層側へのAgの拡散、凝集が生じやすくなる。このAgの拡散、凝集は、やはり反射率の低下を招き、反射率の低下が、再生信号を検出可能な反射率の下限を下回った時点で、信号を再生することが不可能となる、という問題がある。   Even when the optical disk is used in an ultraviolet light irradiation environment such as a fluorescent lamp, the light irradiation causes diffusion and aggregation of Ag from the Ag alloy reflective film to the resin layer side in contact with the reflective film. It becomes easy. This diffusion and aggregation of Ag also leads to a decrease in reflectivity, and it becomes impossible to regenerate the signal when the decrease in reflectivity falls below the lower limit of the reflectivity at which the replay signal can be detected. There's a problem.

反射膜としてのAgの特定の希土類元素の含有による合金化、あるいはAg合金の改良により特性を向上させることは、従来から種々提案されている。例えば、Ag−Cu−Au−(Nd、Sn、Ge)などのAg合金反射膜、Ag−(Bi、Sb)−(Cu、Au)、Ag−(Bi、Sb)−(希土類:Nd、Y)−(Cu、Au)などのAg合金反射膜が提案されている(特許文献1、2参照)。   Various proposals have been made to improve the characteristics by alloying Ag as a reflecting film by containing a specific rare earth element or by improving the Ag alloy. For example, Ag alloy reflective film such as Ag-Cu-Au- (Nd, Sn, Ge), Ag- (Bi, Sb)-(Cu, Au), Ag- (Bi, Sb)-(rare earth: Nd, Y )-(Cu, Au) and other Ag alloy reflective films have been proposed (see Patent Documents 1 and 2).

また、レーザーマーキングのパワーを低下させるために、反射膜であるAg合金の熱伝導率を低減させることも提案されている。具体的には、Agに、Ge、Si、Sn、Pb、Ga、In、Tl、Sb、Biを添加して熱伝導率を低減するものである(特許文献3参照)。また、同様に、Agに、Cr、Ti、Si、Ta、Nb、Pt、Ir、Fe、Re、Sb、Zr、Sn、Niを添加して熱伝導率を低減する方法も提案されている(特許文献4参照)。   In order to reduce the power of laser marking, it has also been proposed to reduce the thermal conductivity of an Ag alloy that is a reflective film. Specifically, Ge, Si, Sn, Pb, Ga, In, Tl, Sb, and Bi are added to Ag to reduce thermal conductivity (see Patent Document 3). Similarly, a method of reducing thermal conductivity by adding Cr, Ti, Si, Ta, Nb, Pt, Ir, Fe, Re, Sb, Zr, Sn, and Ni to Ag has also been proposed ( (See Patent Document 4).

しかしながら、これら従来のAg合金からなる反射膜は、耐湿熱性や耐光性などの耐環境性を向上させる目的の開示がない。また、後述するごとく、光情報記録媒体において、特に、金属反射膜と紫外線硬化樹脂層または有機色素記録層とが直接接触する場合に、従来のAg合金からなる反射膜は、これら耐環境性が劣化しやすい。   However, these conventional reflective films made of an Ag alloy have no disclosure for the purpose of improving environmental resistance such as moisture and heat resistance and light resistance. Further, as described later, in an optical information recording medium, particularly when a metal reflective film and an ultraviolet curable resin layer or an organic dye recording layer are in direct contact, a conventional reflective film made of an Ag alloy has these environmental resistances. Easy to deteriorate.

この金属反射膜と紫外線硬化樹脂層または有機色素記録層とが直接接触する場合のAg合金反射膜の耐環境性低下の課題に対して、Li を含有させたAg合金反射膜とすることが提案されている(特許文献5)。ここでは、より具体的には、Li を0. 01〜10原子%含有するAg 合金とすることが提案されている。また、更に、Bi: 0. 005〜0. 8原子%、希土類金属元素(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu) を合計で0. 1〜2原子%、Cu、Au、Rh、Pd、Ptから選ばれる1種以上を合計で0. 1〜3原子%、各々選択的に含有することも開示されている。
特開2002-15464号公報 特開2004-139712 号公報 特開1992-252440 号公報 特開1992-28032号公報 特開2006-48899号公報
In order to reduce the environmental resistance of the Ag alloy reflecting film when the metal reflecting film and the ultraviolet curable resin layer or the organic dye recording layer are in direct contact, it is proposed to use an Ag alloy reflecting film containing Li. (Patent Document 5). More specifically, it is proposed to use an Ag alloy containing Li in an amount of 0.01 to 10 atomic%. Further, Bi: 0.005 to 0.8 atomic%, rare earth metal elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, It is also disclosed that 0.1 to 2 atomic percent in total of Yb, Lu) and one or more selected from Cu, Au, Rh, Pd, and Pt are selectively contained in total of 0.1 to 3 atomic percent, respectively. Has been.
JP 2002-15464 A JP 2004-139712 A JP 1992-252440 JP 1992-28032 Japanese Unexamined Patent Publication No. 2006-48899

しかしながら、本発明者らが知見したところによれば、この特許文献5のLiを含有させたAg合金からなる反射膜は、これに更に、Bi 、希土類金属元素、Cu 、Au などの貴金属類元素などを含有させたとしても、より長期に亙る使用を想定した光ディスクの耐湿熱性や耐光性などの耐環境性が不十分である。即ち、Liを含有させたAg合金からなる反射膜は、確かに耐環境性が向上するものの、比較的短時間で耐環境性が低下して、優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持できないという課題がある。   However, according to the findings of the present inventors, the reflective film made of an Ag alloy containing Li in Patent Document 5 further includes noble metal elements such as Bi, rare earth metal elements, Cu, and Au. Even if it is included, the environmental resistance such as the heat and moisture resistance and light resistance of the optical disk that is supposed to be used for a longer period is insufficient. In other words, the reflective film made of an Ag alloy containing Li is improved in the environmental resistance, but the environmental resistance is lowered in a relatively short time, and the environmental resistance such as excellent heat and moisture resistance and light resistance. There is a problem that it cannot be maintained for a long time.

この理由は、特許文献5における耐湿熱性や耐光性などの耐環境性の試験時間が短過ぎることが大きな一因である。このように耐環境性の評価試験時間が短いと、実際に長期に亙って使用された際の光ディスクの耐環境性と、正確に相関させることができないこととなる。   This is mainly because the test time for environmental resistance such as wet heat resistance and light resistance in Patent Document 5 is too short. Thus, if the environmental resistance evaluation test time is short, it cannot be correlated accurately with the environmental resistance of the optical disk when it is actually used for a long time.

例えば、特許文献5では、耐光性の評価を、成膜されたAg合金薄膜の上層に紫外線硬化樹脂層を積層したものについて、紫外・可視光の照射試験によって、分光反射率と分光透過率との変化率を測定している。ただ、その照射条件は、照射照度:120W/m2 、照射温度:80℃、照射時間:144 時間であり、この照射試験時間が短過ぎる。 For example, in Patent Document 5, the light resistance is evaluated by measuring the spectral reflectance and the spectral transmittance of a laminated Ag alloy thin film with an ultraviolet curable resin layer by an ultraviolet / visible light irradiation test. The rate of change is measured. However, the irradiation conditions are irradiation illuminance: 120 W / m 2 , irradiation temperature: 80 ° C., irradiation time: 144 hours, and this irradiation test time is too short.

また、この特許文献5では、耐凝集性(耐湿熱性)の評価を、成膜されたAg合金薄膜の上層に紫外線硬化樹脂層を積層したものについて、高温高湿(温度:80℃、湿度:90%RH、保持時間:48時間での試験を施しているものの、この保持試験時間が短過ぎる。   Further, in this Patent Document 5, the evaluation of the aggregation resistance (moisture and heat resistance) is conducted for a high-temperature and high-humidity (temperature: 80 ° C., humidity: about the laminated layer of the Ag alloy thin film with an ultraviolet curable resin layer). 90% RH, holding time: Although the test at 48 hours is performed, this holding test time is too short.

このため、Ag合金反射膜を備えた光ディスクにおいて、Ag合金反射膜と前記樹脂層とが直接接触する場合でも、優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持できるという意味での、耐環境性の向上が求められている。   For this reason, in an optical disc provided with an Ag alloy reflective film, even when the Ag alloy reflective film and the resin layer are in direct contact with each other, excellent environmental resistance such as moisture resistance and light resistance can be maintained over a long period of time. There is a need for improvement in environmental resistance.

本発明はこのような事情に着目してなされたもので、その目的は、特に金属反射膜と前記樹脂層とが直接接触する場合でも、優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持できる、光情報記録媒体用Ag合金反射膜、この反射膜を備えた光情報記録媒体、及び、この反射膜形成用のスパッタリングターゲットを提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to provide excellent environmental resistance such as moisture resistance and light resistance for a long period of time even when the metal reflective film and the resin layer are in direct contact with each other. Therefore, an object of the present invention is to provide an Ag alloy reflective film for optical information recording media, an optical information recording medium provided with the reflective film, and a sputtering target for forming the reflective film.

この目的を達成するための本発明耐環境性に優れた光情報記録媒体用Ag合金反射膜の要旨は、Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%含有し、残部がAgおよび不可避的不純物からなることである。   In order to achieve this object, the gist of the Ag alloy reflective film for optical information recording media excellent in environmental resistance according to the present invention is 0 in total of one or more elements selected from Sm, Er, Tm, and Tb. 0.1 to 5 atom%, with the balance being made of Ag and inevitable impurities.

上記耐環境性を満足するために、前記Ag合金反射膜が、更にBiを0.01〜1 原子%含有するか、および/または、Cu、Auの一種または二種を合計で0.3〜5原子%含有することが好ましい。   In order to satisfy the above environmental resistance, the Ag alloy reflective film further contains 0.01 to 1 atom% of Bi and / or one or two kinds of Cu and Au in total 0.3 to It is preferable to contain 5 atomic%.

上記目的を達成するための本発明光情報記録媒体は、上記要旨あるいは下記する好ましい要旨のいずれかのAg合金反射膜を有していることである。そして、より好ましくは、透明基板と、金属反射膜と、この金属反射膜と直接接する、紫外線硬化樹脂層または有機色素記録層とを有しているような、耐環境性が特に要求される光情報記録媒体である。   In order to achieve the above object, the optical information recording medium of the present invention has the Ag alloy reflective film according to any one of the above gist and the following preferred gist. More preferably, light having particularly high environmental resistance, such as a transparent substrate, a metal reflective film, and an ultraviolet curable resin layer or an organic dye recording layer that is in direct contact with the metal reflective film. An information recording medium.

本発明におけるAg合金反射膜を形成するためのスパッタリングターゲットは、上記要旨あるいは上記した乃至下記する好ましい要旨のいずれかのAg合金反射膜と同じあるいは近似する組成範囲のAg合金からなることである。   The sputtering target for forming the Ag alloy reflective film in the present invention is made of an Ag alloy having the same or similar composition range as the Ag alloy reflective film of any of the above gist or the above-described preferred gist.

より具体的には、Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%含有し、残部がAgおよび不可避的不純物からなるスパッタリングターゲットである。また、更にBiを0.01〜1.5原子%含有するスパッタリングターゲットである。また、更にCu、Auの一種または二種を合計で0.3〜5原子%含有するスパッタリングターゲットである。そして、スパッタリングターゲットの用途が光情報記録媒体に用いられるAg合金反射膜形成用であることが好ましい。   More specifically, it is a sputtering target comprising 0.1 to 5 atom% in total of one or more elements selected from Sm, Er, Tm, and Tb, with the balance being made of Ag and inevitable impurities. . Further, the sputtering target further contains 0.01 to 1.5 atomic% of Bi. Further, the sputtering target further contains one or two of Cu and Au in a total amount of 0.3 to 5 atomic%. And it is preferable that the use of a sputtering target is for Ag alloy reflective film formation used for an optical information recording medium.

本発明では、優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持できることを、耐環境性の向上という。本発明では、光情報記録媒体に用いられるAg合金反射膜について、特定の選択された元素を含むAg合金反射膜とすることによって、この効果を達成する。   In the present invention, the fact that environmental resistance such as excellent heat and moisture resistance and light resistance can be maintained for a long time is referred to as improvement of environmental resistance. In the present invention, this effect is achieved by making the Ag alloy reflective film used in the optical information recording medium an Ag alloy reflective film containing a specific selected element.

これら特定の選択された元素を含むAg合金反射膜では、反射膜側や半透過膜側のAgが、隣接する紫外線硬化樹脂層または有機色素記録層などの樹脂層側へ拡散、凝集する劣化モードが抑制される。これによって、本発明Ag合金反射膜は、耐湿熱性と耐光性とを合わせた耐環境性を向上させ、この優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持することができる。   In the Ag alloy reflective film containing these specific selected elements, the degradation mode in which Ag on the reflective film side or the semi-transmissive film side diffuses and aggregates to the resin layer side such as the adjacent ultraviolet curable resin layer or organic dye recording layer. Is suppressed. As a result, the Ag alloy reflective film of the present invention can improve the environmental resistance combining the heat and moisture resistance and the light resistance, and can maintain the excellent environmental resistance such as the moisture and light resistance over a long period of time. it can.

実際の再生専用型光ディスクの断面構造では、ポリカーボネート(以下、単にPCとも言う)基体上にAg合金の反射膜を成膜し、この反射膜の上に紫外線(UV)で硬化する樹脂層をスピンコートし、PC基板と貼り合わせる。また追記型光ディスクでは、PC基体(以下、基板とも言う)上に有機色素記録層をスピンコートし、この上にAg合金の反射膜を成膜し、さらにこの反射膜の上に紫外線(UV)で硬化する樹脂層をスピンコートし、PC基板と貼り合わせる。   In the actual cross-sectional structure of a read-only optical disc, an Ag alloy reflective film is formed on a polycarbonate (hereinafter also simply referred to as PC) substrate, and a resin layer that is cured by ultraviolet rays (UV) is spun on the reflective film. Coat and bond with PC board. In a write-once optical disk, an organic dye recording layer is spin-coated on a PC substrate (hereinafter also referred to as a substrate), an Ag alloy reflective film is formed on the organic dye recording layer, and ultraviolet light (UV) is formed on the reflective film. The resin layer that is cured by spin coating is spin-coated and bonded to the PC substrate.

また、上記断面構造を互いに貼り合わせ、記録層を2層とし記録容量を増やしたタイプもある。即ち、再生専用光ディスクでは、基板上にAg合金の半透過反射膜を成膜し、この反射膜の上に紫外線(UV)で硬化する樹脂層をスピンコートし、Ag合金またはAl合金の反射膜を成膜した基板と貼り合わせて、互いに積層する。追記型光ディスクも同様に、PC基板上に有機色素記録層とAg合金の半透過膜を積層したものを、Ag合金の反射膜と有機色素記録層とを成膜した基板と貼り合わせて、互いに積層したり、PC基板上に有機色素記録層とAg合金の半透過膜を積層したものの上に有機色素記録層やAg合金反射膜を積層したりする。   There is also a type in which the above-described cross-sectional structures are bonded to each other to increase the recording capacity by using two recording layers. That is, in a read-only optical disc, an Ag alloy transflective film is formed on a substrate, and a resin layer that is cured by ultraviolet rays (UV) is spin-coated on the reflective film, and an Ag alloy or Al alloy reflective film is formed. Are laminated to each other and stacked on each other. Similarly, a write-once optical disk is formed by laminating an organic dye recording layer and an Ag alloy semi-transmissive film on a PC substrate with a substrate on which an Ag alloy reflective film and an organic dye recording layer are formed. The organic dye recording layer or the Ag alloy reflective film is laminated on the PC board or the organic dye recording layer and the Ag alloy semi-transmissive film laminated on the PC substrate.

このように、上記樹脂層に対してAg半透過膜およびAg反射膜(以下、両者をまとめて単にAg反射膜と言う)が直接接する光ディスクの場合には、湿熱環境や光照射環境のいずれでも、反射膜側のAgが上記樹脂層側へ拡散し、凝集する、Ag反射膜の劣化モードが存在する。言い換えると、Ag反射膜や、これを用いた光情報記録媒体の耐久性を向上させるためには、このような、反射膜側のAgが樹脂層側へ拡散、凝集する、前記劣化モードを抑制することが必要である。   Thus, in the case of an optical disc in which an Ag semi-transmissive film and an Ag reflective film (hereinafter collectively referred to simply as an Ag reflective film) are in direct contact with the resin layer, in either a wet heat environment or a light irradiation environment There is a deterioration mode of the Ag reflection film in which Ag on the reflection film side diffuses and aggregates toward the resin layer side. In other words, in order to improve the durability of the Ag reflective film and the optical information recording medium using the same, the deterioration mode in which Ag on the reflective film side diffuses and aggregates to the resin layer side is suppressed. It is necessary to.

従来において、前記特許文献5を除いて、光ディスクの耐湿熱性や耐光性を向上させたAg合金反射膜が提案されてこなかった、あるいは、耐湿熱性や耐光性を向上できなかったのは、Ag合金からなる反射膜を有する光ディスクの耐湿熱性や耐光性の評価試験の方法にもよる。   In the past, except for the above-mentioned Patent Document 5, no Ag alloy reflecting film with improved moisture and heat resistance and light resistance of an optical disc has been proposed, or the moisture and heat resistance and light resistance could not be improved. It also depends on the evaluation test method of the wet heat resistance and the light resistance of the optical disc having the reflective film made of

即ち、従来から、Ag合金からなる反射膜を有する光ディスクの耐湿熱性や耐光性の評価試験では、ポリカーボネートなどの基板上にAg薄膜のみを形成した単層膜が用いられていた。しかし、このようなポリカーボネートなどの基板上にAg薄膜のみを形成した単層膜による試験評価では、反射膜のAgが直接接する樹脂層側へ拡散して凝集する前記した劣化モードが存在乃至発生しない。このため、このような従来の単層膜による評価試験条件では、当然ながら、耐湿熱性や耐光性の評価を正確にできない。   That is, conventionally, in an evaluation test of moisture and heat resistance of an optical disc having a reflective film made of an Ag alloy, a single layer film in which only an Ag thin film is formed on a substrate such as polycarbonate has been used. However, in a test evaluation using a single layer film in which only an Ag thin film is formed on a substrate such as polycarbonate, the above-described deterioration mode in which Ag of the reflective film diffuses and aggregates to the resin layer side in direct contact does not exist or does not occur. . For this reason, of course, under such evaluation test conditions using a conventional single layer film, it is not possible to accurately evaluate the heat and moisture resistance and light resistance.

これに対して、光情報記録媒体の耐環境性を正確に評価するためには、Ag合金と接する樹脂層を形成した形状(状態)とし、Agが樹脂層側へ拡散して凝集する劣化モードが発生可能な状態で試験を実施する必要がある。そして、この時の反射特性の変化を測定、評価する必要がある。   On the other hand, in order to accurately evaluate the environmental resistance of the optical information recording medium, a degradation mode in which Ag is diffused and aggregated to the resin layer side in a shape (state) in which a resin layer in contact with the Ag alloy is formed. It is necessary to carry out the test in a state where it can occur. Then, it is necessary to measure and evaluate the change in the reflection characteristics at this time.

即ち、Ag合金薄膜と樹脂層とを互いに接触させた状態で順にポリカーボネートなどの基板上に積層した光情報記録媒体(試験体)に対して、耐光性としては紫外線など特定波長の光を照射し、この照射前後での光情報記録媒体の反射率の変化(反射率の絶対値変化)を測定、評価する。また、耐湿熱性としては、上記光情報記録媒体を湿熱環境下に置き、光情報記録媒体の反射率の変化を測定、評価する。この耐光性と耐湿熱性とを両者とも有することが耐環境性として必要である。   That is, the optical information recording medium (test body) in which the Ag alloy thin film and the resin layer are sequentially brought into contact with each other on a substrate such as polycarbonate is irradiated with light having a specific wavelength such as ultraviolet rays. Then, the change in the reflectance of the optical information recording medium before and after the irradiation (change in the absolute value of the reflectance) is measured and evaluated. In addition, as the heat and moisture resistance, the optical information recording medium is placed in a humid heat environment, and the change in reflectance of the optical information recording medium is measured and evaluated. It is necessary for the environment resistance to have both the light resistance and the heat and moisture resistance.

本発明Ag合金反射膜に含まれるSm、Er、Tm、Tbは、これら耐光性と耐湿熱性との後述する評価基準を基に、これを満たさない、他の希土類元素の種類やその含有量などに対して、選択、区別されたものであると言える。言い換えると、従来のポリカーボネートなどの基板上にAg薄膜のみを形成した単層膜による試験では、本発明に係るSm、Er、Tm、Tbから選択される特定の元素と、他の希土類元素との耐環境性に対する有意差はつかない。この点、前記した劣化モードが存在乃至発生する、上記本発明に係る試験条件によって始めて、本発明に係るSm、Er、Tm、Tbの効果の優位性が、他の元素と区別した上で認識できるとも言える。   The Sm, Er, Tm, and Tb contained in the Ag alloy reflective film of the present invention are based on these later-described evaluation criteria for light resistance and heat-and-moisture resistance. On the other hand, it can be said that they are selected and distinguished. In other words, in a test using a single-layer film in which only an Ag thin film is formed on a conventional substrate such as polycarbonate, a specific element selected from Sm, Er, Tm, and Tb according to the present invention and other rare earth elements are used. There is no significant difference in environmental resistance. In this respect, the superiority of the effects of Sm, Er, Tm, and Tb according to the present invention is recognized after being distinguished from other elements, starting from the test conditions according to the present invention in which the above-described deterioration mode exists or occurs. It can be said that it can be done.

本発明は、このように、前記した劣化モードが生じる光情報記録媒体での反射特性を正確に評価した上で、上記要旨のように、Ag合金反射膜の組成を決定している。このため、前記したAgが紫外線硬化樹脂層側へ拡散して凝集する劣化モードを抑制して、光情報記録媒体用Ag合金反射膜の耐湿熱性と耐光性とを合わせた耐環境性を向上させ、この優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持することができる。   In the present invention, as described above, the composition of the Ag alloy reflective film is determined after accurately evaluating the reflection characteristics of the optical information recording medium in which the above-described degradation mode occurs. For this reason, the above-described degradation mode in which Ag diffuses and aggregates toward the ultraviolet curable resin layer side is suppressed, and the environmental resistance combining the heat resistance and light resistance of the Ag alloy reflective film for optical information recording media is improved. Therefore, it is possible to maintain environmental resistance such as excellent heat and moisture resistance and light resistance over a long period of time.

また、このような反射膜を備えた光情報記録媒体では、記録媒体自体の耐湿熱性や耐光性などの耐環境性を向上させ、この優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持することが可能となる。更に、反射膜形成用のスパッタリングターゲットを、このAg反射膜と同じあるいは近似する組成範囲のAg合金とすることによって、耐湿熱性や耐光性などの耐環境性を向上させた本発明Ag合金反射膜の成膜が可能となる。   In addition, the optical information recording medium provided with such a reflective film improves the environmental resistance such as moisture resistance and light resistance of the recording medium itself, and this environmental resistance such as moisture resistance and light resistance is prolonged. It becomes possible to keep maintaining. Furthermore, the present invention Ag alloy reflecting film with improved environmental resistance such as heat and moisture resistance and light resistance by using a sputtering target for forming the reflecting film as an Ag alloy having the same or similar composition range as this Ag reflecting film. It becomes possible to form a film.

本発明の要件の意味や実施態様につき以下に順に説明する。   The meaning and embodiments of the requirements of the present invention will be described in order below.

(光情報記録媒体)
本発明が対象とする光情報記録媒体につき説明する。本発明が対象とする光情報記録媒体は、前提として光ディスクを意味する。この光ディスクにはいくつかの種類があるが、記録再生原理から大きくは、再生専用型、追記型、書換型の3種類に分類される。本発明は、反射膜の成分組成に特徴があり、光情報記録媒体としての前提となる、あるいは具備すべき光ディスクの構造や形状自体は、市販乃至公知のものが選択、適用できる。
(Optical information recording medium)
An optical information recording medium targeted by the present invention will be described. The optical information recording medium targeted by the present invention means an optical disk as a premise. There are several types of optical discs, but the optical discs are roughly classified into three types: read-only type, write-once type, and rewritable type. The present invention is characterized by the component composition of the reflective film, and a commercially available or known optical disk structure or shape as a premise or to be provided as an optical information recording medium can be selected and applied.

この中、再生専用型光ディスクは、例えばポリカーボネートなどの透明プラスチック (透明樹脂) 基板上に設けた凹凸の記録ピットによって記録データを形成した後に、Ag合金反射膜を設けた構造を有している。なお、反射膜としては、Ag以外にも、Al、Au等を主成分とする反射膜があるが、本発明では対象とはしない。また、基板は、ポリカーボネートなどの樹脂基板でなくても、ガラス、アルミ、カーボンなどの基板でも良い。   Among these, the read-only optical disk has a structure in which, for example, recording data is formed by uneven recording pits provided on a transparent plastic (transparent resin) substrate such as polycarbonate, and then an Ag alloy reflective film is provided. As the reflective film, there is a reflective film mainly composed of Al, Au or the like other than Ag, but is not a target in the present invention. Further, the substrate may not be a resin substrate such as polycarbonate, but may be a substrate such as glass, aluminum, or carbon.

図1は、この再生専用型光ディスクの断面構造の1 例を示す模式図である。図1において、1と5とはポリカーボネート(PC)基板、2は本発明が対象とするAg合金の半透明反射膜、3は紫外線(UV)で硬化する樹脂接着剤層、4は本発明が対象とするAg合金の全反射膜である。   FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of this read-only optical disc. In FIG. 1, 1 and 5 are polycarbonate (PC) substrates, 2 is a translucent reflective film of an Ag alloy targeted by the present invention, 3 is a resin adhesive layer that is cured by ultraviolet rays (UV), and 4 is the present invention. This is a total reflection film of a target Ag alloy.

再生専用型光ディスクにおいて、データ読み出しは、ディスクに照射されたレーザー光の位相差や反射差を検出することにより行う。それぞれ個別の記録ピットを形成した透明プラスチック基板5上に反射膜4を設けたものが、前記した断面構造として、PC基板5上にAg合金の反射膜4を成膜し、この反射膜4の上に紫外線(UV)で硬化する樹脂接着剤層3をスピンコートしたものである。   In a read-only optical disc, data reading is performed by detecting a phase difference or a reflection difference of laser light irradiated on the disc. In the case where the reflective film 4 is provided on the transparent plastic substrate 5 on which individual recording pits are formed, the Ag alloy reflective film 4 is formed on the PC substrate 5 as the above-described cross-sectional structure. A resin adhesive layer 3 that is cured by ultraviolet rays (UV) is spin-coated thereon.

図1では、これに、更に、半透明反射膜 (半透過膜) を設けた透明プラスチック基板1を貼り合わせて2層に記録したデータを読み出すタイプを示している。これは、図1に示すように、断面構造として、PC基板1上に、Ag合金の半透過膜2を成膜し、この半透過膜2を、紫外線(UV)で硬化する樹脂層を介して前記PC基板5上のAg合金全反射膜4に貼り合わせて積層したものである。   FIG. 1 shows a type in which data recorded in two layers is read by further bonding a transparent plastic substrate 1 provided with a semitransparent reflective film (semitransmissive film). As shown in FIG. 1, as a cross-sectional structure, an Ag alloy semi-transmissive film 2 is formed on a PC substrate 1, and the semi-transmissive film 2 is passed through a resin layer that is cured by ultraviolet rays (UV). And then laminated to the Ag alloy total reflection film 4 on the PC substrate 5.

(Ag合金反射膜組成)
本発明Ag合金反射膜の化学成分組成について、以下に説明する。本発明Ag合金反射膜の化学成分組成は、上記の通り説明した、光情報記録媒体用反射膜として、耐環境性や初期反射率などの基本的特性を有するために、Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%含有し、残部がAgおよび不可避的不純物からなるものとする。これに更に、選択的に、Biを0.01〜1 原子%、Cu、Auの一種または二種を合計で0.3〜5原子%含有しても良い。
(Ag alloy reflective film composition)
The chemical component composition of the Ag alloy reflective film of the present invention will be described below. Since the chemical composition of the Ag alloy reflective film of the present invention has basic characteristics such as environmental resistance and initial reflectivity as the reflective film for optical information recording media described above, Sm, Er, Tm, One or more elements selected from Tb are contained in a total amount of 0.1 to 5 atom%, and the balance is made of Ag and inevitable impurities. Furthermore, optionally, Bi may be contained in an amount of 0.01 to 1 atomic%, and one or two of Cu and Au may be contained in a total of 0.3 to 5 atomic%.

Sm、Er、Tm、Tb:
Sm、Er、Tm、Tbの特定元素は、後述する実施例で裏付ける通り、他の希土類元素などに比して、前記したAgが紫外線硬化樹脂層側へ拡散して凝集する劣化モードの抑制効果が大きい。しかもこの効果を長期間に亙って持続する作用がある。この結果、Ag合金反射膜の優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持でき、本発明で言う耐環境性が向上する。
Sm, Er, Tm, Tb:
The specific elements of Sm, Er, Tm, and Tb are, as will be explained in the examples described later, an effect of suppressing the deterioration mode in which Ag diffuses and aggregates toward the ultraviolet curable resin layer as compared with other rare earth elements. Is big. In addition, this effect is sustained over a long period of time. As a result, the excellent environmental resistance such as moisture and heat resistance and light resistance of the Ag alloy reflective film can be maintained over a long period of time, and the environmental resistance referred to in the present invention is improved.

この効果を発揮させるためには、Sm、Er、Tm、Tbから選択される一種または二種以上を合計で0.1〜5原子%の範囲でAgに含有させる。   In order to exhibit this effect, Ag or a mixture of one or more selected from Sm, Er, Tm, and Tb is added to Ag in the range of 0.1 to 5 atomic%.

Sm、Er、Tm、Tbの含有量が合計で0.1原子%未満では、含有量が少な過ぎて、前記した劣化モードの抑制効果、Ag合金反射膜の耐環境性向上効果が小さくなる。このため、Sm、Er、Tm、Tbから選択される元素の含有量の下限は、合計で0.1原子%とする。   If the total content of Sm, Er, Tm, and Tb is less than 0.1 atomic%, the content is too small, and the effect of suppressing the above-described deterioration mode and the effect of improving the environmental resistance of the Ag alloy reflective film are reduced. For this reason, the lower limit of the content of elements selected from Sm, Er, Tm, and Tb is set to 0.1 atomic% in total.

一方、Sm、Er、Tm、Tbから選択される元素の含有量は、合計で5原子%を越える必要は無い。これら元素の含有量が多過ぎると、初期反射率などの反射性能や半透過性能などの基本膜特性を低下させる。このため、Sm、Er、Tm、Tbから選択される元素の含有量の上限は合計で5原子%とする。   On the other hand, the total content of elements selected from Sm, Er, Tm, and Tb need not exceed 5 atomic%. When the content of these elements is too large, basic film properties such as reflection performance such as initial reflectance and semi-transmission performance are deteriorated. For this reason, the upper limit of the content of elements selected from Sm, Er, Tm, and Tb is set to 5 atomic% in total.

この他、耐環境性を向上させるために、反射膜としてのAg合金に、更にBiを0.01〜1 原子%含有するか、および/または、Cu、Auの一種または二種を合計で0.3〜5原子%含有しても良い。   In addition, in order to improve the environmental resistance, the Ag alloy as the reflective film further contains 0.01 to 1 atomic% of Bi and / or one or two of Cu and Au are 0 in total. .3 to 5 atomic% may be contained.

Bi:
Biは、Sm、Er、Tm、Tbから選択される特定の元素と共存(併用)することにより、前記したAgが紫外線硬化樹脂層側へ拡散して凝集する劣化モードを抑制して、Ag合金反射膜の耐環境性を向上させる効果がある。選択的にBiを含有させる場合には、その効果を発揮させるために0.01原子%以上含有させる。しかし、Biが多過ぎると、初期反射率などの反射性能や半透過性能などの基本的な反射膜特性を低下させる。このため、Biを1 原子%を超えて含有させる必要は無い。
Bi:
Bi coexists with (in combination with) a specific element selected from Sm, Er, Tm, and Tb, thereby suppressing the deterioration mode in which Ag diffuses and aggregates toward the ultraviolet curable resin layer side, and Ag alloy This has the effect of improving the environmental resistance of the reflective film. When Bi is selectively contained, it is contained in an amount of 0.01 atomic% or more in order to exert its effect. However, if there is too much Bi, basic reflection film characteristics such as reflection performance such as initial reflectance and semi-transmission performance are deteriorated. For this reason, it is not necessary to contain Bi exceeding 1 atomic%.

Cu、Au:
Cu、Auは、Sm、Er、Tm、Tbから選択される特定の元素と共存(併用)することにより、前記したAgが紫外線硬化樹脂層側へ拡散して凝集する劣化モードを抑制して、Ag合金反射膜の耐環境性を向上させる効果がある。選択的に、これら元素を含有させる場合には、その効果を発揮させるために、Cu、Auの一種または二種を合計で0.3原子%以上含有させる。しかし、これら元素が多過ぎると、初期反射率などの反射性能や半透過性能などの基本的な反射膜特性を低下させる。このため、Cu、Auの一種または二種を合計で5 原子%を超えて含有させる必要は無い。
Cu, Au:
Cu and Au coexist with a specific element selected from Sm, Er, Tm, and Tb (in combination), thereby suppressing the degradation mode in which Ag described above diffuses and aggregates toward the ultraviolet curable resin layer side, There is an effect of improving the environmental resistance of the Ag alloy reflective film. When these elements are selectively contained, in order to exert the effect, one or two of Cu and Au are contained in a total of 0.3 atomic% or more. However, when there are too many of these elements, basic reflective film characteristics, such as reflective performance, such as initial reflectance, and semi-transmissive performance, will be reduced. For this reason, it is not necessary to contain more than 5 atomic% of one or two of Cu and Au.

本発明Ag合金反射膜では、これら以外の元素は基本的に不純物であり、混入が不可避的な不純物について、本発明で目的とする耐環境性向上効果や反射膜としての基本的な特性を阻害しない範囲での含有は許容する。したがって、本発明Ag合金反射膜では、上記元素以外の組成は、残部がAgおよび不可避的不純物とする。   In the Ag alloy reflective film of the present invention, the elements other than these are basically impurities, and the impurities that are inevitable to be mixed in obstruct the basic characteristics as the reflective film and the effect of improving the environmental resistance aimed at by the present invention. Inclusion in a range not allowed is allowed. Therefore, in the Ag alloy reflective film of the present invention, the remainder of the composition other than the above elements is Ag and inevitable impurities.

(Ag合金反射膜の成膜)
本発明Ag合金反射膜は、PCなどの基板表面に、Ag合金からなるスパッタリングターゲットをスパッタリング乃至蒸着して成膜される。この際、スパッタリングターゲットを、本発明スパッタリングターゲットとして、前記した本発明組成のAg反射膜と同じあるいは近似する組成範囲のAg合金からなるものとすれば、本発明組成のAg反射膜が得られやすい。
(Formation of Ag alloy reflective film)
The Ag alloy reflective film of the present invention is formed by sputtering or evaporating a sputtering target made of an Ag alloy on the surface of a substrate such as PC. At this time, if the sputtering target is made of the present invention sputtering target and made of an Ag alloy having the same or similar composition range as the above-described Ag reflecting film of the present invention composition, an Ag reflecting film of the present invention composition can be easily obtained. .

即ち、Ag合金反射膜をSm、Er、Tm、Tbを含有するAg合金として成膜するスパッタリングターゲットとしては、Ag合金反射膜のSm、Er、Tm、Tb含有量に対応して、Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%の範囲で含有し、残部がAgおよび不可避的不純物からなるものとすることが好ましい。   That is, as a sputtering target for forming an Ag alloy reflective film as an Ag alloy containing Sm, Er, Tm, Tb, Sm, Er, corresponding to the Sm, Er, Tm, Tb content of the Ag alloy reflective film. It is preferable that one or two or more elements selected from Tm and Tb are contained in a total range of 0.1 to 5 atomic%, and the balance is made of Ag and inevitable impurities.

また、Ag合金反射膜に更にBiを選択的に含有させる場合には、Ag合金反射膜のBi含有量に応じて、上記Sm、Er、Tm、Tbに加え、Biを更に0.01〜1.5原子%含有するスパッタリングターゲットとすることが好ましい。この際、Bi特有の問題として、反射膜の膜厚が厚いほどスパッタリングされるBiがロスしやすくなり、Ag合金反射膜のBi含有量の方がターゲットのBi含有量よりも少なくなりやすい。このため、このロス分を見込んで、反射膜の膜厚によって、ターゲットの方のBi含有量を、Ag合金反射膜のBi含有量よりも多めにすることが好ましい。したがって、ターゲットの方の上記Bi含有量の上限はAg合金反射膜のBi含有量の上限よりも多めに設定している。   Further, in the case where Bi is further selectively contained in the Ag alloy reflective film, Bi is further added in an amount of 0.01 to 1 in addition to the above Sm, Er, Tm, and Tb depending on the Bi content of the Ag alloy reflective film. It is preferable to use a sputtering target containing 5 atomic%. At this time, as a problem peculiar to Bi, the thicker the reflective film, the easier it is to lose Bi that is sputtered, and the Bi content of the Ag alloy reflective film tends to be smaller than the Bi content of the target. For this reason, it is preferable that the Bi content of the target is made larger than the Bi content of the Ag alloy reflective film depending on the film thickness of the reflective film in consideration of this loss. Therefore, the upper limit of the Bi content of the target is set to be larger than the upper limit of the Bi content of the Ag alloy reflective film.

また、Ag合金反射膜に更にCu、Auを選択的に含有させる場合には、Ag合金反射膜のCu、Auの各含有量に対応して、上記Sm、Er、Tm、Tb、あるいはBiに加え、更にCu、Auの一種または二種を合計で0.3〜5原子%含有するスパッタリングターゲットとすることが好ましい。   Further, in the case where Cu and Au are further selectively contained in the Ag alloy reflective film, the above Sm, Er, Tm, Tb, or Bi are added corresponding to the contents of Cu and Au in the Ag alloy reflective film. In addition, it is preferable that the sputtering target further contains one or two of Cu and Au in a total amount of 0.3 to 5 atomic%.

なお、成膜可能であれば、Agと、Sm、Er、Tm、Tbなどの合金元素、Bi、Cu、Auなどの合金元素から各々別々になるか、あるいは、それらを含む、複数のスパッタリングターゲットを用い、成膜の結果として、本発明組成のAg反射膜を得るようにしても良い。   In addition, if it is possible to form a film, a plurality of sputtering targets that are separated from or contain Ag and alloy elements such as Sm, Er, Tm, and Tb, and alloy elements such as Bi, Cu, and Au, respectively. As a result of film formation, an Ag reflection film having the composition of the present invention may be obtained.

スパッタリング乃至蒸着方法は、これら薄膜の成膜法として公知および汎用されている方法が適宜使用できる。しかし、成膜の安定性では、DCマグネトロンスパッタリング法を用いることが好ましい。   As the sputtering or vapor deposition method, a known and widely used method for forming these thin films can be appropriately used. However, in terms of film formation stability, it is preferable to use a DC magnetron sputtering method.

使用するスパッタリングターゲットは、前記した本発明組成のAg反射膜と同じか、あるいはこれに近似する組成範囲のAg合金や、各合金要素から各々なる純金属、あるいは合金を一旦溶解して、板状など適宜の形状に鋳造するか、スプレイフォーミングなどの溶製法あるいは粉末冶金法によって、板状など適宜の形状に製造できる。   The sputtering target to be used is the same as the Ag reflection film of the present invention composition described above, or an Ag alloy having a composition range close to this, a pure metal composed of each alloy element, or an alloy, once melted to form a plate shape It can be cast into an appropriate shape such as a plate, or can be manufactured into an appropriate shape such as a plate shape by a melting method such as spray forming or a powder metallurgy method.

成膜された本発明Ag合金反射膜は、前記した、本発明光情報記録媒体として、光情報記録媒体として必要な断面構造や表面構造に、更に製作される。   The formed Ag alloy reflective film of the present invention is further manufactured as the above-described optical information recording medium of the present invention to have a cross-sectional structure and a surface structure necessary for the optical information recording medium.

(耐光性評価試験)
このように、本発明が対象とする光情報記録媒体 (光ディスク) は幾つかの種類があるものの、本発明における前記耐光性評価試験は、これら光情報記録媒体の種類にかかわらず、再現性のために、共通する条件とする。また、前記したAgが紫外線硬化樹脂層側へ拡散して凝集する劣化モードが発生しやすく、かつ、この劣化モードを長期に亙り抑制できる耐環境性向上効果が検証できる条件とする。このような条件とすれば、本発明が対象とする光情報記録媒体 (光ディスク) への適用適否の評価基準として、再現性良く適用できる。この点は、後述する耐湿熱性評価試験も同様である。
(Light resistance evaluation test)
As described above, although there are several types of optical information recording media (optical discs) targeted by the present invention, the light resistance evaluation test in the present invention is reproducible regardless of the types of these optical information recording media. Therefore, common conditions are used. Moreover, the above-described conditions are such that a degradation mode in which Ag diffuses and aggregates toward the ultraviolet curable resin layer is likely to occur, and that the environment resistance improvement effect that can suppress this degradation mode over a long period of time can be verified. Under such conditions, the present invention can be applied with good reproducibility as an evaluation standard for applicability to the optical information recording medium (optical disc) targeted by the present invention. This is the same for the moisture and heat resistance evaluation test described later.

本発明における耐光性評価試験は、Ag合金薄膜と紫外線硬化樹脂層とを接触させた状態で、順にポリカーボネート基板上に積層した光情報記録媒体に対して、波長がより短い次世代向けの波長405nmの光と現行向け波長650nmの光とを、少なくとも200時間照射し、この照射後の光情報記録媒体の反射率の変化を測定する。   In the light resistance evaluation test of the present invention, the wavelength of 405 nm for the next generation, which has a shorter wavelength with respect to the optical information recording medium sequentially laminated on the polycarbonate substrate in a state where the Ag alloy thin film and the ultraviolet curable resin layer are in contact with each other. And light with a current wavelength of 650 nm are irradiated for at least 200 hours, and the change in reflectance of the optical information recording medium after the irradiation is measured.

そして、この照射前後での光情報記録媒体の反射率の変化が、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)では、波長405nmの光では、3.5%以下であることを必須とし、好ましくは2%以下として、本発明の耐環境性性能の選択基準とする。また、波長650nmの光では、反射率の変化が1.5%以下であることを必須とし、好ましくは1.0%以下として、本発明の耐環境性性能の選択基準とする。   The change in the reflectance of the optical information recording medium before and after the irradiation is 3.5% or less for light having a wavelength of 405 nm in an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film. This is essential, and is preferably set to 2% or less as the selection criterion for the environmental resistance performance of the present invention. For light having a wavelength of 650 nm, it is essential that the change in reflectance is 1.5% or less, and preferably 1.0% or less, which is the selection criterion for the environmental resistance performance of the present invention.

全反射膜として平均膜厚が60nmと比較的厚いAg合金薄膜(反射膜)では、波長405nmの光では、この照射前後での光情報記録媒体の反射率の変化が3%以下であることを必須とし、好ましくは1%以下として、本発明の耐環境性の耐光性性能の選択基準とする。また、波長650nmの光では、反射率の変化が1.0%以下であることを必須とし、好ましくは0.5%以下として、本発明の耐環境性性能の選択基準とする。   In a comparatively thick Ag alloy thin film (reflective film) having an average film thickness of 60 nm as the total reflection film, the change in the reflectance of the optical information recording medium before and after this irradiation is 3% or less for light having a wavelength of 405 nm. The essential criteria, preferably 1% or less, are used as the selection criteria for the light resistance performance of the environment resistance of the present invention. For light having a wavelength of 650 nm, it is essential that the change in reflectance is 1.0% or less, and preferably 0.5% or less, which is used as the selection criterion for the environmental resistance performance of the present invention.

耐光性評価試験において、積層した光情報記録媒体に対して蛍光灯光を照射するに際し、反射率の測定波長は、上記した通り、次世代光ディスク(Blu-ray Disc、HD DVD)でデータの読み出し書き込みに使用される405nm、及び現行DVD に使用される650nmとする。耐光性評価試験の条件は、上記波長の光を照射できる色温度6700Kの蛍光灯をディスクから60mmの距離に保持して、蛍光灯光を照射する。試験温度は25℃で、上記した通り、照射保持時間は最低でも200時間を目安とし、これよりも長い400時間などを併用して評価しても良い。   In the light resistance evaluation test, when illuminating the laminated optical information recording medium with fluorescent light, the reflectance measurement wavelength is as described above for reading and writing data on the next-generation optical disc (Blu-ray Disc, HD DVD). 405 nm used for the current DVD and 650 nm used for the current DVD. The conditions of the light resistance evaluation test are that a fluorescent lamp having a color temperature of 6700K capable of irradiating light having the above-mentioned wavelength is held at a distance of 60 mm from the disk and is irradiated with fluorescent lamp light. The test temperature is 25 ° C., and as described above, the irradiation holding time is at least 200 hours as a guideline, and 400 hours longer than this may be used in combination for evaluation.

そして、この照射前後での光情報記録媒体の反射率の測定を、日本分光 (株) 製のV−570可視・紫外分光光度計を用い、次世代光ディスクおよび現行DVDでのデータの読み出し、書き込み波長にて測定する。   Then, the reflectance of the optical information recording medium before and after the irradiation is measured by using a V-570 visible / ultraviolet spectrophotometer manufactured by JASCO Corporation to read and write data on the next generation optical disc and the current DVD. Measure at wavelength.

(耐湿熱性評価試験)
耐湿熱性試験の条件は、耐光性に使用したのと同じ積層条件からなる光情報記録媒体を、温度80℃、湿度90%RHの湿熱環境下に、少なくとも200時間保持した。そして、この湿熱環境下での保持前後における光情報記録媒体の反射率の変化(反射率の絶対値変化)が、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)では、波長405nmの光で、2%以下であることを必須とし、好ましくは1%以下として、本発明の耐環境性性能の選択基準とする。また、波長650nmの光では、この湿熱環境下での保持前後における光情報記録媒体の反射率の変化(反射率の絶対値変化)が1%以下であることを必須とし、好ましくは0.5%以下として、本発明の耐環境性性能の選択基準とする。
(Moisture and heat resistance evaluation test)
The conditions of the wet heat resistance test were that an optical information recording medium having the same lamination conditions as used for light resistance was held for at least 200 hours in a wet heat environment at a temperature of 80 ° C. and a humidity of 90% RH. Then, the change in the reflectance of the optical information recording medium before and after the holding in the wet heat environment (change in the absolute value of the reflectance) is a wavelength in the case of an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film. It is essential that the light is 405 nm or less at 2% or less, and preferably 1% or less as the selection criterion for the environmental resistance performance of the present invention. For light with a wavelength of 650 nm, it is essential that the change in reflectance (change in absolute value of reflectance) of the optical information recording medium is 1% or less before and after holding in this humid heat environment, preferably 0.5%. % Or less, which is a selection criterion for the environmental resistance performance of the present invention.

全反射膜として平均膜厚が60nmと比較的厚いAg合金薄膜(反射膜)では、波長405nmの光で、この湿熱環境下での保持前後における光情報記録媒体の反射率の変化(反射率の絶対値変化)が1%以下であることを必須とし、好ましくは0.5%以下として、本発明の耐環境性の耐湿熱性性能の選択基準とする。また、波長650nmの光では、この湿熱環境下での保持前後における光情報記録媒体の反射率の変化(反射率の絶対値変化)が0.5%以下であることを必須とし、好ましくは0.3%以下として、本発明の耐環境性性能の選択基準とする。   In a comparatively thick Ag alloy thin film (reflective film) having an average film thickness of 60 nm as a total reflective film, the reflectance change (reflectance of the optical information recording medium) before and after holding in a wet and heat environment with light having a wavelength of 405 nm. It is essential that the absolute value change is 1% or less, and preferably 0.5% or less, which is used as a selection criterion for the environmental resistance of the present invention. For light having a wavelength of 650 nm, it is essential that the change in reflectance (change in absolute value of reflectance) of the optical information recording medium before and after holding in this humid heat environment is 0.5% or less, preferably 0. .3% or less is used as a selection criterion for the environmental resistance performance of the present invention.

この湿熱環境保持前後での光情報記録媒体の反射率の測定は、耐光性と同様に、日本分光 (株) 製V−570可視・紫外分光光度計を用い、次世代光ディスクおよび現行DVDでのデータの読み出し、書き込み波長にて測定する。   The measurement of the reflectance of the optical information recording medium before and after holding the wet heat environment is performed using the V-570 visible / ultraviolet spectrophotometer manufactured by JASCO Corporation, as well as the light resistance. Measure at data read / write wavelength.

(その他の評価試験条件)
これら耐光性と耐湿熱性の両評価試験に使用する光情報記録媒体試験体は、再現性のために同じものを使用することが好ましい。また、基板は再現性のためには、対象とする光情報記録媒体 (光ディスク) に使用されている基板と同じ基板を選択することが好ましい。これは基板の種類だけでなく、厚み×直径も同様である。例えば、光情報記録媒体に汎用されるポリカーボネート基板では、厚み×直径は、汎用されている0.6〜1.1mm厚×8〜12cm直径の範囲で良い。
(Other evaluation test conditions)
It is preferable to use the same optical information recording medium specimens for both the light resistance and wet heat resistance evaluation tests for reproducibility. For reproducibility, it is preferable to select the same substrate as that used for the target optical information recording medium (optical disc). This applies not only to the type of substrate, but also to the thickness × diameter. For example, in a polycarbonate substrate generally used for an optical information recording medium, the thickness × diameter may be in a range of 0.6 to 1.1 mm thickness × 8 to 12 cm diameter that is generally used.

また、Ag合金反射膜の上層に積層させて互いに接触させる、紫外線硬化樹脂層も、再現性のためには、対象とする光情報記録媒体 (光ディスク) に使用されている紫外線硬化樹脂と同じ樹脂を選択することが好ましい。これは紫外線硬化樹脂の種類だけでなく層の厚みも同様である。例えば、前記した再生専用型光ディスクのタイプでポリカーボネート基板の場合に汎用されている、紫外線硬化樹脂の厚み30〜120μm の範囲で良い。   In addition, an ultraviolet curable resin layer which is laminated on the upper layer of the Ag alloy reflective film and brought into contact with each other is also the same resin as the ultraviolet curable resin used for the target optical information recording medium (optical disk) for reproducibility. Is preferably selected. This applies not only to the type of UV curable resin but also to the thickness of the layer. For example, the thickness of the ultraviolet curable resin may be in the range of 30 to 120 μm, which is widely used in the case of a polycarbonate substrate in the above-described read-only optical disc type.

(初期反射率:基本特性)
本発明が対象とする光情報記録媒体 (光ディスク) では、以上説明した耐環境性もさることながら、基本的な特性として、当然ながら高い初期反射率が要求される。この点、本発明反射膜も、この要求を満たす高い初期反射率を有することが好ましい。
(Initial reflectance: basic characteristics)
The optical information recording medium (optical disc) targeted by the present invention naturally requires a high initial reflectance as a basic characteristic, in addition to the environmental resistance described above. In this respect, the reflective film of the present invention also preferably has a high initial reflectance that satisfies this requirement.

光情報記録媒体の初期反射率の測定は、日本分光 (株) 製V−570可視・紫外分光光度計を用い、次世代光ディスクおよび現行DVDでのデータの読み出し(読み取り)波長にて、絶対反射率を測定し、初期反射率とする。   The initial reflectivity of the optical information recording medium is measured by using the V-570 visible / ultraviolet spectrophotometer manufactured by JASCO Corporation, and the absolute reflection at the data reading (reading) wavelength on the next generation optical disc and the current DVD. The rate is measured and used as the initial reflectance.

このように測定した初期反射率として、本発明Ag合金反射膜では、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)では、405nm波長の光照射では20%以上、650nm波長の光照射では58%以上を各々合格ラインの選択基準とする。また、全反射膜として平均膜厚が60nmと比較的厚いAg合金薄膜(反射膜)では、405nm波長の光照射では77%以上、650nm波長の光照射では90%以上を各々合格ラインの選択基準とする。   As the initial reflectivity measured in this way, in the Ag alloy reflective film of the present invention, in the case of an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film, when irradiated with light of 405 nm wavelength, 20% or more and 650 nm wavelength. In light irradiation, 58% or more is used as a selection criterion for each passing line. In addition, in the case of a comparatively thick Ag alloy thin film (reflective film) with an average film thickness of 60 nm as a total reflection film, 77% or more for light irradiation at 405 nm wavelength and 90% or more for light irradiation at 650 nm wavelength, respectively. And

以下に、本発明の実施例を説明する。表1 〜4 に示す各Ag−X合金薄膜を、各例とも共通して、ポリカーボネート樹脂基板上に、DCマグネトロンスパッタリング法を用いて各々成膜し、この上層に紫外線硬化樹脂層を積層したものの耐久性を試験、評価した。これらの結果を表1〜表8の各表に、発明例、比較例別に各々示す。   Examples of the present invention will be described below. Each Ag-X alloy thin film shown in Tables 1 to 4 was commonly formed on a polycarbonate resin substrate using a DC magnetron sputtering method, and an ultraviolet curable resin layer was laminated on the upper layer. Durability was tested and evaluated. These results are shown in Tables 1 to 8 for each invention example and comparative example.

Ag−X合金薄膜の膜組成:
各表に示す、各Ag−X合金薄膜の膜組成は、誘導結合プラズマ(Inductively Coupled Plasma:ICP)質量分析法によって分析した。詳細には、Ag合金薄膜を分析試料として、これを硝酸:純水=1:1の酸溶液中に溶解し、この酸溶液を200℃のホットプレート上で加熱し、分析試料が酸溶液中に完全に溶解したことを確認してから室温まで冷却して、セイコーインスツルメント製ICP質量分析装置SPQ−8000を使用してAg合金薄膜中に含まれる各合金元素量を測定した。
Film composition of Ag-X alloy thin film:
The film composition of each Ag-X alloy thin film shown in each table was analyzed by inductively coupled plasma (ICP) mass spectrometry. Specifically, an Ag alloy thin film is used as an analysis sample, which is dissolved in an acid solution of nitric acid: pure water = 1: 1, and this acid solution is heated on a hot plate at 200 ° C. so that the analysis sample is in the acid solution. Then, after cooling to room temperature, the amount of each alloy element contained in the Ag alloy thin film was measured using an ICP mass spectrometer SPQ-8000 manufactured by Seiko Instruments.

成膜:
各例とも共通して、ポリカーボネート樹脂基板は、0.6mm厚×12cm直径のものを用いた。スパッタリングに用いたターゲットは、表1〜4に示す各Ag−X合金薄膜と同じ組成のものを溶製、製作して各々用いた。各Ag−X合金薄膜は平均膜厚15nmと60nmとに成膜した。このAg−X合金薄膜の上層に、Ag−X合金薄膜と接触する形で、市販のソニーケミカル社製: 紫外線硬化樹脂、型番:SK6500の層を50μm積層したものを、耐光性および耐湿熱性の評価試験用試料に各々用いた。
Film formation:
In common with each example, a polycarbonate resin substrate having a thickness of 0.6 mm × 12 cm was used. The target used for sputtering melted | dissolved and manufactured the thing of the same composition as each Ag-X alloy thin film shown in Tables 1-4, and each was used. Each Ag-X alloy thin film was formed with an average film thickness of 15 nm and 60 nm. On top of this Ag-X alloy thin film, a layer made of a commercially available Sony Chemical Co., Ltd. product: UV curable resin, model number: SK6500, 50 μm in contact with the Ag-X alloy thin film is light and moisture and heat resistant. Each sample was used for an evaluation test.

Unaxis社製、商品名:Cube Starである、DCマグネトロンスパッタリング装置による各Ag−X合金薄膜成膜条件は、共通して、基板温度:22℃、Arガス圧:2mTorr、成膜パワー密度1W/cm2 、背圧:5 ×10-6Torr以下とし、成膜時間によって膜厚を制御した。 Each Ag-X alloy thin film formation condition by a DC magnetron sputtering apparatus, trade name: Cube Star, manufactured by Unaxis, is commonly the substrate temperature: 22 ° C., Ar gas pressure: 2 mTorr, film formation power density 1 W / cm 2 , back pressure: 5 × 10 −6 Torr or less, and the film thickness was controlled by the film formation time.

初期反射率(純Ag反射膜の反射率に対する割合:%)、耐光性と耐湿熱性の反射率(試験前後での反射率の変化:%)は、各々前記した具体的な条件、方法で測定した。   The initial reflectivity (ratio to the reflectivity of the pure Ag reflective film:%) and the light and wet heat resistance reflectivity (change in reflectivity before and after the test:%) were respectively measured under the specific conditions and methods described above. did.

初期反射率:
表1、3、5、7の初期反射率評価では、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)で、405nm波長の光照射で、初期反射率が20%以上を○、20%未満を×、650nm波長の光照射で、初期反射率が58%以上を○、58%未満を×として評価した。
Initial reflectance:
In the initial reflectance evaluation of Tables 1, 3, 5, and 7, an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film, and an initial reflectance of 20% or more when irradiated with light having a wavelength of 405 nm , Less than 20% was evaluated as x, irradiation with light having a wavelength of 650 nm gave an initial reflectance of 58% or more as ◯, and less than 58% as x.

表2、4、6、8の初期反射率評価では、全反射膜として平均膜厚が60nmと比較的厚いAg合金薄膜(反射膜)で、405nm波長の光照射で、初期反射率が77%以上を○、77%未満を×、650nm波長の光照射で、初期反射率が90%以上を○、90%未満を×として評価した。   In the initial reflectance evaluation of Tables 2, 4, 6, and 8, the Ag reflection film is a relatively thick Ag alloy thin film (reflection film) having an average film thickness of 60 nm as the total reflection film. The above was evaluated as ○, less than 77% as x, irradiation with light having a wavelength of 650 nm, initial reflectivity as 90% or more as ○, and less than 90% as ×.

耐光性:
表1、3の耐光性評価では、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)の、405nm波長の光照射400時間後で、反射率変化が2%以内を◎、2〜3.5%の範囲を○、3.5%を超えるものを×、として評価した。また、650nm波長の光照射400時間後で、反射率変化が1%以内を◎、1〜1.5%の範囲を○、1.5%を超えるものを×、として各々評価した。
Light resistance:
In the light resistance evaluation of Tables 1 and 3, the reflectance change is within 2% after 400 hours of light irradiation at 405 nm wavelength of an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film. The range of ˜3.5% was evaluated as ○, and the range exceeding 3.5% was evaluated as ×. Further, after 400 hours of light irradiation at a wavelength of 650 nm, the reflectance change was evaluated as ◎, within 1%, ◯, within 1-1.5% range, and over 1.5% as x.

表2、4の耐光性評価では、全反射膜として平均膜厚が60nmのAg合金薄膜(反射膜)の、405nm波長の光照射400時間後で、反射率変化が1%以内を◎、1〜3%の範囲を○、3%を超えるものを×、として評価した。また、650nm波長の光照射400時間後で、反射率変化が0.5%以内を◎、0.5〜1%の範囲を○、1%を超えるものを×、として各々評価した。   In the light resistance evaluation shown in Tables 2 and 4, the change in reflectance is within 1% after 400 hours of light irradiation at a wavelength of 405 nm of an Ag alloy thin film (reflection film) having an average film thickness of 60 nm as a total reflection film. A range of .about.3% was evaluated as .largecircle. In addition, after 400 hours of light irradiation at a wavelength of 650 nm, the reflectance change was evaluated as ◎ when the change was within 0.5%, ◯ as the range of 0.5 to 1%, and × when it exceeded 1%.

耐湿熱性:
表5、7の耐湿熱性評価では、半透過膜として平均膜厚が15nmのAg合金薄膜(反射膜)の、前記湿熱環境下での200時間保持前後における405nm波長の光照射で、反射率変化が1%以内を◎、1〜2%の範囲を○、2%を超えるものを×、として評価した。また、前記湿熱環境下での200時間保持前後における650nm波長の光照射で、反射率変化が0.5%以内を◎、0.5〜1%の範囲を○、1%を超えるものを×、として各々評価した。
Moisture and heat resistance:
In the evaluation of moisture and heat resistance shown in Tables 5 and 7, the reflectance change is caused by light irradiation at a wavelength of 405 nm before and after holding for 200 hours in the wet heat environment of an Ag alloy thin film (reflective film) having an average film thickness of 15 nm as a semi-transmissive film. Of 1% or less was evaluated as ◎, a range of 1 to 2% was evaluated as ○, and a value exceeding 2% was evaluated as ×. Further, when the light is irradiated at a wavelength of 650 nm before and after holding for 200 hours in the wet heat environment, the reflectance change is within 0.5%, the range of 0.5 to 1% is over, and over 1% is over. , And each was evaluated.

表6、8の耐湿熱性評価では、全反射膜として平均膜厚が60nmのAg合金薄膜(反射膜)の、前記湿熱環境下での200時間保持前後における405nm波長の光照射で、反射率変化が0.5%以内を◎、0.5〜1%の範囲を○、1%を超えるものを×、として評価した。また、前記湿熱環境下での200時間保持前後における650nm波長の光照射で、反射率変化が0.3%以内を◎、0.3〜0.5%の範囲を○、0.5%を超えるものを×、として各々評価した。   In the evaluation of moisture and heat resistance shown in Tables 6 and 8, the reflectance change occurs when the Ag alloy thin film (reflective film) having an average film thickness of 60 nm as the total reflective film is irradiated with light having a wavelength of 405 nm before and after holding for 200 hours in the wet heat environment. Of 0.5% or less within the range of 0.5 to 1%, and over 1% was evaluated as x. In addition, when irradiated with light having a wavelength of 650 nm before and after holding for 200 hours in the wet heat environment, the reflectance change is within 0.3%, and the range of 0.3 to 0.5% is ◯, and 0.5%. Each exceeding was evaluated as x.

表1、2、5、6の各発明例1〜33は、Sm、Er、Tm、Tbを必須として適正含有量含む、同じ反射膜組成の発明例である。表3、4、7、8の各比較例44〜47は、Sm、Er、Tm、Tbを含むが、含有量が下限を下回って少な過ぎ、各比較例40〜43は、Sm、Er、Tm、Tbを含むが、含有量が上限を上回って多すぎる反射膜組成の比較例である。表3、4、7、8の各比較例34〜39、48〜54は、Sm、Er、Tm、Tbを含まず、他の希土類元素であるNd、Y、Sc、La、Se、Eu、Dyなどを含有量だけは適正量含む同じ反射膜組成の比較例である。また、表3、4、7、8の各比較例55は、前記特許文献5に相当する、Liを含有するAg反射膜例である。   Each invention example 1-33 of Table 1, 2, 5, 6 is an invention example of the same reflective film composition which contains Sm, Er, Tm, and Tb as essential, and contains appropriate content. Each of Comparative Examples 44 to 47 in Tables 3, 4, 7, and 8 contains Sm, Er, Tm, and Tb, but the content is too low below the lower limit, and each of Comparative Examples 40 to 43 includes Sm, Er, Although it contains Tm and Tb, it is a comparative example of a reflective film composition whose content exceeds the upper limit and is too much. Each of Comparative Examples 34 to 39 and 48 to 54 in Tables 3, 4, 7, and 8 does not contain Sm, Er, Tm, and Tb, and other rare earth elements Nd, Y, Sc, La, Se, Eu, This is a comparative example of the same reflective film composition containing only an appropriate amount of Dy and the like. In addition, each comparative example 55 in Tables 3, 4, 7, and 8 is an example of an Ag reflecting film containing Li, corresponding to Patent Document 5.

これら表1、2の発明例1〜33と、表3、4の比較例34〜55との対比、表5、6の発明例1〜33と、表7、8の比較例34〜55との対比の通り、発明例は比較例に比して、耐環境性が優れている。即ち、Sm、Er、Tm、Tbを必須として適正含有量含む上記各発明例は、上記各比較例に比して、初期反射率が同等であっても、耐光性試験と耐湿熱性試験とにおける反射率変化が著しく低く、耐環境性が優れている。   Comparison between Invention Examples 1 to 33 in Tables 1 and 2 and Comparative Examples 34 to 55 in Tables 3 and 4, Invention Examples 1 to 33 in Tables 5 and 6, and Comparative Examples 34 to 55 in Tables 7 and 8 As compared with the above, the inventive example has better environmental resistance than the comparative example. That is, each of the above invention examples containing Sm, Er, Tm, and Tb and containing the proper content in the light resistance test and the moist heat resistance test, even if the initial reflectance is equal to that of each of the above comparative examples. Reflectance change is extremely low and environmental resistance is excellent.

上記発明例は、耐光性や耐湿熱性などは試験時間が200時間もの長期に亙っても、また、特に耐光性試験時間が400時間もの長期に亙っても、耐環境性が優れている。しかも、これらの結果は、平均膜厚が異なる15nmの半透過膜と平均膜厚が60nmの全反射膜の場合、あるいは波長が異なる405nmと650nm波長の光照射の場合でも、全て共通している。   The above invention examples have excellent environmental resistance even when the test time is as long as 200 hours, especially when the light resistance test time is as long as 400 hours. . Moreover, these results are all the same even in the case of a semi-transmissive film having a different average film thickness of 15 nm and a total reflection film having an average film thickness of 60 nm, or in the case of irradiating light having wavelengths of 405 nm and 650 nm. .

したがって、これらの実施例の結果から、発明例1〜33のAg合金反射膜では、反射膜側のAgが隣接する紫外線硬化樹脂層側へ拡散、凝集する劣化モードが抑制され、耐湿熱性と耐光性とを合わせた耐環境性を向上させ、これら優れた耐環境性を長期に亙って維持できることが裏付けられる。また、本発明において、Sm、Er、Tm、Tbの特定元素を、反射膜の耐環境性の長期維持の観点から選別、選択することの意義も、その適正含有量範囲の意義を含めて裏付けられる。   Therefore, from the results of these Examples, in the Ag alloy reflective films of Invention Examples 1 to 33, the degradation mode in which Ag on the reflective film side diffuses and aggregates to the adjacent ultraviolet curable resin layer side is suppressed, and the moisture and heat resistance and light resistance are reduced. It is supported that the environmental resistance combined with the characteristics can be improved and these excellent environmental resistances can be maintained over a long period of time. In the present invention, the significance of selecting and selecting the specific elements of Sm, Er, Tm, and Tb from the viewpoint of long-term maintenance of the environmental resistance of the reflective film is supported, including the significance of the appropriate content range. It is done.

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

Figure 2008135149
Figure 2008135149

本発明によれば、特に金属反射膜と前記樹脂層とが直接接触する場合でも、優れた耐湿熱性や耐光性などの耐環境性を長期に亙って維持できる、光情報記録媒体用Ag合金反射膜、この反射膜を備えた光情報記録媒体、及び、この反射膜形成用のスパッタリングターゲットを提供できる。したがって、このような耐環境性が特に要求される、反射膜、この反射膜を備えた光情報記録媒体、及びこの反射膜の形成用のスパッタリングターゲットに好適、有用である。   According to the present invention, an Ag alloy for optical information recording media that can maintain environmental resistance such as excellent heat and moisture resistance and light resistance over a long period of time even when the metal reflective film and the resin layer are in direct contact with each other. A reflective film, an optical information recording medium including the reflective film, and a sputtering target for forming the reflective film can be provided. Therefore, the present invention is suitable and useful for a reflective film, an optical information recording medium provided with the reflective film, and a sputtering target for forming the reflective film, in which such environmental resistance is particularly required.

再生専用型光ディスクの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of a read-only optical disk.

符号の説明Explanation of symbols

1--ポリカーボネート基板、2--半透明反射膜(Ag合金)、3--樹脂層、
4--全反射膜(Ag合金)、5--ポリカーボネート基板
1--polycarbonate substrate, 2--translucent reflective film (Ag alloy), 3--resin layer,
4--Total reflection film (Ag alloy), 5--Polycarbonate substrate

Claims (9)

光情報記録媒体に用いられるAg合金反射膜であって、Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%含有し、残部がAgおよび不可避的不純物からなることを特徴とする耐環境性に優れた光情報記録媒体用Ag合金反射膜。   An Ag alloy reflective film used in an optical information recording medium, containing 0.1 to 5 atom% in total of one or more elements selected from Sm, Er, Tm, and Tb, with the balance being Ag and An Ag alloy reflective film for optical information recording media excellent in environmental resistance, characterized by comprising inevitable impurities. 前記Ag合金反射膜が、更にBiを0.01〜1 原子%含有する請求項1に記載の光情報記録媒体用Ag合金反射膜。   The Ag alloy reflective film for an optical information recording medium according to claim 1, wherein the Ag alloy reflective film further contains 0.01 to 1 atom% of Bi. 前記Ag合金反射膜が、更にCu、Auの一種または二種を合計で0.3〜5原子%含有する請求項1または2に記載の光情報記録媒体用Ag合金反射膜。   The Ag alloy reflective film for an optical information recording medium according to claim 1, wherein the Ag alloy reflective film further contains 0.3 to 5 atom% of one or two of Cu and Au in total. 請求項1乃至3のいずれかのAg合金反射膜を有していることを特徴とする耐環境性に優れた光情報記録媒体。   An optical information recording medium having excellent environmental resistance, comprising the Ag alloy reflective film according to claim 1. 前記光情報記録媒体が、透明基板と、金属反射膜と、この金属反射膜と直接接する、紫外線硬化樹脂層または有機色素記録層とを有している請求項4に記載の光情報記録媒体。   The optical information recording medium according to claim 4, wherein the optical information recording medium has a transparent substrate, a metal reflection film, and an ultraviolet curable resin layer or an organic dye recording layer in direct contact with the metal reflection film. Sm、Er、Tm、Tbから選択される元素の一種または二種以上を合計で0.1〜5原子%含有し、残部がAgおよび不可避的不純物からなるスパッタリングターゲット。   A sputtering target comprising 0.1 to 5 atom% in total of one or more elements selected from Sm, Er, Tm, and Tb, with the balance being made of Ag and inevitable impurities. 更にBiを0.01〜1.5原子%含有する請求項6に記載のスパッタリングターゲット。   Furthermore, the sputtering target of Claim 6 which contains 0.01-1.5 atomic% of Bi. 更にCu、Auの一種または二種を合計で0.3〜5原子%含有する請求項6または7に記載のスパッタリングターゲット。   Furthermore, the sputtering target of Claim 6 or 7 which contains 0.3-5 atomic% in total of 1 type or 2 types of Cu and Au. 用途が光情報記録媒体に用いられるAg合金反射膜形成用である請求項6乃至8のいずれか1項に記載のスパッタリングターゲット。   The sputtering target according to any one of claims 6 to 8, wherein the sputtering target is used for forming an Ag alloy reflective film used for an optical information recording medium.
JP2007218256A 2006-10-25 2007-08-24 Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium Active JP4099517B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218256A JP4099517B1 (en) 2006-10-25 2007-08-24 Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006290238 2006-10-25
JP2007218256A JP4099517B1 (en) 2006-10-25 2007-08-24 Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium

Publications (2)

Publication Number Publication Date
JP4099517B1 JP4099517B1 (en) 2008-06-11
JP2008135149A true JP2008135149A (en) 2008-06-12

Family

ID=39559888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218256A Active JP4099517B1 (en) 2006-10-25 2007-08-24 Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium

Country Status (1)

Country Link
JP (1) JP4099517B1 (en)

Also Published As

Publication number Publication date
JP4099517B1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP2008156753A (en) Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM
CN1901054B (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
KR100789059B1 (en) Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
JP3365762B2 (en) Reflective layer or translucent reflective layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
JP4527624B2 (en) Optical information medium having Ag alloy reflective film
KR100445083B1 (en) Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
JP4377877B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
TWI336471B (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
JP4320000B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
US7033730B2 (en) Silver-reactive metal alloys for optical data storage and recordable storage media containing same
US20120196118A1 (en) Ag base alloy thin film and sputtering target for forming ag base alloy thin film
JP2006240289A (en) Recording film for optical information recording medium, optical information recording medium and sputtering target
JP2002319185A (en) Silver alloy for reflection film for optical recording disk
WO2005056851A1 (en) Silver alloy excelling in performance of reflectance maintenance
WO2005056850A1 (en) Silver alloy excelling in performance of reflectance maintenance
JP4099517B1 (en) Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium
JP4099516B2 (en) Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium
JP4540687B2 (en) Read-only optical information recording medium
WO2008026601A1 (en) Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM FORMATION
JP4328310B2 (en) Reflective film for optical information recording medium and optical information recording medium
TW200941477A (en) Reflective film and semi-transmissive reflective film of optical information recording medium, sputtering target for producing the films, and optical information recording medium
JP4320003B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
WO2010030004A1 (en) Read-only optical information recording medium, and sputtering target for forming reflecting film for the optical information recording medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Ref document number: 4099517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6