JP2008134891A - Estimation method for electric pole breakage number by earthquake and estimation method for number of outage houses using it - Google Patents

Estimation method for electric pole breakage number by earthquake and estimation method for number of outage houses using it Download PDF

Info

Publication number
JP2008134891A
JP2008134891A JP2006321588A JP2006321588A JP2008134891A JP 2008134891 A JP2008134891 A JP 2008134891A JP 2006321588 A JP2006321588 A JP 2006321588A JP 2006321588 A JP2006321588 A JP 2006321588A JP 2008134891 A JP2008134891 A JP 2008134891A
Authority
JP
Japan
Prior art keywords
damage
earthquake
breakage
building
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321588A
Other languages
Japanese (ja)
Other versions
JP4893942B2 (en
Inventor
Toshio Suehiro
俊夫 末広
Makoto Hanamura
信 花村
Yoshikazu Miyazawa
義和 宮澤
Tadashi Suzuki
正 鈴木
Toshiya Abe
敏也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006321588A priority Critical patent/JP4893942B2/en
Publication of JP2008134891A publication Critical patent/JP2008134891A/en
Application granted granted Critical
Publication of JP4893942B2 publication Critical patent/JP4893942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate a secondary electric pole breakage number with high accuracy from prediction of building damage considering the ground condition of a target area, and to estimate the number of outage houses accompanying the breakage of electric poles with high accuracy. <P>SOLUTION: Correlation between ground surface maximum velocity expressing intensity of earthquake motion and a building complete collapse rate that is a ratio of a completely collapsed building by an earthquake is previously obtained based on damage investigation of a past earthquake, and correlation between the building complete collapse rate and an electric pole breakage rate that is a ratio of the electric pole having suffered breakage damage is previously obtained. The ground surface maximum velocity is calculated from an acceleration response spectrum of the ground surface by the earthquake motion, the building complete collapse rate to the ground surface maximum velocity is obtained from the correlation between the ground surface maximum velocity and the building complete collapse rate, the electric pole breakage rate to the building complete collapse rate is obtained from the correlation between the building complete collapse rate and the electric pole breakage rate, and the secondary damage breakage number is estimated from an expression of the secondary damage breakage number = (an electric pole cardinal number - a burnout number) × the electric pole breakage rate with the number of the electric poles placed inside a mesh as the electric pole cardinal number. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地震発生時に、電柱や変圧器などの配電設備の損壊によって引き起こされる停電被害を精度よく予測するための地震による電柱折損数の推定方法及びこれを用いた停電軒数の推定方法に関する。   The present invention relates to a method for estimating the number of power pole breakage due to an earthquake and a method for estimating the number of power outages using the earthquake in order to accurately predict the power outage damage caused by damage to power distribution facilities such as utility poles and transformers when an earthquake occurs.

従来より、地震発生時に、配電設備の損壊によって引き起こされる停電被害の予測が行われている。予め、地震発生時の停電被害の予測をしておくことは、ライフラインの一つである電気の復旧のための人員の配置や設備の備えなど、復旧計画の立案を容易にし、電気の早期復旧に繋がるため、大変重要である。   Conventionally, when an earthquake occurs, a power outage damage caused by damage to power distribution facilities has been predicted. Predicting power outage damage in the event of an earthquake in advance facilitates the creation of a recovery plan, such as the assignment of personnel and the provision of facilities for the recovery of electricity, which is one of the lifelines. It is very important because it leads to recovery.

従来の停電被害の予測方法は、例えば阪神・淡路大震災など、過去の地震の被害調査から、被災地域に設置していた電柱の設置数(以下「電柱基数」という)に対して、地震により被害を受けた電柱の数の割合を被害係数として震度階ごとに求めておき、その被害係数を被害予測を行う対象地域の電柱基数に乗ずることにより、震度階ごとの電柱の被害数を予測するものであった。   The conventional method for predicting power outage damage is based on the earthquake damage to the number of telephone poles installed in the affected area (hereinafter referred to as “the number of telephone poles”) from past earthquake damage surveys such as the Great Hanshin-Awaji Earthquake. The ratio of the number of telephone poles received is calculated as a damage factor for each seismic intensity scale, and by multiplying the damage coefficient by the number of telephone poles in the target area for damage prediction, the number of pole pole damage per seismic intensity scale is predicted. Met.

具体的には、電柱の被害原因を、地震動の揺れによる折損、建物の倒壊に伴う折損、火災による焼損及び折損以外の傾斜、ひび割れ、沈下などその他損壊に分類し、予め過去の地震の被害調査から、それぞれの被害原因について前記被害係数を求めておき、この被害係数を被害予測の対象となる対象地域の電柱基数に乗じて、電柱の被害予測の結果から、電力会社の営業所単位など広範な地域の停電被害の程度を予測していた。   Specifically, the causes of damage to telephone poles are classified into other damages such as breakage due to shaking of earthquake motion, breakage due to collapse of buildings, burnout due to fire, inclination other than breakage, cracks, subsidence, etc. Therefore, the damage factor is calculated for each cause of damage, and this damage factor is multiplied by the number of utility poles in the target area subject to damage prediction. Predicted the degree of power outage damage in various areas.

このような従来の停電被害の予測方法では、(1)過去の地震の被害統計値をそのまま他の対象地域に適用するため地域間の条件の相違による誤差が生じること、(2)震度階ごとに算出した前記被害係数を用いて予測しているため、同一震度階での地震動の規模による差が反映されないこと、(3)予測地域の単位が広域であるため、予測結果の有効活用が図れていなかったこと、などが問題点として挙げられる。   In such a conventional method for predicting power outage damage, (1) the past earthquake damage statistics are applied to other target areas as they are, and errors will occur due to differences in conditions between areas. Since the prediction is based on the damage factor calculated in (1) above, the difference due to the magnitude of ground motion at the same seismic intensity scale is not reflected. (3) Since the unit of the prediction area is wide, the prediction results can be used effectively. The problem is that it was not.

ところで、上述した過去の地震被害の調査では、地震による電柱被害の原因は、建物の倒壊に伴う2次的な被害が大多数を占め、地震動の揺れによる折損や火災による焼損などは比較的少ない現状が明らかとなっている(約82%)。したがって、この点を考慮して、2次的な被害の予測精度の向上が図れれば、全体の被害予測の精度が飛躍的に向上できるようになるものと期待できる。   By the way, in the survey of past earthquake damage mentioned above, the cause of the power pole damage due to the earthquake is mostly secondary damage due to the collapse of the building, and there are relatively few breakage due to shaking of earthquake motion or burning due to fire The current situation is clear (about 82%). Therefore, if the secondary damage prediction accuracy can be improved in consideration of this point, it can be expected that the overall damage prediction accuracy can be dramatically improved.

ここで、上記問題点についてさらに詳しく検討すると、上記(1)の問題点に対しては、被害予測を行う対象地域の地盤性状などを考慮して地震動による建物の被害状況を予測することにより解決が図られ、上記(2)の問題点に対しては、震度階によらずに、地震の強さを基準とした被害を予測することにより解決が図られるものと考えられる。   Here, when the above problems are examined in more detail, the problem (1) above can be solved by predicting the damage status of the building due to ground motion in consideration of the ground properties of the target area where damage is predicted. Therefore, it is considered that the problem (2) can be solved by predicting damage based on the intensity of the earthquake, regardless of the seismic intensity scale.

このような課題解決のための一助として、下記特許文献1が挙げられる。下記特許文献1では、過去の地震の記録に基づき、地震の発生源である震源断層から対象地点までの距離と地震の規模を表すマグニチュードとから前記対象地点での地震動を表す加速度応答スペクトルを推定計算する加速度応答スペクトル推定式を求めておき、地震の伝播経路を深層に位置する工学的基盤とその工学的基盤上に位置する表層地盤とに区分し、前記加速度応答スペクトル推定式により前記工学的基盤上の対象地点の加速度応答スペクトルを推定し、この加速度応答スペクトルに前記表層地盤の増幅特性を掛け合わせることにより、前記工学的基盤上の対象地点の真上に位置する表層地盤上の対象地点の加速度応答スペクトルを推定し、この加速度応答スペクトルから最大速度を求め、この最大速度を被害推定の指標とする地震動の強さ推定方法が記載されている。   The following Patent Document 1 can be cited as an aid for solving such a problem. In Patent Document 1 below, based on past earthquake records, an acceleration response spectrum representing the earthquake motion at the target point is estimated from the distance from the source fault that is the source of the earthquake to the target point and the magnitude indicating the magnitude of the earthquake. An acceleration response spectrum estimation formula to be calculated is obtained, and the earthquake propagation path is divided into an engineering base located in the deep layer and a surface layer ground located on the engineering base, and the engineering equation is estimated by the acceleration response spectrum estimation formula. By estimating the acceleration response spectrum of the target point on the base and multiplying the acceleration response spectrum by the amplification characteristic of the surface layer, the target point on the surface layer located directly above the target point on the engineering base The acceleration response spectrum of the earthquake is estimated, the maximum velocity is obtained from this acceleration response spectrum, and this maximum velocity is used as an index for damage estimation. Strength estimation method is described.

さらに、下記非特許文献1には、阪神・淡路大震災で被害を受けたある地域の低層独立住宅の被害関数として、地表の最大速度と建物の被害率(全壊または大破、中程度の損傷以上、軽微な損傷以上に分類)との関係に相関性あることが記載されている。
特開2002−168964公報 長谷川,翠川,松岡,「地域メッシュ統計を利用した広域での木造建築物群の震害予測」,日本建築学会構造系論文集第505号,P53-59,1998年3月
Furthermore, the following Non-Patent Document 1 includes the maximum speed of the surface and the damage rate of buildings (total destruction or wreck, more than moderate damage, as damage function of low-rise independent houses in a certain area damaged by the Great Hanshin-Awaji Earthquake. It is described that there is a correlation with the relationship between the minor damage and the classification.
JP 2002-168964 A Hasegawa, Yodogawa, Matsuoka, “Earthquake damage prediction of wooden buildings in a wide area using regional mesh statistics”, Architectural Institute of Japan, No.505, P53-59, March 1998

すなわち、上記特許文献1から、対象地域の地盤性状などを考慮した地震波の地表面最大速度を算出し、前記非特許文献1から、前記地表面最大速度に基づいて対象地域の地震により全壊した建物の割合(以下「建物全壊率」という)を推定することが可能となる。   That is, the ground surface maximum velocity of the seismic wave in consideration of the ground properties of the target area is calculated from the above Patent Document 1, and the building completely destroyed by the earthquake in the target area based on the maximum ground surface speed from the Non-Patent Document 1. Ratio (hereinafter referred to as “building destruction rate”) can be estimated.

したがって、地表面最大速度と建物全壊率との関係をさらに一般化すべく多数のデータの蓄積から明らかにするとともに、建物の全壊に伴う2次的な電柱被害の状況を精度よく把握するために、建物の被害と電柱の被害との関係を明らかにすることができれば、全体の予測精度の向上が図れるものと考えられる。   Therefore, in order to clarify the relationship between the maximum speed of the ground surface and the total damage rate of the building from the accumulation of a large amount of data, and to accurately grasp the situation of secondary power pole damage due to the total damage of the building, If the relationship between building damage and utility pole damage can be clarified, the overall prediction accuracy can be improved.

そこで、本発明の主たる課題は、予め地震発生時の停電被害の状況を精度よく推定することによって、復旧のための人員の配置や設備の備えなど、復旧計画の立案を容易にし、電気の早期復旧に資することを目的として、対象地域をメッシュ状に細分化してメッシュ単位ごとに被害予測を行うとともに、対象地域の地盤条件を考慮した建物被害の予測から、2次的な電柱折損数を精度よく推定し、かつこの電柱の折損などに伴う停電軒数を精度よく推定する方法を提供することにある。   Therefore, the main problem of the present invention is that the power failure damage situation at the time of the earthquake is accurately estimated in advance, thereby facilitating the preparation of a recovery plan, such as the arrangement of personnel for recovery and the provision of equipment, and the early electricity supply In order to contribute to restoration, the target area is subdivided into meshes and damage prediction is performed for each mesh unit, and the number of secondary power pole breakage is accurately estimated from building damage prediction considering the ground conditions of the target area The object is to provide a method for estimating the number of blackouts with good estimation and accurately estimating the number of power outages due to breakage of the utility pole.

前記課題を解決するために請求項1に係る本発明として、対象地域をメッシュ状に細分化して、メッシュ単位ごとに、地震動によって折損する電柱の1次被害折損数と、地震による建物の全壊に伴って折損する電柱の2次被害折損数とを求め、前記1次被害折損数と2次被害折損数の和である電柱折損数を推定するための地震による電柱折損数の推定方法であって、
予め、過去の地震の被害調査に基づき、地震動の強さを表す地表面最大速度と地震により全壊した建物の割合である建物全壊率との相関関係を求めておくとともに、前記建物全壊率と折損被害のあった電柱の割合である電柱折損率との相関関係を求めておき、
前記2次被害折損数は、地震動による地表の加速度応答スペクトルから地表面最大速度を算出し、この地表面最大速度に対する建物全壊率を前記地表面最大速度と建物全壊率との相関関係から求め、この建物全壊率に対する電柱折損率を前記建物全壊率と電柱折損率との相関関係から求め、メッシュ内に設置してある電柱の数を電柱基数として、次式(1)によって推定することを特徴とする地震による電柱折損数の推定方法。
In order to solve the above-mentioned problem, as the present invention according to claim 1, the target area is subdivided into a mesh shape, and the number of primary damage breakage of power poles broken by earthquake motion and the total destruction of a building due to an earthquake for each mesh unit. A method for estimating the number of power pole breakage due to an earthquake for obtaining a number of secondary damage breakage of a power pole that breaks along with it, and estimating a number of power pole breakage that is a sum of the number of primary damage breakage and the number of secondary damage breakage ,
Based on past earthquake damage surveys, the correlation between the maximum velocity of the ground surface representing the strength of ground motion and the total building destruction rate, which is the proportion of buildings completely destroyed by the earthquake, is calculated in advance. Find the correlation with the telephone pole breakage rate, which is the ratio of damaged telephone poles,
The number of secondary damage breakage is calculated from the acceleration response spectrum of the ground surface due to earthquake motion, the surface maximum velocity is calculated from the correlation between the surface maximum velocity and the building total failure rate with respect to the surface maximum velocity, The electric pole breakage rate with respect to the building total failure rate is obtained from the correlation between the building total failure rate and the power pole breakage rate, and the number of power poles installed in the mesh is used as the power pole radix to estimate by the following equation (1) The method of estimating the number of telephone pole breakage due to the earthquake.

Figure 2008134891
Figure 2008134891

上記請求項1記載の本発明では、前述の通り、地震による電柱の折損被害は、2次被害による折損が大多数を占めるため、この2次被害折損数を精度よく推定することを目的としてなされたものである。すなわち、予め、過去の地震の被害調査に基づき、地震動の強さを表す地表面最大速度と地震により全壊した建物の割合である建物全壊率との相関関係を求めておくとともに、前記建物全壊率と折損被害のあった電柱の割合である電柱折損率との相関関係を求めておき、2次被害折損数を、地震動による地表の加速度応答スペクトルから地表面最大速度を算出し、この地表面最大速度に対する建物全壊率を前記地表面最大速度と建物全壊率との相関関係から求め、この建物全壊率に対する電柱折損率を前記建物全壊率と電柱折損率との相関関係から求め、前式(1)から推定することにより、震度階によらず、地表面最大速度に対応した電柱の折損被害が精度よく推定できるようになる。   In the present invention according to the first aspect, as described above, the breakage of the utility pole due to the earthquake is made mainly for the purpose of accurately estimating the number of breakage of the secondary damage because the breakage due to the secondary damage accounts for the majority. It is a thing. That is, based on past earthquake damage surveys, the correlation between the maximum velocity of the ground surface representing the strength of seismic motion and the total building destruction rate, which is the proportion of buildings completely destroyed by the earthquake, is determined, and the total building destruction rate Is calculated, and the maximum velocity of the ground surface is calculated from the acceleration response spectrum of the ground surface due to earthquake motion. The building destruction rate with respect to speed is obtained from the correlation between the maximum ground surface speed and the building destruction rate, and the utility pole failure rate with respect to the building destruction rate is obtained from the correlation between the building destruction rate and the utility pole failure rate. ), It is possible to accurately estimate the damage to the telephone pole breakage corresponding to the ground surface maximum speed regardless of the seismic intensity scale.

また、前記電柱折損数は、対象地域をメッシュ状に細分化した各メッシュ単位ごとに計算できるので、対象地域の折損被害の分布が地図上に一目で把握できるようになる。   In addition, since the number of broken poles can be calculated for each mesh unit obtained by subdividing the target area into a mesh shape, the distribution of breakage damage in the target area can be grasped at a glance on the map.

請求項2に係る本発明として、前記1次被害折損数は、予め、過去の地震の被害調査に基づき、震度階ごとに、折損被害のあった電柱の割合である地震動による電柱折損率を求めておき、前記地震動による電柱折損率に前記電柱基数を乗じて算出する請求項1記載の電柱折損数の推定方法。が提供される。   As the present invention according to claim 2, the number of primary damage breakage is obtained in advance based on a past earthquake damage investigation, and for each seismic intensity scale, a rate of breakage of a power pole due to earthquake motion, which is a ratio of power poles with damage damage, is obtained. The method for estimating the number of power pole breaks according to claim 1, wherein the power pole breakage rate due to the earthquake motion is calculated by multiplying the number of power pole bases. Is provided.

上記請求項2記載の本発明は、前記1次被害折損数を推定するためのものであり、前述の通り、1次被害折損数は2次被害折損数と比較するとその割合が少ないため、震度階に基づく電柱折損率から簡便に計算するようにしたものである。   The present invention according to claim 2 is for estimating the number of primary damage breaks, and as described above, the number of primary damage breaks is smaller than the number of secondary damage breaks, so the seismic intensity This is a simple calculation based on the pole breakage rate based on the floor.

請求項3に係る本発明として、地震によって停電被害を受ける対象地域の停電軒数を推定するための地震による停電軒数の推定方法であって、
停電被害の原因を、電柱が折損することによる停電と、建物の全壊に伴って地中設備の路上設置機器が損壊することによる停電と、建物が焼失することによる停電とに分類し、
前記電柱折損による停電軒数は、前記請求項1、2いずれかに記載の地震による電柱折損数の推定方法を用いて電柱折損数を推定した後、メッシュ単位ごとに、前記電柱折損数に電柱1基当たりの折損被害により停電する停電軒数比を乗じて、メッシュ単位ごとの電柱折損による停電軒数を算出し、対象地域全体で合計することによって推定し、
前記地中設備の損壊による停電軒数は、前記建物全壊率を対象地域全体で平均した平均建物全壊率に、建物の倒壊によって地中設備の路上設置機器が損壊する確率である損壊係数を乗じて損壊率を算出し、この損壊率に地中設備が配電する世帯数である地中供給電灯軒数を乗じることによって推定し、
前記建物焼失による停電軒数は、メッシュ単位ごとに、前記建物全壊率に基づいて地震発生の季節や時刻を考慮した出火件数を予測し、消火活動などによって消火しきれなかった各メッシュ内の焼失建物の割合である建物焼失率に、各メッシュ内の前記電灯軒数を乗じて、メッシュ単位ごとの建物焼失による停電軒数を算出し、対象地域全体で合計することによって推定し、
これら推定した前記電柱折損による停電軒数、地中設備の損壊による停電軒数及び建物焼失による停電軒数を合計することによって地震による停電軒数を求めることを特徴とする地震による停電軒数の推定方法が提供される。
The present invention according to claim 3 is an estimation method of the number of blackouts due to an earthquake for estimating the number of blackouts in a target area that suffers from a blackout due to an earthquake,
The causes of power outages are classified into power outages caused by broken utility poles, power outages caused by damage to underground equipment installed in the ground due to the complete destruction of the building, and power outages caused by the building being burnt down.
The number of power outages due to the electric pole breakage is estimated by using the method for estimating the number of electric pole breakages due to the earthquake according to any one of claims 1 and 2, and then the number of electric pole breaks is calculated as 1 for each mesh unit. Multiply by the ratio of the number of blackouts due to breakage damage per unit, calculate the number of blackouts due to broken poles per mesh unit, and estimate by summing up the entire target area,
The number of power outages due to the breakdown of the underground facilities is calculated by multiplying the average building total destruction rate, which is the average of the total building destruction rate over the entire target area, by the damage factor, which is the probability that the equipment installed on the road in the underground facilities will be damaged by the collapse of the building. Estimate by calculating the damage rate and multiplying this damage rate by the number of underground supply lamps, which is the number of households to which the underground equipment distributes power,
The number of blackout houses due to building burnout is predicted for each mesh unit based on the total building destruction rate and the number of fires taking into account the season and time of the earthquake occurrence, and the fired buildings in each mesh that could not be extinguished by fire fighting activities etc. Multiply the building burnout rate, which is the ratio of the above, by the number of electric houses in each mesh, calculate the number of blackout buildings due to building burnout per mesh unit, and estimate by summing up the entire target area,
There is provided an estimation method of the number of power outages due to an earthquake characterized by calculating the number of power outages due to an earthquake by totaling the estimated number of power outages due to breakage of the power pole, breakdown of underground facilities, and number of power outages due to building burnout. The

上記請求項3記載の本発明は、地震によって、上記請求項1,2いずれかに記載の電柱の折損による停電の他、地中設備の損壊による停電及び建物焼失による停電の軒数を推定するためのものである。このように、予め地震発生時の停電軒数を把握することによって、復旧のための人員の配置や設備の備えなど、復旧計画の立案が容易になり、電気の早期復旧に資することができる。   The present invention as set forth in claim 3 is for estimating the number of eaves due to a power outage due to damage to underground facilities and a power outage due to building burnout in addition to a power outage due to breakage of the utility pole according to any of claims 1 and 2 due to an earthquake. belongs to. Thus, by knowing the number of power outages at the time of the earthquake in advance, it becomes easy to make a recovery plan, such as the arrangement of personnel for recovery and the provision of equipment, and can contribute to the early recovery of electricity.

以上詳説のとおり本発明によれば、対象地域をメッシュ状に細分化してメッシュ単位ごとに被害予測ができるとともに、対象地域の地盤条件を考慮した建物被害の予測から、2次的な電柱折損数が精度よく推定でき、かつこの電柱の折損などに伴う停電軒数が精度よく推定できることにより、地震発生時に復旧計画の立案が容易になり、電気の早期復旧が実現できる。   As described above in detail, according to the present invention, the target area can be subdivided into a mesh shape so that damage can be predicted for each mesh unit, and the number of secondary power pole breakage can be estimated from building damage prediction considering the ground conditions of the target area. Can be estimated with high accuracy, and the number of power outages due to breakage of this utility pole can be estimated with high accuracy, making it easier to make a recovery plan in the event of an earthquake and realizing early recovery of electricity.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔電柱折損数の推定方法〕
図1に基づいて地震による電柱折損数の推定方法について説明する。先ず、基礎データの作成として、被害予測を行う対象地域をメッシュ状に細分化して、メッシュ単位ごとに、図2に示されるように、各種番号、位置情報、メッシュ内の電気の契約世帯数(以下「電灯軒数」という)及びメッシュ内の電柱基数などをデータベース化しておく。ここで、メッシュ単位は、細かいほどより高精度な被害予測が可能となるが、作業手間や計算量などを考慮して500m×500m程度が好ましい。
[Method of estimating the number of pole breaks]
A method for estimating the number of telephone pole breakage due to an earthquake will be described with reference to FIG. First, as basic data is created, the target area for damage prediction is subdivided into meshes, and for each mesh unit, as shown in FIG. 2, various numbers, location information, and the number of households with electricity contracts ( (Hereinafter referred to as “the number of electric lamps”) and the number of utility poles in the mesh are stored in a database. Here, the finer the mesh unit, the more accurate damage prediction is possible, but it is preferably about 500 m × 500 m in consideration of the labor and calculation amount.

本電柱折損数の推定方法は、前記メッシュ単位ごとに、地震動によって折損する電柱の1次被害折損数と、地震による建物の全壊に伴って折損する電柱の2次被害折損数とを求め、前記1次被害折損数と2次被害折損数の和である電柱折損数を推定するものである。   The method for estimating the number of power pole breakage is to determine, for each mesh unit, the number of primary damage breakage of a power pole broken by earthquake motion and the number of secondary damage breakage of a power pole broken due to a total destruction of a building due to an earthquake, The number of telephone pole breaks, which is the sum of the number of primary damage breaks and the number of secondary damage breaks, is estimated.

前記1次被害折損数の算出方法について説明する。1次被害折損数の算出では、図3に示されるように、予め、過去の地震の被害調査に基づき、震度階ごとに、地震動によって折損した電柱の数が全体の電柱基数に占める割合である地震動による電柱折損率を求めておく。そして、1次被害折損数=電柱折損率の震度階平均値×電柱基数により震度階ごとの1次被害折損数を算出する。   A method for calculating the number of primary damage breaks will be described. In the calculation of the number of primary damage breaks, as shown in Fig. 3, the number of power poles broken by earthquake motion is the ratio of the total number of power poles for each seismic intensity scale based on past earthquake damage surveys. Find the rate of pole breakage due to earthquake motion. Then, the number of primary damage breaks is calculated by the following formula: number of primary damage breaks = seismic intensity average value of power pole breakage rate x number of power poles.

次に、前記2次被害折損数の算出方法について説明する。2次被害折損数の算出では、予め、過去の地震の被害調査に基づき、図4に示されるように、地震動の強さを表す地表面最大速度と建物全壊率との相関関係を求めておく。なお、参考として図4中に、従来の震度階(震度5、6、7)ごとの建物全壊率の平均値を示すと、従来の震度階に基づく建物全壊率の推定方法では、同一の震度階であっても建物全壊率に大きな幅があるため、電柱折損数の推定結果にも大きく影響していた。これに対し、本方法では、前述の通り、地表面最大速度に基づく建物全壊率を図4の相関関係から求めているため、電柱折損数の推定を精度よく行うことができるようになる。   Next, a method for calculating the secondary damage breakage number will be described. In calculating the number of secondary damage failures, as shown in FIG. 4, based on past earthquake damage investigations, the correlation between the ground surface maximum velocity representing the intensity of earthquake motion and the total building destruction rate is obtained in advance. . For reference, the average value of the total building destruction rate for each conventional seismic intensity scale (seismic intensity 5, 6, 7) is shown in FIG. Even if it is a floor, there is a large range in the total destruction rate of the building, which greatly affected the estimation result of the number of telephone pole breakage. On the other hand, in the present method, as described above, since the building total destruction rate based on the ground surface maximum speed is obtained from the correlation shown in FIG. 4, it is possible to accurately estimate the number of pole breakage.

また、予め、過去の地震の被害調査に基づき、図5に示されるように、建物全壊率と地震により折損被害のあった電柱の割合である電柱折損率との相関関係を求めておく。同図に示されるように、建物全壊率と電柱折損率との間には、一定の相関性を有し、その相関式は、図示例では、電柱折損率=0.17154×建物全壊率という直線の近似式で表すことができる。   In addition, as shown in FIG. 5, a correlation between the total destruction rate of the building and the power pole breakage rate, which is the ratio of the power poles damaged by the earthquake, is obtained in advance based on past earthquake damage surveys. As shown in the figure, there is a certain correlation between the total destruction rate of the building and the utility pole breakage rate. In the example shown in the figure, the correlation formula is a straight line of the pole breakage rate = 0.17154 × building destruction rate. It can be expressed by an approximate expression.

そして、2次被害折損数の算出では、図1に示されるように、地震動による地表の加速度応答スペクトルから地表面最大速度を算出し、この地表面最大速度に対する建物全壊率を、図4に示される地表面最大速度と建物全壊率との相関関係から求め、この求めた建物全壊率に対する電柱折損率を、図5に示される建物全壊率と電柱折損率との相関関係から求める。そして、次式(1)から、2次被害折損数を推定する。   In calculating the number of secondary damage failures, as shown in FIG. 1, the maximum ground surface velocity is calculated from the acceleration response spectrum of the ground surface due to earthquake motion, and the total building destruction rate with respect to the maximum ground surface velocity is shown in FIG. 5 is obtained from the correlation between the maximum ground surface speed and the building total destruction rate, and the electric pole breakage rate with respect to the obtained building total destruction rate is obtained from the correlation between the building total destruction rate and the electric pole breakage rate shown in FIG. Then, the number of secondary damage breaks is estimated from the following equation (1).

Figure 2008134891
Figure 2008134891

前記地表面最大速度の算出方法は、前述した特許文献1記載の方法が好適に使用できる。具体的には、先ず、震源断層の設定のステップで、震源断層Δ及びマグニチュードMを設定する。オペレータが所望の地震名を選択することにより、または選択した地震の設定を変更することにより震源断層Δ及びマグニチュードMが設定される。   As the calculation method of the ground surface maximum speed, the method described in Patent Document 1 can be preferably used. Specifically, first, in the step of setting an epicenter fault, an epicenter fault Δ and a magnitude M are set. The source fault Δ and the magnitude M are set by the operator selecting a desired earthquake name or changing the setting of the selected earthquake.

次に、工学的基盤上の応答スペクトルの計算ステップで、加速度応答スペクトル推定式SaB(T)=F(M,H,R)に、マグニチュードM及び震源断層パラメータから求めたH,Rを代入し、加速度応答スペクトルSaBを計算する。 Next, in the response spectrum calculation step on the engineering foundation, H and R obtained from the magnitude M and the hypocenter fault parameters are substituted into the acceleration response spectrum estimation formula S aB (T) = F (M, H, R) Then, the acceleration response spectrum S aB is calculated.

次に、地表の応答スペクトルの計算ステップで、加速度応答スペクトルSaBに表層地盤の増幅特性AMPを掛け合わせて、表面の加速度応答スペクトルSaS(T)を計算する。 Next, in the response spectrum calculation step for the ground surface, the acceleration response spectrum S aS (T) is calculated by multiplying the acceleration response spectrum S aB by the amplification characteristic AMP of the surface ground.

その後、加速度応答スペクトルSaS(T)を各種の地震動強さのパラメータに変換することになる。地表面最大速度PGVの計算ステップで、下式(2)の推定式より、加速度応答スペクトルSaS(T)の各周期成分から最大速度PGVを求める。 Thereafter, the acceleration response spectrum S aS (T) is converted into various seismic intensity parameters. In the calculation step of the ground surface maximum speed PGV, the maximum speed PGV is obtained from each periodic component of the acceleration response spectrum S aS (T) from the estimation formula of the following formula (2).

Figure 2008134891
Figure 2008134891

以上のようにして1次被害折損数及び2次被害折損数を求めた後、前記1次被害折損数と2次被害折損数とを足し合わせて、メッシュ単位ごとの電柱折損数を推定する。このようにして推定した電柱折損数は、図6に示されるように、地図上のメッシュ単位ごとに、電柱折損数に応じて段階的な色分けなどをすることによって、対象地域の電柱折損数の被害分布を明確に把握することができるようになる。   After determining the number of primary damages and the number of secondary damages as described above, the number of telephone pole breaks per mesh unit is estimated by adding the number of primary damages and the number of secondary damages. As shown in FIG. 6, the number of telephone pole breaks estimated in this way is obtained by performing stepwise color coding according to the number of telephone pole breaks for each mesh unit on the map. The damage distribution can be clearly understood.

〔停電軒数の推定方法〕
続いて、対象地域の地震によって停電被害を受ける世帯数である停電軒数の推定方法について、図7に基づいて詳述する。
[Method for estimating the number of power outages]
Next, a method for estimating the number of blackout houses, which is the number of households damaged by a blackout due to an earthquake in the target area, will be described in detail with reference to FIG.

地震発生時に、停電が起こる原因は、(1)電柱が折損することによる電柱折損による停電、(2)建物の全壊に伴って地中設備の路上設置機器が損壊することによる地中設備の損壊による停電、(3)建物が焼失することによる建物焼失による停電の3要因が考えられる。本発明では、これら(1)〜(3)の各停電原因による停電軒数を、対象地域全体について求め、これらの各停電原因による停電軒数を合計することによって、対象地域全体の停電軒数を推定するものである。以下その推定方法について詳述する。   When an earthquake occurs, the cause of a power outage is (1) a power outage due to a broken utility pole, (2) a breakdown of underground equipment due to a breakdown of equipment installed on the road in the underground facility due to the complete destruction of the building There are three possible causes: power outage due to fire, and (3) power outage due to building burnout due to building burning. In the present invention, the number of blackouts due to each blackout cause in (1) to (3) is obtained for the entire target area, and the total number of blackouts due to each blackout cause is estimated to estimate the number of blackouts in the entire target area. Is. The estimation method will be described in detail below.

(電柱折損による停電軒数の推定方法)
電柱折損による停電軒数は、前述した電柱折損数の推定方法によって電柱折損数を推定した後、この電柱折損数に、電柱1基当たりの回線数や配電線数など各地域での使用形態の差異を考慮した補正を行うための電柱1基当たりの折損被害により停電する軒数である停電軒数比を乗じることによって、メッシュ単位ごとの電柱折損による停電軒数を推定し、対象地域全体で合計することによって計算する。
(Method for estimating the number of power outages due to broken telephone poles)
The number of power failure due to power pole breakage is estimated by the method of estimating the number of power pole breaks described above, and then the number of power pole breaks is different from the usage pattern in each region, such as the number of lines per power pole and the number of distribution lines. By multiplying by the ratio of the number of power outages that are out of power due to breakage damage per power pole to make corrections that take into account, the number of power outages due to broken power poles per mesh unit is estimated and totaled over the entire target area calculate.

前記停電軒数比の具体的な算出過程は、前記電柱折損数から下式(3)により停電回線数を算出する。   The specific calculation process of the ratio of the number of power outages is to calculate the number of power outages using the following formula (3) from the number of broken poles.

Figure 2008134891
Figure 2008134891

前式により算出した停電回線数から、下式(4)により停電軒数を算出することができる。   From the number of blackout lines calculated by the previous formula, the number of blackout eaves can be calculated by the following formula (4).

Figure 2008134891
Figure 2008134891

上記計算式(4)の内、「停電回線比×配電線係数×電灯軒数/配電線数」の部分を「電柱1基当たりの折損被害により停電する停電軒数比」と定義すれば、上式(4)は下式(5)に変形することができる。この場合は、各メッシュ毎に、電柱1基当たりの折損被害により停電する停電軒数比を整理しておくことにより、前記停電軒数比(定数)を電柱折損数に乗算することにより、直ちに停電軒数を求めることが可能となる。   In the above formula (4), if the part of “power outage line ratio × distribution line coefficient × number of lamps / distribution lines” is defined as “ratio of outages due to breakage per power pole” (4) can be transformed into the following formula (5). In this case, for each mesh, by arranging the ratio of the number of power outages that cause power outages due to breakage damage per power pole, by multiplying the number of power outage houses (constant) by the number of power pole breaks, Can be obtained.

Figure 2008134891
Figure 2008134891

(地中設備の損壊による停電軒数の推定方法)
本推定では、建物が倒壊することにより、回路開閉器や引込開閉器など、地中設備の路上設置機器が損壊し、停電が生じる停電軒数を推定するものである。
(Method for estimating the number of outages due to damage to underground facilities)
In this estimation, the number of blackout houses where power outages occur due to the destruction of buildings and damage to underground installation equipment such as circuit switches and service switches.

地中設備の損壊による停電軒数は、メッシュ単位ごとの前記建物全壊率を対象地域全体で平均した平均建物全壊率を算出した後、建物の倒壊によって地中設備の路上設置機器が損壊する確率である損壊係数を下式(6)により算出し、下式(7)により停電軒数を算出する。   The number of blackouts due to the breakdown of underground facilities is the probability that the equipment installed on the road of the underground facilities will be damaged due to the collapse of the building after calculating the average building total failure rate by averaging the total building destruction rate for each mesh unit in the entire target area. A certain damage factor is calculated by the following formula (6), and the number of power outages is calculated by the following formula (7).

Figure 2008134891
Figure 2008134891

Figure 2008134891
Figure 2008134891

なお、前記損壊係数は、対象地域ごとに任意に設定することが可能であるが、例えば、1台の変圧器が供給する電灯軒数(20軒)の逆数(1/20)の10%である0.005程度とすることができる。また、前記地中供給電灯軒数とは、地中設備が配電する世帯数のことである。   The damage factor can be arbitrarily set for each target area, but is, for example, 10% of the reciprocal number (1/20) of the number of lamps (20) supplied by one transformer. It can be about 0.005. The number of underground supply lamps is the number of households to which the underground facilities distribute power.

(建物焼失による停電軒数の推定方法)
本推定では、建物自体が焼失することによって停電が生じる停電軒数を推定するものである。
(Method of estimating the number of outages due to building burnout)
In this estimation, we estimate the number of blackout houses where blackouts occur due to the buildings themselves being burnt down.

建物焼失による停電軒数は、メッシュ単位ごとに、前記建物全壊率に基づいて地震発生の季節や時刻を考慮した出火件数を予測し、消火活動などによって消火しきれなかった各メッシュ内の焼失建物の割合である建物焼失率を算出した後、下式(8)の計算式から各メッシュごとの停電軒数を推定し、対象地域全体で合計することによって計算する。   For the number of blackout buildings due to building burnout, the number of fires taking into account the season and time of earthquake occurrence is predicted based on the total building destruction rate for each mesh unit, and the number of fired buildings in each mesh that could not be extinguished by firefighting activities etc. After calculating the building burnout rate, which is the ratio, the number of outages for each mesh is estimated from the formula (8) below, and the total is calculated for the entire target area.

Figure 2008134891
Figure 2008134891

地震による電柱折損数の推定方法を示す流れ図である。It is a flowchart which shows the estimation method of the telephone pole breakage number by an earthquake. データベースシートの作成例である。It is an example of creation of a database sheet. 震度階ごとの地震動による電柱折損率を示す表である。It is a table | surface which shows the electric pole breakage rate by the earthquake motion for every seismic intensity level. 地表面最大速度と建物全壊率との関係を示すグラフである。It is a graph which shows the relationship between a ground surface maximum speed and a building total destruction rate. 建物全壊率と電柱折損率との関係を示すグラフである。It is a graph which shows the relationship between a building complete destruction rate and a utility pole breakage rate. メッシュ単位ごとの電柱折損数の分布を示す地図である。It is a map which shows distribution of the number of telephone pole breakages for every mesh unit. 地震による停電軒数の推定方法を示す流れ図である。It is a flowchart which shows the estimation method of the number of the blackouts by an earthquake.

Claims (3)

対象地域をメッシュ状に細分化して、メッシュ単位ごとに、地震動によって折損する電柱の1次被害折損数と、地震による建物の全壊に伴って折損する電柱の2次被害折損数とを求め、前記1次被害折損数と2次被害折損数の和である電柱折損数を推定するための地震による電柱折損数の推定方法であって、
予め、過去の地震の被害調査に基づき、地震動の強さを表す地表面最大速度と地震により全壊した建物の割合である建物全壊率との相関関係を求めておくとともに、前記建物全壊率と折損被害のあった電柱の割合である電柱折損率との相関関係を求めておき、
前記2次被害折損数は、地震動による地表の加速度応答スペクトルから地表面最大速度を算出し、この地表面最大速度に対する建物全壊率を前記地表面最大速度と建物全壊率との相関関係から求め、この建物全壊率に対する電柱折損率を前記建物全壊率と電柱折損率との相関関係から求め、メッシュ内に設置してある電柱の数を電柱基数として、次式(1)によって推定することを特徴とする地震による電柱折損数の推定方法。
Figure 2008134891
The target area is subdivided into meshes, and for each mesh unit, the number of primary damage breakage of power poles broken due to earthquake motion and the number of secondary damage breakage of power poles broken due to the total destruction of buildings due to the earthquake are calculated, A method for estimating the number of telephone pole breakage due to an earthquake to estimate the number of telephone pole breakage, which is the sum of the number of primary damages and the number of secondary damages,
Based on past earthquake damage surveys, the correlation between the maximum velocity of the ground surface, which indicates the strength of earthquake motion, and the total building destruction rate, which is the proportion of buildings that were completely destroyed by the earthquake, was calculated in advance. Find the correlation with the telephone pole breakage rate, which is the ratio of damaged telephone poles,
The number of secondary damage breakage is calculated from the acceleration response spectrum of the ground surface due to earthquake motion, the surface maximum velocity is calculated from the correlation between the surface maximum velocity and the building total failure rate with respect to the surface maximum velocity, The utility pole breakage rate with respect to the total building destruction rate is obtained from the correlation between the building total destruction rate and the utility pole breakage rate, and the number of power poles installed in the mesh is used as the power pole radix to estimate by the following equation (1). The method of estimating the number of telephone pole breakage due to the earthquake.
Figure 2008134891
前記1次被害折損数は、予め、過去の地震の被害調査に基づき、震度階ごとに、折損被害のあった電柱の割合である地震動による電柱折損率を求めておき、前記地震動による電柱折損率に前記電柱基数を乗じて算出する請求項1記載の電柱折損数の推定方法。   The number of primary damage breaks is determined in advance based on a past earthquake damage survey, and for each seismic intensity scale, a power pole breakage rate due to ground motion, which is the ratio of power poles with breakage damage, is obtained. The method of estimating the number of pole breakage according to claim 1, wherein the number is calculated by multiplying the number of poles by the pole number. 地震によって停電被害を受ける対象地域の停電軒数を推定するための地震による停電軒数の推定方法であって、
停電被害の原因を、電柱が折損することによる停電と、建物の全壊に伴って地中設備の路上設置機器が損壊することによる停電と、建物が焼失することによる停電とに分類し、
前記電柱折損による停電軒数は、前記請求項1、2いずれかに記載の地震による電柱折損数の推定方法を用いて電柱折損数を推定した後、メッシュ単位ごとに、前記電柱折損数に電柱1基当たりの折損被害により停電する停電軒数比を乗じて、メッシュ単位ごとの電柱折損による停電軒数を算出し、対象地域全体で合計することによって推定し、
前記地中設備の損壊による停電軒数は、前記建物全壊率を対象地域全体で平均した平均建物全壊率に、建物の倒壊によって地中設備の路上設置機器が損壊する確率である損壊係数を乗じて損壊率を算出し、この損壊率に地中設備が配電する世帯数である地中供給電灯軒数を乗じることによって推定し、
前記建物焼失による停電軒数は、メッシュ単位ごとに、前記建物全壊率に基づいて地震発生の季節や時刻を考慮した出火件数を予測し、消火活動などによって消火しきれなかった各メッシュ内の焼失建物の割合である建物焼失率に、各メッシュ内の前記電灯軒数を乗じて、メッシュ単位ごとの建物焼失による停電軒数を算出し、対象地域全体で合計することによって推定し、
これら推定した前記電柱折損による停電軒数、地中設備の損壊による停電軒数及び建物焼失による停電軒数を合計することによって地震による停電軒数を求めることを特徴とする地震による停電軒数の推定方法。
A method for estimating the number of power outages due to an earthquake in order to estimate the number of power outages in an area subject to power outage damage due to an earthquake,
The causes of power outages are classified into power outages caused by broken utility poles, power outages caused by damage to underground equipment installed in the ground due to the complete destruction of the building, and power outages caused by the building being burnt down.
The number of power outages due to the electric pole breakage is calculated by estimating the number of electric pole breakages using the method for estimating the number of electric pole breakages due to the earthquake according to any one of claims 1 and 2, and then adding the number of electric pole breaks to the number of electric pole breakages for each mesh unit. Multiply by the ratio of the number of blackouts due to breakage damage per unit, calculate the number of blackouts due to broken poles per mesh unit, and estimate by summing up the entire target area,
The number of power outages due to the breakdown of the underground facilities is calculated by multiplying the average building total destruction rate, which is the average of the total building destruction rate over the entire target area, by the damage factor, which is the probability that the equipment installed on the road in the underground facilities will be damaged by the collapse of the building. Estimate by calculating the damage rate and multiplying this damage rate by the number of underground supply lamps, which is the number of households to which the underground equipment distributes power,
The number of blackout houses due to building burnout is predicted for each mesh unit based on the total building destruction rate and the number of fires taking into account the season and time of the earthquake occurrence, and the fired buildings in each mesh that could not be extinguished by fire fighting activities etc. Multiply the building burnout rate, which is the ratio of the above, by the number of electric houses in each mesh, calculate the number of blackout buildings due to building burnout per mesh unit, and estimate by summing up the entire target area,
A method for estimating the number of power outages due to an earthquake, wherein the number of power outages due to an earthquake is obtained by summing up the estimated number of power outages due to broken utility poles, the number of power outages due to damage to underground facilities, and the number of power outages due to building burnout.
JP2006321588A 2006-11-29 2006-11-29 Method for estimating the number of telephone pole breakage due to an earthquake and method for estimating the number of power outages using the same Expired - Fee Related JP4893942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321588A JP4893942B2 (en) 2006-11-29 2006-11-29 Method for estimating the number of telephone pole breakage due to an earthquake and method for estimating the number of power outages using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321588A JP4893942B2 (en) 2006-11-29 2006-11-29 Method for estimating the number of telephone pole breakage due to an earthquake and method for estimating the number of power outages using the same

Publications (2)

Publication Number Publication Date
JP2008134891A true JP2008134891A (en) 2008-06-12
JP4893942B2 JP4893942B2 (en) 2012-03-07

Family

ID=39559698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321588A Expired - Fee Related JP4893942B2 (en) 2006-11-29 2006-11-29 Method for estimating the number of telephone pole breakage due to an earthquake and method for estimating the number of power outages using the same

Country Status (1)

Country Link
JP (1) JP4893942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228301A1 (en) * 2017-06-13 2018-12-20 南京康腾生物科技有限公司 Debris flow monitoring, evacuating and alarming system and method
WO2021090362A1 (en) * 2019-11-05 2021-05-14 日本電信電話株式会社 Impact level calculation device and impact level calculation method
CN114329974A (en) * 2021-12-29 2022-04-12 武汉大学 Monte Carlo simulation-based urban water supply pipe network earthquake damage assessment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237262A (en) * 1996-03-01 1997-09-09 Osaka Gas Co Ltd Damage estimating method at the time of earthquake
JP2002117475A (en) * 2000-10-11 2002-04-19 Fumihiko Imamura Tsunami damage estimating system
JP2002168964A (en) * 2000-11-30 2002-06-14 Tokyo Electric Power Co Inc:The Earthquake motion amplitude estimation method, device thereof and storage medium storing program thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237262A (en) * 1996-03-01 1997-09-09 Osaka Gas Co Ltd Damage estimating method at the time of earthquake
JP2002117475A (en) * 2000-10-11 2002-04-19 Fumihiko Imamura Tsunami damage estimating system
JP2002168964A (en) * 2000-11-30 2002-06-14 Tokyo Electric Power Co Inc:The Earthquake motion amplitude estimation method, device thereof and storage medium storing program thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228301A1 (en) * 2017-06-13 2018-12-20 南京康腾生物科技有限公司 Debris flow monitoring, evacuating and alarming system and method
WO2021090362A1 (en) * 2019-11-05 2021-05-14 日本電信電話株式会社 Impact level calculation device and impact level calculation method
JPWO2021090362A1 (en) * 2019-11-05 2021-05-14
JP7356051B2 (en) 2019-11-05 2023-10-04 日本電信電話株式会社 Impact calculation device and impact calculation method
CN114329974A (en) * 2021-12-29 2022-04-12 武汉大学 Monte Carlo simulation-based urban water supply pipe network earthquake damage assessment method

Also Published As

Publication number Publication date
JP4893942B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US11635366B2 (en) Infrastructure corrosion analysis
JP4893942B2 (en) Method for estimating the number of telephone pole breakage due to an earthquake and method for estimating the number of power outages using the same
Galbusera et al. The importance of the quality of sampling in service life prediction
JP2010054440A (en) Method for inspecting on-site surge current discharge experiment to equipotential connection and basic pile grounded plate, discharge testing device, and discharge monitoring method
Urlainis et al. Probabilistic risk assessment of oil and gas infrastructures for seismic extreme events
King et al. RiskScape New Zealand: A multihazard loss modelling tool
Serrano-Fontova et al. A comprehensive review and comparison of the fragility curves used for resilience assessments in power systems
JP2018205124A (en) Device and method for measuring corrosion rate
Giovinazzi et al. Protection of Critical Infrastructure in the event of Earthquakes: CIPCast-ES
CN104075985A (en) Method for evaluating service life of power grounding grid
Maruyama et al. Construction of fragility curve for water distribution pipes based on damage datasets from recent earthquakes in Japan
Pessina et al. Applying simulated seismic damage scenarios in the volcanic region of Mount Etna (Sicily): a case-study from the MW 4.9, 2018 earthquake
Wong et al. Modelling transient occupant loads for offices
Taheri et al. Numerical simulation of cathodic protection systems for transmission towers with grillage-type foundations
Hennequin et al. Life cycle assessment of a typical European single-family residence and its flood related repairs
Sarıcıoğlu et al. Building design in the context of climate change and a flood projection for Ankara
KR20210074519A (en) Safety evaluation system for temporary earth retaining structure based on real time monitoring
Maruyama et al. Damage estimation of water distribution pipes following recent earthquakes in Japan
Mohammadi et al. Investigation of cause and effects of fires following the Loma Prieta earthquake
Liu et al. Wildfire risk assessment of transmission-line corridors based on logistic regression
Martinelli The damage survey and safety evaluation form employed in Marcheregion struck by the September 1997 earthquake
JP2018151280A (en) Method of selecting pipeline monitoring point
Trendafiloski et al. GIS-oriented method for elaboration of probabilistic earthquake scenarios
Faraji et al. Seismic performance analysis of lifeline systems
Maruyama et al. Tsunami damage assessment of buildings in Chiba Prefecture, Japan using fragility function developed after the 2011 Tohoku-Oki Earthquake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees