JP4320003B2 - Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target - Google Patents

Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target Download PDF

Info

Publication number
JP4320003B2
JP4320003B2 JP2005179607A JP2005179607A JP4320003B2 JP 4320003 B2 JP4320003 B2 JP 4320003B2 JP 2005179607 A JP2005179607 A JP 2005179607A JP 2005179607 A JP2005179607 A JP 2005179607A JP 4320003 B2 JP4320003 B2 JP 4320003B2
Authority
JP
Japan
Prior art keywords
film
reflective film
optical information
information recording
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005179607A
Other languages
Japanese (ja)
Other versions
JP2006048899A (en
Inventor
勝寿 高木
裕基 田内
淳一 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005179607A priority Critical patent/JP4320003B2/en
Publication of JP2006048899A publication Critical patent/JP2006048899A/en
Application granted granted Critical
Publication of JP4320003B2 publication Critical patent/JP4320003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、CD(Compact Disc)、DVD(Digital Versatile Disc)、Blu-ray Disc、HD DVD等の光情報記録媒体の分野において、高耐凝集性、高耐光性、高耐熱性を有し、なおかつ高反射率、高透過率、低吸収率、高熱伝導率も有する光情報記録媒体用半透過反射膜と反射膜、及びそれらの半透過反射膜又は反射膜の成膜に使用される光情報記録媒体用スパッタリングターゲット、並びにそれらの半透過反射膜又は反射膜を備える光情報記録媒体に関するものである。   In the field of optical information recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), Blu-ray Disc, HD DVD, etc., the present invention has high aggregation resistance, high light resistance, high heat resistance, Moreover, the semi-transmissive reflective film and reflective film for optical information recording media having high reflectivity, high transmittance, low absorption rate, and high thermal conductivity, and optical information used for film formation of these semi-transmissive reflective film or reflective film The present invention relates to a sputtering target for a recording medium, and an optical information recording medium provided with a transflective film or a reflective film thereof.

光情報記録媒体(光ディスク)にはいくつかの種類があり、記録再生方式から再生専用型、追記型、書換型の三種類に大別される。また、一般的な片面一層の光ディスクに対して、大記録容量化の観点から開発された片面多層の光ディスクもある。例えば、片面二層光ディスクの場合、レーザー光の入射に遠い側の記録層で信号の記録や再生を行うには、レーザー光を入射に近い側の記録層を透過させ、遠い側の記録層で反射させ、再び近い側の記録層を透過させる必要がある。したがって、レーザー光の入射に近い側の記録層にはレーザー光を反射させ、また透過させることも可能な半透過反射膜が使用される。   There are several types of optical information recording media (optical disks), and they are roughly classified into three types: recording / reproducing systems, reproduction-only type, write-once type, and rewritable type. Also, there is a single-sided multilayer optical disc developed from the viewpoint of increasing the recording capacity, compared to a general single-sided optical disc. For example, in the case of a single-sided dual-layer optical disc, in order to perform signal recording or reproduction on the recording layer far from the incidence of laser light, the laser light is transmitted through the recording layer near the incidence, and the recording layer on the far side It is necessary to reflect and transmit the recording layer on the near side again. Therefore, a transflective film that can reflect and transmit the laser light is used for the recording layer on the side close to the incidence of the laser light.

半透過反射膜として機能する材料には、Ag、Al、Au、Pt、Rh、Cr等の金属や、Si、Ge等の単元素半導体が挙げられる。これらの材料の中でも、(1)光の効率(=反射率+透過率)が高く、(2)Blu-ray DiscやHD DVDで使用される青紫色レーザー(波長:405 nm)に対して高反射率を示し、(3)信号記録時に記録膜から発せられる熱を適切に熱拡散させるための高熱伝導率を示す、純AgあるいはAgを主成分とするAg合金が注目されている。このAg系の材料は、光ディスクの半透過反射膜として優れた性能、つまり高反射率、高透過率、低吸収率(吸収率=100%−(反射率+透過率))、高熱伝導率を有するものではあるが、長期信頼性が得られる光ディスクの半透過反射膜として機能するには、Ag系材料の課題である〔1〕耐凝集性、〔2〕耐光性、〔3〕耐熱性を改善する必要がある。   Examples of the material that functions as a semi-transmissive reflective film include metals such as Ag, Al, Au, Pt, Rh, and Cr, and single element semiconductors such as Si and Ge. Among these materials, (1) light efficiency (= reflectance + transmittance) is high, and (2) high against the blue-violet laser (wavelength: 405 nm) used in Blu-ray Disc and HD DVD. Attention has been focused on pure Ag or Ag alloy containing Ag as a main component, which shows reflectivity and (3) high thermal conductivity for appropriately diffusing heat generated from a recording film during signal recording. This Ag-based material has excellent performance as a transflective film for optical disks, that is, high reflectivity, high transmittance, low absorptivity (absorbance = 100% − (reflectance + transmittance)), and high thermal conductivity. In order to function as a semi-transmissive reflective film for optical discs that have long-term reliability, the Ag-based materials are subject to [1] aggregation resistance, [2] light resistance, and [3] heat resistance. There is a need to improve.

〔課題1〕耐凝集性:Ag系の材料は熱やハロゲン(フッ素、塩素、臭素、ヨウ素など)の影響を受けて凝集しやすく、光ディスクの信頼性試験が行われる高温高湿環境下、あるいはハロゲンを含む有機材料(有機色素記録膜、保護層、接着剤層)と積層される状態に保持されると、凝集に伴う薄膜の表面粗度増加や不連続膜化が起こり、半透過反射膜や反射膜としての機能が劣化する問題がある。   [Problem 1] Aggregation resistance: Ag-based materials are likely to agglomerate under the influence of heat and halogen (fluorine, chlorine, bromine, iodine, etc.), in a high-temperature and high-humidity environment where optical disk reliability testing is performed, or When held in a state of being laminated with a halogen-containing organic material (organic dye recording film, protective layer, adhesive layer), the surface roughness of the thin film increases or becomes discontinuous due to aggregation, resulting in a transflective film There is a problem that the function as a reflective film deteriorates.

〔課題2〕耐光性:例えば、片面二層の再生専用型光ディスクは、基本的にポリカーボネート(PC)基板\半透過反射膜\接着剤層\全反射膜\PC基板の断面構造からなる。この光ディスクに対して耐光性試験と称するXeランプ(太陽光に似たスペクトルのランプ)の照射を行うと、半透過反射膜がAg系材料の場合に限って反射率の低下が起こり、再生信号を検出可能な反射率の下限を下回った時点で、信号を再生することが不可能となる問題がある。   [Problem 2] Light resistance: For example, a single-sided dual-layer read-only optical disc basically has a cross-sectional structure of polycarbonate (PC) substrate \ transflective film \ adhesive layer \ total reflection film \ PC substrate. When this optical disk is irradiated with an Xe lamp (lamp having a spectrum similar to sunlight) called a light resistance test, the reflectance decreases only when the transflective film is made of an Ag-based material, and a reproduction signal is generated. There is a problem that it becomes impossible to reproduce the signal when the value falls below the lower limit of the reflectivity at which the signal can be detected.

〔課題3〕耐熱性:例えば、片面二層の追記型光ディスクは、基本的にPC基板\記録膜\半透過反射膜\スペーサー\記録膜\全反射膜\PC基板の断面構造からなり、また片面二層の書換型光ディスクは、基本的にPC基板\誘電体保護膜\界面層\記録膜\界面層\誘電体保護膜\半透過反射膜\中間層\誘電体保護膜\界面層\記録膜\界面層\誘電体保護膜\全反射膜\PC基板の断面構造からなる。これら追記型や書換型を含む記録型光ディスクでは、信号記録時に記録膜が300〜600 ℃まで昇温されるため、半透過反射膜や反射膜が受ける熱負荷は非常に厳しく、熱負荷の影響で起こる薄膜の結晶粒成長や不連続膜化が、半透過反射膜や反射膜としての機能を劣化させる問題がある。   [Problem 3] Heat resistance: For example, a single-sided dual-layer write-once optical disk basically consists of a PC substrate \ recording film \ transflective film \ spacer \ recording film \ total reflection film \ PC substrate cross-section, A rewritable optical disc with two layers on one side is basically a PC substrate \ dielectric protective film \ interface layer \ recording film \ interface layer \ dielectric protective film \ transflective film \ intermediate layer \ dielectric protective film \ interface layer \ It consists of a cross-sectional structure of recording film \ interface layer \ dielectric protective film \ total reflection film \ PC board. In these recordable optical discs including write once and rewritable, the recording film is heated to 300-600 ° C. during signal recording, so the heat load applied to the transflective film and the reflective film is very severe, and the influence of the heat load The crystal grain growth and discontinuous film formation that occur in the above-mentioned cases have a problem of deteriorating the function as a semi-transmissive reflective film or reflective film.

これまでに、純Agの改善(主に合金化の)例として、次のようなものが報告されている。例えば、特許文献1などではAgにAu、Pd、Cu、Rh、Ru、Os、Ir、Ptを添加することによって、あるいは特許文献2及び特許文献3などではAgにAu、Pd、Cu、Rh、Ru、Os、Ir、Be、Ptを添加することによって、さらには特許文献4と特許文献5などではAgにPd、Cuを添加することによって、耐腐食性を改善させる方法が提示されている。また、本発明者らが特許文献6において、AgにNdを添加することにより組織安定性(Agの拡散が抑制され、結晶粒成長が抑制されるという意味での組織安定性)を改善させる方法を提示している。   So far, the following has been reported as an example of improvement (mainly alloying) of pure Ag. For example, in Patent Document 1, Au, Pd, Cu, Rh, Ru, Os, Ir, and Pt are added to Ag, or in Patent Document 2 and Patent Document 3, Au, Pd, Cu, Rh, Methods of improving corrosion resistance by adding Ru, Os, Ir, Be, and Pt, and further by adding Pd and Cu to Ag are proposed in Patent Documents 4 and 5, for example. In addition, in Patent Document 6, the inventors improve the structure stability (structure stability in the sense that Ag diffusion is suppressed and crystal grain growth is suppressed) by adding Nd to Ag. Presents.

しかしながら、高反射率、高透過率、低吸収率、高熱伝導率を有しつつも、高耐凝集性、高耐光性、高耐熱性をも有するAg基合金は見出されておらず、これら全ての要求特性を兼ね備えるAg基合金が強く求められている。
米国特許6007889号明細書 米国特許6280811号明細書 特表2002-518596号公報 米国特許5948497号明細書 特開平6-208732号公報 特許第3365762号公報
However, Ag-based alloys having high agglomeration resistance, high light resistance and high heat resistance while having high reflectance, high transmittance, low absorption rate, and high thermal conductivity have not been found. There is a strong demand for an Ag-based alloy that has all the required characteristics.
US Patent No. 6007889 US Pat. No. 6,280,811 JP 2002-518596 A US Pat. No. 5,948,497 JP-A-6-208732 Japanese Patent No. 3365762

本発明は以上のような状況に鑑みてなされたもので、その目的は、純Agや従来のAg合金が満たし得ない高耐凝集性、高耐光性、高耐熱性と高反射率、高透過率、低吸収率、高熱伝導率とを兼ね備えるAg基合金を見出すことにより、優れた記録再生特性と長期信頼性が得られる光情報記録媒体用半透過反射膜と反射膜、及びそれらの半透過反射膜又は反射膜の成膜に使用される光情報記録媒体用スパッタリングターゲット、並びにそれらの半透過反射膜又は反射膜を備える光情報記録媒体を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is high aggregation resistance, high light resistance, high heat resistance, high reflectance, and high transmission that cannot be satisfied by pure Ag or conventional Ag alloys. , Low absorptivity, and high thermal conductivity, finding a translucent reflective film and a reflective film for optical information recording media, and their transflective properties, which can provide excellent recording / reproduction characteristics and long-term reliability. It is an object of the present invention to provide a sputtering target for an optical information recording medium used for forming a reflective film or a reflective film, and an optical information recording medium provided with a transflective film or a reflective film thereof.

請求項1の発明は、Liを0.01〜10原子%含有すると共に、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種を合計で0.1〜2原子%、および/または、Au、Rh、Pbから選ばれる少なくとも1種を合計で0.1〜3原子%含有するAg基合金であることを特徴とする光情報記録媒体用Ag基合金半透過反射膜又は反射膜である。 The invention of claim 1 contains Li in an amount of 0.01 to 10 atomic% and includes La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is an Ag-based alloy containing a total of at least one selected from 0.1 to 2 atomic% and / or at least one selected from Au, Rh, and Pb in a total of 0.1 to 3 atomic%. An Ag-based alloy semi-transmissive reflective film or reflective film for an optical information recording medium is characterized.

請求項2の発明は、Biを0.005〜0.8原子%含有するものである請求項1に記載の光情報記録媒体用Ag基合金半透過反射膜又は反射膜である。   The invention of claim 2 is the Ag-based alloy transflective film or reflective film for optical information recording media according to claim 1, which contains 0.005 to 0.8 atomic% of Bi.

請求項3の発明は、請求項1または2に記載のAg基合金半透過反射膜を備えることを特徴とする光情報記録媒体である。 A third aspect of the present invention is an optical information recording medium comprising the Ag-based alloy transflective film according to the first or second aspect .

請求項4の発明は、請求項1または2に記載のAg基合金反射膜を備えることを特徴とする光情報記録媒体である。 A fourth aspect of the present invention is an optical information recording medium comprising the Ag-based alloy reflective film according to the first or second aspect .

請求項5の発明は、Liを0.01〜10原子%含有すると共に、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種を合計で0.1〜2原子%、および/または、Au、Rh、Pbから選ばれる少なくとも1種を合計で0.1〜3原子%含有するAg基合金であることを特徴とする光情報記録媒体用Ag基合金スパッタリングターゲットである。 The invention of claim 5 contains Li in an amount of 0.01 to 10 atomic% and includes La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is an Ag-based alloy containing a total of at least one selected from 0.1 to 2 atomic% and / or at least one selected from Au, Rh, and Pb in a total of 0.1 to 3 atomic%. An Ag-based alloy sputtering target for an optical information recording medium is characterized.

請求項6の発明は、Biを0.005〜0.8原子%含有するものである請求項5に記載の光情報記録媒体用Ag基合金スパッタリングターゲットである。 The invention of claim 6 is the Ag-based alloy sputtering target for optical information recording media according to claim 5, which contains Bi in an amount of 0.005 to 0.8 atomic% .

本発明の光情報記録媒体用半透過反射膜と反射膜は、前述のように高耐凝集性、高耐光性、高耐熱性と高反射率、高透過率、低吸収率、高熱伝導率とを兼ね備えるため、光情報記録媒体の記録再生特性と長期信頼性を格段に高めることが可能となる。また、本発明のスパッタリングターゲットは、前述の半透過反射膜あるいは反射膜の成膜に好適に使用され、これを用いて成膜された半透過反射膜や反射膜は合金組成と合金元素分布と膜厚膜面内均一性に優れ、かつ不純物成分の含有量が少ないため、半透過反射膜又は反射膜としての高性能が良好に発揮され、記録再生特性と長期信頼性に優れた光情報記録媒体が生産可能となる。そして、本発明の光情報記録媒体は、記録再生特性と長期信頼性を格段に高めることが可能となる。   As described above, the transflective film and reflective film for an optical information recording medium of the present invention have high aggregation resistance, high light resistance, high heat resistance and high reflectance, high transmittance, low absorption, and high thermal conductivity. Therefore, the recording / reproducing characteristics and long-term reliability of the optical information recording medium can be remarkably improved. Further, the sputtering target of the present invention is suitably used for the above-described semi-transmissive reflective film or reflective film, and the semi-transmissive reflective film and reflective film formed using the above-described semi-transmissive reflective film or reflective film have an alloy composition and an alloy element distribution. Optical information recording with excellent in-plane film uniformity and low impurity component content, providing high performance as a semi-transmissive reflective film or reflective film, and excellent recording / reproduction characteristics and long-term reliability Media can be produced. The optical information recording medium of the present invention can greatly improve recording / reproduction characteristics and long-term reliability.

本発明者らは、前述したような課題の下で、高耐凝集性、高耐光性、高耐熱性と高反射率、高透過率、低吸収率、高熱伝導率とを兼ね備える光情報記録媒体用Ag基合金半透過反射膜と反射膜を提供するべく、鋭意研究を重ねてきた。すなわち、種々のAg基合金スパッタリングターゲットを使用し、スパッタリング法によって種々の合金組成からなるAg基合金薄膜を成膜し、これらの膜組成、耐凝集性、耐光性、耐熱性、反射率、透過率、吸収率、熱伝導率を評価した。その結果、Liを0.01〜10原子%含有するAg基合金薄膜が、純Ag薄膜や従来のAg基合金薄膜を凌駕する優れた耐凝集性、耐光性、耐熱性と高反射率、高透過率、低吸収率、高熱伝導率とを兼ね備えることを見出し、本発明を完成した。   Under the above-mentioned problems, the present inventors have provided an optical information recording medium having high aggregation resistance, high light resistance, high heat resistance, high reflectance, high transmittance, low absorption, and high thermal conductivity. In order to provide an Ag-based alloy semi-transmissive reflective film and a reflective film for use, extensive research has been conducted. In other words, various Ag-based alloy sputtering targets were used to form Ag-based alloy thin films having various alloy compositions by sputtering, and these film compositions, aggregation resistance, light resistance, heat resistance, reflectance, transmission The rate, absorption rate, and thermal conductivity were evaluated. As a result, the Ag-based alloy thin film containing Li in an amount of 0.01 to 10 atomic% is superior to the pure Ag thin film and the conventional Ag-based alloy thin film in that it has excellent aggregation resistance, light resistance, heat resistance and high reflectivity, high The present invention was completed by finding that it has transmittance, low absorption rate, and high thermal conductivity.

本発明者らは、Liを含有するAg基合金薄膜が、純Ag薄膜や従来のAg基合金薄膜に比較して、特に耐光性に優れていることを明らかにした。例えば、PC基板\半透過反射膜\接着剤層\全反射膜\PC基板を基本断面構造とする片面二層の再生専用型光ディスクにXeランプ(太陽光に似たスペクトルのランプ)による光照射を行うと、半透過反射膜がAg系材料の場合に限り、反射率の低下が起こる。これは光照射によってAgがイオン化し、Agイオンが隣接するPC基板及び/又は接着剤層へ拡散することにより生じる現象である。本発明のLiを含有するAg基合金薄膜では、Agよりイオン化傾向が大きいLiの犠牲防食効果、つまりLiの優先的なイオン化によってAgのイオン化が抑制され、光照射による反射率低下が抑えられ、耐光性が改善される。さらに、Liを含有するAg基合金薄膜は、耐光性に優れているだけではなく、Ag系材料の課題である耐凝集性、耐熱性も改善され、しかもAg系材料の特長である高反射率、高透過率、低吸収率、高熱伝導率も兼ね備える最良のAg基合金薄膜であることを明らかにした。   The present inventors have clarified that the Ag-based alloy thin film containing Li is particularly excellent in light resistance as compared with a pure Ag thin film and a conventional Ag-based alloy thin film. For example, Xe lamp (lamp with a spectrum similar to sunlight) is irradiated onto a single-sided, dual-layer read-only optical disk with a basic cross-sectional structure of PC substrate / semi-transmissive reflective film / adhesive layer / total reflective film / PC substrate. When this is performed, the reflectance decreases only when the transflective film is an Ag-based material. This is a phenomenon that occurs when Ag is ionized by light irradiation and Ag ions diffuse to the adjacent PC substrate and / or adhesive layer. In the Ag-based alloy thin film containing Li according to the present invention, the sacrificial anticorrosion effect of Li, which has a higher ionization tendency than Ag, that is, preferential ionization of Li, suppresses ionization of Ag, and suppresses a decrease in reflectance due to light irradiation. Light resistance is improved. Furthermore, the Ag-based alloy thin film containing Li is not only excellent in light resistance but also improved in the aggregation resistance and heat resistance, which are the problems of Ag-based materials, and also has the high reflectivity that is a feature of Ag-based materials. It has been clarified that it is the best Ag-based alloy thin film having high transmittance, low absorption rate and high thermal conductivity.

本発明の光情報記録媒体用Ag基合金半透過反射膜及び反射膜は、Liを0.01〜10%(以下、特記しない限り原子%を表す)含有するところに特徴を有する。Liの含有は、その含有量の増加にともなって、より明確な耐光性、耐凝集性、耐熱性向上効果が得られるものの、反射率・透過率・熱伝導率の低下と、吸収率の増加を引き起こす。したがって、本発明ではLiの含有量を0.01〜10%とする。Liの含有量が0.01%未満の場合は高耐光性、高耐凝集性、高耐熱性が得られないため好ましくなく、一方、Liの含有量が10%を超える場合は高反射率、高透過率、低吸収率、高熱伝導率が得られないため好ましくない。したがって、Liの好ましい含有量は0.01〜10%、より好ましい含有量は0.05〜8%、より一層好ましい含有量は0.1〜6%である。   The Ag-based alloy transflective film and reflective film for optical information recording media of the present invention is characterized by containing Li in an amount of 0.01 to 10% (hereinafter referred to as atomic% unless otherwise specified). The content of Li increases with increasing content, but a clearer light resistance, agglomeration resistance, and heat resistance improvement effect can be obtained, but the reflectance, transmittance, and thermal conductivity decrease and the absorption increases. cause. Therefore, in the present invention, the content of Li is set to 0.01 to 10%. When the Li content is less than 0.01%, high light resistance, high aggregation resistance, and high heat resistance cannot be obtained, which is not preferable. On the other hand, when the Li content exceeds 10%, high reflectance is obtained. It is not preferable because high transmittance, low absorption rate, and high thermal conductivity cannot be obtained. Therefore, the preferable content of Li is 0.01 to 10%, the more preferable content is 0.05 to 8%, and the still more preferable content is 0.1 to 6%.

なお、本発明の光情報記録媒体用Ag基合金半透過反射膜及び反射膜に、耐凝集性と耐熱性と耐食性をさらに向上させる目的で、Biを含有させることも有効である。Biの含有量について、0.005%未満の場合は耐凝集性と耐熱性と耐食性のさらなる向上効果が得られず、0.8%を超える場合は高反射率、高透過率、低吸収率、高熱伝導率が得られないため、含有量を0.005〜0.8%とし、好ましくは0.01〜0.6%、より好ましくは0.05〜0.4%とする。   It is also effective to add Bi to the Ag-based alloy transflective film for optical information recording medium and the reflective film of the present invention for the purpose of further improving the aggregation resistance, heat resistance and corrosion resistance. When the Bi content is less than 0.005%, no further effect of improving the aggregation resistance, heat resistance and corrosion resistance can be obtained, and when it exceeds 0.8%, the high reflectance, high transmittance and low absorption are obtained. Since high thermal conductivity cannot be obtained, the content is set to 0.005 to 0.8%, preferably 0.01 to 0.6%, more preferably 0.05 to 0.4%.

また、本発明の光情報記録媒体用Ag基合金半透過反射膜及び反射膜に、耐凝集性と耐熱性をさらに向上させる目的で、希土類金属元素のSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種を合計で0.1〜2%含有させることも有効である。この希土類金属元素としてはNd及び/又はYが特に有効である。希土類金属元素の総含有量について、0.1%未満の場合は耐凝集性と耐熱性のさらなる向上効果が得られず、2%を超える場合は高反射率、高透過率、低吸収率、高熱伝導率が得られないため、総含有量を0.1〜2%とし、好ましくは0.2〜1%、より好ましくは0.3〜0.5%とする。   In addition, in order to further improve the aggregation resistance and heat resistance of the Ag-based alloy transflective film and reflective film for optical information recording media of the present invention, rare earth metal elements Sc, Y, La, Ce, Pr, Nd , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, it is also effective to contain 0.1 to 2% in total. Nd and / or Y is particularly effective as the rare earth metal element. When the total content of the rare earth metal elements is less than 0.1%, further improvement effects of the aggregation resistance and heat resistance cannot be obtained. When the total content exceeds 2%, high reflectance, high transmittance, low absorption rate, Since high thermal conductivity cannot be obtained, the total content is 0.1 to 2%, preferably 0.2 to 1%, more preferably 0.3 to 0.5%.

さらに、本発明の光情報記録媒体用Ag基合金半透過反射膜及び反射膜に、耐食性をさらに向上させる目的で、Cu、Au、Rh、Pd、Ptから選ばれる少なくとも1種を含有させることも有効である。Cu、Au、Rh、Pd、Ptから選ばれる少なくとも1種の総含有量について、0.1%未満の場合は耐食性のさらなる向上効果が得られず、3%を超える場合は高反射率、高透過率、低吸収率、高熱伝導率が得られないため、総含有量を0.1〜3%とし、好ましくは0.2〜2%、より好ましくは0.3〜1%とする。   Furthermore, at least one selected from Cu, Au, Rh, Pd, and Pt may be contained in the Ag-based alloy transflective film for optical information recording medium and the reflective film of the present invention for the purpose of further improving the corrosion resistance. It is valid. When the total content of at least one selected from Cu, Au, Rh, Pd, and Pt is less than 0.1%, a further improvement effect of corrosion resistance cannot be obtained. Since transmittance, low absorption rate, and high thermal conductivity cannot be obtained, the total content is set to 0.1 to 3%, preferably 0.2 to 2%, more preferably 0.3 to 1%.

本発明の光情報記録媒体用Ag基合金半透過反射膜とは、レーザー光の入射方向に対して片面多層光ディスクで最も奥の記録層以外の記録層において透過と反射を機能させる薄膜のことで、透過率はおおよそ45〜80%、反射率はおおよそ5〜30%である。また、その膜厚は、これらの透過率と反射率を満たす範囲で適宜決定すればよいが、標準的には5〜25nmとすればよい。   The Ag-based alloy transflective film for optical information recording media of the present invention is a thin film that functions to transmit and reflect in a recording layer other than the innermost recording layer in a single-sided multilayer optical disk with respect to the incident direction of laser light. The transmittance is about 45 to 80%, and the reflectance is about 5 to 30%. Further, the film thickness may be determined as appropriate within a range satisfying these transmittance and reflectance, but it may be typically 5 to 25 nm.

また、本発明の光情報記録媒体用Ag基合金反射膜とは、片面単層光ディスクの反射膜、もしくはレーザー光の入射方向に対して片面多層光ディスクで最も奥の記録層における反射膜のことで、反射率はおおよそ50%以上、透過率はほぼ0%である。また、その膜厚は、これらの反射率と透過率を満たす範囲で適宜決定すればよいが、標準的には50〜250nmとすればよい。   The Ag-based alloy reflective film for optical information recording media of the present invention is a reflective film of a single-sided single-layer optical disk or a reflective film in the innermost recording layer of a single-sided multilayer optical disk with respect to the incident direction of laser light. The reflectance is approximately 50% or more, and the transmittance is approximately 0%. Further, the film thickness may be appropriately determined within a range satisfying these reflectance and transmittance, but it may be 50 to 250 nm as a standard.

本発明の光情報記録媒体用Ag基合金半透過反射膜と反射膜は、前述したAg基合金を真空蒸着法やイオンプレーティング法やスパッタリング法などの各種薄膜形成方法によって成膜基板上に成膜することで得られるが、これらの薄膜形成方法の中でもスパッタリング法によって成膜されたものが推奨される。スパッタリング法によって成膜されたAg基合金半透過反射膜とAg基合金反射膜は、他の薄膜形成方法によって成膜されたものに比較して、合金組成と合金元素分布と膜厚の膜面内均一性に優れており、半透過反射膜及び反射膜として優れた性能(高反射率、高透過率、低吸収率、高熱伝導率、高耐凝集性、高耐光性、高耐熱性)が良好に発揮され、記録再生特性と長期信頼性に優れた光情報記録媒体が生産可能となる。   The Ag-based alloy semi-transmissive reflective film and reflective film for optical information recording media of the present invention are formed on a film-forming substrate by forming the above-described Ag-based alloy on a film formation substrate by various thin film forming methods such as vacuum deposition, ion plating, and sputtering. Of these thin film forming methods, those formed by sputtering are recommended. The Ag-based alloy semi-transmissive reflective film and the Ag-based alloy reflective film formed by sputtering are compared with those formed by other thin film forming methods in terms of alloy composition, alloy element distribution, and film thickness. Excellent internal uniformity and excellent performance as a semi-transmissive reflective film and reflective film (high reflectance, high transmittance, low absorption, high thermal conductivity, high cohesion resistance, high light resistance, high heat resistance) It is possible to produce an optical information recording medium that is satisfactorily exhibited and excellent in recording / reproduction characteristics and long-term reliability.

本発明のAg基合金半透過反射膜及び反射膜をスパッタリング法によって成膜する際に使用されるスパッタリングターゲット(以下、単に「ターゲット」ともいう。)として、Liを0.01〜10%含有するAg基合金ターゲットを用いることにより、所望の化学組成のAg基合金半透過反射膜又は反射膜を得ることができる。Li量については、0.01〜10%とし、好ましくは0.05〜8%、より好ましくは0.1〜6%である。     As a sputtering target (hereinafter, also simply referred to as “target”) used when the Ag-based alloy transflective film and the reflective film of the present invention are formed by a sputtering method, 0.01 to 10% of Li is contained. By using an Ag-based alloy target, an Ag-based alloy semi-transmissive reflective film or reflective film having a desired chemical composition can be obtained. The amount of Li is 0.01 to 10%, preferably 0.05 to 8%, and more preferably 0.1 to 6%.

また、上記Ag基合金半透過反射膜又は反射膜に、さらに0.005〜0.8%のBiを含有させようとする場合は、ターゲットとしてBiを0.02〜8%含有し、好ましくは0.1〜6%含有し、より好ましくは0.2〜4%含有するAg基合金を用いることにより、所望の化学組成のAg基合金半透過反射膜又は反射膜を得ることができる。ここで、ターゲット中のBi量を半透過反射膜や反射膜中のBi量より多くする理由は次の通りである.すなわち、Biを含むAg基合金からなるターゲットを用いてスパッタリング法により半透過反射膜や反射膜を成膜する際、半透過反射膜や反射膜中のBi量はターゲット中のBi量の数%〜数十%に低下することが認められる。この原因としては、AgとBiの融点差が大きいために成膜中に基板上からBiが再蒸発すること、Agのスパッタ率がBiのスパッタ率に比べて大きいためにBiがスパッタされにくいこと、BiがAgに比べて酸化されやすいためにターゲット表面でBiのみが酸化されてスパッタされないこと、などが考えられる。このように半透過反射膜や反射膜中の合金元素含有量がターゲット中の合金元素含有量から低下する現象は、Ag-希土類金属元素系合金など、他のAg基合金では見られない現象である。このため、ターゲット中のBi量は目標とする半透過反射膜や反射膜中のBi量より高くする必要がある。   Moreover, when it is going to contain 0.005-0.8% Bi further in the said Ag base alloy semi-transmissive reflective film or reflective film, it contains 0.02-8% of Bi as a target, Preferably By using an Ag-based alloy containing 0.1 to 6%, more preferably 0.2 to 4%, an Ag-based alloy semi-transmissive reflective film or reflective film having a desired chemical composition can be obtained. Here, the reason why the amount of Bi in the target is made larger than the amount of Bi in the transflective film or the reflective film is as follows. That is, when a semi-transmissive reflective film or a reflective film is formed by sputtering using a target made of an Ag-based alloy containing Bi, the amount of Bi in the semi-transmissive reflective film or the reflective film is several percent of the Bi amount in the target. It is observed that it decreases to ˜several tens of percent. This is because Bi is re-evaporated from the substrate during film formation because of the large melting point difference between Ag and Bi, and Bi is difficult to be sputtered because the sputtering rate of Ag is larger than the sputtering rate of Bi. Since Bi is more easily oxidized than Ag, only Bi is oxidized on the target surface and not sputtered. Thus, the phenomenon that the alloy element content in the semi-transmissive reflective film or the reflective film decreases from the alloy element content in the target is a phenomenon that is not seen in other Ag-based alloys such as Ag-rare earth metal alloys. is there. For this reason, the amount of Bi in the target needs to be higher than the amount of Bi in the target transflective film or reflective film.

また、上記Ag基合金半透過反射膜又は反射膜に、さらに0.1〜2%の希土類金属元素のSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種、特にNd及び/又はYを含有させようとする場合は、ターゲット中にこれらの元素を含有するAg基合金を用いることにより、所望の化学組成のAg基合金半透過反射膜又は反射膜を得ることができる。希土類金属元素のSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種、特にNd及び/又はYの総含有量については、0.1〜2%とし、好ましくは0.2〜1%、より好ましくは0.3〜0.5%である。   Further, the above-mentioned Ag-based alloy semi-transmissive reflective film or reflective film is further added with 0.1 to 2% of rare earth metal elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy. At least one selected from Ho, Er, Tm, Yb, and Lu, particularly when Nd and / or Y is to be contained, it is desirable to use an Ag-based alloy containing these elements in the target. An Ag-based alloy semi-transmissive reflective film or reflective film having the chemical composition can be obtained. Rare earth metal elements Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, in particular Nd and / or Y The total content is 0.1 to 2%, preferably 0.2 to 1%, and more preferably 0.3 to 0.5%.

また、上記Ag基合金半透過反射膜又は反射膜に、さらに0.1〜3%のCu、Au、Rh、Pd、Ptから選ばれる少なくとも1種を含有させようとする場合は、ターゲット中にこれらの元素を含有するAg基合金を用いることにより、所望の化学組成のAg基合金半透過反射膜又は反射膜を得ることができる。Cu、Au、Rh、Pd、Ptから選ばれる少なくとも1種の総含有量については、0.1〜3%とし、好ましくは0.2〜2%、より好ましくは0.3〜1%である。  In addition, when the Ag-based alloy semi-transmissive reflective film or the reflective film further contains at least one selected from 0.1% to 3% of Cu, Au, Rh, Pd, and Pt, By using an Ag-based alloy containing these elements, an Ag-based alloy transflective film or reflective film having a desired chemical composition can be obtained. The total content of at least one selected from Cu, Au, Rh, Pd, and Pt is 0.1 to 3%, preferably 0.2 to 2%, more preferably 0.3 to 1%. .

本発明の光情報記録媒体用Ag基合金スパッタリングターゲットは、溶解・鋳造法や粉末焼結法やスプレイフォーミング法などのいずれの方法によっても製造できるが、これらの製造方法の中でも特に真空溶解・鋳造法によって製造されたものが推奨される。真空溶解・鋳造法によって製造されたAg基合金スパッタリングターゲットは、他の方法によって製造されたものに比較して窒素や酸素などの不純物成分の含有量が少なく、このスパッタリングターゲットを使用して成膜された半透明反射膜や反射膜では優れた特性(高反射率、高透過率、低吸収率、高熱伝導率、高耐凝集性、高耐光性、高耐熱性)が効果的に引き出され、記録再生特性と長期信頼性に優れた光情報記録媒体が生産可能となる。   The Ag-based alloy sputtering target for optical information recording media of the present invention can be produced by any method such as a melting / casting method, a powder sintering method, or a spray forming method. Those manufactured by law are recommended. The Ag-based alloy sputtering target manufactured by the vacuum melting / casting method has a lower content of impurity components such as nitrogen and oxygen than those manufactured by other methods, and film formation is performed using this sputtering target. Excellent properties (high reflectivity, high transmittance, low absorption rate, high thermal conductivity, high cohesion resistance, high light resistance, high heat resistance) are effectively extracted in the translucent reflective film and reflective film, An optical information recording medium excellent in recording / reproducing characteristics and long-term reliability can be produced.

本発明の光記録媒体は、本発明のAg基合金半透過反射膜又はAg基合金反射膜を備えていればよく、その他の光情報記録媒体としての構成は特に限定されず、光情報記録媒体分野において公知のあらゆる構成を採用することができる。例えば、前述のAg基合金からなる半透過反射膜又は反射膜は、高反射率、高透過率、低吸収率、高熱伝導率、高耐凝集性、高耐光性、高耐熱性を有しているため、現在の再生専用型、追記型、書換型光情報記録媒体に好適に使用することができるのはもちろんのこと、次世代大記録容量光情報記録媒体にも好適に用いることができる。   The optical recording medium of the present invention is only required to include the Ag-based alloy transflective film or Ag-based alloy reflective film of the present invention, and the configuration as other optical information recording media is not particularly limited. Any configuration known in the art can be employed. For example, the above-described transflective film or reflective film made of an Ag-based alloy has high reflectivity, high transmittance, low absorption, high thermal conductivity, high aggregation resistance, high light resistance, and high heat resistance. Therefore, it can be suitably used for the current read-only, write once, and rewritable optical information recording media, as well as the next generation large recording capacity optical information recording media.

(実施例)
実験例によって本発明をさらに詳述するが、以下の実験例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することは、全て本発明の技術範囲に包含される。
(1)薄膜試料の成膜
純Agスパッタリングターゲット(サイズφ101.6mm×t5mm)、Ag-Li合金スパッタリングターゲット(サイズφ101.6mm×t5mm)、Ag-Li-Bi合金スパッタリングターゲット(サイズφ101.6mm×t5mm)、Ag-Li合金スパッタリングターゲット又はAg-Li-Bi合金スパッタリングターゲット上に合金元素(Nd、Y、Cu、Au)のチップ(サイズ5mm×5mm×t1mm)所定数を配置した複合スパッタリングターゲット(サイズφ101.6mm×t5mm)、各種Ag合金スパッタリングターゲット(サイズφ101.6mm×t5mm)等のいずれかを用い、島津製作所製スパッタリング装置HSM-552を使用し、DCマグネトロンスパッタリング法(背圧:0.27×10-3Pa以下、Arガス圧:0.27 Pa、Arガス流量:30 sccm、スパッタパワー:DC 200 W、極間距離:52 mm、基板温度:室温)によって、ポリカーボネート基板(直径:50mm、厚さ:1.0mm)上に薄膜試料(試料番号1〜139)を成膜した。成膜にあたっては、膜厚を100nm(光情報記録媒体において反射膜として使用する場合に相当する膜厚)として、後記する膜組成の分析と、耐凝集性(熱起因の凝集、ハロゲン起因の凝集)、耐熱性、熱伝導率の評価を行い、膜厚を15nm(光情報記録媒体において半透過反射膜として使用する場合に相当する膜厚)として、耐光性、反射率、透過率、吸収率の評価を行った。
(2)膜組成の分析
前述のように成膜された薄膜のうち、Ag合金薄膜(試料番号2〜139)の膜組成を誘導結合プラズマ(Inductively Coupled Plasma:ICP)質量分析法によって分析した。詳細には、Ag合金薄膜を分析試料として、これを硝酸:純水=1:1の酸溶液中に溶解し、この酸溶液を200℃のホットプレート上で加熱し、分析試料が酸溶液中に完全に溶解したことを確認してから室温まで冷却して、セイコーインスツルメント製ICP質量分析装置SPQ-8000を使用してAg合金薄膜中に含まれる合金元素量を測定した。膜組成の分析結果を表1(試料番号1〜50)、表2(試料番号51〜100)及び表3(試料番号100〜139))に示す。なお、この膜組成については以下に述べる膜特性の評価結果を表した表4〜21にも合わせて示した。
(Example)
The present invention will be described in more detail by way of experimental examples. However, the following experimental examples are not intended to limit the present invention, and modifications and implementations without departing from the spirit of the present invention are all included in the technical scope of the present invention. The
(1) Thin film sample deposition Pure Ag sputtering target (size φ101.6 mm x t5 mm), Ag-Li alloy sputtering target (size φ101.6 mm x t5 mm), Ag-Li-Bi alloy sputtering target (size φ101.6 mm x t5mm), a composite sputtering target in which a predetermined number of chips (size 5 mm × 5 mm × t1 mm) of alloy elements (Nd, Y, Cu, Au) are arranged on an Ag—Li alloy sputtering target or an Ag—Li—Bi alloy sputtering target ( DC magnetron sputtering method (back pressure: 0.27 ×) 10 -3 Pa or less, Ar gas pressure: 0.27 Pa, Ar gas flow rate: 30 sccm, sputtering power: DC 200 W, distance between electrodes: 52 mm, substrate temperature: the room temperature), Polycarbonate substrate (diameter: 50 mm, thickness: 1.0 mm) was formed a thin film (Sample No. 1 to 139) on. In film formation, the film thickness is set to 100 nm (corresponding to the film thickness when used as a reflective film in an optical information recording medium), analysis of the film composition described later, and aggregation resistance (aggregation caused by heat, aggregation caused by halogen) ), Heat resistance and thermal conductivity are evaluated, and the film thickness is 15 nm (the film thickness corresponding to the case where the film is used as a transflective film in an optical information recording medium). Was evaluated.
(2) Analysis of film composition Among the thin films formed as described above, the film composition of the Ag alloy thin film (sample numbers 2 to 139) was analyzed by inductively coupled plasma (ICP) mass spectrometry. Specifically, an Ag alloy thin film is used as an analysis sample, which is dissolved in an acid solution of nitric acid: pure water = 1: 1, and this acid solution is heated on a hot plate at 200 ° C. so that the analysis sample is in the acid solution. After being completely dissolved, the mixture was cooled to room temperature, and the amount of alloying elements contained in the Ag alloy thin film was measured using an ICP mass spectrometer SPQ-8000 manufactured by Seiko Instruments. The analysis results of the film composition are shown in Table 1 (sample numbers 1 to 50), Table 2 (sample numbers 51 to 100) and Table 3 (sample numbers 100 to 139)). This film composition is also shown in Tables 4 to 21 showing the evaluation results of the film characteristics described below.

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

(3)耐光性の評価
前述のように成膜された薄膜(試料番号1〜139)の上層に紫外線硬化樹脂膜を積層したものについて、日本分光製紫外可視近赤外分光光度計V-570DSを用いて、波長400〜800nmにおける分光反射率と分光透過率を測定した。その後、スガ試験機製スーパーキセノンフェードメーターSX75Fを用いて、キセノンアークランプによる紫外・可視光の照射(照射照度:120 W/m2、照射温度:80℃、照射時間:144時間)試験を施し、この試験後に再び分光反射率と分光透過率を測定した。耐光性の評価結果を表4〜6に示す。
(3) Evaluation of light resistance The UV-visible near-infrared spectrophotometer V-570DS manufactured by JASCO Corporation is used for the thin film (sample numbers 1 to 139) formed as described above and laminated with an ultraviolet curable resin film. Was used to measure spectral reflectance and spectral transmittance at a wavelength of 400 to 800 nm. After that, using Suga Tester's Super Xenon Fade Meter SX75F, UV / visible light irradiation (irradiation illuminance: 120 W / m 2 , irradiation temperature: 80 ° C, irradiation time: 144 hours) by xenon arc lamp, After this test, spectral reflectance and spectral transmittance were measured again. Tables 4 to 6 show the evaluation results of light resistance.

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表4〜6では、Blu-ray Disc、HD DVD等において使用される波長405nmレーザー光に対する反射率の照射試験前後の反射率変化が1%未満のものを高耐光性を有するものと見なして○、1%以上のものを高耐光性を有しないものと見なして×で表している。   In Tables 4 to 6, when the reflectance change before and after the irradiation test of the wavelength 405 nm laser light used in Blu-ray Disc, HD DVD, etc. is less than 1%, it is regarded as having high light resistance. Those not less than 1% are regarded as not having high light resistance and are represented by x.

表4〜6よりAg薄膜(試料番号1)、Ag-Au薄膜(試料番号2)、Ag-Pd薄膜(試料番号3)、Ag-Pt薄膜(試料番号4)は高耐光性を示さない。   From Tables 4 to 6, the Ag thin film (Sample No. 1), the Ag-Au thin film (Sample No. 2), the Ag-Pd thin film (Sample No. 3), and the Ag-Pt thin film (Sample No. 4) do not show high light resistance.

これに対して、試料番号5〜139は、Liを含有することによって高い耐光性を示す。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。
(4)耐凝集性〔熱起因の凝集〕の評価
前述のように成膜された薄膜(試料番号1〜139)について、Digital Instruments社製Nanoscope IIIa走査型プローブ顕微鏡を用いて、AFM(Atomic Force Microscope)観察モードにより平均表面粗さRaを測定した。そして、同じ薄膜に対して高温高湿(温度:80℃、湿度:90%RH、保持時間:48時間)試験を施し、この試験後に再び平均表面粗さRaを測定した。耐凝集性〔熱起因の凝集〕の評価結果を表7〜9に示す。
On the other hand, sample numbers 5-139 show high light resistance by containing Li. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.
(4) Evaluation of aggregation resistance [aggregation caused by heat] The thin film (sample numbers 1 to 139) formed as described above was subjected to AFM (Atomic Force) using a Nanoscope IIIa scanning probe microscope manufactured by Digital Instruments. Microscope) The average surface roughness Ra was measured in the observation mode. The same thin film was subjected to a high-temperature and high-humidity test (temperature: 80 ° C., humidity: 90% RH, holding time: 48 hours), and the average surface roughness Ra was measured again after this test. Tables 7 to 9 show the evaluation results of the aggregation resistance [aggregation caused by heat].

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表7〜9では、高温高湿試験前後の平均粗さ変化が1.5nm未満のものを高耐凝集性を有するものと見なして○、1.5nm以上のものを高耐凝集性を有しないものと見なして×で表している。   In Tables 7 to 9, when the average roughness change before and after the high-temperature and high-humidity test is less than 1.5 nm, it is considered as having high cohesion resistance, and those with 1.5 nm or more are not having high cohesion resistance It is considered as x.

表7〜9から明らかなように、本発明の規定用件を満たすAg合金薄膜(試料番号5〜139)はいずれも高耐凝集性を示し、これを満たさないAg薄膜(試料番号1)、Ag-Au薄膜(試料番号2)、Ag-Pd薄膜(試料番号3)、Ag-Pt薄膜(試料番号4)は高耐凝集性を示さ
ない。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。
(5)耐凝集性〔ハロゲン起因の凝集〕の評価
前述のように成膜された薄膜(試料番号1〜139)について、Digital Instruments社製Nanoscope IIIa走査型プローブ顕微鏡を用いて、AFM(Atomic Force Microscope)観察モードにより平均表面粗さRaを測定した。そして、同じ薄膜に対して塩水浸漬(塩水濃度:NaClが0.05mol/l、塩水温度:20℃、浸漬時間:5分間)試験を施し、この試験後に再び平均表面粗さRaを測定した。耐凝集性〔ハロゲン起因の凝集〕の評価結果を表10〜12に示す。
As is clear from Tables 7 to 9, all the Ag alloy thin films (Sample Nos. 5 to 139) satisfying the requirements of the present invention exhibit high aggregation resistance, and the Ag thin films (Sample No. 1) that do not satisfy this, The Ag-Au thin film (Sample No. 2), the Ag-Pd thin film (Sample No. 3), and the Ag-Pt thin film (Sample No. 4) do not show high aggregation resistance. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.
(5) Evaluation of aggregation resistance [aggregation caused by halogen] AFM (Atomic Force) was applied to the thin film (sample numbers 1 to 139) formed as described above using a Nanoscope IIIa scanning probe microscope manufactured by Digital Instruments. Microscope) The average surface roughness Ra was measured in the observation mode. The same thin film was subjected to a salt water immersion test (salt water concentration: 0.05 mol / l NaCl, salt water temperature: 20 ° C., immersion time: 5 minutes), and the average surface roughness Ra was measured again after this test. Tables 10 to 12 show the evaluation results of the aggregation resistance [aggregation caused by halogen].

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表10〜12では、塩水浸漬試験前後の平均粗さ変化が3nm未満のものを高耐凝集性を有するものと見なして○、3nm以上のものを高耐凝集性を有しないものと見なして×で表している。   In Tables 10 to 12, when the average roughness change before and after the salt water immersion test is less than 3 nm, it is regarded as having high aggregation resistance, and when it is 3 nm or more, it is regarded as not having high aggregation resistance. It is represented by

表10〜12から明らかなように、Ag-Au薄膜(試料番号2)、Ag-Pd薄膜(試料番号3)、Ag-Pt薄膜(試料番号4)と、本発明の規定用件を満たすAg合金薄膜(試料番号5〜139)はいずれも高耐凝集性を示し、これを満たさないAg薄膜(試料番号1)は高耐凝集性を示さない。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。
(6)耐熱性の評価
前述のように成膜された薄膜(試料番号1〜139)について、Digital Instruments社製Nanoscope IIIa走査型プローブ顕微鏡を用いて、AFM(Atomic Force Microscope)観察モードにより平均表面粗さRaを測定した。そして、同じ薄膜に対して、成瀬科学器械製回転磁場中熱処理装置を使用した真空加熱(真空度:0.27×10-3Pa以下、温度:300℃、保持時間:0.5時間)試験を施し、この試験後に再び平均表面粗さRaを測定した。耐熱性の評価結果を表13〜15に示す。
As is clear from Tables 10 to 12, Ag-Au thin film (sample number 2), Ag-Pd thin film (sample number 3), Ag-Pt thin film (sample number 4), and Ag satisfying the requirements of the present invention All of the alloy thin films (Sample Nos. 5 to 139) exhibit high aggregation resistance, and the Ag thin film (Sample No. 1) not satisfying this does not exhibit high aggregation resistance. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.
(6) Evaluation of heat resistance The thin film (sample numbers 1 to 139) formed as described above is averaged by AFM (Atomic Force Microscope) observation mode using a Nanoscope IIIa scanning probe microscope manufactured by Digital Instruments. The roughness Ra was measured. The same thin film was subjected to vacuum heating (vacuum degree: 0.27 × 10 -3 Pa or less, temperature: 300 ° C., holding time: 0.5 hour) using a rotating magnetic field heat treatment device manufactured by Naruse Scientific Instruments. After the test, the average surface roughness Ra was measured again. The evaluation results of heat resistance are shown in Tables 13-15.

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表13〜15では、真空加熱試験前後の平均粗さ変化が1.5nm未満のものを優れた耐熱性を有するものと見なして◎、1.5nm以上3.0nm未満のものを高い耐熱性を有するものと見なして○、3.0nm以上ものを高耐熱性を有しないものと見なして×で表している。   In Tables 13 to 15, when the average roughness change before and after the vacuum heating test is less than 1.5 nm, it is regarded as having excellent heat resistance, and from 1.5 nm to less than 3.0 nm has high heat resistance. Assuming that ○ or 3.0 nm or more is regarded as not having high heat resistance, x is represented.

Ag薄膜(試料番号1)、Ag-Au薄膜(試料番号2)、Ag-Pd薄膜(試料番号3)、Ag-Pt薄膜(試料番号4)は高耐熱性を示さない。   The Ag thin film (Sample No. 1), the Ag-Au thin film (Sample No. 2), the Ag-Pd thin film (Sample No. 3), and the Ag-Pt thin film (Sample No. 4) do not show high heat resistance.

これに対して、試料番号5〜139は高い耐熱性を示している。特にNd及び/又はYを含有させたものは、優れた耐熱性を示す。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。
(7)反射率、透過率、吸収率の評価
前述のように成膜された薄膜(試料番号1〜139)について、日本分光製紫外可視近赤外分光光度計V-570DSを用いて、波長400〜800nmにおける分光反射率と分光透過率を測定した。また、測定した反射率と透過率から吸収率(=100%−(反射率+透過率))を算出した。Blu-ray Disc、HD DVD等において使用される波長405nmレーザー光に対する反射率、透過率、吸収率の評価結果を表16〜18に示す。
On the other hand, sample numbers 5 to 139 show high heat resistance. Particularly those containing Nd and / or Y exhibit excellent heat resistance. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.
(7) Evaluation of reflectance, transmittance, and absorptivity For the thin film (sample numbers 1 to 139) formed as described above, the wavelength was measured using a UV-visible near-infrared spectrophotometer V-570DS manufactured by JASCO Corporation. Spectral reflectance and spectral transmittance at 400-800 nm were measured. In addition, an absorptance (= 100% − (reflectance + transmittance)) was calculated from the measured reflectivity and transmittance. Tables 16 to 18 show the evaluation results of reflectance, transmittance, and absorptance with respect to a 405 nm wavelength laser beam used in Blu-ray Disc, HD DVD, and the like.

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表16〜18では、純Ag薄膜の反射率18%、透過率68%、吸収率14%に対して、反射率15%以上、透過率60%以上、吸収率25%未満を示すものを優れた光学特性を有するものと見なして○、反射率15%未満、透過率60%未満、吸収率25%以上を示すものを優れた光学特性を有しないものと見なして×で表している。   In Tables 16-18, it is excellent that the reflectivity is 15% or more, the transmittance is 60% or more, and the absorptivity is less than 25% with respect to the reflectivity of 18%, the transmittance of 68% and the absorption of 14% of the pure Ag thin film O, and those showing a reflectance of less than 15%, a transmittance of less than 60%, and an absorptance of 25% or more are regarded as having no excellent optical properties and are represented by x.

Ag-16%Li薄膜(試料番号8)はLi含有量が多いため、高反射率、高透過率、低吸収率を示さない。   Since the Ag-16% Li thin film (Sample No. 8) has a large Li content, it does not exhibit high reflectance, high transmittance, or low absorption.

これに対して、他の薄膜は、高反射率、高透過率、低吸収率を示す。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。
(8)熱伝導率の評価
前述のように成膜された薄膜(試料番号1〜139)について、熱伝導率を以下の方法で測定した。日置電機製3226 mΩ Hi TESTERを用いて直流四探針法によりシート抵抗Rsを、そしてTENCOR INSTRUMENTS社製alpha-step 250を用いて膜厚tを測定し、電気抵抗率ρ(=シート抵抗Rs×膜厚t)〔μΩcm〕を算出してから、ヴィーデマン−フランツの法則より絶対温度300K(≒27℃)の熱伝導率κ(=2.51×絶対温度T/電気抵抗率ρ)〔W/(m・K)〕を算出した。熱伝導率の評価結果を表19〜21に示す。
On the other hand, other thin films exhibit high reflectance, high transmittance, and low absorption. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.
(8) Evaluation of thermal conductivity About the thin film (sample numbers 1-139) formed into a film as mentioned above, thermal conductivity was measured with the following method. Measure sheet resistance Rs by DC four-probe method using 3226 mΩ Hi TESTER manufactured by Hioki Electric, and film thickness t using alpha-step 250 manufactured by TENCOR INSTRUMENTS. Electric resistivity ρ (= sheet resistance Rs × After calculating the film thickness t) [μΩcm], the thermal conductivity κ (= 2.51 × absolute temperature T / electric resistivity ρ) [W / (m) at an absolute temperature of 300 K (≈27 ° C.) according to Wiedemann-Franz law -K)] was calculated. The evaluation results of thermal conductivity are shown in Tables 19-21.

Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003
Figure 0004320003

表19〜21では、純Ag薄膜の熱伝導率320W/(m・K)の5割以上に相当する160W/(m・K)以上を示すものを高熱伝導率を有するものと見なして○、160W/(m・K)未満を示すものを高熱伝導率を有しないものと見なして×で表している。   In Tables 19 to 21, when the thermal conductivity of the pure Ag thin film is 160 W / (m · K) corresponding to 50% or more of the thermal conductivity of 320 W / (m · K), it is regarded as having high thermal conductivity. Those showing less than 160 W / (m · K) are regarded as not having high thermal conductivity and are represented by ×.

Ag-16%Li薄膜(試料番号8)はLi含有量が多いため、高熱伝導率を示さない。   The Ag-16% Li thin film (Sample No. 8) does not show high thermal conductivity because of its high Li content.

これに対して、他の薄膜は、高熱伝導率を示す。なお、Rh、Pd、Ptの添加効果はCu、Auと同様である。

On the other hand, other thin films exhibit high thermal conductivity. The effect of adding Rh, Pd, and Pt is the same as that of Cu and Au.

Claims (6)

Liを0.01〜10原子%含有すると共に、
La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種を合計で0.1〜2原子%、および/または、Au、Rh、Pbから選ばれる少なくとも1種を合計で0.1〜3原子%含有するAg基合金であることを特徴とする光情報記録媒体用Ag基合金半透過反射膜又は反射膜。
While containing 0.01 to 10 atomic% of Li ,
At least one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu in a total of 0.1 to 2 atomic%, and / or An Ag-based alloy transflective film or reflective film for optical information recording media, which is an Ag-based alloy containing a total of 0.1 to 3 atomic% of at least one selected from Au, Rh, and Pb .
Biを0.005〜0.8原子%含有するものである請求項1に記載の光情報記録媒体用Ag基合金半透過反射膜又は反射膜。   The Ag-based alloy transflective film or reflective film for optical information recording media according to claim 1, wherein Bi is contained in an amount of 0.005 to 0.8 atomic%. 請求項1または2に記載のAg基合金半透過反射膜を備えることを特徴とする光情報記録媒体。An optical information recording medium comprising the Ag-based alloy transflective film according to claim 1. 請求項1または2に記載のAg基合金反射膜を備えることを特徴とする光情報記録媒体。An optical information recording medium comprising the Ag-based alloy reflective film according to claim 1. Liを0.01〜10原子%含有すると共に、While containing 0.01 to 10 atomic% of Li,
La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる少なくとも1種を合計で0.1〜2原子%、および/または、Au、Rh、Pbから選ばれる少なくとも1種を合計で0.1〜3原子%含有するAg基合金であることを特徴とする光情報記録媒体用Ag基合金スパッタリングターゲット。At least one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu in a total of 0.1 to 2 atomic%, and / or An Ag-based alloy sputtering target for optical information recording media, characterized in that it is an Ag-based alloy containing a total of 0.1 to 3 atomic% of at least one selected from Au, Rh, and Pb.
Biを0.005〜0.8原子%含有するものである請求項5に記載の光情報記録媒体用Ag基合金スパッタリングターゲット。The Ag-based alloy sputtering target for optical information recording media according to claim 5, which contains Bi in an amount of 0.005 to 0.8 atomic%.
JP2005179607A 2004-06-29 2005-06-20 Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target Expired - Fee Related JP4320003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179607A JP4320003B2 (en) 2004-06-29 2005-06-20 Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004190704 2004-06-29
JP2005179607A JP4320003B2 (en) 2004-06-29 2005-06-20 Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target

Publications (2)

Publication Number Publication Date
JP2006048899A JP2006048899A (en) 2006-02-16
JP4320003B2 true JP4320003B2 (en) 2009-08-26

Family

ID=36027244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179607A Expired - Fee Related JP4320003B2 (en) 2004-06-29 2005-06-20 Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target

Country Status (1)

Country Link
JP (1) JP4320003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092889B2 (en) 2006-08-28 2012-01-10 Kobe Steel, Ltd. Silver alloy reflective film for optical information storage media, optical information storage medium, and sputtering target for the deposition of silver alloy reflective film for optical information storage media
JP2008156753A (en) 2006-12-01 2008-07-10 Kobe Steel Ltd Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM

Also Published As

Publication number Publication date
JP2006048899A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4320000B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
KR100789059B1 (en) Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
KR100694944B1 (en) Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
US7514037B2 (en) AG base alloy thin film and sputtering target for forming AG base alloy thin film
JP2008156753A (en) Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM
JP4320003B2 (en) Transflective reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target
TWI496908B (en) An optical interference film or a protective film for an optical information recording medium formed by DC sputtering of a target containing titanium oxide as a main component, and an optical interference film or a protective film containing titanium oxide as a main component for forming an optical information Recording medium
JP4153484B2 (en) Ag-based alloy sputtering target for optical information recording media
TWI265976B (en) Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
WO2008026601A1 (en) Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM FORMATION
JP4099517B1 (en) Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium
JP2008084519A (en) Silver alloy reflection film for optical information recording medium, optical information recording medium and sputtering target for silver alloy reflection film for optical information recording medium formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees