JP2008134200A - Entire celestial sphere-type incident direction detector of radiation, radiation monitoring method, and device - Google Patents

Entire celestial sphere-type incident direction detector of radiation, radiation monitoring method, and device Download PDF

Info

Publication number
JP2008134200A
JP2008134200A JP2006322108A JP2006322108A JP2008134200A JP 2008134200 A JP2008134200 A JP 2008134200A JP 2006322108 A JP2006322108 A JP 2006322108A JP 2006322108 A JP2006322108 A JP 2006322108A JP 2008134200 A JP2008134200 A JP 2008134200A
Authority
JP
Japan
Prior art keywords
radiation
incident direction
incident
scintillator
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322108A
Other languages
Japanese (ja)
Other versions
JP4766263B2 (en
Inventor
Yoshiyuki Shirakawa
芳幸 白川
Toshiya Yamano
俊也 山野
Yusuke Kobayashi
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences, Aloka Co Ltd filed Critical National Institute of Radiological Sciences
Priority to JP2006322108A priority Critical patent/JP4766263B2/en
Publication of JP2008134200A publication Critical patent/JP2008134200A/en
Application granted granted Critical
Publication of JP4766263B2 publication Critical patent/JP4766263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an entire celestial sphere-type incident direction detector of radiation housed in an ordinary radiation monitoring post, with the incident direction of radiation defined in terms of a round angle and elevation angle in the horizontal direction. <P>SOLUTION: This entire celestial sphere-type incident direction detector is equipped with a plurality of independent scintillators 11, 12, and 13 of the same material disposed circumferentially relative to incident radiation with at least their parts overlapped, and a conversion part 20 comprising light receiving elements 21, 22, and 23 optically connected to the respective scintillators, wherein the combination of the percentage of radiation directly incident on the respective scintillators with that of radiation indirectly incident on them because of being hidden behind other scintillators is made to change according to an incident direction shown by the round angle and elevation angle. This detector is equipped with a means for comparing ratios r (r1, r2, and r3) calculated by using spectra S1, S2, and S3 obtained from the respective scintillators with a previously stored response function group, and detects the round angle and elevation angle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線の全天球型入射方向検出装置、及び、放射線モニタリング方法、装置に係り、特に、通常の放射線モニタリングポストに収容するのに好適な、原子力施設等からの放射線あるいは放射性物質の漏洩・散逸や、核実験等による放射性プルームの接近を検知可能な、全天球からの放射線、特にガンマ線の入射方向を求めるための放射線の全天球型入射方向検出装置、及び、この全天球型入射方向検出装置を用いた放射線モニタリング方法、装置に関するものである。   The present invention relates to a radiation omnidirectional incidence direction detection apparatus, and a radiation monitoring method and apparatus, and more particularly to radiation or radioactive material from a nuclear facility or the like suitable for accommodation in a normal radiation monitoring post. An omnidirectional incident direction detector for omnidirectional radiation to determine the incident direction of radiation, especially gamma rays, which can detect leakage / dissipation and the approach of radioactive plumes by nuclear tests, etc. The present invention relates to a radiation monitoring method and apparatus using a spherical incident direction detection apparatus.

検出器に対する水平面の方向からの放射線を検出する従来技術が、特許文献1〜5に記載されている。   Patent Documents 1 to 5 describe conventional techniques for detecting radiation from a horizontal plane direction with respect to the detector.

又、全天球からの入射方向の特定を可能にする従来技術が、特許文献6及び7に記載されている。   Further, Patent Documents 6 and 7 describe conventional techniques that enable the determination of the incident direction from the omnidirectional sphere.

特開2004−170121号公報JP 2004-170121 A 特開2004−170122号公報JP 2004-170122 A 特開2004−170125号公報JP 2004-170125 A 特開2004−361290号公報JP 2004-361290 A 特開2006−201086号公報JP 2006-201086 A 特開2004−170116号公報JP 2004-170116 A 特開2004−170107号公報JP 2004-170107 A

しかしながら、特許文献1〜5の従来技術では、水平の入射方向しか検出できず、山や地平線又は水平線等の陰になって、見通しが効かない場所から大気中を流れてくる放射性物質や、大気中の飛散物質に含まれる放射性プルーム等からの放射線を検出できない。   However, in the prior arts of Patent Documents 1 to 5, only a horizontal incident direction can be detected, and a radioactive substance flowing in the atmosphere from a place where the line-of-sight does not work, behind the mountains, the horizon or the horizon, Cannot detect radiation from radioactive plumes contained in scattered materials.

一方、特許文献6又は7の従来技術によれば、全天球からの入射方向の検出が可能であるが、放射線を検知するシンチレータが25個という多数必要であり、また球状の外郭にシンチレータを取り付けるためシンチレータの体積が十分に確保できず、よって放射線、特にガンマ線の検出効率が低い。また多くのシンチレータを設置することから検出器が大きくなり、通常の放射線モニタリングポスト(直径7.62cm(3インチ)、厚さ7.62cm(3インチ)のシンチレータを装備)と形状的に互換性が無い等の問題があった。   On the other hand, according to the prior art of Patent Document 6 or 7, it is possible to detect the incident direction from the omnidirectional sphere, but a large number of 25 scintillators for detecting radiation are required, and a scintillator is provided on a spherical outer shell. Because of the attachment, a sufficient volume of the scintillator cannot be secured, so that the detection efficiency of radiation, particularly gamma rays, is low. Since many scintillators are installed, the detector becomes larger, and it is geometrically compatible with ordinary radiation monitoring posts (equipped with a scintillator with a diameter of 7.62 cm (3 inches) and a thickness of 7.62 cm (3 inches)). There was a problem such as missing.

本発明は、前記従来の問題点を解決するべくなされたもので、水平方向の周角と仰角で規定される放射線の入射方向を検出でき、しかも、通常の放射線モニタリングポストに収容可能な、小型の全天球型入射方向検出装置を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and can detect the incident direction of radiation defined by the circumferential angle and elevation angle in the horizontal direction, and can be accommodated in a normal radiation monitoring post. It is an object of the present invention to provide an omnidirectional incident direction detection device.

本発明は、放射線の入射方向を検出するための全天球型入射方向検出装置であって、入射する放射線に対して周方向に少なくとも一部を重ねて配置された、同じ材質の独立した複数のシンチレータと、各シンチレータと光学的に接合された受光素子とを備え、各シンチレータに対して直接入射する放射線と他のシンチレータの影になって間接的に入射する放射線の割合の組み合わせが、水平方向の周角と仰角で示される入射方向によって変化するようにして、前記課題を解決したものである。   The present invention is an omnidirectional incident direction detection device for detecting the incident direction of radiation, and is an independent plurality of the same material arranged at least partially overlapping the incident radiation in the circumferential direction. Each scintillator and a light receiving element optically bonded to each scintillator, and the combination of the ratio of the radiation directly incident on each scintillator and the radiation incident indirectly in the shadow of the other scintillator is horizontal. The above-mentioned problem is solved by changing according to the incident direction indicated by the circumferential angle and the elevation angle of the direction.

前記シンチレータを3つ以上とし、0度から360度に亘る周角と0度から90度に亘る仰角で示される入射方向を検出可能とすることができる。   The number of scintillators is three or more, and it is possible to detect an incident direction indicated by a circumferential angle ranging from 0 degrees to 360 degrees and an elevation angle ranging from 0 degrees to 90 degrees.

又、各シンチレータが扇形の断面を持ち、全てのシンチレータを結合して円柱とすることにより、0度から360度に亘る周角と0度から90度に亘る仰角で示される入射方向を検出可能とすることができる。   In addition, each scintillator has a fan-shaped cross section, and by combining all the scintillators into a cylinder, it is possible to detect the incident direction indicated by a circumferential angle from 0 degrees to 360 degrees and an elevation angle from 0 degrees to 90 degrees It can be.

更に、各シンチレータが同一の形状を持つようにして、周方向の分解能を均一にすることができる。   Furthermore, it is possible to make the circumferential resolution uniform by making each scintillator have the same shape.

又、前記シンチレータの周囲に、水平方向からの放射線の透過率を調整するための帯状部材(例えば鉄製で厚さ5mmの帯を巻き付けたもの)を配設することにより、周辺での非破壊検査による放射線の漏洩、あるいは、放射性同位元素投与患者の接近による周辺放射線量の増加等の影響を避け、相対的に上空方向の感度を高めることができる。   Further, a non-destructive inspection around the scintillator is provided by arranging a band-like member (for example, a steel band around 5 mm thick) for adjusting the radiation transmittance from the horizontal direction. It is possible to avoid the influence of leakage of radiation due to the radiation or the increase of the surrounding radiation dose due to the approach of the patient receiving the radioisotope, and to relatively increase the sensitivity in the sky direction.

又、前記シンチレータの上部に、上空方向からの放射線の透過率を調整するための蓋状部材(例えば鉄製で厚さ1cmの板)を配設することにより、宇宙線等の影響を減じ、相対的に仰角の小さい水平に近い方向での感度を高めることができる。   In addition, a lid-like member (for example, a plate made of iron and having a thickness of 1 cm) for adjusting the transmittance of radiation from above is disposed on the scintillator, thereby reducing the influence of cosmic rays and the like. Therefore, it is possible to increase the sensitivity in a direction close to the horizontal with a small elevation angle.

更に、各シンチレータにより発生するスペクトルを解析するスペクトル解析手段と、スペクトル解析手段より出力される光電吸収ピーク計数値のシンチレータ間の比率を求める比率計算手段と、各比率に対応する周角と仰角からなる関数を記憶した関数記憶手段と、該関数記憶手段を参照して前記比率計算手段が求めた比率に対応する関数を求める関数参照手段と、その求めた周角と仰角とを出力する出力手段と、を備えることができる。   Further, a spectrum analyzing means for analyzing a spectrum generated by each scintillator, a ratio calculating means for obtaining a ratio between the scintillators of the photoelectric absorption peak count value output from the spectrum analyzing means, and a peripheral angle and an elevation angle corresponding to each ratio. A function storage means for storing the function, a function reference means for obtaining a function corresponding to the ratio obtained by the ratio calculation means with reference to the function storage means, and an output means for outputting the obtained peripheral angle and elevation angle And can be provided.

本発明は、又、前記の全天球型入射方向検出装置を用いることを特徴とする放射線モニタリング方法を提供するものである。   The present invention also provides a radiation monitoring method using the omnidirectional incident direction detection device.

又、前記の全天球型入射方向検出装置を備えたことを特徴とする放射線モニタリング装置を提供するものである。   The present invention also provides a radiation monitoring apparatus comprising the omnidirectional incident direction detection apparatus.

本発明によれば、水平方向の周角と仰角で表される全天球からの放射線の入射方向を特定でき、線量率増加が、原子力施設等からの放射線あるいは放射線物質の漏洩・散逸や、核実験等による放射性プルームの接近か、その他の原因、例えば自然現象、放射性同位元素投与患者の接近、近隣での放射線非破壊検査等によるものかを、全天球からの入射方向をもとに迅速に判断でき、水平方向の周角と仰角での追跡も可能になる。   According to the present invention, it is possible to specify the incident direction of radiation from the celestial sphere represented by the horizontal circumferential angle and elevation angle, the increase in dose rate is the leakage or dissipation of radiation or radioactive materials from nuclear facilities, Based on the incident direction from the omnidirectional sphere, whether it is the approach of a radioactive plume by a nuclear test, or other causes, such as natural phenomena, the approach of a patient with a radioisotope, or a nearby radiation nondestructive inspection. Judgment can be made quickly, and tracking at the circumferential angle and elevation angle in the horizontal direction is also possible.

これにより近隣住民や一般市民の安全と安心の確保に大いに貢献することができる。   This can greatly contribute to ensuring the safety and security of neighboring residents and the general public.

以下図面を参照して、本発明の好ましい実施形態を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る放射線の全天球型入射方向検出装置の実施形態の検出部10である。同時に天球上からの放射線の入射方向を水平方向の周角と仰角で示すことを定義したものである。   FIG. 1 shows a detection unit 10 of an embodiment of a radiation omnidirectional incidence direction detection apparatus according to the present invention. At the same time, it defines that the incident direction of radiation from above the celestial sphere is indicated by a horizontal circumferential angle and an elevation angle.

同じ材質、形状の独立した、水平断面が扇形の柱状シンチレータ11と同様のシンチレータ12と同様なシンチレータ13を、互いに、ある方向に対して影になるように配置する。図において、14は、放射線を透過する、例えば薄いアルミニウム又は不透明なプラスチック製のケースである。   A scintillator 13 similar to the scintillator 12 similar to the columnar scintillator 11 having the same material and shape but having a horizontal cross section is arranged so as to be shaded with respect to a certain direction. In the figure, reference numeral 14 denotes a case made of, for example, thin aluminum or opaque plastic that transmits radiation.

放射線の入射の基準方向0度Aに対して、放射線の入射方向Bは周角30度、仰角0度を示している。同様に放射線の入射方向Cは、周角30度、仰角60度を示している。同様に、放射線の入射方向Dは、周角不定、仰角90度、即ち真上からの入射を表している。   The incident direction B of the radiation indicates a circumferential angle of 30 degrees and an elevation angle of 0 degrees with respect to the reference direction of radiation incidence of 0 degrees A. Similarly, the incident direction C of radiation indicates a circumferential angle of 30 degrees and an elevation angle of 60 degrees. Similarly, the incident direction D of radiation represents an indefinite peripheral angle and an elevation angle of 90 degrees, that is, incident from directly above.

図2に、スペクトルが得られる様子を示す。図2は、横軸がエネルギー、縦軸が計数を示す。シンチレータ11、12、13からなる検出部10に放射線が入射し、シンチレータ11、12、13が発光する。その光を変換部20の受光素子21、22、23で、それぞれ電気的に増幅し、スペクトル解折手段30のマルチチャンネルアナライザー(MCA)31、32、33でスペクトルS1、S2、S3をそれぞれ生成する。   FIG. 2 shows how the spectrum is obtained. In FIG. 2, the horizontal axis indicates energy, and the vertical axis indicates counting. Radiation enters the detection unit 10 including the scintillators 11, 12, and 13, and the scintillators 11, 12, and 13 emit light. The light is electrically amplified by the light receiving elements 21, 22, and 23 of the conversion unit 20, and the spectra S 1, S 2, and S 3 are generated by the multi-channel analyzers (MCAs) 31, 32, and 33 of the spectrum resolving unit 30, respectively. To do.

例えば放射線の入射方向C(周角30度、仰角60度)の場合を考えると、シンチレータ11に最も多くの放射線が直接的に入射する。従って、MCA31で生成されるスペクトルS1には、大きな光電吸収ピークp1が観察される。一方、シンチレータ12、13は、シンチレータ11の一部陰になるので、直接的に入射する放射線は相対的に少なくなり、シンチレータ11と反応後、一部のエネルギーを吸収された状態で入射する放射線が相対的に多くなる。故にMCA32、33で生成されるスペクトルS2、S3の光電吸収ピークp2、p3は小さくなる。   For example, considering the case of radiation incident direction C (circumferential angle 30 degrees, elevation angle 60 degrees), the most radiation is directly incident on the scintillator 11. Therefore, a large photoelectric absorption peak p1 is observed in the spectrum S1 generated by the MCA 31. On the other hand, since the scintillators 12 and 13 are partially shaded by the scintillator 11, the directly incident radiation is relatively less, and after reacting with the scintillator 11, the radiation that is incident with a part of energy absorbed. Will be relatively large. Therefore, the photoelectric absorption peaks p2 and p3 of the spectra S2 and S3 generated by the MCAs 32 and 33 become small.

又、例えば放射線の入射方向B(周角30度、仰角0度)の場合を考えると、前述の現象が一層顕著になる。   Further, considering the case of the incident direction B of radiation (circumferential angle 30 degrees, elevation angle 0 degrees), for example, the above phenomenon becomes more prominent.

一方、例えば放射線の入射方向D(周角不定、仰角90度)の場合を考えると、シンチレータ11、12、13に対して直接入射、間接入射が、それぞれ同一条件になるので、MCA31、32、33では同じ大きさの光電吸収ピークp1、p2、p3が観察される。   On the other hand, for example, in the case of the incident direction D of radiation (circular angle indefinite, elevation angle 90 degrees), direct incidence and indirect incidence on the scintillators 11, 12, 13 are the same conditions. In 33, photoelectric absorption peaks p1, p2, and p3 having the same size are observed.

ここで入射方向を特定するための指標である比率rを定義する。MCA31、32、33で得られるスペクトルS1、S2、S3の光電吸収ピークの計数値をそれぞれp1、p2、p3とし、3つのスペクトル光電吸収ピークの計数値の合計値をT(=p1+p2+p3)とする。そしてp1/Tをr1、p2/Tをr2、p3/Tをr3として比率rを(r1、r2、r3)と定義する。   Here, a ratio r, which is an index for specifying the incident direction, is defined. The count values of the photoelectric absorption peaks of the spectra S1, S2, and S3 obtained by the MCAs 31, 32, and 33 are p1, p2, and p3, respectively, and the total value of the count values of the three spectrum photoelectric absorption peaks is T (= p1 + p2 + p3). . The ratio r is defined as (r1, r2, r3) where p1 / T is r1, p2 / T is r2, and p3 / T is r3.

図3は、放射線の入射方向B(周角30度、仰角0度)の場合の、前記比率r1、r2、r3(縦軸)と水平方向の周角(横軸)の関係を示す全体図である。r1と周角の関係を示すのはグラフB1、r2と周角の関係を示すのはグラフB2、r3と周角の関係を示すのはグラフB3である。   FIG. 3 is an overall view showing the relationship between the ratios r1, r2, r3 (vertical axis) and the horizontal circumferential angle (horizontal axis) in the case of radiation incident direction B (circumferential angle 30 degrees, elevation angle 0 degrees). It is. The relationship between r1 and the surrounding angle is shown in graph B1, the relationship between r2 and the surrounding angle is shown in graph B2, and the relationship between r3 and the surrounding angle is shown in graph B3.

図4は、放射線の入射方向C(周角30度、仰角60度)の場合の、前記比率r1、r2、r3と水平方向の周角の関係を示す全体図である。r1と周角の関係を示すのはグラフC1、r2と周角の関係を示すのはグラフC2、r3と周角の関係を示すのはグラフC3である。   FIG. 4 is an overall view showing the relationship between the ratios r1, r2, and r3 and the horizontal circumferential angle in the case of the radiation incident direction C (circular angle 30 degrees, elevation angle 60 degrees). The relationship between r1 and the surrounding angle is shown in graph C1, the relationship between r2 and the surrounding angle is shown in graph C2, and the relationship between r3 and the surrounding angle is shown in graph C3.

図5は、放射線の入射方向D(周角不定、仰角90度)の場合の、「前記比率r1、r2、r3と水平方向の周角の関係」を示す全体図である。r1と周角の関係を示すのはグラフD1、r2と周角の関係を示すのはグラフD2、r3と周角の関係を示すのはグラフD3である。この場合は3本のグラフが重なっている。   FIG. 5 is an overall view showing the “relationship between the ratios r1, r2, and r3 and the circumferential angle in the horizontal direction” in the case of the radiation incident direction D (circular angle indefinite, elevation angle 90 degrees). The relationship between r1 and the surrounding angle is graph D1, the relationship between r2 and the surrounding angle is graph D2, and the relationship between r3 and the surrounding angle is graph D3. In this case, three graphs overlap.

図6は、仰角0度、仰角60度、仰角90度の場合の比率r1と水平方向の周角の関係を示す全体図である。仰角0度の場合は図3と同じグラフB1、仰角60度の場合は図4と同じグラフC1、仰角90度の場合は図5と同じグラフD1が対応する。図6に見られるように、仰角が大きくなるに従い、グラフの振幅は小さくなり、水平線に近づくことが示される。   FIG. 6 is an overall view showing the relationship between the ratio r1 and the horizontal circumferential angle when the elevation angle is 0 degree, the elevation angle is 60 degrees, and the elevation angle is 90 degrees. When the elevation angle is 0 degree, the same graph B1 as FIG. 3 corresponds to the same graph C1 as FIG. 4 when the elevation angle is 60 degrees, and when the elevation angle is 90 degrees, the same graph D1 as FIG. As can be seen in FIG. 6, as the elevation angle increases, the amplitude of the graph decreases, indicating that it approaches the horizon.

ここで図7を用い、本発明の装置により入射方向が検出される手順を示す。図7は、測定開始(ステップS100)から、入射方向、即ち解である周角と仰角の組み合わせが求まるまでのフローを示している。   Here, FIG. 7 is used to show the procedure of detecting the incident direction by the apparatus of the present invention. FIG. 7 shows a flow from the start of measurement (step S100) until the incident direction, that is, the combination of the circumferential angle and the elevation angle, which is a solution, is obtained.

ステップS100の測定開始により一定時間、シンチレータ11、12、13により放射線が検出され、MCA31、32、33によってスペクトルS1、S2、S3が生成される(ステップS110、S120、S130)。   Radiation is detected by the scintillators 11, 12, and 13 for a predetermined time from the start of measurement in step S 100, and spectra S 1, S 2, and S 3 are generated by the MCAs 31, 32, and 33 (steps S 110, S 120, and S 130).

各スペクトルS1、S2、S3から、汎用のスペクトル解析ソフトによって、ピーク計数値p1、p2、p3、及び、ピーク位置に対応する放射線のエネルギーが求められる(ステップS140、S150、S160)。   From each spectrum S1, S2, S3, the energy of the radiation corresponding to the peak count values p1, p2, p3 and the peak position is obtained by general-purpose spectrum analysis software (steps S140, S150, S160).

これらの値から、比率r(r1、r2、r3)が計算される(ステップS170)。この比率rを用いて、比率合致計算が行なわれる(ステップS180)。   From these values, the ratio r (r1, r2, r3) is calculated (step S170). Ratio matching calculation is performed using the ratio r (step S180).

この比較合致計算の概念を図3を用いて説明する。図3に於いて各比率rに対し、必ず二つの周角が合致することがわかる。そこで、求まったエネルギーにおける所定仰角ごとに用意された「比率と水平方向の周角の関係」を示す全ての図から、全ての比率(r1、r2、r3)に合致する周角の存在する図を探す。見つかった図の仰角とその周角とが解となる。   The concept of the comparison match calculation will be described with reference to FIG. In FIG. 3, it can be seen that for each ratio r, two circumferential angles always match. Therefore, from all the diagrams showing the “relationship between the ratio and the horizontal circumferential angle” prepared for each predetermined elevation angle in the obtained energy, there are circumferential angles that match all the ratios (r1, r2, r3). Search for. The elevation angle and the surrounding angle of the found figure are the solution.

実際には、エネルギー毎に予め作成された周角、仰角と、r1、r2、r3の関係を表すグラフの集合である応答関数群(図8参照)あるいは数値テーブル(図9参照)と比率rの比較が行なわれ、合致する周角と仰角が解として求められ、入射方向が検出される(ステップS200、S210)。   Actually, a response function group (see FIG. 8) or a numerical table (see FIG. 9) and a ratio r, which is a set of graphs representing the relationship between the circumferential angle and elevation angle created in advance for each energy, and r1, r2, and r3. Are compared, the matching circumferential angle and elevation angle are obtained as solutions, and the incident direction is detected (steps S200 and S210).

図8は、実験により、一番単純な関数である正弦波曲線で近似した、エネルギー662keVの応答関数群の一例である。なお、正弦波の代りに、例えば多項式を用いることもできる。   FIG. 8 is an example of a response function group with an energy of 662 keV approximated by a sine wave curve which is the simplest function by experiment. For example, a polynomial can be used in place of the sine wave.

図9は、図8の応答関数群を用いて作成(必要により内挿)した数値テーブルの一例である。   FIG. 9 is an example of a numerical table created (interpolated if necessary) using the response function group of FIG.

以上示した装置の構成例を図10に示す。   A configuration example of the apparatus described above is shown in FIG.

この装置は、検出部10の各シンチレータ11、12、13で発生し、変換部20の各受光素子21、22、23により電気信号に変換されたスペクトルを解析するスペクトル解析手段30と、該スペクトル解析部30より出力される光電吸収ピーク計数値のシンチレータ間の比率を求める比率計算手段40と、各比率に対応する周角と仰角からなる関数を記憶した関数記憶手段50と、該関数記憶手段50を参照して前記比率計算手段40が求めた比率r1、r2、r3に対応する関数を求める関数参照手段60と、その求めた周角と仰角とを出力する出力手段70と、を備えたCPU、ROM、RAM、インターフェイス及びソフトウエア等で構成されている。   This apparatus includes a spectrum analyzing means 30 for analyzing a spectrum generated in each scintillator 11, 12, 13 of the detection unit 10 and converted into an electric signal by each light receiving element 21, 22, 23 of the conversion unit 20, and the spectrum Ratio calculation means 40 for obtaining the ratio between the scintillators of the photoelectric absorption peak count value output from the analysis unit 30, a function storage means 50 for storing a function composed of a circumferential angle and an elevation angle corresponding to each ratio, and the function storage means 50, a function reference means 60 for obtaining a function corresponding to the ratios r1, r2, and r3 obtained by the ratio calculation means 40, and an output means 70 for outputting the obtained peripheral angle and elevation angle. It consists of a CPU, ROM, RAM, interface and software.

上述した本発明の放射線の全天球型入射方向検出装置の実施例について説明する。   An embodiment of the above-described radiation omnidirectional incidence direction detection apparatus of the present invention will be described.

図1のシンチレータ11、12、13を、沃化ナトリウムNaI(Tl)なる材質で作成し、半径37.5mm、頂角120度の扇形で高さ75mmとした。これらを結合して円柱とし、検出部10を構成した。検出部10を変換部20に結合し、電気信号をMCA31、32、33に伝送し、スペクトルS1、S2、S3を得た。   The scintillators 11, 12, and 13 of FIG. 1 were made of a material of sodium iodide NaI (Tl), and had a sector shape with a radius of 37.5 mm and an apex angle of 120 degrees, and a height of 75 mm. These were combined into a cylinder to form the detection unit 10. The detection unit 10 was coupled to the conversion unit 20, and electric signals were transmitted to the MCAs 31, 32, and 33, and spectra S1, S2, and S3 were obtained.

HDD(RAM)に格納した汎用のスペクトル解析ソフトを用いて、各スペクトルS1、S2、S3のピークの計数値p1、p2、p3とエネルギーを求めた。各ピークの計数値p1、p2、p3と各ピークの計数値の合計値Tを用い、比率r(0.463、0.204、0.332)を得た。同時にエネルギーとして622keVを得た。エネルギー毎に予め作成しHDDあるいはROMに格納しておいた、周角、仰角と比率r1、r2、r3の関係を表すグラフの集合である図8の応答関数群と、RAMに一時格納された比率r(0.463、0.204、0.332)とを合致計算して、インターフェイスより周角30度、仰角0度の出力が得られた。   Using general-purpose spectrum analysis software stored in the HDD (RAM), peak count values p1, p2, p3 and energy of each spectrum S1, S2, S3 were obtained. The ratio r (0.463, 0.204, 0.332) was obtained using the count value p1, p2, p3 of each peak and the total value T of the count values of each peak. At the same time, 622 keV was obtained as energy. The response function group of FIG. 8 which is a set of graphs representing the relationship between the circumferential angle, the elevation angle, and the ratios r1, r2, and r3, which are created in advance for each energy and stored in the HDD or ROM, and temporarily stored in the RAM The ratio r (0.463, 0.204, 0.332) was calculated to match, and an output with a peripheral angle of 30 degrees and an elevation angle of 0 degrees was obtained from the interface.

実施例1と同様にして、汎用のスペクトル解析ソフトを用いて、各スペクトルS1、S2、S3のピークの計数値p1、p2、p3とエネルギーを求めた。各ピークの計数値p1、p2、p3と各ピークの計数値の合計値Tを用い、比率r(0.398、0.269、0.332)を得た。同時にエネルギーとして622keVを得た。エネルギー毎に予め作成された、周角、仰角と比率r1、r2、r3の関係を表すグラフの集合である図8の応答関数群と比率r(0.398、0.269、0.332)を合致計算すると、周角30度、仰角60度が得られた。   In the same manner as in Example 1, general-purpose spectrum analysis software was used to determine the peak count values p1, p2, p3 and energy of each spectrum S1, S2, S3. The ratio r (0.398, 0.269, 0.332) was obtained using the count value p1, p2, p3 of each peak and the total value T of the count values of each peak. At the same time, 622 keV was obtained as energy. The response function group and the ratio r (0.398, 0.269, 0.332) in FIG. 8 which is a set of graphs representing the relationship between the circumferential angle, the elevation angle, and the ratios r1, r2, and r3, created in advance for each energy. When the coincidence calculation was performed, a circumferential angle of 30 degrees and an elevation angle of 60 degrees were obtained.

実施例1と同様にして、汎用のスペクトル解析ソフトを用いて、各スペクトルS1、S2、S3のピークの計数値p1、p2、p3とエネルギーを求めた。各ピークの計数値p1、p2、p3と各ピークの計数値の合計値Tを用い、比率r(0.333、0.333、0.333)を得た。同時にエネルギーとして622keVを得た。エネルギー毎に予め作成された周角、仰角と比率r1、r2、r3の関係を表すグラフの集合である図8の応答関数群と比率r(0.333、0.333、0.333)と合致計算すると、周角不定、仰角90度が得られた。   In the same manner as in Example 1, general-purpose spectrum analysis software was used to determine the peak count values p1, p2, p3 and energy of each spectrum S1, S2, S3. The ratio r (0.333, 0.333, 0.333) was obtained using the count value p1, p2, p3 of each peak and the total value T of the count values of each peak. At the same time, 622 keV was obtained as energy. The response function group and the ratio r (0.333, 0.333, 0.333) in FIG. 8 which is a set of graphs representing the relationship between the circumferential angle and elevation angle and the ratios r1, r2, and r3 created in advance for each energy. When the coincidence calculation was performed, an indefinite angle and an elevation angle of 90 degrees were obtained.

図8の応答関数群と比率rの関係は、図8に示す計算式のまま関数記憶手段50に記憶させておいてもよいが、図9に示した数値テーブル51、52、53として関数記憶手段50に記憶させておく方が、処理速度が速くなるので好ましい。この場合、図9の各角度の最小設定単位は、必要とする検出角度に応じて設定しておく。   The relationship between the response function group and the ratio r in FIG. 8 may be stored in the function storage unit 50 as the calculation formula shown in FIG. 8, but the function is stored as the numerical tables 51, 52, and 53 shown in FIG. It is preferable to store the data in the means 50 because the processing speed is increased. In this case, the minimum setting unit of each angle in FIG. 9 is set according to the required detection angle.

なお、図8、図9に示した周角、仰角の刻みは、内挿法によって所定の精度に鑑みて変更可能である。   Note that the steps of the circumferential angle and the elevation angle shown in FIGS. 8 and 9 can be changed in consideration of predetermined accuracy by an interpolation method.

又、図11の如く、シンチレータ11、12、13の周囲に、例えば厚さ5mmの鉄製の帯15を巻くと、周辺での非破壊検査による100keV程度のX線、あるいは放射性同位元素投与患者からの100keV程度のガンマ線、即ち入射放射線Riに対して、図12(縦軸は左から入射するガンマ線の垂直位置、横軸は水平位置)に例示する如く、透過放射線Rが減少し、水平方向の感度が下がり、相対的に上空での感度が上がり、放射線物質の上空での挙動を把握するのに好適となる。 In addition, as shown in FIG. 11, when an iron band 15 having a thickness of 5 mm, for example, is wound around the scintillators 11, 12, 13 from a patient receiving X-rays of about 100 keV or a radioisotope by non-destructive inspection in the surrounding area. As shown in FIG. 12 (the vertical axis is the vertical position of the gamma ray incident from the left and the horizontal axis is the horizontal position), the transmitted radiation R 0 decreases and the horizontal direction This is suitable for grasping the behavior of the radioactive material in the sky.

あるいは、図13の如く、シンチレータ11、12、13の上部に、例えば厚さ1cmの鉄製の蓋16を配設すると、宇宙線等の影響を減じ、相対的に仰角の小さい水平に近い方向での感度を高めることができる。   Alternatively, as shown in FIG. 13, when an iron lid 16 having a thickness of, for example, 1 cm is disposed on the scintillators 11, 12, and 13, the influence of cosmic rays and the like is reduced, and the horizontal direction with a relatively small elevation angle is obtained. Can increase the sensitivity.

又、帯15や蓋16の材質は鉄に限定されず、アルミニウム等、他の金属を用いることもできる。更に厚さや材質を部分的に変えて、特定の方向の感度を高めたり、低めることもできる。   Further, the material of the belt 15 and the lid 16 is not limited to iron, and other metals such as aluminum can be used. Furthermore, the sensitivity in a specific direction can be increased or decreased by partially changing the thickness or material.

又、シンチレータの形状を周方向で変えても良い。   Further, the shape of the scintillator may be changed in the circumferential direction.

又、出力手段より出力される出力信号は、特に限定するものではなく、視認可能なアナログあるいはデジタル表示でもよいし、他のコンピュータと通信可能な出力信号であってもよい。   The output signal output from the output means is not particularly limited, and may be an analog or digital display that can be visually recognized, or an output signal that can communicate with another computer.

なお、シンチレータの構成数が多くなりピーク数が多くなっても、上述の方法に従い、周角と仰角を求めることができる。例えば4分割の場合、図14に示す如く、(r1、r2、r3、r4)で「r1+r2+r3+r4=1」より、任意の3個のグラフ(もちろん4個でもいい)、即ち、シンチレータ数−1のグラフ(応答関数)から解が求まる。   Even if the number of scintillator components increases and the number of peaks increases, the circumferential angle and the elevation angle can be obtained according to the above-described method. For example, in the case of 4 divisions, as shown in FIG. 14, from (r1, r2, r3, r4), “r1 + r2 + r3 + r4 = 1”, any three graphs (of course, 4 may be used), that is, scintillator number −1. The solution is obtained from the graph (response function).

又、スペクトルはエネルギー情報を持っているので、複数のピークがある場合はそれぞれのピークに対応する応答関数群か数値テーブルを選択し、同様な処理をすれば、複数の方向を同時に求めることができる。   Also, since the spectrum has energy information, if there are multiple peaks, select the response function group or numerical table corresponding to each peak, and if the same processing is performed, multiple directions can be obtained simultaneously. it can.

又、シンチレータの直径は1MeV以上の比較的大きいエネルギーのガンマ線のみを対象とするときは100mm以上が望ましく、1MeV未満の比較的小さなエネルギーを対象とするときは50mm以下が望ましく、モニタリングポストのように50KeVから3MeVを対象とするときは75mm前後が好適である。高さは、25mmから100mmが経済的である。   The diameter of the scintillator is preferably 100 mm or more when only gamma rays with a relatively large energy of 1 MeV or more are targeted, and preferably 50 mm or less when targeting a relatively small energy of less than 1 MeV. When the target is 50 KeV to 3 MeV, about 75 mm is preferable. The height is economical from 25 mm to 100 mm.

本発明に係る全天球型入射方向検出装置の検出部と入射方向を定義する図The figure which defines the detection part and incident direction of the omnidirectional incident direction detection apparatus which concerns on this invention 同じくスペクトルの生成を示す図Figure showing spectrum generation 本発明の原理を説明するための、周角30度、仰角0度の場合の比率r1、r2、r3の変化を示す図The figure which shows the change of ratio r1, r2, r3 in the case of 30 degrees of surrounding angles and 0 degree of elevation angles for demonstrating the principle of this invention 同じく、周角30度、仰角60度の場合の比率r1、r2、r3の変化を示す図Similarly, the figure which shows the change of ratio r1, r2, r3 in the case of 30 degrees of surrounding angles and 60 degrees of elevation angles 同じく、周角不定、仰角90度の場合の比率r1、r2、r3の変化を示す図Similarly, the figure which shows the change of ratio r1, r2, r3 in the case of an indefinite peripheral angle and an elevation angle of 90 degree | times. 同じく、シンチレータの仰角0、60、90度の場合の比率r1の変化を示す図Similarly, the figure which shows the change of ratio r1 in the case of the elevation angles of 0, 60 and 90 degrees of the scintillator. 本発明の実施形態において、入射方向を得るまでの手順を示す流れ図The flowchart which shows the procedure until the incident direction is obtained in the embodiment of the present invention. 本発明の実施形態における応答関数群の例を示す図The figure which shows the example of the response function group in embodiment of this invention 同じく数値テーブルの例を示す図The figure which similarly shows the example of the numerical table 本発明に係る放射線の全天球型入射方向検出装置の実施形態の構成を示すブロック図The block diagram which shows the structure of embodiment of the omnidirectional incident direction detection apparatus of the radiation which concerns on this invention 変形例の要部を示す斜視図The perspective view which shows the principal part of a modification 変形例の原理を示す図Diagram showing the principle of the modification 他の変形例の要部を示す縦断面図Longitudinal sectional view showing the main part of another modification 4分割の変形例の比率r1、r2、r3、r4の変化を示す図The figure which shows the change of ratio r1, r2, r3, r4 of the modification of 4 divisions

符号の説明Explanation of symbols

10…検出部
11、12、13…シンチレータ
14…ケース
15…帯
16…蓋
20…変換部
21、22、23…受光素子
30…スペクトル解折手段
31、32、33…マルチチャンネルアナライザー(MCA)
40…比率計算手段
50…関数記憶手段
51、52、53…テーブル
60…関数参照手段
70…出力手段
DESCRIPTION OF SYMBOLS 10 ... Detection part 11, 12, 13 ... Scintillator 14 ... Case 15 ... Band 16 ... Lid 20 ... Conversion part 21, 22, 23 ... Light receiving element 30 ... Spectral cracking means 31, 32, 33 ... Multichannel analyzer (MCA)
40: Ratio calculation means 50 ... Function storage means 51, 52, 53 ... Table 60 ... Function reference means 70 ... Output means

Claims (9)

放射線の入射方向を検出するための入射方向検出装置であって、
入射する放射線に対して周方向に少なくとも一部を重ねて配置された、同じ材質の独立した複数のシンチレータと、
各シンチレータと光学的に接合された受光素子とを備え、
各シンチレータに対して直接入射する放射線と他のシンチレータの影になって間接的に入射する放射線の割合の組み合わせが、水平方向の周角と仰角で示される入射方向によって変化するようにされていることを特徴とする放射線の全天球型入射方向検出装置。
An incident direction detection device for detecting an incident direction of radiation,
A plurality of independent scintillators of the same material, arranged at least partially overlapping the incident radiation in the circumferential direction;
Each scintillator and a light receiving element optically bonded,
The combination of the radiation directly incident on each scintillator and the proportion of the radiation indirectly incident in the shadow of the other scintillator changes according to the incident direction indicated by the horizontal circumferential angle and elevation angle. An omnidirectional incident direction detector for radiation.
前記シンチレータが3つ以上とされ、0度から360度に亘る周角と0度から90度に亘る仰角で示される入射方向を検出するようにしたことを特徴とする請求項1に記載の放射線の全天球型入射方向検出装置。   The radiation according to claim 1, wherein the number of the scintillators is three or more, and an incident direction indicated by a circumferential angle ranging from 0 degrees to 360 degrees and an elevation angle ranging from 0 degrees to 90 degrees is detected. Omnidirectional incident direction detector. 各シンチレータが扇形の断面を持ち、全てのシンチレータを結合すると円柱になることを特徴とする請求項2に記載の放射線の全天球型入射方向検出装置。   3. The omnidirectional incidence direction detection device for radiation according to claim 2, wherein each scintillator has a fan-shaped cross section and becomes a cylinder when all the scintillators are joined. 各シンチレータが同一の形状を持つことを特徴とする請求項2又は3に記載の放射線の全天球型入射方向検出装置。   The omnidirectional incident direction detection device for radiation according to claim 2 or 3, wherein each scintillator has the same shape. 前記シンチレータの周囲に、水平方向からの放射線の透過率を調整するための筒状部材が配設されていることを特徴とする請求項1乃至4のいずれかに記載の放射線の全天球型入射方向検出装置。   5. A radiation omnidirectional type according to claim 1, wherein a cylindrical member for adjusting the transmittance of radiation from the horizontal direction is disposed around the scintillator. Incident direction detector. 前記シンチレータの上部に、上空方向からの放射線の透過率を調整するための蓋状部材が配設されていることを特徴とする請求項1乃至5のいずれかに記載の放射線の全天球型入射方向検出装置。   The omnidirectional type of radiation according to any one of claims 1 to 5, wherein a lid-like member for adjusting the transmittance of radiation from above is disposed above the scintillator. Incident direction detector. 各シンチレータにより発生するスペクトルを解析するスペクトル解析手段と、
スペクトル解析手段より出力される光電吸収ピーク計数値のシンチレータ間の比率を求める比率計算手段と、
各比率に対応する周角と仰角からなる関数を記憶した関数記憶手段と、
該関数記憶手段を参照して前記比率計算手段が求めた比率に対応する関数を求める関数参照手段と、
その求めた周角と仰角とを出力する出力手段と、
を備えたことを特徴とする請求項1乃至6のいずれかに記載の放射線の全天球型入射方向検出装置。
Spectrum analysis means for analyzing the spectrum generated by each scintillator;
A ratio calculation means for obtaining a ratio between scintillators of the photoelectric absorption peak count value output from the spectrum analysis means;
Function storage means for storing a function composed of a circumferential angle and an elevation angle corresponding to each ratio;
Function reference means for obtaining a function corresponding to the ratio obtained by the ratio calculation means with reference to the function storage means;
Output means for outputting the obtained circumferential angle and elevation angle;
The omnidirectional incident direction detection device for radiation according to any one of claims 1 to 6, further comprising:
請求項1乃至7のいずれかに記載の全天球型入射方向検出装置を用いることを特徴とする放射線モニタリング方法。   A radiation monitoring method using the omnidirectional incident direction detection device according to claim 1. 請求項1乃至7のいずれかに記載の全天球型入射方向検出装置を備えたことを特徴とする放射線モニタリング装置。   A radiation monitoring apparatus comprising the omnidirectional incident direction detection device according to claim 1.
JP2006322108A 2006-11-29 2006-11-29 Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus Expired - Fee Related JP4766263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322108A JP4766263B2 (en) 2006-11-29 2006-11-29 Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322108A JP4766263B2 (en) 2006-11-29 2006-11-29 Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2008134200A true JP2008134200A (en) 2008-06-12
JP4766263B2 JP4766263B2 (en) 2011-09-07

Family

ID=39559141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322108A Expired - Fee Related JP4766263B2 (en) 2006-11-29 2006-11-29 Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP4766263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075393A (en) * 2013-10-09 2015-04-20 三菱電機株式会社 Radiation incident direction detector
JP2016211902A (en) * 2015-05-01 2016-12-15 国立大学法人山形大学 Detection device and detection method
EP3273273A1 (en) 2016-07-20 2018-01-24 Tokuyama Corporation Wearable neutron detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485967Y1 (en) * 1968-10-25 1973-02-15
US4743755A (en) * 1985-12-23 1988-05-10 Texaco Inc. Method and apparatus for measuring azimuth and speed of horizontal fluid flow by a borehole
JPH04132987A (en) * 1990-09-25 1992-05-07 Olympus Optical Co Ltd Radiation detecting probe
JP2002221577A (en) * 2001-01-24 2002-08-09 Toshiba Corp Radiation measuring device
JP2004170116A (en) * 2002-11-18 2004-06-17 Natl Inst Of Radiological Sciences Gamma ray incident direction detector
JP2004191327A (en) * 2002-12-13 2004-07-08 Natl Inst Of Radiological Sciences Gamma ray detector
JP2006201086A (en) * 2005-01-21 2006-08-03 Natl Inst Of Radiological Sciences Detector for radiation directivity, and method and device for monitoring radiations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485967Y1 (en) * 1968-10-25 1973-02-15
US4743755A (en) * 1985-12-23 1988-05-10 Texaco Inc. Method and apparatus for measuring azimuth and speed of horizontal fluid flow by a borehole
JPH04132987A (en) * 1990-09-25 1992-05-07 Olympus Optical Co Ltd Radiation detecting probe
JP2002221577A (en) * 2001-01-24 2002-08-09 Toshiba Corp Radiation measuring device
JP2004170116A (en) * 2002-11-18 2004-06-17 Natl Inst Of Radiological Sciences Gamma ray incident direction detector
JP2004191327A (en) * 2002-12-13 2004-07-08 Natl Inst Of Radiological Sciences Gamma ray detector
JP2006201086A (en) * 2005-01-21 2006-08-03 Natl Inst Of Radiological Sciences Detector for radiation directivity, and method and device for monitoring radiations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075393A (en) * 2013-10-09 2015-04-20 三菱電機株式会社 Radiation incident direction detector
JP2016211902A (en) * 2015-05-01 2016-12-15 国立大学法人山形大学 Detection device and detection method
EP3273273A1 (en) 2016-07-20 2018-01-24 Tokuyama Corporation Wearable neutron detector

Also Published As

Publication number Publication date
JP4766263B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4159052B2 (en) Radiation direction detector, radiation monitoring method and apparatus
US7734447B2 (en) Radiation measuring device and data processing method
US8993977B2 (en) Detector and a method for simultaneously detecting both gamma rays and neutron using the same
CN103197338A (en) Underwater radiation monitoring method and system
CN102338881B (en) Apparatus for measuring ambient dose equivalent of neutron
JP6075522B2 (en) Radiation monitor
JP4766263B2 (en) Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus
JP5245173B2 (en) Radioactive gas measuring device and damaged fuel inspection device
JP2015180872A (en) Radioactivity measuring apparatus and radioactivity measuring method
JP2010133832A (en) Device and system for monitoring radiation
JP5450356B2 (en) Radiation detection method
CN113009548B (en) Detection equipment and radiation azimuth measurement method
Kobayashi et al. Characteristic X-ray detector: In-situ imaging of radioactive contaminant distributions
JP2020041930A (en) Radioactivity measurement apparatus, radioactivity measurement method, radioactivity information processing server, and radioactivity information processing system
US9291723B2 (en) Instrument for assaying radiation
US9519067B1 (en) Radioactive gas measurement apparatus and failed fuel inspection apparatus
JP6282540B2 (en) Radioactivity concentration measurement system
JP2004170107A (en) Method for obtaining omnidirectional radiation spectrum distribution
Rostron et al. Comparison between measurement methods for the characterisation of radioactively contaminated land
Van Dilla Large-Crystal Counting
Kaye et al. Waste Characterization Methods Based on Gamma-ray Imaging Spectrometers-19454
JP2004191327A (en) Gamma ray detector
Furey et al. Proof of principle for electronic collimation of a gamma ray detector
Kadilin et al. Detectors on base of scintillation structures for registration of volumetric activities of gaseous and liquid media gamma radiation
Thomson et al. 10 Unmasking the Illicit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4766263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees