JP2008133543A - Galvanized steel sheet excellent in pitting corrosion resistance - Google Patents

Galvanized steel sheet excellent in pitting corrosion resistance Download PDF

Info

Publication number
JP2008133543A
JP2008133543A JP2008004986A JP2008004986A JP2008133543A JP 2008133543 A JP2008133543 A JP 2008133543A JP 2008004986 A JP2008004986 A JP 2008004986A JP 2008004986 A JP2008004986 A JP 2008004986A JP 2008133543 A JP2008133543 A JP 2008133543A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc phosphate
mass
zinc
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008004986A
Other languages
Japanese (ja)
Other versions
JP4720830B2 (en
Inventor
Hisatada Nakakoji
尚匡 中小路
Kyoko Hamahara
京子 浜原
Kazuo Mochizuki
一雄 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008004986A priority Critical patent/JP4720830B2/en
Publication of JP2008133543A publication Critical patent/JP2008133543A/en
Application granted granted Critical
Publication of JP4720830B2 publication Critical patent/JP4720830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a galvanized steel sheet used for an automotive body in particular, excellent in pitting corrosion resistance after electrodeposition coating. <P>SOLUTION: The manufacturing method of the galvanized steel sheet includes forming a zinc phosphate coating layer containing proper amounts of Mg, Ni, and Mn by immersing the steel sheet, after surface galvanization, into treatment liquid containing 3-50 g/L of Mg2<SP>+</SP>, 0.1-10.0 g/L of Ni<SP>2+</SP>and 0.3-10.0 g/L of Mn<SP>2+</SP>. The zinc phosphate coating layer contains 2.0 to 7.0 percent by weight of Mg, 0.1 to 1.4 percent by weight of Ni, and 0.5 to 5.0 percent by weight of Mn. Furthermore, the contents of Mn and Ni satisfy the following relational expression (1): [Mn]≤[Ni]×11.4, wherein [Mn] represents the Mn content in percent by weight and [Ni] the Ni content in percent by weight. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、特に自動車車体として用いる亜鉛めっき鋼板であって、他の性能を犠牲にすることなく、電着塗装後の耐穴あき性を格段に向上させた亜鉛めっき鋼板に関するものである。   The present invention relates to a galvanized steel sheet that is used particularly as an automobile body, and relates to a galvanized steel sheet that dramatically improves the perforation resistance after electrodeposition coating without sacrificing other performances.

亜鉛系のめっきを施した鋼板は、自動車車体の車体強度が長期間の腐食環境下での使用によって低下するのを防ぐために広く使用されており、わが国においては、主として亜鉛系合金めっきである亜鉛−ニッケル合金めっき鋼板と亜鉛−鉄合金めっき鋼板が使用されている。   Steel sheets plated with zinc are widely used to prevent the body strength of automobile bodies from deteriorating when used in a long-term corrosive environment. In Japan, zinc steel, which is mainly zinc-based alloy plating, is used. -Nickel alloy plated steel sheets and zinc-iron alloy plated steel sheets are used.

これら亜鉛系合金めっきは、亜鉛とNiやFeを合金化させることによって、高耐食性を鋼板に付与することができるものの、合金化による次に示す生産上の問題点がある。   Although these zinc-based alloy platings can impart high corrosion resistance to steel sheets by alloying zinc and Ni or Fe, there are the following production problems due to alloying.

亜鉛−ニッケル合金めっき鋼板は、電気めっき法によって製造されるが、Niが高価であるためコストが高くなり、また、Ni含有量を極めて狭い範囲(通常12±1質量%)に制御せねばならず製造し難いという問題点がある。   Zinc-nickel alloy-plated steel sheets are manufactured by electroplating, but the cost is high because Ni is expensive, and the Ni content must be controlled within a very narrow range (usually 12 ± 1% by mass). There is a problem that it is difficult to manufacture.

亜鉛−鉄合金めっき鋼板は、電気めっき法と溶融めっき法のいずれかの方法によって製造することができるが、一般には、溶融めっき法によって製造されることが多い。   A zinc-iron alloy-plated steel sheet can be produced by either an electroplating method or a hot dipping method, but in general, it is often produced by a hot dipping method.

しかしながら、亜鉛−鉄合金めっき鋼板を電気めっき法によって製造する場合には、上述した亜鉛−ニッケル合金めっき鋼板と同様に亜鉛めっき層中の鉄含有率を極めて狭い範囲に制御する合金制御が困難であることに加えて、めっき液中のFe2+イオンが酸化しやすく、これによりめっきが不安定となり製造に困難が伴い、結果的にコストが高くなるという問題がある。 However, when producing a zinc-iron alloy-plated steel sheet by electroplating, it is difficult to control the alloy to control the iron content in the galvanized layer to a very narrow range in the same manner as the zinc-nickel alloy-plated steel sheet described above. In addition, there is a problem that Fe 2+ ions in the plating solution are easily oxidized, which makes the plating unstable and difficult to manufacture, resulting in an increase in cost.

また、亜鉛−鉄合金めっき鋼板を溶融めっき法によって製造する場合には、鋼板表面に溶融した亜鉛を被着させた後に、高温に保持して鋼板と亜鉛を合金化させる必要があるが、合金化させるための温度及び時間や溶融亜鉛めっき浴中のAlの影響などによって、均一な合金めっき層を製造することが困難であり品質が安定せず、さらに、これらの結果として、コストが高くなる。   In addition, when a zinc-iron alloy plated steel sheet is manufactured by a hot dipping method, it is necessary to alloy the steel sheet and zinc by keeping it at a high temperature after depositing molten zinc on the steel sheet surface. It is difficult to produce a uniform alloy plating layer due to the temperature and time required for heat treatment and the influence of Al in the hot dip galvanizing bath, the quality is not stable, and as a result, the cost increases. .

以上示したように、亜鉛系合金めっきは、製造が困難であり、さらにコストが高くなるという問題を有している。   As described above, zinc-based alloy plating has problems that it is difficult to manufacture and the cost is further increased.

一方、亜鉛のみをめっきした亜鉛めっき鋼板は、低コストで電気めっき法又は溶融めっき法のいずれでも製造することができるが、自動車車体に使用されることは希であった。この理由は、亜鉛めっきのみでは耐食牲が不十分であり、とりわけ、亜鉛めっき鋼板を長期間にわたって腐食環境下に曝した場合に、腐食によって鋼板の穴あきが生じ易く、車体の強度保証上問題があるためである。   On the other hand, a galvanized steel sheet plated only with zinc can be manufactured at low cost by either electroplating or hot dipping, but it has rarely been used for automobile bodies. The reason for this is that corrosion resistance is insufficient with galvanization alone, especially when the galvanized steel sheet is exposed to a corrosive environment for a long period of time. Because there is.

ところで、自動車車体の製造では、鋼板又はめっき鋼板をプレス加工した後に、さらに化成処理、電着塗装、スプレー塗装を順次施してから自動車車体として使用される。   By the way, in the manufacture of an automobile body, after a steel plate or a plated steel sheet is pressed, chemical conversion treatment, electrodeposition coating, and spray coating are sequentially performed, and then used as an automobile body.

また、自動車車体において、腐食により最も穴あきを生じ易い部分は、ドアの下部であると一般に言われている。この理由は、ドア下部は、その内部に窓の隙間等を通じて侵入した水が溜まり易い構造になっており、腐食の進行速度が他の車体部分に比べて速くなる傾向があるからである。   Further, it is generally said that the portion of the automobile body that is most likely to be perforated by corrosion is the lower portion of the door. The reason for this is that the lower part of the door has a structure in which water that has entered through the gaps of the window or the like tends to accumulate, and the rate of progress of corrosion tends to be faster than that of other vehicle body parts.

また、ドアの下部は、化成処理と電着塗装については廻り込むものの、その後に行われるスプレー塗装では、隙間が狭いために塗料が廻らず、スプレー塗装による防食効果は期待できないことから、電着塗装後の耐穴あき性が特に重要となる。   The lower part of the door is used for chemical conversion treatment and electrodeposition coating, but in the subsequent spray coating, since the gap is narrow, the paint does not rotate and the anticorrosion effect by spray coating cannot be expected. The perforation resistance after painting is particularly important.

ここで、亜鉛めっき鋼板の耐食性を向上させる方法として、亜鉛系めっき上に、化成処理(りん酸塩処理)によりMgを含有するりん酸塩皮膜を形成する技術が開示されている。   Here, as a method for improving the corrosion resistance of a galvanized steel sheet, a technique for forming a phosphate film containing Mg on a zinc-based plating by chemical conversion treatment (phosphate treatment) is disclosed.

例えば、特許文献1には、電気亜鉛めっき層上に0.1 質量%以上のMgを含有するりん酸塩皮膜を形成した表面処理金属材料が開示されているが、Mgのみを含有するりん酸塩皮膜を形成した表面処理金属材料は、塩水噴霧試験での錆発生については抑制効果があるものの、自動車車体の実際の腐食と結果がよく一致する複合サイクル腐食試験での耐穴あき性については不十分である。   For example, Patent Document 1 discloses a surface-treated metal material in which a phosphate coating containing 0.1% by mass or more of Mg is formed on an electrogalvanized layer, but a phosphate coating containing only Mg. Although the surface-treated metal material that forms rust has an effect of suppressing rust generation in the salt spray test, it does not have sufficient hole resistance in the combined cycle corrosion test that matches the actual corrosion of the automobile body. It is.

また、特許文献2には、電気亜鉛系めっき層上にMgを1〜7%含有するりん酸塩皮膜を形成させた材料が開示されているが、この場合にも、りん酸塩皮膜中にMgのみを含有するため、塩水噴霧試験での錆発生については抑制効果があるものの、自動車車体の実際の腐食と結果がよく一致する複合サイクル腐食試験での耐穴あき性については不十分である。   Further, Patent Document 2 discloses a material in which a phosphate film containing 1 to 7% of Mg is formed on an electrogalvanized plating layer. Because it contains only Mg, it has an inhibitory effect on the rust generation in the salt spray test, but the hole resistance in the combined cycle corrosion test where the results agree well with the actual corrosion of the car body is insufficient. .

さらに、特許文献3には、亜鉛含有金属めっき層の表面上に、亜鉛とりんとを重量比(亜鉛/りん)2.504 :1〜3.166 :1で含み、且つ、鉄、コバルト、ニッケル、カルシウム、マグネシウム及びマンガンから選ばれた1種以上の金属を0.06〜9.0 質量%の含有率で含有するりん酸亜鉛複合皮膜を形成した亜鉛含有金属めっき鋼板が開示されているが、このめっき鋼板は、自動車車体製造時の高速プレス加工性については優れているものの、耐食性については考慮されておらず耐穴あき性が十分ではない。   Further, Patent Document 3 includes zinc and phosphorus in a weight ratio (zinc / phosphorus) 2.504: 1 to 3.166: 1 on the surface of the zinc-containing metal plating layer, and iron, cobalt, nickel, calcium, magnesium. In addition, a zinc-containing metal-plated steel sheet having a zinc phosphate composite film containing one or more metals selected from manganese and manganese at a content of 0.06 to 9.0% by mass is disclosed. Although high-speed press workability at the time of manufacture is excellent, corrosion resistance is not taken into consideration, and the perforation resistance is not sufficient.

よって、前述したように、亜鉛系合金めっきはコスト高である。一方、コストの低い亜鉛めっきを自動車車体に使用すると耐食性が問題となる。そこで、亜鉛めっきの耐食性を向上させるために、種々のの試みがなされている。その中でMgを含有するりん酸塩皮膜を形成させる技術が開示されているが、単にMg含有量のみを制御したりん酸塩皮膜を亜鉛めっき層上に形成しただけでは、十分な耐穴あき性を得ることは難しい。
特開平1−312081号公報 特開平3−107469号公報 特開平7−138764号公報
Therefore, as described above, zinc-based alloy plating is expensive. On the other hand, when low-cost galvanizing is used for an automobile body, corrosion resistance becomes a problem. Therefore, various attempts have been made to improve the corrosion resistance of galvanizing. Among them, a technique for forming a phosphate film containing Mg is disclosed. However, by simply forming a phosphate film on which only the Mg content is controlled on the galvanized layer, sufficient perforation resistance is provided. It is difficult to get sex.
JP-A-1-3202081 Japanese Patent Laid-Open No. 3-107469 JP-A-7-138764

この発明の目的は、特に自動車車体として用いる亜鉛めっき鋼板であって、他の性能を犠牲にすることなく、電着塗装後の耐穴あき性に優れた亜鉛めっき鋼板を安価に提供することにある。   An object of the present invention is to provide a galvanized steel sheet that is excellent in perforation resistance after electrodeposition coating at a low cost without sacrificing other performance, particularly for a galvanized steel sheet used as an automobile body. is there.

発明者らは、上記問題点を解決すべく検討を重ねた結果、鋼板表面上に、所定付着量の亜鉛めっき層及びりん酸亜鉛皮膜を順次積層形成するとともに、りん酸亜鉛皮膜中のMg、Ni及びMnの含有量の適正化を図れば、他の性能を犠牲にすることなく、電着塗装後の耐穴あき性を飛躍的に向上できることを新規に見出し、この発明を完成させるに至った。   As a result of repeated studies to solve the above problems, the inventors sequentially formed a predetermined amount of zinc plating layer and a zinc phosphate coating on the steel sheet surface, and Mg in the zinc phosphate coating, By optimizing the contents of Ni and Mn, it was newly found out that the perforation resistance after electrodeposition coating can be dramatically improved without sacrificing other performances, and the present invention has been completed. It was.

即ち、この発明に従う亜鉛めっき鋼板の製造方法は、鋼板表面上に亜鉛めっき層を形成した後、Mg2+:3〜50g/L、Ni2+:0.1〜10.0g/LおよびMn2+:0.3〜10.0g/Lを含有するりん酸亜鉛処理液中に浸漬する処理のみにより、前記亜鉛めっき層上に、適正量のMgとNiおよびMnとを含有するりん酸亜鉛皮膜を形成することにある。 That is, in the method for producing a galvanized steel sheet according to the present invention, after forming a galvanized layer on the steel sheet surface, Mg 2+ : 3 to 50 g / L, Ni 2+ : 0.1 to 10.0 g / L and Mn 2+ : A zinc phosphate film containing appropriate amounts of Mg, Ni, and Mn is formed on the galvanized layer only by treatment immersed in a zinc phosphate treatment solution containing 0.3 to 10.0 g / L. There is to do.

また、この発明に従う亜鉛めっき鋼板は、上記方法により製造された亜鉛めっき鋼板であって、鋼板表面上に、片面当たりの付着量が20〜60g/m2である亜鉛めっき層と、片面当たりの付着量が0.5 〜3.0 g/m2であるりん酸亜鉛皮膜とを順次積層形成し、該りん酸亜鉛皮膜中に、Mgを2.0 〜7.0 質量%、Niを0.1 〜1.4 質量%及びMnを0.5 〜5.0 質量%を含有し、かつMnとNiの含有量が下記(1) の関係式を満足することにある。 Moreover, the galvanized steel sheet according to the present invention is a galvanized steel sheet manufactured by the above-described method, and on the steel sheet surface, a galvanized layer having an adhesion amount per side of 20 to 60 g / m 2 and a galvanized steel sheet per side A zinc phosphate coating having an adhesion amount of 0.5 to 3.0 g / m 2 is sequentially laminated, and Mg is added to 2.0 to 7.0 mass%, Ni is 0.1 to 1.4 mass%, and Mn is 0.5 to the zinc phosphate coating. The content of ˜5.0% by mass and the contents of Mn and Ni satisfy the following relational expression (1).


〔Mn〕≦〔Ni〕×11.4 ------ (1)
但し、〔Mn〕はMn質量%、〔Ni〕はNi質量%である。
[Mn] ≦ [Ni] × 11.4 ------ (1)
However, [Mn] is Mn mass% and [Ni] is Ni mass%.

この発明によって、電着塗装後の耐穴あき性に優れ、しかもコスト的にも優位な亜鉛めっき鋼板、特に自動車車体として用いる亜鉛めっき鋼板を提供することが可能になった。   According to the present invention, it is possible to provide a galvanized steel sheet, particularly a galvanized steel sheet used as an automobile body, which has excellent hole resistance after electrodeposition coating and is superior in cost.

以下、この発明を上記発明特定事項に限定した理由を説明する。   Hereinafter, the reason why this invention is limited to the above-mentioned invention specific matters will be described.

(1) 亜鉛めっき層
片面当たりの付着量:20〜60g/m2
亜鉛めっき層は、片面当たりの付着量を20〜60g/m2とする。前記付着量が20g/m2未満だと耐穴あき性が不十分であり、また、60g/m2超えだと耐穴あき性は十分であるが、大量の亜鉛めっきを付着させることはコスト性を悪化させるばかりでなく、プレス加工性や溶接性を劣化させることになるからである。
(1) Zinc plating layer Adhesion amount on one side: 20-60g / m 2
The galvanized layer has an adhesion amount per side of 20 to 60 g / m 2 . If the adhesion amount is less than 20 g / m 2 , the hole resistance is insufficient, and if it exceeds 60 g / m 2 , the hole resistance is sufficient, but it is costly to attach a large amount of galvanization. This is because the press workability and weldability are deteriorated in addition to the deterioration of the workability.

また、上記亜鉛めっき層は、公知の電気めっき法及び溶融めっき法のいずれかのめっき方法によって形成すればよい。
尚、各めっき法によって形成した亜鉛めっき層は、亜鉛めっき層中にSn、Ni、Fe、Al等の不可避的不純物が混入するのが一般的であるため、この発明では、これらの不純物を不可避的に混入した亜鉛めっき層も含めることとする。この場合、亜鉛めっき層中の上記不可避的不純物の各含有量は1質量%以下であることが好ましい。
The galvanized layer may be formed by any one of known electroplating methods and hot dipping methods.
The galvanized layer formed by each plating method generally contains inevitable impurities such as Sn, Ni, Fe, Al, etc. in the galvanized layer. In the present invention, these impurities are unavoidable. Including galvanized layers that have been mixed. In this case, each content of the inevitable impurities in the galvanized layer is preferably 1% by mass or less.

(2) りん酸亜鉛皮膜
(i) 片面当たりの付着量:0.5 〜3.0 g/m2
りん酸亜鉛皮膜は、片面当たりの付着量が0.5 〜3.0 g/m2の範囲とする。前記付着量が0.5 g/m2未満だと、耐穴あき性が不十分であり、また、3.0 g/m2を超えると、耐穴あき性は十分に得られるが、皮膜形成に長時間を要しコストがかさむだけでなく、表面の摩擦抵抗が大きくなってプレス加工性が劣化するからである。
(2) Zinc phosphate coating
(i) Amount of adhesion per side: 0.5 to 3.0 g / m 2
Zinc phosphate coating, the adhesion amount per one side in the range of 0.5 ~3.0 g / m 2. When the adhesion amount is less than 0.5 g / m 2 , the perforation resistance is insufficient, and when it exceeds 3.0 g / m 2 , the perforation resistance is sufficiently obtained, but the film formation takes a long time. This is because not only the cost is increased, but also the friction resistance of the surface is increased and the press workability is deteriorated.

(ii)りん酸亜鉛皮膜中の成分組成
りん酸亜鉛皮膜中の成分組成は、Mgを2.0 〜7.0 質量%、Niを0.1 〜1.4 質量%、Mnを0.5 〜5.0 質量%とし、かつ、〔Mn〕≦〔Ni〕×11.4の関係式を満足するようにする。
(ii) Component composition in the zinc phosphate coating The component composition in the zinc phosphate coating is Mg 2.0-7.0 mass%, Ni 0.1-1.4 mass%, Mn 0.5-5.0 mass%, and [Mn ] ≦ [Ni] × 11.4 is satisfied.

以下、上記成分組成を採用するに至った経緯を説明する。
自動車車体の製造工程では、プレス加工後に溶接等で組み上げられたボディを化成処理し、さらに電着塗装、スプレー塗装するのが一般的であるが、腐食によって穴あきに至りやすい箇所では、スプレー塗装が十分に載らず、この塗装による防食作用は期待できないことから、電着塗装後の耐穴あき性が重要となる。
Hereafter, the background which led to employ | adopting the said component composition is demonstrated.
In the manufacturing process of automobile bodies, it is common to form the body assembled by welding after press working, and then apply electrodeposition and spray coating. Since the anti-corrosion effect due to this coating cannot be expected, the hole resistance after electrodeposition coating is important.

化成処理と上記各塗装を順次行った亜鉛めっき鋼板を腐食環境下に曝すと、腐食環境中の水分によって化成処理皮膜が復水(吸着水あるいは結合水を持つようになること。)して、塗膜膨れを生じやすくなり、その結果、腐食進行が速くなる傾向がある。   When a galvanized steel sheet that has been subjected to the chemical conversion treatment and each of the above coatings is exposed to a corrosive environment, the chemical conversion treatment film condenses (becomes adsorbed or bound water) by the moisture in the corrosive environment. The film tends to swell, and as a result, the corrosion progress tends to increase.

このため、自動車用の亜鉛めっき鋼板では、その化成処理(りん酸亜鉛)皮膜中にNiやMnを含有させることで、この復水を防ぎ、電着塗装後の耐食性を改善することが一般に行われている。   For this reason, galvanized steel sheets for automobiles generally contain Ni or Mn in the chemical conversion treatment (zinc phosphate) film to prevent this condensate and improve the corrosion resistance after electrodeposition coating. It has been broken.

また、りん酸亜鉛皮膜中にMgを含有させると、耐食性が向上することも知られている。   It is also known that the corrosion resistance is improved when Mg is contained in the zinc phosphate coating.

発明者らは、りん酸亜鉛皮膜中にMgとNi及びMnとを適正量含有させることができれば、Mgの耐食性向上効果と、Ni及びMnの塗膜膨れ防止効果の双方の相乗効果によって、電着塗装後の耐穴あき性を向上できると考えて鋭意検討を行った。   If the inventors can contain appropriate amounts of Mg, Ni, and Mn in the zinc phosphate coating, the inventors have a synergistic effect of both the Mg corrosion resistance improving effect and the Ni and Mn coating swelling preventing effect. We have sought to improve the perforation resistance after coating.

その結果、りん酸亜鉛皮膜中に所定量以上のMgを含有させると、適正量のNi及びMnを前記皮膜中に含有させることができなくなり、反対に、りん酸亜鉛皮膜中に所定量以上のNi及びMnを含有させると、適正量のMgを前記皮膜中に含有させることができなくなり、よって、いずれにしても、りん酸亜鉛皮膜中にMgとNi及びMnの全てを適正量含有させることが現状では困難であり、この結果、十分な耐穴あき性が得られないことが分かった。   As a result, when Mg of a predetermined amount or more is contained in the zinc phosphate film, it is impossible to contain appropriate amounts of Ni and Mn in the film, and conversely, a predetermined amount or more of zinc in the zinc phosphate film. When Ni and Mn are contained, an appropriate amount of Mg cannot be contained in the film. Therefore, in any case, an appropriate amount of Mg, Ni and Mn must be contained in the zinc phosphate film. However, it was difficult at present, and as a result, it was found that sufficient perforation resistance could not be obtained.

そこで、発明者らは、りん酸亜鉛皮膜中のMgとNi及びMnの全てを適正量含有させるための検討をさらに進めた結果、Mgを2.0 〜7.0 質量%の範囲に限定すれば、耐食性の向上が図れるとともに、塗膜膨れ防止効果が発揮できる量のNi及びMnを含有させることも可能となり、さらに、Ni及びMnの含有量の適正化を図ることによって、特に電着塗装後の耐穴あき性が飛躍的に向上することを見出し、この発明を完成するに至ったのである。   Therefore, as a result of further investigations to contain Mg, Ni, and Mn in the zinc phosphate coating in an appropriate amount, the inventors of the present invention have achieved corrosion resistance if Mg is limited to a range of 2.0 to 7.0% by mass. It is possible to contain Ni and Mn in an amount that can improve the effect of preventing the swelling of the coating film, and further, by optimizing the contents of Ni and Mn, the resistance to holes especially after electrodeposition coating The inventors have found that the air permeability is dramatically improved and have completed the present invention.

即ち、りん酸亜鉛皮膜中のMg含有量を2.0 〜7.0 質量%の範囲に限定したのは、Mg含有量が上記範囲よりも少ないと、耐穴あき性が十分に得られず、一方、上記範囲よりも多いと、Ni及びMnを塗膜膨れ防止効果が発揮できる程度の量を含有させることができないため、腐食環境下での塗膜膨れが大きくなって耐穴あき性が不十分となるからである。   That is, the Mg content in the zinc phosphate film is limited to the range of 2.0 to 7.0% by mass. If the Mg content is less than the above range, the hole resistance cannot be sufficiently obtained. If it exceeds the range, Ni and Mn cannot be contained in such an amount that the coating swelling prevention effect can be exerted, so that the coating swelling in a corrosive environment becomes large and the hole resistance is insufficient. Because.

加えて、りん酸亜鉛皮膜中のMg含有量を2.0 〜7.0 質量%の範囲に限定すれば、りん酸亜鉛結晶が粒状でかつその結晶の大きさが2.5 μm未満と細かくなる結果、プレス加工性が飛躍的に向上する。その理由は、定かではないが、りん酸亜鉛結晶が粒状でかつ細かいとプレス加工時の金型との接触において摺動摩擦抵抗が小さくなるためと考えられる。   In addition, if the Mg content in the zinc phosphate coating is limited to the range of 2.0 to 7.0% by mass, the zinc phosphate crystals are granular and the size of the crystals is less than 2.5 μm, resulting in press workability. Will improve dramatically. The reason for this is not clear, but it is thought that if the zinc phosphate crystals are granular and fine, the sliding frictional resistance is reduced in contact with the mold during pressing.

尚、前記Mg含有量が2.0 質量%未満だと、りん酸亜鉛結晶が鱗片状となり(図2(a),(b)参照)かつその結晶の大きさが2.5 μm以上となって、プレス加工性の向上効果が顕著ではなくなるからであり、また、前記Mg含有量が7.0 質量%を超えると、りん酸亜鉛結晶自体が脆くなり、プレス加工性の向上効果が顕著ではなくなるからである。   When the Mg content is less than 2.0% by mass, the zinc phosphate crystal becomes scaly (see Fig. 2 (a) and (b)) and the crystal size becomes 2.5 µm or more, and press working This is because, when the Mg content exceeds 7.0% by mass, the zinc phosphate crystal itself becomes brittle and the effect of improving press workability is not significant.

図1は、りん酸亜鉛皮膜中のMg含有量の異なる種々の亜鉛めっき鋼板を試作し、これらの亜鉛めっき鋼板について、100 mmのブランク径に打ち抜き、ポンチ径:50mmφ、ダイス径:52mmφ、しわ押さえ圧:1トン及びポンチスピード:120 mm/分の条件下でプレス加工試験を行い、プレス加工性を評価したときの結果であり、縦軸がプレス加工時のポンチ荷重(t)であり、横軸がりん酸亜鉛皮膜中のMg含有量 (質量%)であり、前記ポンチ荷重が小さいほど、プレス加工性に優れていることを意味する。   Fig. 1 shows prototypes of various galvanized steel sheets with different Mg contents in the zinc phosphate coating. These galvanized steel sheets are punched into a blank diameter of 100 mm, punch diameter: 50 mmφ, die diameter: 52 mmφ, wrinkle Pressing pressure: 1 ton and punch speed: 120 mm / min. Press work test is performed and the press workability is evaluated. The vertical axis represents the punch load (t) during press work. The horizontal axis represents the Mg content (% by mass) in the zinc phosphate coating, and the smaller the punch load, the better the press workability.

また、図2は、りん酸亜鉛皮膜中のMg含有量が異なる4種類の亜鉛めっき鋼板のりん酸亜鉛皮膜表面のSEMのイメージ画像を示したものである。   FIG. 2 shows SEM image images of the zinc phosphate coating surfaces of four types of galvanized steel sheets having different Mg contents in the zinc phosphate coating.

図1及び図2から、前記Mg含有量を2.0 〜7.0 質量%の範囲に限定すれば、りん酸亜鉛結晶が粒状かつその結晶の大きさが2.5 μm未満と細かくなるとともに、プレス加工性が格段に向上していることがわかる。
尚、ここでいう粒状とは、SEMのイメージ画像で観察される、1個の結晶を、図4の様に表した時に、短辺c/長辺aの比が0.2 を超えるものを意味する。
1 and 2, when the Mg content is limited to the range of 2.0 to 7.0% by mass, the zinc phosphate crystals are granular and the size of the crystals is less than 2.5 μm, and the press workability is remarkably improved. It can be seen that there is an improvement.
Here, the term “granularity” as used herein means that when one crystal observed in an SEM image is represented as shown in FIG. 4, the ratio of short side c / long side a exceeds 0.2. .

よって、プレス加工性をさらに向上させる必要がある場合には、前記Mg含有量を2.0 〜7.0 質量%の範囲にする。   Therefore, when it is necessary to further improve the press workability, the Mg content is set in the range of 2.0 to 7.0 mass%.

また、この発明では、りん酸亜鉛皮膜中のMg含有量を2.0 〜7.0 質量%に限定するとともに、Ni及びMnの含有量の上記適正範囲を図3の横線範囲内に限定すること、即ち、りん酸亜鉛皮膜中のNi含有量を0.1 〜1.4 質量%、Mn含有量を0.5 〜5.0 質量%とし、かつMnとNiの含有量が〔Mn〕≦〔Ni〕×11.4を満足することを必須の発明特定事項とし、これにより、耐穴あき性の向上に加えてプレス加工性も向上させることができる。   Further, in the present invention, the Mg content in the zinc phosphate film is limited to 2.0 to 7.0% by mass, and the appropriate range of the Ni and Mn contents is limited to the horizontal line range in FIG. It is essential that the Ni content in the zinc phosphate coating is 0.1 to 1.4 mass%, the Mn content is 0.5 to 5.0 mass%, and the Mn and Ni contents satisfy [Mn] ≦ [Ni] × 11.4. This makes it possible to improve the press workability in addition to the improvement in perforation resistance.

りん酸亜鉛皮膜中のNi及びMnの含有量を上記範囲に限定したのは、Ni含有量が0.1 質量%未満であるか、あるいはMn含有量が0.5 質量%未満であると、腐食環境下での塗膜膨れが大きくなって耐穴あき性が十分に得られないからであり、一方、Ni含有量が1.4 質量%超えか、あるいはMn含有量が5.0 質量%超えだと、りん酸亜鉛皮膜中にMgを、上述したMg含有量の適正範囲の下限値である2.0 質量%ですら含有させにくくなるとともに、りん酸亜鉛結晶が鱗片状でかつその結晶の大きさが細かくならずに2.5 μm以上のままであるため、プレス加工性の向上効果が得られなくなるからである。   The contents of Ni and Mn in the zinc phosphate coating are limited to the above range because the Ni content is less than 0.1% by mass or the Mn content is less than 0.5% by mass in a corrosive environment. If the Ni content exceeds 1.4% by mass or the Mn content exceeds 5.0% by mass, the zinc phosphate coating will be insufficient. It is difficult to contain Mg even at 2.0% by mass, which is the lower limit of the appropriate range of the Mg content described above, and the zinc phosphate crystals are scaly and the size of the crystals is 2.5 μm. This is because the effect of improving press workability cannot be obtained because of the above.

さらに、Mn含有量が(1)式中の{〔Ni〕×11.4}にNi含有量を代入したときの値よりも大きいと、りん酸亜鉛皮膜中にMgを2.0 質量%以上含有させることが極めて困難になり、結局、耐穴あき性が十分に得られないからである。   Furthermore, if the Mn content is larger than the value when the Ni content is substituted into {[Ni] × 11.4} in the formula (1), 2.0% by mass or more of Mg may be contained in the zinc phosphate coating. This is because it becomes extremely difficult, and as a result, sufficient hole resistance cannot be obtained.

従って、この発明では、りん酸亜鉛皮膜中に、Mgを2.0 〜7.0 質量%、Niを0.1 〜1.4 質量%及びMnを0.5 〜5.0 質量%を含有し、かつMnとNiの含有量が、〔Mn〕≦〔Ni〕×11.4 の関係を満足するようにすることを必須の発明特定事項とし、これによって、他の性能を犠牲にすることなく、耐穴あき性を飛躍的に向上させることができる。   Therefore, according to the present invention, the zinc phosphate film contains Mg in an amount of 2.0 to 7.0% by mass, Ni in an amount of 0.1 to 1.4% by mass and Mn in an amount of 0.5 to 5.0% by mass, and the contents of Mn and Ni are [ Mn] ≦ [Ni] × 11.4 The essential invention-specific matter is to satisfy the relationship, and this makes it possible to dramatically improve the perforation resistance without sacrificing other performance. it can.

尚、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description only shows an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

次に、この発明の実施例について説明する。
表1に示す亜鉛めっき付着量及びめっき法で製造した各種亜鉛めっき鋼板に、表2に示す条件で浸漬法によるりん酸亜鉛処理を行うことによって、表4に示す付着量、Ni、Mn及びMgの含有量、並びにりん酸亜鉛結晶の形状及び大きさを有するりん酸亜鉛皮膜をそれぞれ形成した。尚、りん酸亜鉛処理の前には必要に応じて脱油処理を行った後、通常の表面調整処理を行った。
Next, examples of the present invention will be described.
The galvanized steel sheets manufactured by the galvanized coating amount and the plating method shown in Table 1 are subjected to zinc phosphate treatment by the dipping method under the conditions shown in Table 2, so that the deposited amounts shown in Table 4, Ni, Mn and Mg And a zinc phosphate coating having a zinc phosphate crystal shape and size, respectively. In addition, after the zinc phosphate treatment, a deoiling treatment was performed as necessary, and then a normal surface conditioning treatment was performed.

りん酸亜鉛処理を行った亜鉛めっき鋼板は、自動車車体製造工程に準じて日本ペイント製「SD2500」にて化成処理、日本ペイント製「V20 」カチオン型電着塗装(膜厚10μm)を順次行った。電着塗装後のサンプルはナイフによるクロスカットを入れた後、表3の複合サイクル腐食試験を行い、最大腐食深さ(板厚減少値)を測定し、この測定値から耐穴あき性を評価した。表4にこの評価結果を示す。尚、表4中の腐食深さの数値は小さいほど耐穴あき性に優れていることを意味し、この発明では、腐食深さが0.3 mm以下の場合を合格レベルとした。   Zinc phosphate-treated galvanized steel sheet was subjected to chemical conversion treatment with Nippon Paint “SD2500” and Nippon Paint “V20” cationic electrodeposition coating (thickness 10 μm) in accordance with the automobile body manufacturing process. . Samples after electrodeposition coating were cross-cut with a knife and then subjected to the combined cycle corrosion test shown in Table 3. The maximum corrosion depth (thickness reduction value) was measured, and the hole resistance was evaluated from this measured value. did. Table 4 shows the evaluation results. In addition, it means that the smaller the numerical value of the corrosion depth in Table 4, the better the perforation resistance, and in this invention, the case where the corrosion depth is 0.3 mm or less was regarded as an acceptable level.

また、上記処理鋼板を100mm のブランク径に打ち抜き、ポンチ径50mmφ、ダイス径52mmφでしわ押さえ圧1t、ポンチスピード120mm /分で円筒プレス加工を行い、ポンチ荷重を測定して加工性の良否を判定する指標とした。尚、ポンチ荷重は小さいほど加工性が良好であることを意味し、この発明では、ポンチ荷重が3.4 トン以下の場合をプレス加工性が特に優れているとした。また、加工面(円筒側面)の損傷程度を目視にて「○」と「×」の2段階で判定し、プレス加工性を評価した。これらの評価結果を表4に示す。尚、表4中の「○」は、損傷が軽度以下で合格レベル以上であることを意味し、また、「×」は損傷が中程度以上で合格レベルにはないことを意味する。   Moreover, the above-mentioned treated steel plate is punched into a blank diameter of 100 mm, cylindrical pressing is performed with a punch diameter of 50 mmφ, a die diameter of 52 mmφ and a crease pressure of 1 t, and a punch speed of 120 mm / min. It was used as an indicator. The smaller the punch load, the better the workability. In the present invention, the press workability is particularly excellent when the punch load is 3.4 tons or less. Further, the degree of damage on the processed surface (cylindrical side surface) was visually determined in two stages, “◯” and “×”, to evaluate the press workability. These evaluation results are shown in Table 4. In Table 4, “◯” means that the damage is mild or less and is above the acceptable level, and “X” means that the damage is moderate or above and is not at the acceptable level.

表4の評価結果から明らかなように、実施例1〜4はいずれも、耐穴あき性が優れており、また、プレス加工性についても優れている。
一方、りん酸亜鉛皮膜中のMg、Ni及びMnの含有量の少なくとも1つが適正範囲外である比較例1〜5はいずれも、耐穴あき性が合格レベルに達していない。
As is clear from the evaluation results in Table 4, all of Examples 1 to 4 are excellent in perforation resistance and excellent in press workability.
On the other hand, in all of Comparative Examples 1 to 5 in which at least one of the contents of Mg, Ni and Mn in the zinc phosphate coating is outside the proper range, the perforation resistance does not reach the acceptable level.

この発明によって、電着塗装後の耐穴あき性に優れ、しかもコスト的にも優位な亜鉛めっき鋼板、特に自動車車体として用いる亜鉛めっき鋼板を提供することが可能になった。   According to the present invention, it is possible to provide a galvanized steel sheet, particularly a galvanized steel sheet used as an automobile body, which has excellent hole resistance after electrodeposition coating and is superior in cost.

りん酸亜鉛皮膜中のMg含有量が異なる種々の鋼板についてプレス加工試験を行い、このときのポンチ荷重を、りん酸亜鉛皮膜中のMg含有量に対してプロットした図である。It is the figure which performed the press work test about the various steel plates from which Mg content in a zinc phosphate film differs, and plotted the punch load at this time with respect to Mg content in a zinc phosphate film. (a) 〜(d) はそれぞれ、りん酸亜鉛皮膜中のMg、Ni及びMnの含有量が異なる4種類の亜鉛めっき鋼板のりん酸亜鉛皮膜表面のSEMで観察したときのイメージ画像である。(a)-(d) is an image image when it observes by the SEM of the zinc phosphate coating surface of four types of galvanized steel plates from which the content of Mg, Ni, and Mn in a zinc phosphate coating differs, respectively. この発明の亜鉛めっき鋼板上に形成するりん酸亜鉛皮膜中のMnとNiの含有量の適正範囲を説明するための図である。It is a figure for demonstrating the appropriate range of content of Mn and Ni in the zinc phosphate membrane | film | coat formed on the galvanized steel plate of this invention. この発明の亜鉛めっき鋼板上に形成する粒状のりん酸亜鉛結晶を説明するための図である。It is a figure for demonstrating the granular zinc phosphate crystal | crystallization formed on the galvanized steel plate of this invention.

Claims (2)

鋼板表面上に亜鉛めっき層を形成した後、Mg2+:3〜50g/L、Ni2+:0.1〜10.0g/LおよびMn2+:0.3〜10.0g/Lを含有するりん酸亜鉛処理液中に浸漬する処理のみにより、前記亜鉛めっき層上に、適正量のMgとNiおよびMnとを含有するりん酸亜鉛皮膜を形成することを特徴とする耐穴あき性に優れた亜鉛めっき鋼板の製造方法。 After forming a galvanized layer on the steel plate surface, phosphorus containing Mg 2+ : 3 to 50 g / L, Ni 2+ : 0.1 to 10.0 g / L and Mn 2+ : 0.3 to 10.0 g / L Excellent resistance to punching, characterized by forming a zinc phosphate film containing an appropriate amount of Mg, Ni and Mn on the galvanized layer only by treatment immersed in a zinc acid treatment solution Manufacturing method of galvanized steel sheet. 前記請求項1に記載された方法により製造された亜鉛めっき鋼板であって、
鋼板表面上に、片面当たりの付着量が20〜60g/m2である亜鉛めっき層と、片面当たりの付着量が0.5 〜3.0 g/m2であるりん酸亜鉛皮膜とを順次積層形成し、該りん酸亜鉛皮膜中に、Mgを2.0 〜7.0 質量%、Niを0.1 〜1.4 質量%及びMnを0.5 〜5.0 質量%を含有し、かつMnとNiの含有量が下記(1) の関係式を満足することを特徴とする耐穴あき性に優れた亜鉛めっき鋼板。

〔Mn〕≦〔Ni〕×11.4 ------ (1)
但し、〔Mn〕はMn質量%、〔Ni〕はNi質量%である。
A galvanized steel sheet manufactured by the method according to claim 1,
On the steel sheet surface, sequentially laminated form and the zinc plated layer adhesion amount per one side is 20 to 60 g / m 2, and a zinc phosphate coating deposition amount is 0.5 ~3.0 g / m 2 per surface, The zinc phosphate coating contains Mg in the range of 2.0 to 7.0% by mass, Ni in the range of 0.1 to 1.4% by mass and Mn in the range of 0.5 to 5.0% by mass. A galvanized steel sheet with excellent perforation resistance, characterized by satisfying
[Mn] ≦ [Ni] × 11.4 ------ (1)
However, [Mn] is Mn mass% and [Ni] is Ni mass%.
JP2008004986A 1999-07-08 2008-01-11 Method for producing galvanized steel sheet with excellent perforation resistance and press workability Expired - Lifetime JP4720830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004986A JP4720830B2 (en) 1999-07-08 2008-01-11 Method for producing galvanized steel sheet with excellent perforation resistance and press workability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1999194645 1999-07-08
JP19464599 1999-07-08
JP2008004986A JP4720830B2 (en) 1999-07-08 2008-01-11 Method for producing galvanized steel sheet with excellent perforation resistance and press workability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000157863A Division JP4110707B2 (en) 1999-07-08 2000-05-29 Galvanized steel sheet with excellent perforation resistance and press workability

Publications (2)

Publication Number Publication Date
JP2008133543A true JP2008133543A (en) 2008-06-12
JP4720830B2 JP4720830B2 (en) 2011-07-13

Family

ID=39558582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004986A Expired - Lifetime JP4720830B2 (en) 1999-07-08 2008-01-11 Method for producing galvanized steel sheet with excellent perforation resistance and press workability

Country Status (1)

Country Link
JP (1) JP4720830B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208473A (en) * 1988-11-30 1989-08-22 Nippon Paint Co Ltd Method for protecting surface of metal
JPH0353079A (en) * 1989-07-20 1991-03-07 Nippon Parkerizing Co Ltd Method for chemical-converting zinc-plated steel sheet by phosphate
JPH0387375A (en) * 1989-08-22 1991-04-12 Metallges Ag Method of forming phosphate coat on metal surface
JPH0813154A (en) * 1994-06-27 1996-01-16 Nippon Parkerizing Co Ltd Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
WO2000073535A1 (en) * 1999-05-27 2000-12-07 Nippon Steel Corporation Phosphate-treated electrogalvanized steel sheet excellent in corrosion resistance and coating suitability
WO2001011110A1 (en) * 1999-08-09 2001-02-15 Nippon Steel Corporation Zinc-based metal plated steel sheet treated with phosphate being excellent in formability and method for production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228470A1 (en) * 1992-08-27 1994-03-03 Henkel Kgaa Process for phosphating steel strips galvanized on one side

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208473A (en) * 1988-11-30 1989-08-22 Nippon Paint Co Ltd Method for protecting surface of metal
JPH0353079A (en) * 1989-07-20 1991-03-07 Nippon Parkerizing Co Ltd Method for chemical-converting zinc-plated steel sheet by phosphate
JPH0387375A (en) * 1989-08-22 1991-04-12 Metallges Ag Method of forming phosphate coat on metal surface
JPH0813154A (en) * 1994-06-27 1996-01-16 Nippon Parkerizing Co Ltd Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
WO2000073535A1 (en) * 1999-05-27 2000-12-07 Nippon Steel Corporation Phosphate-treated electrogalvanized steel sheet excellent in corrosion resistance and coating suitability
WO2001011110A1 (en) * 1999-08-09 2001-02-15 Nippon Steel Corporation Zinc-based metal plated steel sheet treated with phosphate being excellent in formability and method for production thereof

Also Published As

Publication number Publication date
JP4720830B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
MX2014009731A (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate.
EP3553201A1 (en) Method for producing a formed steel sheet coated with a metallic coating based on aluminum and comprising titanium
US6322906B1 (en) Perforative corrosion resistant galvanized steel sheet
CA2081645C (en) Hot-dip zinc-coated steel sheets exhibiting excellent press die sliding property
KR100419322B1 (en) Surface treated steel sheet and method for production thereof
JPH0488196A (en) Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP4110707B2 (en) Galvanized steel sheet with excellent perforation resistance and press workability
JP4720830B2 (en) Method for producing galvanized steel sheet with excellent perforation resistance and press workability
JP3133235B2 (en) Steel plate for fuel tank with excellent workability
JP2819429B2 (en) Galvanized steel sheet with excellent press formability and chemical conversion properties
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
JP2001152355A (en) Surface treated steel sheet and producing method therefor
JP4537894B2 (en) Hot Sn-Zn plated steel sheet with good corrosion resistance and weldability
JPH11302862A (en) Steel tube excellent in workability and chemical conversion treatment property
JPH03249180A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JP3858706B2 (en) Galvanized steel sheet with excellent press formability
JP3032114B2 (en) Manufacturing method of thin film organic composite steel sheet with excellent corrosion resistance and workability
KR100785989B1 (en) Manufacturing method of lubricant inorganic pre-phosphates coated galvanized steel sheet having a high formability and the steel sheet thereof
JP4638619B2 (en) Al alloy plate excellent in press formability and manufacturing method thereof
JP2819428B2 (en) Galvanized steel sheet with excellent press formability and chemical conversion properties
JPH03249182A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JP2001020078A (en) Galvanized steel sheet excellent in pitting resistance and its production
JPS6350447A (en) Corrosion-resisting steel sheet for automobile
JPH03219950A (en) Organic composite coated steel plate
JPH04198492A (en) Organic composite coated steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140415

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150