JP2008133187A - Piezoelectric single crystal material and piezoelectric device using the same - Google Patents

Piezoelectric single crystal material and piezoelectric device using the same Download PDF

Info

Publication number
JP2008133187A
JP2008133187A JP2008028586A JP2008028586A JP2008133187A JP 2008133187 A JP2008133187 A JP 2008133187A JP 2008028586 A JP2008028586 A JP 2008028586A JP 2008028586 A JP2008028586 A JP 2008028586A JP 2008133187 A JP2008133187 A JP 2008133187A
Authority
JP
Japan
Prior art keywords
single crystal
piezoelectric
crystal material
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028586A
Other languages
Japanese (ja)
Other versions
JP4748170B2 (en
Inventor
Jun Sato
佐藤  淳
Kiyoshi Uchida
清志 内田
Hiroki Morikoshi
広樹 守越
Katsumi Kawasaki
克己 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008028586A priority Critical patent/JP4748170B2/en
Publication of JP2008133187A publication Critical patent/JP2008133187A/en
Application granted granted Critical
Publication of JP4748170B2 publication Critical patent/JP4748170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric single crystal material in which the temperature dependency of piezoelectric property in an orientation preferable as a device is improved, and to provide a piezoelectric device using the same. <P>SOLUTION: The piezoelectric single crystal material has a Ca<SB>3</SB>Ga<SB>2</SB>Ge<SB>4</SB>O<SB>14</SB>structure, comprises La, Sr, Ta, Ga and Si as main components, and is expressed by compositional formula: La<SB>3-x</SB>Sr<SB>x</SB>Ta<SB>y</SB>Ga<SB>6-y-z</SB>Si<SB>z</SB>O<SB>14</SB>wherein, x, y, and z exist within a compositional range obtained by successively connecting (x=0, y=0.35, z=0.3), (x=0.2, y=0.4, z=0.4), (x=0.8, y=0.5, z=0.8), (x=1.2, y=0.5, z=1.2), (x=1.0, y=0.3, z=1.4), (x=0.6, y=0.1, z=1.4), (x=0.2, y=0, z=1.2), (x=0, y=0.15, z=0.7), and (x=0, y=0.35, z=0.3). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は新規な圧電単結晶材料及びこの圧電単結晶材料を用いた圧電デバイスに関する。   The present invention relates to a novel piezoelectric single crystal material and a piezoelectric device using the piezoelectric single crystal material.

空間群P321に属しCaGaGe14構造を持つ圧電単結晶材料は、水晶と比較して大きな圧電特性を有しかつ水晶に近い圧電温度特性を有するため、近年、注目をあびている。 In recent years, a piezoelectric single crystal material belonging to the space group P321 and having a Ca 3 Ga 2 Ge 4 O 14 structure has a large piezoelectric characteristic compared to quartz and has a piezoelectric temperature characteristic close to that of quartz. .

従ってこの種の単結晶材料の圧電に関する材料定数について多くの報告例があり、また、その材料定数を用いた計算機シミュレーションにより表面弾性波圧電デバイスの最適基板方位と波の伝播方向とに関する報告もなされている。最適基板方位としては、弾性波の温度変化に対する位相速度変動が圧電デバイスの要求を満たし、かつその内で最も電気機械結合係数が大きい方位が一般に選択される。このため、現在までに報告されている単結晶組成における最適基板方位及び伝播方向は電気機械結合係数が最も大きい方位とは異なっている。   Therefore, there are many reports on the material constants related to piezoelectricity of this type of single crystal material, and there are also reports on the optimal substrate orientation and wave propagation direction of surface acoustic wave piezoelectric devices by computer simulation using the material constants. ing. As the optimum substrate orientation, an orientation in which the phase velocity variation with respect to the temperature change of the elastic wave satisfies the requirements of the piezoelectric device and has the largest electromechanical coupling coefficient is generally selected. For this reason, the optimum substrate orientation and propagation direction in the single crystal composition reported so far are different from those having the largest electromechanical coupling coefficient.

近年のデジタル化の流れから、さらに電気機械結合係数の高い基板材料に対する要求が大きく、新しい組成に対する研究が行われてきている。しかしながら、これらの新しい組成に関する研究は「単結晶化が可能な」組成の探索から始まっており、デバイスにとって最も留意すべき圧電・材料定数の温度特性が探索の段階から考慮されていなかった。   Due to the recent trend of digitization, there has been a great demand for a substrate material having a higher electromechanical coupling coefficient, and research on new compositions has been conducted. However, research on these new compositions began with the search for “single crystallizable” compositions, and the temperature characteristics of the piezoelectric and material constants that were most notable for the device were not considered from the search stage.

表面弾性波圧電素子に関する最適カットについて、報告されているLaGaSiO14(LGS)、LaTa0.5Ga5.514(LTG)、LaNb0.5Ga5.514(LNG)という組成の圧電単結晶材料は、いずれも、最大の電気機械結合係数を示す結晶方位、伝播方向で弾性波の位相速度の温度係数一次項が正となることが分かっている。 Reported La 3 Ga 5 SiO 14 (LGS), La 3 Ta 0.5 Ga 5.5 O 14 (LTG), and La 3 Nb 0.5 Ga 5.5 for the optimal cut for surface acoustic wave piezoelectric elements. It is known that the piezoelectric single crystal material having a composition of O 14 (LNG) is positive in the temperature coefficient primary term of the phase velocity of the elastic wave in the crystal orientation and propagation direction showing the maximum electromechanical coupling coefficient. .

本出願人は、このようなCaGaGe14構造を持つ圧電単結晶材料においては主にAサイトを調整することによって電気機械結合係数を高くできることを見出し、SrTaGaSi14(STGS)なる圧電単結晶材料を提案している(特許文献1)。しかしながら、この圧電単結晶材料STGSは、電気機械結合係数は高くなるものの、最大の電気機械結合係数を示す結晶方位、伝播方向で弾性波の位相速度の温度係数一次項が負となってしまうことが分かった。 The present applicant has found that a piezoelectric single crystal material having such a Ca 3 Ga 2 Ge 4 O 14 structure can increase the electromechanical coupling coefficient mainly by adjusting the A site, and Sr 3 TaGa 3 Si 2. A piezoelectric single crystal material of O 14 (STGS) has been proposed (Patent Document 1). However, although this piezoelectric single crystal material STGS has a high electromechanical coupling coefficient, the temperature coefficient primary term of the phase velocity of the elastic wave is negative in the crystal orientation and propagation direction showing the maximum electromechanical coupling coefficient. I understood.

本出願人は、さらに、CaGaGe14構造を持ち、電気機械結合係数を高くすることができる、La3−xSrTa0.5+0.5xGa5.5−0.5x14(LSTG)(0<x≦0.15)なる組成の圧電単結晶材料を提案している(特許文献2)。この圧電単結晶材料LSTGについて、X板Y方向伸び振動の共振周波数の温度依存性を測定したところ、図1に示したように元素置換前のLaTa0.5Ga5.514と比較して温度係数一次項が0に近づくことが確認された。この結果から、酸素8配位の陽イオンサイト置換元素をSr2+からLa3+に変えることで、弾性波の位相速度温度係数の一次項を負から正に変化させることができると推測される。 The applicant further has La 3 -x Sr x Ta 0.5 + 0.5 x Ga 5.5-0.5 x , which has a Ca 3 Ga 2 Ge 4 O 14 structure and can increase the electromechanical coupling coefficient. A piezoelectric single crystal material having a composition of O 14 (LSTG) (0 <x ≦ 0.15) is proposed (Patent Document 2). With respect to this piezoelectric single crystal material LSTG, when the temperature dependence of the resonance frequency of the X-plate Y-direction stretching vibration was measured, as shown in FIG. 1, La 3 Ta 0.5 Ga 5.5 O 14 before element substitution and In comparison, it was confirmed that the temperature coefficient first-order term approaches zero. From this result, it is presumed that the primary term of the phase velocity temperature coefficient of the elastic wave can be changed from negative to positive by changing the oxygen-coordinated cation site substitution element from Sr 2+ to La 3+ .

特開平11−171696公報JP-A-11-171696 特開2000−349587号公報Japanese Patent Laid-Open No. 2000-349587 H.Takeda等の論文(Journal of ALLOYSAND C0MPOUNDS 290(1999)79−84)H. Takeda et al. (Journal of ALLOYSAND C0MPOUNDS 290 (1999) 79-84)

しかしながら、電気機械結合係数の高い結晶方位、伝播方向における弾性波の位相速度温度係数の一次項を0にするためには、この特許文献2で示される組成よりもSr置換量を増加させる必要があり、そのような融液組成からCaGaGe14構造の固相が得られないことは、非特許文献1で報告されている。 However, in order to make the first order term of the phase velocity temperature coefficient of the elastic wave in the crystal orientation and propagation direction with a high electromechanical coupling coefficient zero, it is necessary to increase the Sr substitution amount from the composition shown in Patent Document 2. It is reported in Non-Patent Document 1 that a solid phase having a Ca 3 Ga 2 Ge 4 O 14 structure cannot be obtained from such a melt composition.

従って本発明の目的は、デバイスとして望ましい方位における圧電特性の温度依存性を改善した圧電単結晶材料及びこの圧電単結晶材料を用いた圧電デバイスを提供することにある。   Accordingly, an object of the present invention is to provide a piezoelectric single crystal material in which the temperature dependence of piezoelectric characteristics in a desired orientation as a device is improved, and a piezoelectric device using the piezoelectric single crystal material.

本発明によれば、CaGaGe14構造を有しており、主要成分がLa、Sr、Ta、Ga及びSiよりなり、組成式La3−xSrTaGa6−y-zSi14で表され、この組成式のx、y、zが、(x=0、y=0.35、z=0.3)、(x=0.2、y=0.4、z=0.4)、(x=0.8、y=0.5、z=0.8)、(x=1.2、y=0.5、z=1.2)、(x=1.0、y=0.3、z=1.4)、(x=0.6、y=0.1、z=1.4)、(x=0.2、y=0、z=1.2)、(x=0、y=0.15、z=0.7)、(x=0、y=0.35、z=0.3)を順次結ぶことで得られる組成範囲にある圧電単結晶材料及びこの圧電単結晶材料を用いた圧電デバイスが提供される。 According to the present invention, it has a Ca 3 Ga 2 Ge 4 O 14 structure, the main components are composed of La, Sr, Ta, Ga and Si, and the composition formula La 3-x Sr x Ta y Ga 6-y. -z Si z O 14 , and x, y, and z in this composition formula are (x = 0, y = 0.35, z = 0.3), (x = 0.2, y = 0. 4, z = 0.4), (x = 0.8, y = 0.5, z = 0.8), (x = 1.2, y = 0.5, z = 1.2), ( x = 1.0, y = 0.3, z = 1.4), (x = 0.6, y = 0.1, z = 1.4), (x = 0.2, y = 0, z = 1.2), (x = 0, y = 0.15, z = 0.7), and (x = 0, y = 0.35, z = 0.3). A piezoelectric single crystal material in the range and a piezoelectric device using the piezoelectric single crystal material are provided.

本願発明者等は、特許文献2に提示されているLa、SrO、Ta、Gaの4成分系に対してSiOを加えた5成分系について結晶化の検討を行い、Sr置換量をより増大することができる組成範囲を探索し、最大でSr添加量が1.2まで配位させられる組成範囲を得たのである。これにより、電気機械結合係数を高くすることはもちろんのこと、その結晶方位、伝播方向における弾性波の位相速度温度係数を改善することができる。 The inventors of the present application examined crystallization of a five-component system in which SiO 2 is added to a four-component system of La 2 O 3 , SrO, Ta 2 O 5 , and Ga 2 O 3 presented in Patent Document 2. The composition range in which the Sr substitution amount can be further increased was searched, and a composition range in which the Sr addition amount was coordinated up to 1.2 was obtained. Thereby, not only can the electromechanical coupling coefficient be increased, but also the phase velocity temperature coefficient of the elastic wave in the crystal orientation and propagation direction can be improved.

本発明によれば、La、SrO、Ta、Ga、SiOの5成分系について、所定の組成範囲でLa3−xSrTaGa6−y−zSi14単結晶を育成することにより、目的とする圧電デバイスのモードに最適な、温度特性の向上した基板材料が得られる。即ち、電気機械結合係数を高くすることはもちろんのこと、その結晶方位、伝播方向における弾性波の位相速度温度係数を改善することができる。 According to the present invention, for a five-component system of La 2 O 3 , SrO, Ta 2 O 5 , Ga 2 O 3 , SiO 2 , La 3 -x Sr x Ta y Ga 6-yz in a predetermined composition range. By growing the Si z O 14 single crystal, it is possible to obtain a substrate material with improved temperature characteristics that is optimal for the mode of the target piezoelectric device. That is, not only can the electromechanical coupling coefficient be increased, but also the phase velocity temperature coefficient of the elastic wave in the crystal orientation and propagation direction can be improved.

CaGaGe14構造を有するLa、SrO、Ta、Ga、SiOの5成分系について結晶化の検討を行う。 Crystallization of a five-component system of La 2 O 3 , SrO, Ta 2 O 5 , Ga 2 O 3 , and SiO 2 having a Ca 3 Ga 2 Ge 4 O 14 structure is examined.

CaGaGe14構造は酸素8配位のAサイト、6配位のBサイト、4配位で大きさの異なるC及びDサイトの4つのサイトからなる。このうちLa−SrO−Ta−Ga−SiO系においてAサイト(3つ)をLaとSr、Bサイト(1つ)をTaとGa、Dサイト(2つ)をSiとGaが部分置換しており、Cサイト(3つ)はGaが単独置換する。つまり、Ga以外の元素は、A、B及びDサイトの内の1つのサイトだけを置換するため、各サイトの平均電荷、イオン半径を独立して調整することが可能となる。また、CaGaGe14構造は酸素14であるため、陽イオンの電荷合計が+28となる必要がある。そのため、AサイトのSr配位数をx、BサイトのTa配位数をy、DサイトのSi配位数をzとすると、組成式は、La3−xSrTaGa6−y−zSi14で表され、その電荷式から以下の式
−x+2y+z=1 (0<x<3、0<y<1、0<z<2)
が満たされなくてはならない。
The Ca 3 Ga 2 Ge 4 O 14 structure is composed of four sites: an oxygen 8-coordinate A site, a 6-coordinate B site, and a 4-coordinate C and D site having different sizes. Of these, in the La 2 O 3 —SrO—Ta 2 O 5 —Ga 2 O 3 —SiO 2 system, the A site (three) is La and Sr, the B site (one) is Ta and Ga, and the D site (two). ) Are partially substituted by Si and Ga, and Ga is substituted alone at the C site (three). That is, since elements other than Ga 2 O 3 replace only one of the A, B, and D sites, the average charge and ionic radius of each site can be adjusted independently. Moreover, since the Ca 3 Ga 2 Ge 4 O 14 structure is oxygen 14, the total charge of cations needs to be +28. Therefore, when the S-coordination number at the A site is x, the Ta-coordination number at the B site is y, and the Si coordination number at the D site is z, the composition formula is La 3-x Sr x Ta y Ga 6-y −z Si z O 14 , and from the charge formula, the following formula: −x + 2y + z = 1 (0 <x <3, 0 <y <1, 0 <z <2)
Must be satisfied.

この関係式を用いると、電荷バランスの取れたLa−SrO−Ta−Ga−SiO系について通常の3成分系と同様な3角図が、図2のように作成できる。ただし、同図において、Ta配位数y及びSi配位数zは、通常とは逆方向に数値が付されている。 When this relational expression is used, a triangular diagram similar to a normal three-component system is obtained for the La 2 O 3 —SrO—Ta 2 O 5 —Ga 2 O 3 —SiO 2 system with a well-balanced charge as shown in FIG. Can be created. However, in the same figure, the Ta coordination number y and the Si coordination number z are given numerical values in the opposite direction to normal.

このようにして得られた組成範囲について、単結晶化が可能となる組成を実際に探索する。   In the composition range thus obtained, a composition that can be single-crystallized is actually searched.

組成探索の方法としては、μ−PD(マイクロプリングダウン)法を用いる。この方法は、図3に示すように、2つの管状炉1の間に設置したPt又はPt−Rh合金製のルツボ2内に原料粉を挿入し、このルツボ2に接続された図示されてない直流電源から電流を流すことによりそのジュール熱でルツボ2を加熱し、内部の原料粉を融解して融液3を作成する。   As a method for searching for the composition, a μ-PD (micro pull-down) method is used. In this method, as shown in FIG. 3, raw material powder is inserted into a crucible 2 made of Pt or Pt—Rh alloy installed between two tubular furnaces 1 and connected to the crucible 2 (not shown). The crucible 2 is heated with the Joule heat by flowing a current from a direct current power source, and the raw material powder inside is melted to create the melt 3.

次いで、この融液3に棒状の種子結晶4を接触させ、アフターヒーター5により適当な温度勾配とした雰囲気下で引き下げ軸6を下げることにより、ファイバー状の単結晶7を育成するものである。   Next, a rod-shaped seed crystal 4 is brought into contact with the melt 3 and a pulling shaft 6 is lowered in an atmosphere having an appropriate temperature gradient by an after heater 5 to grow a fiber-shaped single crystal 7.

この手法で単結晶化できた組成は基本的に融液凝固による単結晶化の手法、即ち、Cz法、FZ法、ブリッジマン法といった商業的に有用な方法で単結晶化が可能である。従って、このμ−PD法は、組成探索の手法として有用である。   The composition that can be single-crystallized by this method can basically be single-crystallized by a single crystallizing method by melt solidification, that is, a commercially useful method such as Cz method, FZ method, Bridgman method. Therefore, this μ-PD method is useful as a composition search technique.

得られた単結晶については実体顕微鏡等による観察及び粉末X線回折による相の同定を行い、結晶性の確認を行う。   About the obtained single crystal, observation with a stereomicroscope etc. and phase identification by powder X-ray diffraction are performed, and crystallinity is confirmed.

以上の方法に従って、La3−xSrTaGa6−y−zSi14組成のx、y、zを変えて融液からCaGaGe14構造の固相が単相で析出するかどうかの判別を行った。その結果が図4に示されている。 According to the above method, the solid phase of the Ca 3 Ga 2 Ge 4 O 14 structure is changed from the melt by changing x, y, and z of the composition of La 3 -x Sr x Ta y Ga 6-yz Si z O 14. It was discriminated whether it was precipitated in the phase. The result is shown in FIG.

同図において、●はファイバーが育成開始から終了までランガサイト相単相となった場合であり、○は育成の後期に異相が現れた場合であり、×は育成初期相から異相が現れた場合である。○の場合については固化率が小さい領域では単結晶化が可能である。従って、La3−xSrTaGa6−y−zSi14組成において単結晶化が可能な組成域は、図4において、○及び●で示される領域、即ち0<x≦1.2、0<y≦0.5、0<z≦1.4であることが判明した。 In the figure, ● represents the case where the fiber became a single phase of the Langasite phase from the start to the end of the growth, ○ represents the case where a different phase appeared in the later stage of the growth, and × represents the case where a different phase appeared from the initial phase of the growth. It is. In the case of ○, single crystallization is possible in the region where the solidification rate is small. Accordingly, La 3-x Sr x Ta y Ga 6-y-z Si z O 14 composition range capable single crystal in composition, in FIG. 4, the area indicated by ○ and ●, i.e. 0 <x ≦ 1 0.2, 0 <y ≦ 0.5, 0 <z ≦ 1.4.

以上のようにして得られた組成のうち、後述する実施例1としてLaSrTa0.5Ga4.5SiO14、実施例2としてLa2.8Sr0.2Ta0.4Ga5.2Si0.414組成の結晶育成を行い、X板Y方向伸び振動モードにおける共振周波数の温度変化を測定した。その測定結果が、図5に示されている。同図には比較として、LaGaSiO14(LGS)、LaTa0.5Ga5.514(LTG)、SrTaGaSi14(STGS)及び特開2000−349587号公報に開示されているものと同一組成のLa2.925Sr0.075Ta0.5375Ga5.462514(LSTG)の測定結果も示されている。 Of the compositions obtained as described above, La 2 SrTa 0.5 Ga 4.5 SiO 14 as Example 1 described later, and La 2.8 Sr 0.2 Ta 0.4 Ga 5. as Example 2 is described . Crystal growth of a 2 Si 0.4 O 14 composition was performed, and the temperature change of the resonance frequency in the X-plate Y-direction elongation vibration mode was measured. The measurement results are shown in FIG. For comparison, La 3 Ga 5 SiO 14 (LGS), La 3 Ta 0.5 Ga 5.5 O 14 (LTG), Sr 3 TaGa 3 Si 2 O 14 (STGS) and Japanese Patent Laid-Open No. 2000-349587 are shown in the same figure. The measurement result of La 2.925 Sr 0.075 Ta 0.5375 Ga 5.4625 O 14 (LSTG) having the same composition as that disclosed in the publication is also shown.

同図より、特に実施例1の組成では、Sr量の増加により温度の上昇に伴って共振周波数が低下する傾向が見られる。   From the figure, in particular, in the composition of Example 1, there is a tendency that the resonance frequency decreases as the temperature increases due to an increase in the amount of Sr.

また、Y板X方向厚みずれ振動モードにおける共振周波数の温度変化を測定した。その測定結果が、図6に示されている。同図には、図5の場合と同様に既存のランガサイト結晶との比較もなされている。図5と比較して共振周波数の温度に対する2次係数が大きくなったために、特性が放物線状となっている。今回の検討で得られた実施例2のLa2.8Sr0.2Ta0.4Ga5.2Si0.414については、極大値が約50℃と室温近くにあり、その共振周波数の−20℃から80℃における最大変化量が330ppmまで減少した。このように、Sr量を調整した組成の単結晶を育成することで、基本的な振動モードの共振周波数温度特性を大きく変化させられることが確認された。このことは、組成パラメータであるx、y、zを調整することで材料定数の温度特性を大きく変化させられることを意味している。実際にモノリシックフィルタとしては厚みずれのモードが使われているが、La2.8Sr0.2Ta0.4Ga5.2Si0.414組成についてはYカットで、図6のように良好な温度特性が得られる。またさらに、Sr量を増加させることで共振周波数の温度に対する極大値を30℃程度に合わせ込むことで、より良好な温度特性が得られる。さらに、圧電デバイスの必要とするウエハカットが結晶面に平行の場合、方位精度を容易に0.1°以下に合わせられるため、工程の簡略化、デバイスばらつきの低減が実現できる。また、この圧電単結晶材料を用いた表面弾性波デバイスに関しても組成を調整することで、結合係数の最も大きなカットにおける温度特性を向上させることにより高帯域化が実現できる。 Moreover, the temperature change of the resonance frequency in the Y plate X direction thickness deviation vibration mode was measured. The measurement results are shown in FIG. In the same figure, the comparison with the existing langasite crystal is also made as in the case of FIG. Since the second order coefficient with respect to the temperature of the resonance frequency is larger than that in FIG. 5, the characteristics are parabolic. The La 2.8 Sr 0.2 Ta 0.4 Ga 5.2 Si 0.4 O 14 of Example 2 obtained in this study has a maximum value of about 50 ° C. and near room temperature, and its resonance The maximum change in frequency from −20 ° C. to 80 ° C. decreased to 330 ppm. Thus, it was confirmed that the resonance frequency temperature characteristic of the fundamental vibration mode can be greatly changed by growing a single crystal having a composition in which the amount of Sr is adjusted. This means that the temperature characteristics of the material constant can be greatly changed by adjusting the composition parameters x, y, and z. Actually, the thickness deviation mode is used as the monolithic filter, but the La 2.8 Sr 0.2 Ta 0.4 Ga 5.2 Si 0.4 O 14 composition is Y-cut as shown in FIG. Good temperature characteristics can be obtained. Furthermore, a better temperature characteristic can be obtained by increasing the Sr amount so that the maximum value of the resonance frequency with respect to the temperature is adjusted to about 30 ° C. Furthermore, when the wafer cut required for the piezoelectric device is parallel to the crystal plane, the orientation accuracy can be easily adjusted to 0.1 ° or less, so that the process can be simplified and device variations can be reduced. Further, by adjusting the composition of the surface acoustic wave device using the piezoelectric single crystal material, it is possible to realize a high band by improving the temperature characteristics in the cut having the largest coupling coefficient.

図7は、本実施例で用いた単結晶の製造装置の一例を示している。   FIG. 7 shows an example of a single crystal manufacturing apparatus used in this example.

同図に示すように、ルツボ10が断熱材11の中心に設置されており、ルツボ10の上部には耐火物ハウジング12を配置されている。この耐火物ハウジング12の頂部壁には中心に開口部12aが設けられており、下端に種子結晶13を取り付けた引き上げ軸14が図示しない動力源から垂直に延びてこの開口部12aを貫通している。断熱材11及び耐火物ハウジング12の周りには、頂部壁に結晶引き上げ軸14が貫通する開口部15aを有する耐火物円筒15が配置されている。耐火物ハウジング12の外側には高周波誘導コイル16が巻かれており、高周波電流を流すことでルツボ10を誘導加熱し、結晶材料の融液17を所定温度に維持する。   As shown in the figure, the crucible 10 is installed at the center of the heat insulating material 11, and a refractory housing 12 is disposed on the upper portion of the crucible 10. An opening 12a is provided at the center of the top wall of the refractory housing 12, and a lifting shaft 14 having a seed crystal 13 attached to the lower end extends vertically from a power source (not shown) and penetrates the opening 12a. Yes. Around the heat insulating material 11 and the refractory housing 12, a refractory cylinder 15 having an opening 15a through which the crystal pulling shaft 14 passes is arranged on the top wall. A high-frequency induction coil 16 is wound outside the refractory housing 12, and the crucible 10 is induction-heated by flowing a high-frequency current to maintain the crystal material melt 17 at a predetermined temperature.

この実施例1では、高周波発振器として、周波数70kHzのものを用いた。図7に示す製造装置において、直径が50mm、高さが50mm、厚さが1.5mmのIr製のルツボ10に、LaSrTa0.5Ga4.5SiO14を約350g挿入した。育成は、Nに1vol%のOを混入した雰囲気で、種子結晶13として[001]方位のLaSrTa0.5Ga4.5SiO14単結晶を用い、0.5mm/hの速度で引き上げた。その結果、図8の写真に示すような、直径20mmφ、長さ110mmの透明なLaSrTa0.5Ga4.5SiO14単結晶18が得られた。なお、本実施例における組成式のx、y、zは、x=1.0、y=0.5、z=1.0である。 In Example 1, a high frequency oscillator having a frequency of 70 kHz was used. In the manufacturing apparatus shown in FIG. 7, about 350 g of La 2 SrTa 0.5 Ga 4.5 SiO 14 was inserted into an Ir crucible 10 having a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm. The growth was performed in an atmosphere in which 1 vol% O 2 was mixed in N 2, and a La 2 SrTa 0.5 Ga 4.5 SiO 14 single crystal with [001] orientation was used as the seed crystal 13 at a speed of 0.5 mm / h. I raised it. As a result, a transparent La 2 SrTa 0.5 Ga 4.5 SiO 14 single crystal 18 having a diameter of 20 mmφ and a length of 110 mm as shown in the photograph of FIG. 8 was obtained. Note that x, y, and z in the composition formula in this example are x = 1.0, y = 0.5, and z = 1.0.

得られた結晶からX板の厚みY伸び振動共振子とY板の厚みXずれ振動共振子とを作成して−20℃から+80℃の範囲で共振周波数を求めたところ、温度に対する共振周波数の変化は、それぞれ1815ppm、732ppmとなった。   An X-plate thickness Y elongation vibration resonator and a Y-plate thickness X shear vibration resonator were prepared from the obtained crystal, and the resonance frequency was determined in the range of -20 ° C to + 80 ° C. The changes were 1815 ppm and 732 ppm, respectively.

高周波発振器として、周波数70kHzのものを用いた。図7に示す製造装置において、直径が50mm、高さが50mm、厚さが1.5mmのIr製のルツボ10に、La2.8Sr0.2Ta0.4Ga5.2Si0.414を約370g挿入した。育成は、Nに1vol%のOを混入した雰囲気で、種子結晶13として[001]方位のLaTa0.5Ga5.514単結晶を用い、0.5mm/hの速度で引き上げた。その結果、図9の写真に示すような、直径20mmφ、長さ100mmの透明なLa2.8Sr0.2Ta0.4Ga5.2Si0.414単結晶18が得られた。なお、本実施例における組成式のx、y、zは、x=0.2、y=0.4、z=0.4である。 A high frequency oscillator having a frequency of 70 kHz was used. In the manufacturing apparatus shown in FIG. 7, an Ir crucible 10 having a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm is placed on a La 2.8 Sr 0.2 Ta 0.4 Ga 5.2 Si 0. Approximately 370 g of 4 O 14 was inserted. The growth was performed in an atmosphere in which 1 vol% O 2 was mixed in N 2 , using a La 3 Ta 0.5 Ga 5.5 O 14 single crystal with [001] orientation as the seed crystal 13 and a speed of 0.5 mm / h. It was raised at. As a result, a transparent La 2.8 Sr 0.2 Ta 0.4 Ga 5.2 Si 0.4 O 14 single crystal 18 having a diameter of 20 mmφ and a length of 100 mm as shown in the photograph of FIG. 9 was obtained. . Note that x, y, and z in the composition formula in this example are x = 0.2, y = 0.4, and z = 0.4.

得られた結晶からX板の厚みY伸び振動共振子とY板の厚みXずれ振動共振子とを作成して−20℃から+80℃の範囲で共振周波数を求めたところ、温度に対する共振周波数の変化はそれぞれ732ppm、332ppmとなった。   An X-plate thickness Y elongation vibration resonator and a Y-plate thickness X shear vibration resonator were prepared from the obtained crystal, and the resonance frequency was determined in the range of -20 ° C to + 80 ° C. The changes were 732 ppm and 332 ppm, respectively.

高周波発振器として、周波数70kHzのものを用いた。図7に示す製造装置において、直径が50mm、高さが50mm、厚さが1.5mmのPt製のルツボ10に、La2.4Sr0.6Ta0.4Ga4.8Si0.814を約360g挿入した。育成は、Nに1vol%のOを混入した雰囲気で、種子結晶13として[001]方位のLa2.4Sr0.6Ta0.4Ga4.8Si0.814単結晶を用い、0.3mm/hの速度で引き上げた。その結果、図10の写真に示すような、直径20mmφ、長さ68mmの透明なLa2.4Sr0.3Ta0.4Ga4.8Si0.814単結晶18が得られた。なお、本実施例における組成式のx、y、zは、x=0.6、y=0.4、z=0.8である。 A high frequency oscillator having a frequency of 70 kHz was used. In the manufacturing apparatus shown in FIG. 7, a La 2.4 Sr 0.6 Ta 0.4 Ga 4.8 Si 0.8 is added to a Pt crucible 10 having a diameter of 50 mm, a height of 50 mm, and a thickness of 1.5 mm . Approximately 360 g of 8 O 14 was inserted. The growth is carried out in an atmosphere in which 1 vol% O 2 is mixed in N 2 , and the seed crystal 13 is a La 2.4 Sr 0.6 Ta 0.4 Ga 4.8 Si 0.8 O 14 single crystal with [001] orientation. Was pulled up at a speed of 0.3 mm / h. As a result, a transparent La 2.4 Sr 0.3 Ta 0.4 Ga 4.8 Si 0.8 O 14 single crystal 18 having a diameter of 20 mmφ and a length of 68 mm as shown in the photograph of FIG. 10 was obtained. . Note that x, y, and z in the composition formula in this example are x = 0.6, y = 0.4, and z = 0.8.

以上述べた実施形態及び実施例は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。   The above-described embodiments and examples are all illustrative and do not limit the present invention, and the present invention can be implemented in various other modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

従来材料のX板Y方向伸び振動における共振周波数の対温度変化を示す図である。It is a figure which shows the change with respect to temperature of the resonant frequency in the X plate Y direction elongation vibration of the conventional material. 本発明における組成の3角図である。It is a triangle figure of the composition in the present invention. μ−PD法によるファイバー結晶育成を説明するための図である。It is a figure for demonstrating the fiber crystal growth by micro-PD method. 本発明において得られた単結晶化可能な組成範囲を示す図である。It is a figure which shows the composition range in which single crystallization obtained in this invention is possible. 本発明の実施例で得られた単結晶の伸び振動モードの共振周波数の温度変化を表す図である。It is a figure showing the temperature change of the resonant frequency of the elongation vibration mode of the single crystal obtained in the Example of this invention. 本発明の実施例で得られた単結晶の厚みすべりモードの共振周波数の温度変化を表す図である。It is a figure showing the temperature change of the resonant frequency of the thickness shear mode of the single crystal obtained in the Example of this invention. 本発明の実施例で用いた単結晶製造装置を説明するための図である。It is a figure for demonstrating the single crystal manufacturing apparatus used in the Example of this invention. 実施例1におけるLaSrTa0.5Ga4.5SiO14単結晶の育成例を示す写真である。 2 is a photograph showing an example of growing a La 2 SrTa 0.5 Ga 4.5 SiO 14 single crystal in Example 1. FIG. 実施例2におけるLa2.8Sr0.2Ta0.4Ga5.2Si0.414単結晶の育成例を示す写真である。Is a photograph showing the development example of La 2.8 Sr 0.2 Ta 0.4 Ga 5.2 Si 0.4 O 14 single crystal in Example 2. 実施例3におけるLa2.4Sr0.6Ta0.4Ga4.8Si0.814単結晶の育成例を示す写真である。4 is a photograph showing an example of growing a La 2.4 Sr 0.6 Ta 0.4 Ga 4.8 Si 0.8 O 14 single crystal in Example 3.

符号の説明Explanation of symbols

1 管状炉
2、10 ルツボ
3、17 融液
4、13 種子結晶
5 アフターヒーター
6 引き下げ軸
7、18 単結晶
11 断熱材
12 耐火物ハウジング
14 引き上げ軸
15 耐火物円筒
16 高周波誘導コイル
DESCRIPTION OF SYMBOLS 1 Tubular furnace 2, 10 Crucible 3, 17 Melt 4, 13 Seed crystal 5 After heater 6 Pulling shaft 7, 18 Single crystal 11 Heat insulating material 12 Refractory housing 14 Lifting shaft 15 Refractory cylinder 16 High frequency induction coil

Claims (5)

CaGaGe14構造を有しており、主要成分がLa、Sr、Ta、Ga及びSiよりなり、組成式La3−xSrTaGa6−y-zSi14で表され、前記組成式のx、y、zが、(x=0、y=0.35、z=0.3)、(x=0.2、y=0.4、z=0.4)、(x=0.8、y=0.5、z=0.8)、(x=1.2、y=0.5、z=1.2)、(x=1.0、y=0.3、z=1.4)、(x=0.6、y=0.1、z=1.4)、(x=0.2、y=0、z=1.2)、(x=0、y=0.15、z=0.7)、(x=0、y=0.35、z=0.3)を順次結ぶことで得られる組成範囲にあることを特徴とする圧電単結晶材料。 Ca 3 Ga 2 Ge 4 O 14 has a structure made of a main component is La, Sr, Ta, Ga and Si, the composition formula La 3-x Sr x Ta y Ga 6-y-z Si z O 14 X, y, z in the composition formula are (x = 0, y = 0.35, z = 0.3), (x = 0.2, y = 0.4, z = 0. 4), (x = 0.8, y = 0.5, z = 0.8), (x = 1.2, y = 0.5, z = 1.2), (x = 1.0, y = 0.3, z = 1.4), (x = 0.6, y = 0.1, z = 1.4), (x = 0.2, y = 0, z = 1.2) , (X = 0, y = 0.15, z = 0.7), and (x = 0, y = 0.35, z = 0.3) are in the composition range obtained by sequentially connecting. Piezoelectric single crystal material. 前記組成式のx、y、zが、x=0.2、y=0.4、z=0.4であることを特徴とする請求項1に記載の圧電単結晶材料。   2. The piezoelectric single crystal material according to claim 1, wherein x, y, and z in the composition formula are x = 0.2, y = 0.4, and z = 0.4. 前記組成式のx、y、zが、x=1、y=0.5、z=1であることを特徴とする請求項1に記載の圧電単結晶材料。   2. The piezoelectric single crystal material according to claim 1, wherein x, y, and z in the composition formula are x = 1, y = 0.5, and z = 1. 前記組成式のx、y、zが、x=0.6、y=0.4、z=0.8であることを特徴とする請求項1に記載の圧電単結晶材料。   2. The piezoelectric single crystal material according to claim 1, wherein x, y, and z in the composition formula are x = 0.6, y = 0.4, and z = 0.8. 請求項1から4のいずれか1項に記載の圧電単結晶材料を用いたことを特徴とする圧電デバイス。   A piezoelectric device using the piezoelectric single crystal material according to any one of claims 1 to 4.
JP2008028586A 2008-02-08 2008-02-08 Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material Expired - Fee Related JP4748170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028586A JP4748170B2 (en) 2008-02-08 2008-02-08 Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028586A JP4748170B2 (en) 2008-02-08 2008-02-08 Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001155645A Division JP2002348197A (en) 2001-05-24 2001-05-24 Piezoelectric single crystal material and piezoelectric device using piezoelectric single crystal material

Publications (2)

Publication Number Publication Date
JP2008133187A true JP2008133187A (en) 2008-06-12
JP4748170B2 JP4748170B2 (en) 2011-08-17

Family

ID=39558293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028586A Expired - Fee Related JP4748170B2 (en) 2008-02-08 2008-02-08 Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material

Country Status (1)

Country Link
JP (1) JP4748170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049846A1 (en) * 2010-10-13 2012-04-19 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method
JP2017514113A (en) * 2014-03-21 2017-06-01 キストラー ホールディング アクチエンゲゼルシャフト Piezoelectric measuring element for measuring dynamic and static pressure and / or temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171696A (en) * 1997-12-04 1999-06-29 Tdk Corp Piezoelectric material
JP2000349587A (en) * 1999-06-07 2000-12-15 Tdk Corp Surface acoustic wave device and its substrate
JP2001199799A (en) * 2000-01-13 2001-07-24 Murata Mfg Co Ltd Method for producing langasite-based single crystal substrate, langasite-based single crystal substrate and piezoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171696A (en) * 1997-12-04 1999-06-29 Tdk Corp Piezoelectric material
JP2000349587A (en) * 1999-06-07 2000-12-15 Tdk Corp Surface acoustic wave device and its substrate
JP2001199799A (en) * 2000-01-13 2001-07-24 Murata Mfg Co Ltd Method for producing langasite-based single crystal substrate, langasite-based single crystal substrate and piezoelectric device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049846A1 (en) * 2010-10-13 2012-04-19 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method
RU2552476C2 (en) * 2010-10-13 2015-06-10 Тдк Корпорейшн Langasite-type oxide material, method for production thereof and raw material used in production method
US9118011B2 (en) 2010-10-13 2015-08-25 Tdk Corporation Langasite-type oxide material, method for producing same, and raw material used in the production method
JP5962509B2 (en) * 2010-10-13 2016-08-03 Tdk株式会社 Langasite-type oxide material, production method thereof, and raw material used in the production method
JP2017514113A (en) * 2014-03-21 2017-06-01 キストラー ホールディング アクチエンゲゼルシャフト Piezoelectric measuring element for measuring dynamic and static pressure and / or temperature

Also Published As

Publication number Publication date
JP4748170B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN103911662A (en) Manufacturing method for langasite piezoelectric crystal and product thereof
Ohsato et al. Mechanism of piezoelectricity for langasite based on the framework crystal structure
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JP4748170B2 (en) Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material
Xu et al. Structural defects of Pb (Mg1/3Nb2/3) O3–PbTiO3 single crystals grown by a Bridgman method
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
CN103173861A (en) Doping type tantalic acid gallium-lanthanum crystal for high-temperature piezoelectric devices and preparation method thereof
Bedekar et al. Comparative study of energy harvesting from high temperature piezoelectric single crystals
JP4246436B2 (en) Piezoelectric single crystal material and piezoelectric device using the piezoelectric single crystal material
JP2002249399A (en) Method for manufacturing single crystal and single crystal
JP2002348197A (en) Piezoelectric single crystal material and piezoelectric device using piezoelectric single crystal material
Takeda et al. Growth and piezoelectric properties of R3Ga5SiO14 and RCa4O (BO3) 3 (R: rare-earth elements) single crystals
Dubovik et al. Langasite (La/sub 3/Ga/sub 5/SiO/sub 14/) an optical piezoelectric: growth and properties
JP2020158346A (en) Rearing method for single crystal ingot of iron gallium alloy and processing method therefor, and single crystal ingot of iron gallium alloy
CN1196816C (en) Gallium-lanthanum silicate crystal growth technology of crucible descending process
JP2000247793A (en) Preparation of langacite type crystal
CN100587092C (en) Magnetic shape memory alloy monocrystalline and preparation thereof
JP2010280525A (en) Lithium tantalate substrate and method for producing lithium tantalate single crystal
JP2015182937A (en) Method of manufacturing gsgg monocrystal and method of manufacturing oxide garnet monocrystal film
JP4270232B2 (en) Piezoelectric device substrate manufacturing method, piezoelectric device substrate, and surface acoustic wave device using the same
Chen et al. Growth habits and characterization of Sr3NbGa3Si2O14 crystal
JP4353262B2 (en) Surface acoustic wave device and substrate for piezoelectric device
Wu et al. Bridgman growth of Sr3NbGa3Si2O14 single crystal
Takeda et al. Growth and characterization of piezoelectric Ba3TaGa3Si2O14 single crystals
JP4608894B2 (en) Fluoride single crystal manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4748170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees