JP2008130651A - Plasma etching device - Google Patents

Plasma etching device Download PDF

Info

Publication number
JP2008130651A
JP2008130651A JP2006311383A JP2006311383A JP2008130651A JP 2008130651 A JP2008130651 A JP 2008130651A JP 2006311383 A JP2006311383 A JP 2006311383A JP 2006311383 A JP2006311383 A JP 2006311383A JP 2008130651 A JP2008130651 A JP 2008130651A
Authority
JP
Japan
Prior art keywords
electrode
dielectric member
withstand voltage
plasma etching
etching apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311383A
Other languages
Japanese (ja)
Other versions
JP4888076B2 (en
Inventor
Shogo Okita
尚吾 置田
Hiroyuki Suzuki
宏之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006311383A priority Critical patent/JP4888076B2/en
Publication of JP2008130651A publication Critical patent/JP2008130651A/en
Application granted granted Critical
Publication of JP4888076B2 publication Critical patent/JP4888076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain the adhesion prevention and shaving prevention of a nonuniform reaction product on the internal surface of a breakdown-strength dielectric member in a well-balanced manner approximately uniformly without particularly complicating a device and without damaging the uniformity of a plasma on a substance to be treated. <P>SOLUTION: A plasma etching device has a first electrode 4 radiating the plasma 6 onto the substance to be treated 2 on a counter electrode 3 by generating the plasma 6 in a decompressive chamber 1 from a reaction gas through the breakdown-strength dielectric member 5 conducting plasma treatment such as etching to the plasma 6. The plasma etching device further has a second electrode 7 fitted between the first electrode 4 and the breakdown-strength dielectric member 5 to prevent the adhesion of the reaction product on the internal surface 5a of the breakdown-strength dielectric member 5. An electrode distance L2 from the internal surface 5a of the breakdown-strength dielectric member 5 for the second electrode 7 is set in response to a partial difference between the degree of adhesion of the reaction product on the internal surface 5a of the breakdown-strength dielectric member 5 and the quantity of the breakdown-strength dielectric member 5 shaven in each of the opposed regions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は微細なパターン加工を行うような電子デバイスの製造に利用されるプラズマエッチング装置に関し、詳しくは、耐圧誘電体部材を介してチャンバ内に反応ガスのプラズマを発生させてエッチングを行う第1の電極と、プラズマエッチングに際して耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを組み合わせ備えたプラズマエッチング装置に関するものである。   The present invention relates to a plasma etching apparatus used for manufacturing an electronic device that performs fine pattern processing. More specifically, the first etching is performed by generating plasma of a reactive gas in a chamber via a pressure-resistant dielectric member. And a second electrode for preventing the reaction product from adhering to the inner surface of the withstand voltage dielectric member during plasma etching.

このような第1、第2の電極を組み合わせたプラズマエッチング装置は既に知られている(例えば、特許文献1、2参照。)。   A plasma etching apparatus in which such first and second electrodes are combined is already known (see, for example, Patent Documents 1 and 2).

特許文献1は特に、第1の電極を高周波アンテナとし、第2の電極を高周波アンテナと並列に可変チョークまたは可変コンデンサを介して同一高周波電源に接続する構成を開示している。このような構成では、第1の電極により耐圧誘電体部材を介しチャンバ内にプラズマを発生させてチャンバ内の対向電極に支持された被処理物を処理するのに併せ、第2の電極により耐圧誘電体部材の内表面上に一様な電界を形成して耐圧誘電体部材の内表面に膜が付着するのを防止するが、特に、第2の電極に供給する電力をチョークや可変コンデンサにて制御することにより、プロセス中は耐圧誘電体部材の内表面がエッチングされないようにすることができ、プロセスとプロセスとの間ではクリーニングプロセスが行えるものとなる。   Patent Document 1 particularly discloses a configuration in which the first electrode is a high-frequency antenna, and the second electrode is connected to the same high-frequency power source via a variable choke or a variable capacitor in parallel with the high-frequency antenna. In such a configuration, the first electrode generates plasma in the chamber via the withstand voltage dielectric member to process the object to be processed supported by the counter electrode in the chamber, and the second electrode has a withstand voltage. A uniform electric field is formed on the inner surface of the dielectric member to prevent the film from adhering to the inner surface of the withstand voltage dielectric member. In particular, the power supplied to the second electrode is supplied to the choke or variable capacitor. Thus, the inner surface of the withstand voltage dielectric member can be prevented from being etched during the process, and a cleaning process can be performed between the processes.

一方、特許文献2は、第2の電極をそれぞれ独立に高周波電力が印加される分割電極とするか、第2の電極を移動させることを提案している。このような構成では、耐圧誘電体部材の内表面の反応生成物の付着厚さの分布に応じて、分割電極それぞれに供給する高周波電圧を調整するか、第2の電極を移動させることにより、耐圧誘電体部材の内表面における第1の電極直下の領域が削られることを防止しながら、チャンバ内に残留して耐圧誘電体部材の内表面に異なった厚さで付着しようとする各領域の反応生成物をエッチングすることができる。
特許第3429391号公報 特開2005−259836号公報
On the other hand, Patent Document 2 proposes that the second electrode is a divided electrode to which high-frequency power is applied independently, or that the second electrode is moved. In such a configuration, by adjusting the high-frequency voltage supplied to each of the divided electrodes according to the distribution of the adhesion thickness of the reaction product on the inner surface of the withstand voltage dielectric member, or by moving the second electrode, While preventing the region immediately below the first electrode on the inner surface of the dielectric material from being scraped, each region that remains in the chamber and tries to adhere to the inner surface of the dielectric material with a different thickness. The reaction product can be etched.
Japanese Patent No. 3429391 JP 2005-259836 A

しかし、第2の電極bに電源cから供給する高周波電力を特許文献1に記載のように制御するにしても、既述したように第2の電極bの全体に供給して耐圧誘電体部材dの内表面に一様な電界を形成し、また、被処理物上で密度分布が均一なプラズマeを発生させるのに対し、耐圧誘電体部材dの内表面下でのプラズマeの密度が発生域によって種々に差ができる。例えば図28の第5欄、A〜C、E〜Gに例示するように中央部の密度が高く周辺部へ向け密度が低下するような密度分布では、その分布差に応じて耐圧誘電体部材dの内表面の中央部でのプラズマeが多く、周辺部では少なくなる傾向を示す。また、図28の第5欄、Dに例示するように周辺部で中央部よりも高くなる密度分布を示す場合もあり、周辺部でのプラズマeが多く、中央部で少なくなる傾向を示し、耐圧誘電体部材dの内表面の削れに差を及ぼす。また、耐圧誘電体部材dへの反応生成物の付着度(図ではデポレート)分布も、図28第4欄、A〜Gに例示するように中央部で高く周辺部へ向け低下する場合があるし、図示しないが周辺部で高く中央部で低下する場合もあるというように一定せず、これも耐圧誘電体部材dの内表面の削れ量の不均一をもたらす。   However, even if the high frequency power supplied from the power source c to the second electrode b is controlled as described in Patent Document 1, it is supplied to the entire second electrode b as described above, and the withstand voltage dielectric member. A uniform electric field is formed on the inner surface of d and a plasma e having a uniform density distribution is generated on the object to be processed, whereas the density of the plasma e under the inner surface of the withstand voltage dielectric member d is There are various differences depending on the generation area. For example, in the density distribution in which the density in the central portion is high and the density decreases toward the peripheral portion as exemplified in the fifth column, A to C, and E to G in FIG. 28, the withstand voltage dielectric member according to the distribution difference. The plasma e tends to increase in the central portion of the inner surface of d and decrease in the peripheral portion. Further, as illustrated in the fifth column of FIG. 28, D, there may be a density distribution that is higher in the peripheral portion than in the central portion, and there is a tendency that the plasma e in the peripheral portion is large and decreases in the central portion. A difference is given to the shaving of the inner surface of the withstand voltage dielectric member d. In addition, the degree of adhesion of the reaction product (deposited in the figure) to the withstand voltage dielectric member d may be higher in the central portion and lower toward the peripheral portion as illustrated in the fourth column of FIG. 28, AG. However, although not shown, it is not constant so that it may be high at the peripheral portion and lower at the central portion, which also causes unevenness of the shaving amount of the inner surface of the withstand voltage dielectric member d.

ここに、プラズマeの密度分布のパターンと反応生成物の付着量分布のパターンとは、それらを図28の第3欄、A〜Gに示すように重畳したときの双方の高低の差が耐圧誘電体部材dの内表面の削れ量に相関し、図28の第2欄、A〜Gに示すように耐圧誘電体部材dの内表面の削れ量(図では削れレート)の分布が決まる。これら削れ量の分布に対応した実際の削れ状態は図28の第1欄、A〜Gに例示するようになる。   Here, the density distribution pattern of the plasma e and the deposition amount distribution pattern of the reaction product are different from each other when they are superimposed as shown in the third column of FIGS. In correlation with the amount of abrasion on the inner surface of the dielectric member d, the distribution of the amount of abrasion (the abrasion rate in the figure) of the inner surface of the withstand voltage dielectric member d is determined as shown in the second column of FIGS. The actual cutting state corresponding to the distribution of these cutting amounts is exemplified in the first column, A to G in FIG.

図28のBではプラズマeの密度分布のパターンと反応生成物の付着量分布のパターンとに高低の差がほとんどなく、耐圧誘電体部材dの内表面が削れるにしてもその量は少なく、かつほぼ平坦であって理想的な削れ条件といえる。また、図28のFではプラズマeの密度分布のパターンと反応生成物の付着量分布のパターンとに若干の差はあるがその差がほぼ均一なことから、図28のBの場合よりは少し深く削れるがほぼ平坦であって理想に近い削れ条件といえる。しかし、図28のA、C〜E、Gでは中央部や周辺部が部分的に多く削れており、高価な耐圧誘電体部材dの耐圧強度が早期に低下する問題がある。   In FIG. 28B, there is almost no difference in level between the density distribution pattern of plasma e and the deposition amount distribution pattern of the reaction product, and the amount is small even if the inner surface of the withstand voltage dielectric member d is scraped. It is almost flat and can be said to be an ideal shaving condition. In FIG. 28F, there is a slight difference between the density distribution pattern of plasma e and the deposition amount distribution pattern of the reaction product, but the difference is almost uniform. Although it can be deeply cut, it can be said that the cutting conditions are almost flat and ideal. However, in A, C to E, and G of FIG. 28, the central portion and the peripheral portion are partially shaved, and there is a problem that the withstand voltage strength of the expensive withstand voltage dielectric member d is lowered early.

一方、特許文献2に記載のように第2の電極bを分割電極としてそれぞれに独立して、従って、それぞれにパワーの異なった高周波電力を供給して耐圧誘電体部材dの内表面における領域によって異なる付着量に対応しようとしても、連続した変化には対応し切れない問題がある上、第2の電極b、高周波電力を供給する電源c、電源cをオン、オフする駆動系のそれぞれが、第2の電極bを分割する数だけ必要となるので、装置が高価になる。   On the other hand, as described in Patent Document 2, the second electrode b is used as a divided electrode independently of each other, and accordingly, high-frequency power having different power is supplied to each of the second electrodes b depending on the region on the inner surface of the withstand voltage dielectric member d. There is a problem that even if trying to cope with different adhesion amounts, it is impossible to cope with continuous changes, and each of the second electrode b, the power source c that supplies high-frequency power, and the drive system that turns on and off the power source c, Since the required number of the second electrodes b is required, the apparatus becomes expensive.

本発明の目的は、複雑化、大幅なコスト上昇なく、かつプラズマおよび加工の均一性を損なわずに、耐圧誘電体部材の内表面における不均一な反応生成物の付着防止と削れ防止とがバランスよくほぼ均一に達成できるプラズマエッチング装置を提供することにある。   The object of the present invention is to balance the prevention of adhesion of non-uniform reaction products and the prevention of scraping on the inner surface of a dielectric material without complicating, significant cost increase, and without impairing the uniformity of plasma and processing. It is an object of the present invention to provide a plasma etching apparatus that can be achieved substantially uniformly.

上記のような目的を達成するために、本発明のプラズマエッチング装置の第1の態様によれば、減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからのプラズマを発生させて対向電極にて支持される被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、前記第2の電極の前記耐圧誘電体部材の内表面からの電極距離を、耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体の削れ量との部分的な違いに応じて設定したことを1つの特徴としている。   In order to achieve the above object, according to a first aspect of the plasma etching apparatus of the present invention, a depressurizable chamber, a counter electrode provided inside the chamber and supporting an object to be processed, A first electrode which is provided outside a dielectric material member forming a partition wall of the chamber, and which generates plasma from a reaction gas in the chamber and etches a workpiece to be supported by the counter electrode; and the first electrode And a second electrode for preventing reaction products from adhering to the inner surface of the withstand voltage dielectric member, between the first electrode and the withstand voltage dielectric member. The electrode distance from the inner surface of the withstand voltage dielectric member is set according to a partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric. As one feature

このような構成では、第2の電極の前記耐圧誘電体部材の内表面からの電極距離が耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに応じて設定してあることにより、第1の電極により耐圧誘電体部材を介しチャンバ内にプラズマを従来通りに被処理物側で均一な密度分布で発生させて均一なプラズマエッチングを行うことを邪魔することなく、第2の電極からのパワーの電極距離に応じた減衰を伴い耐圧誘電体部材の内表面への各部での反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じて過不足なく働き、耐圧誘電体部材の内表面の反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材の内表面の削れが部分的に多くなるようなことがなくなる。   In such a configuration, the electrode distance from the inner surface of the withstand voltage dielectric member of the second electrode is a part of the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member. By setting according to the difference, plasma is generated in the chamber with a uniform density distribution on the workpiece side by the first electrode through the proof dielectric member and the uniform plasma etching is performed as usual. Without obstructing the operation, the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member with attenuation corresponding to the electrode distance of the power from the second electrode It works without excess or deficiency depending on the difference between them and sufficiently prevents the reaction products on the inner surface of the withstand voltage dielectric member from adhering to each part, and the inner surface of the withstand voltage dielectric member is partially scraped. There will be no such thing.

本発明のプラズマエッチング装置の第2の態様によれば、電極距離は、周辺部よりも中央部を大きくする、あるいは、中央部よりも周辺部を大きくすることを特徴としている。   According to the second aspect of the plasma etching apparatus of the present invention, the electrode distance is characterized in that the central portion is made larger than the peripheral portion or the peripheral portion is made larger than the central portion.

これにより、耐圧誘電体部材の削れ量が中央部で周辺部よりも大きくなる傾向の場合、あるいは、周辺部で中央部よりも大きくする傾向の場合に対応することができる。   Accordingly, it is possible to cope with the case where the amount of wear of the dielectric material is apt to be larger at the central portion than that at the peripheral portion, or the peripheral portion is apt to be larger than the central portion.

本発明のプラズマエッチング装置の第3の態様によれば、電極距離は、前記耐圧誘電体部材の平坦な内表面と前記第2の電極の立体形態とで設定していることを特徴としている。   According to a third aspect of the plasma etching apparatus of the present invention, the electrode distance is set by the flat inner surface of the withstand voltage dielectric member and the three-dimensional form of the second electrode.

これにより、第2の電極のみの立体形状にて、対向する耐圧誘電体部材の内表面に対する反応生成物の付着度と耐圧誘電体部材の削れ量とに対応した、電極距離の変化を満足することができる。   As a result, the change in the electrode distance corresponding to the degree of adhesion of the reaction product to the inner surface of the opposing withstand voltage dielectric member and the shaving amount of the withstand voltage dielectric member is satisfied in the three-dimensional shape of only the second electrode. be able to.

本発明のプラズマエッチング装置の第4の態様によれば、前記耐圧誘電体部材の外表面は前記第2の電極の立体形態に沿うか近似した立体形態としてあることを特徴としている。   According to a fourth aspect of the plasma etching apparatus of the present invention, the outer surface of the withstand voltage dielectric member has a three-dimensional form that follows or approximates the three-dimensional form of the second electrode.

これにより、耐圧誘電体部材は立体的な第2の電極との間のスペースを利用して、電極距離の大きいところでは小さいところよりも厚みが増大するので、第2の電極からの反応生成物の付着防止を図るパワーを電極距離の大きいところでは小さいところよりも弱められ、第2の電極の立体形状と併せ、反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに対応することができる。また、耐圧誘電体部材は削れ量の大きい部分ほど厚くなるので、そこでの削れが他の部分より大きくなっても耐圧強度が他の部分よりも低下するようなことを防止することができる。   As a result, the withstand voltage dielectric member uses the space between the three-dimensional second electrode, and the thickness is increased at a larger electrode distance than at a smaller one, so that the reaction product from the second electrode The power for preventing the adhesion of the electrode is weaker at the electrode distance larger than the smaller electrode distance, and the difference between the degree of adhesion of the reaction product and the amount of wear of the withstand voltage dielectric member together with the three-dimensional shape of the second electrode It can correspond to. In addition, since the withstand voltage dielectric member becomes thicker as the amount of scraping is larger, it is possible to prevent the withstand voltage strength from being lower than that of the other portions even if the shaving is larger than the other portions.

本発明のプラズマエッチング装置の第5の態様によれば、電極距離は、前記第2の電極の平坦な形態と前記耐圧誘電体部材の内表面の立体形態とで設定していることを特徴としている。   According to a fifth aspect of the plasma etching apparatus of the present invention, the electrode distance is set by the flat form of the second electrode and the three-dimensional form of the inner surface of the withstand voltage dielectric member. Yes.

これにより、耐圧誘電体部材内表面のみの一体、積層などによる立体形状にて、対向する第2の電極に対する反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに対応した、電極距離の変化を満足して、第2の電極からの反応生成物の付着防止を図るパワーを電極距離の大きいところでは小さいところよりも弱められるし、耐圧誘電体部材の厚みが電極距離の大きなところで小さなところよりも削れに対する許容度を高められる。   As a result, it is possible to cope with a partial difference between the degree of adhesion of the reaction product to the opposing second electrode and the amount of wear of the withstand voltage dielectric member in a three-dimensional shape such as integration or lamination only on the inner surface of the withstand voltage dielectric member. Therefore, the power for preventing the reaction product from adhering to the second electrode to be prevented from adhering to the change in the electrode distance can be weakened at the large electrode distance than at the small one, and the thickness of the withstand voltage dielectric member is It is possible to increase the tolerance for shaving at a large part of the tool than at a small part.

本発明のプラズマエッチング装置の第6の態様によれば、前記第2の電極と耐圧誘電体部材の内表面との各対向域における電極距離の差を調整する距離調整手段を有したことを特徴としている。   According to a sixth aspect of the plasma etching apparatus of the present invention, the plasma etching apparatus further comprises distance adjusting means for adjusting a difference in electrode distance in each facing region between the second electrode and the inner surface of the withstand voltage dielectric member. It is said.

これにより、プラズマ処理条件によって耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いが一定しないような場合でも、第2の電極と耐圧誘電体部材の内表面との各対向域ごとに、耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じた電極距離に調整することができる。   Thus, even if the partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member is not constant depending on the plasma processing conditions, For each area facing the inner surface of the dielectric member, it is possible to adjust the electrode distance according to the difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member. it can.

本発明のプラズマエッチング装置の第7の態様によれば、距離調整手段は、第2の電極の部分的な高さを一体のままか、分割体ごとに相対的に変化させることを特徴としている。   According to the seventh aspect of the plasma etching apparatus of the present invention, the distance adjusting means is characterized in that the partial height of the second electrode remains integral or is relatively changed for each divided body. .

これにより、第2の電極の形態によって一体のままか、分割体ごとに部分的な高さを相対変化させて、一定しない反応生成物の耐圧誘電体部材の内表面への付着度と耐圧誘電体部材の削れ量との違いに応じた電極距離に調整することができる。   Accordingly, the degree of adhesion of the non-constant reaction product to the inner surface of the withstand voltage dielectric member and the withstand voltage dielectric can be changed depending on the form of the second electrode or by changing the partial height relative to each divided body. It is possible to adjust the electrode distance according to the difference from the scraping amount of the body member.

本発明のプラズマエッチング装置の第8の態様によれば、減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからなるプラズマを発生させて対向電極に支持した被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、前記耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに応じた誘電率の差、厚みの差、配置密度の差の少なくとも1つを有して、前記第2の電極と前記耐圧誘電体部材との間に補助誘電体部材を配したことを別の特徴としている。   According to the eighth aspect of the plasma etching apparatus of the present invention, a chamber capable of being depressurized, a counter electrode provided inside the chamber and supporting an object to be processed, and an outside of the withstand voltage dielectric member forming the partition of the chamber. Provided between the first electrode and the pressure-resistant dielectric member, the first electrode for generating a plasma made of a reactive gas in the chamber and etching the workpiece supported by the counter electrode. In a plasma etching apparatus comprising a second electrode for preventing the reaction product from adhering to the inner surface of the withstand voltage dielectric member, the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the withstand voltage dielectric And having at least one of a difference in dielectric constant, a difference in thickness, and a difference in arrangement density according to a partial difference with the amount of shaving of the body member, between the second electrode and the withstand voltage dielectric member An auxiliary dielectric member is placed on the It is set to another, characterized in that.

このような構成では、第2の電極と耐圧誘電体部材との間に位置する補助誘電体部材が耐圧誘電体部材の内表面での反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに対応した誘電率の差、厚みの差、配置密度の差の少なくとも1つによって、第1の電極により耐圧誘電体部材を介しチャンバ内にプラズマを従来通りに被処理物側で均一な密度分布で発生させての均一なプラズマエッチングを邪魔せず、第2の電極からのパワーを耐圧誘電体部材の内表面における部分的な反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じて弱め、耐圧誘電体部材の内表面への各部での反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じて過不足なく働くようにするので、耐圧誘電体部材の内表面の反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材の内表面の削れが部分的に多くなることを抑制できる。   In such a configuration, the auxiliary dielectric member positioned between the second electrode and the withstand voltage dielectric member has a degree of adhesion of the reaction product on the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member. The plasma is caused to flow into the chamber as usual by the first electrode through the pressure-resistant dielectric member due to at least one of the difference in dielectric constant, the difference in thickness, and the difference in arrangement density corresponding to the partial difference of The power from the second electrode is applied to the inner surface of the withstand voltage dielectric member and the adhesion of the partial reaction product to the inner surface of the withstand voltage dielectric member. Because it is weakened according to the difference with the amount of scraping, it works without excess or deficiency according to the difference between the degree of adhesion of the reaction product at each part to the inner surface of the withstand voltage dielectric member and the amount of scraping of the withstand voltage dielectric member The reaction product on the inner surface of the dielectric material is attached. The was sufficiently prevented in each section, moreover, scraping of the inner surface of the pressure-resistant dielectric member can be prevented partially often it becomes possible.

本発明のプラズマエッチング装置の第9の態様によれば、補助誘電体部材は、石英、マイカなど材料の違い、補助誘電体部材を設けない空間域の空気を含んだ組み合わせで部分的な誘電率の差を設定してあることを特徴としている。   According to the ninth aspect of the plasma etching apparatus of the present invention, the auxiliary dielectric member is made of a combination of materials such as quartz and mica, and a combination including air in a space area where no auxiliary dielectric member is provided. The difference is set.

これにより、部分的な誘電率の差を十分な幅と変化域を持って設定することができる。   As a result, the partial dielectric constant difference can be set with a sufficient width and change range.

本発明のプラズマエッチング装置の第10の態様によれば、補助誘電体部材は、環状で外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を持った有スリット外周体、スリット状の高周波透過部を有して周方向に分断された分断外周体の1つと、この有スリット外周体または分断外周体の内側にそれらと環状の高周波透過部を有して選択配置される無スリット中央体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を持った有スリット中央体、スリット状の高周波透過部を有して周方向に分断された分断中央体の1つとの組合わせとして、配置密度の差を設定してあることを特徴としている。   According to the tenth aspect of the plasma etching apparatus of the present invention, the auxiliary dielectric member is formed of the slit-shaped high-frequency transmitting portion that is annular and is radially cut from the outer periphery with a predetermined interval and a width smaller than the interval. One of the slit outer peripheral body having a slit, a slit outer peripheral body having a slit-shaped high-frequency transmission section, and an annular high-frequency transmission section inside the slit outer peripheral body or the split outer peripheral body. A slit-free central body that has a slit-shaped high-frequency transmitting portion that is radially cut with a predetermined interval from the outer periphery and a width that is smaller than the predetermined interval, and a slit-shaped high-frequency body. It is characterized in that a difference in arrangement density is set as a combination with one of the divided central bodies having a transmission portion and divided in the circumferential direction.

これにより、補助誘電体部材の周方向、径方向での多様な配置態様を選択して部分的な配置密度の差を多様に設定することができる。ここで、補助誘電体部材に入れたスリットは、第1の電極からチャンバ内に放射される高周波を透過し、補助誘電体部材にて高周波の透過が妨げられることを防ぐ効果がある。   Accordingly, various arrangement modes in the circumferential direction and the radial direction of the auxiliary dielectric member can be selected to set various partial arrangement density differences. Here, the slit inserted in the auxiliary dielectric member transmits the high frequency radiated into the chamber from the first electrode, and has an effect of preventing the auxiliary dielectric member from preventing the high frequency transmission.

本発明のプラズマエッチング装置の第11の態様によれば、減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからなるプラズマを発生させて対向電極にて支持される被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、前記第2の電極は、耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに応じて配置密度の差を有して設けたことを他の特徴としている。   According to the eleventh aspect of the plasma etching apparatus of the present invention, a chamber capable of decompression, a counter electrode provided inside the chamber and supporting an object to be processed, and an outside of a withstand voltage dielectric member forming a partition wall of the chamber. Provided between the first electrode and the pressure-resistant dielectric member, the first electrode for generating a plasma made of a reaction gas in the chamber and etching the workpiece supported by the counter electrode. And the second electrode for preventing the reaction product from adhering to the inner surface of the withstand voltage dielectric member, the second electrode is a reaction to the inner surface of the withstand voltage dielectric member. Another feature is that it is provided with a difference in arrangement density in accordance with a partial difference between the degree of adhesion of the product and the amount of abrasion of the withstand voltage dielectric member.

このような構成では、第2の電極が耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに応じて配置密度の差を有していることにより、第1の電極により耐圧誘電体部材を介しチャンバ内にプラズマを従来通りに被処理物側で均一な密度分布で発生させて均一なプラズマエッチングを邪魔せず、第2の電極からのパワーを耐圧誘電体部材の内表面における部分的な反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じて弱め、耐圧誘電体部材の内表面への各部での反応生成物の付着度と耐圧誘電体部材の削れ量との違いに応じて過不足なく働くようにするので、耐圧誘電体部材の内表面に反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材の内表面の削れが部分的に多くなるようなことがなくなる。また、第2の電極の配置密度設定のために形成される第2の電極が位置しない周方向位置、径方向位置では第1の電極からチャンバ内への高周波の透過により全体での透過効率を高められる。   In such a configuration, the second electrode has a difference in arrangement density according to a partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member. Therefore, the first electrode generates plasma in the chamber with a uniform density distribution on the object to be processed side as in the conventional manner through the withstand voltage dielectric member, so that the second electrode does not disturb the uniform plasma etching. Is weakened according to the difference between the degree of adhesion of partial reaction products on the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member, and the reaction at each part to the inner surface of the withstand voltage dielectric member Since it works without excess or deficiency depending on the difference between the degree of product adhesion and the amount of chipping of the dielectric material, it is possible to prevent the reaction product from adhering to the inner surface of the dielectric material sufficiently. In addition, the inner surface of the dielectric material is partially cut away. Many become such a thing is no longer in. Further, at a circumferential position where the second electrodes formed for setting the arrangement density of the second electrodes are not located, and at a radial position, the entire transmission efficiency is improved by high-frequency transmission from the first electrode into the chamber. Enhanced.

本発明のプラズマエッチング装置の第12の態様によれば、第2の電極は、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状の高周波透過部とを持った単体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状で中央部に向く放射状の突出片を有した高周波透過部とを持った単体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状の高周波透過部を持った外周体およびこの外周体の穴部に環状の高周波透過部となる隙間を持って配置されて外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を有した中央体との組み合わせ体、のいずれかで配置密度の差を設定したことを特徴としている。   According to the twelfth aspect of the plasma etching apparatus of the present invention, the second electrode has a slit-like high-frequency transmission part and a central part cut radially from the outer periphery with a predetermined interval and a width smaller than this interval. A single unit with a hole-shaped high-frequency transmitting part punched out, a slit-shaped high-frequency transmitting part cut radially with a predetermined interval from the outer circumference and a width smaller than this interval, and a hole shape punched out at the center A single unit having a high-frequency transmission part having a radially protruding piece facing the center part, a slit-like high-frequency transmission part and a central part cut radially from the outer periphery with a predetermined interval and a width smaller than this interval. Peripheral body with punched hole-shaped high-frequency transmission part, and a hole in this outer peripheral body with a gap to become an annular high-frequency transmission part, and has a predetermined interval from the outer periphery and a width smaller than this interval The The combination of that has a slit-shaped high-frequency transmitting portion cut into shape morphism central body, it is characterized by setting the difference between the arrangement density in either.

これにより、第2の電極の周方向、径方向での多様な配置態様を選択して部分的な配置密度の差を多様に設定することができる。   As a result, various arrangement modes in the circumferential direction and the radial direction of the second electrode can be selected to set various partial arrangement density differences.

本発明のプラズマエッチング装置の第13の態様によれば、第2の電極は、スリット状の高周波透過部の間に窓状に開口した高周波透過部を有して配置密度の差を設定していることを特徴としている。   According to the thirteenth aspect of the plasma etching apparatus of the present invention, the second electrode has a high-frequency transmission part opened in a window shape between the slit-like high-frequency transmission parts and sets a difference in arrangement density. It is characterized by being.

これにより、スリット状の高周波透過部の間の窓状に開口した高周波透過部によって第2の電極の周方向での配置密度をさらに弱め、また第1の電極からの高周波のチャンバ内への透過効率を高められる。   As a result, the arrangement density in the circumferential direction of the second electrode is further weakened by the high-frequency transmission part opened in a window shape between the slit-like high-frequency transmission parts, and the high-frequency transmission from the first electrode into the chamber Increases efficiency.

本発明のプラズマエッチング装置の第14の態様によれば、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を有した単体を第2の電極の選択対象に含んで、第2の電極の高周波透過部は、誘電体で埋めてあることを特徴としている。   According to the fourteenth aspect of the plasma etching apparatus of the present invention, the single electrode having the slit-like high-frequency transmission part cut radially from the outer periphery with a predetermined interval and a width smaller than this interval is provided as the second electrode. The high-frequency transmission part of the second electrode is filled with a dielectric material.

これにより、第2の電極に高周波透過部による導体近接部分があっても、そこを埋める誘電体によってエアギャップとはならず導体近接部分間で放電するのを防止することができ、また、この誘電体は補助誘電体の一部として有効である。   As a result, even if the second electrode has a conductor proximity portion due to the high frequency transmission portion, it is possible to prevent the dielectric material filling the second electrode from being discharged between the conductor proximity portion instead of an air gap. The dielectric is effective as part of the auxiliary dielectric.

そこで、本発明のプラズマエッチング装置の第15の態様によれば、第2の電極の高周波透過部を埋めている誘電体は、前記耐圧誘電体部材の一部であることを特徴としている。   Therefore, according to the fifteenth aspect of the plasma etching apparatus of the present invention, the dielectric filling the high-frequency transmission part of the second electrode is a part of the withstand voltage dielectric member.

これにより、第2の電極が耐圧誘電体部材と対面する構成を利用して第2の電極の高周波透過部を誘電体で埋めることが実現し、しかも、第2の電極と耐圧誘電体部材とを一体で取り扱えるし、第2の電極が複数に分割、分断される場合に耐圧誘電体部材により一体に支持できる。また、第8〜第10の態様の補助誘電体部材を設ける場合はこれを耐圧誘電体部材同様に第2の電極の高周波透過部を埋める誘電体として利用することができる。   This realizes that the high-frequency transmitting portion of the second electrode is filled with the dielectric by utilizing the configuration in which the second electrode faces the withstand voltage dielectric member, and the second electrode, the withstand voltage dielectric member, Can be handled integrally, and when the second electrode is divided and divided into a plurality of pieces, it can be integrally supported by the withstand voltage dielectric member. Further, when the auxiliary dielectric member according to the eighth to tenth aspects is provided, it can be used as a dielectric that fills the high-frequency transmission part of the second electrode, like the withstand voltage dielectric member.

本発明のプラズマエッチング装置の第16の態様によれば、第2の電極は、回転または往復弧回動することを特徴としている。   According to the sixteenth aspect of the plasma etching apparatus of the present invention, the second electrode is characterized by rotating or reciprocatingly rotating.

これにより、第2の電極の配置密度の設定によって周方向に分散して配置される第2の電極部と高周波透過部が、第2の電極の回転または往復弧回動されて、第1の電極からの高周波の透過位置、および第2の電極からのパワーの出力位置を周方向に移動させるので、第1の電極によるチャンバ内でのプラズマの発生と、第2の電極による耐圧誘電体部材の内表面への反応生成物の付着防止とをより均一にすることができる。   As a result, the second electrode portion and the high-frequency transmission portion that are dispersed in the circumferential direction by setting the arrangement density of the second electrode are rotated or reciprocated by the second electrode. Since the transmission position of the high frequency from the electrode and the output position of the power from the second electrode are moved in the circumferential direction, the generation of plasma in the chamber by the first electrode and the withstand voltage dielectric member by the second electrode The adhesion of the reaction product to the inner surface of the resin can be made more uniform.

本発明のプラズマエッチング装置によれば、プラズマの均一な密度分布による均一なプラズマエッチングを保証しながら、第2の電極を耐圧誘電体部材の内表面への反応生成物の部分的な付着度と耐圧誘電体部材の削れ量との違いに応じて過不足なく働かせて、耐圧誘電体部材の内表面に反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材の内表面の削れが部分的に多くなり耐圧寿命が早期に低下するようなことがなくなる。また、第2の電極が単体か分割かの違いにかかわらず同一電源から同一の電力を供給してよく、第2の電極の耐圧誘電体部材の内表面からの電極高さ、配置密度、第2の電極のチャンバ側にある誘電体部材の誘電率、厚さ、配置密度に部分的に差を持たせるだけで構造が特に複雑になるようなことはなくコスト上昇の原因にはならない。   According to the plasma etching apparatus of the present invention, the second electrode is attached to the inner surface of the withstand voltage dielectric member with the partial adhesion degree of the reaction product while ensuring uniform plasma etching by the uniform density distribution of the plasma. It works properly according to the difference in the amount of abrasion of the dielectric material, and prevents the reaction product from adhering to the inner surface of the dielectric material sufficiently. There is no possibility that the surface wear is partially increased and the pressure-resistant life is lowered early. In addition, the same power may be supplied from the same power source regardless of whether the second electrode is a single unit or divided, and the electrode height from the inner surface of the withstand voltage dielectric member of the second electrode, the arrangement density, The difference in the dielectric constant, thickness, and arrangement density of the dielectric members on the chamber side of the two electrodes does not cause a particularly complicated structure and does not cause an increase in cost.

以下、本発明のプラズマエッチング装置の実施の形態について、図1〜図26を参照して説明する。しかし、以下の説明は本発明の具体例であって特許請求の範囲の記載の内容を限定するものではない。   Hereinafter, embodiments of the plasma etching apparatus of the present invention will be described with reference to FIGS. However, the following description is a specific example of the present invention and does not limit the content of the claims.

本実施の形態のプラズマエッチング装置は、図1に示すように減圧可能で供給口1aから反応ガス10を供給して排気ガス20を排気口1bから排気するチャンバ1と、このチャンバ1の内部に設けられ被処理物2を支持する対向電極3と、チャンバ1の隔壁をなす耐圧誘電体部材5の外に設けられチャンバ1内に反応ガス10からのプラズマ6を発生させて対向電極3上の被処理物2に働かせエッチングなどのプラズマ処理を行わせる第1の電極4と、この第1の電極4と前記耐圧誘電体部材5との間に設けられて耐圧誘電体部材5の内表面5aの反応生成物が付着するのを防止する第2の電極7とを備えている。ここに、第1の電極4は誘導結合コイル(ICPコイル)であって高周波アンテナをなし、耐圧誘電体部材5を介しチャンバ1内にプラズマ6を発生させ、このプラズマ6が対向電極3上の被処理物2の表面に働くことによってエッチングなどのプラズマ処理を行わせる。また、第2の電極7はファラデーシールド電極(FS電極)であって、耐圧誘電体部材5の内表面5aに沿う一様な電界を形成してプラズマ処理時に生じる反応生成物が付着するのを防止する。   As shown in FIG. 1, the plasma etching apparatus of the present embodiment is capable of reducing the pressure, supplies the reaction gas 10 from the supply port 1a, and exhausts the exhaust gas 20 from the exhaust port 1b. A counter electrode 3 that is provided and supports the object to be processed 2 and a withstand voltage dielectric member 5 that forms a partition wall of the chamber 1. A plasma 6 from the reaction gas 10 is generated in the chamber 1 to generate a plasma on the counter electrode 3. A first electrode 4 that causes the workpiece 2 to perform plasma processing such as etching, and an inner surface 5a of the withstand voltage dielectric member 5 provided between the first electrode 4 and the withstand voltage dielectric member 5. And the second electrode 7 for preventing the reaction product from adhering. Here, the first electrode 4 is an inductive coupling coil (ICP coil), forms a high frequency antenna, and generates a plasma 6 in the chamber 1 through a pressure-resistant dielectric member 5, and this plasma 6 is on the counter electrode 3. Plasma treatment such as etching is performed by acting on the surface of the workpiece 2. The second electrode 7 is a Faraday shield electrode (FS electrode), which forms a uniform electric field along the inner surface 5a of the withstand voltage dielectric member 5 and adheres reaction products generated during plasma processing. To prevent.

このようなプラズマ処理プロセスのために、対向電極3には電源15から可変コンデンサ16を介して高周波を供給し、プラズマ6を被処理物2側に働かせるようにする。第1の電極4には電源11から高周波電力を可変コンデンサ12を介して供給し、所定のエッチレートでプラズマ処理できるようにする。また、第1の電極4は図1に示すような立体的な配置形態なども含めプラズマ6が被処理物2の表面に一様な分布をもって発生するように調整され、被処理物2の表面が設定したエッチレートにて均一にプラズマ処理されるようにする。なお、高周波は一般に30kHz〜300GHzとされるのに対し、プラズマ発生装置に適用される高周波範囲はHFと称される3〜30MHz程度の狭い範囲である。第2の電極7には電源13から可変コンデンサ14を介して第1の電極4の場合と同様な高周波、あるいはそれ以下の低周波を供給し、可変コンデンサ14の調整によって耐圧誘電体部材5の内表面5aに反応生成物が付着するのを防止できる。   For such a plasma treatment process, a high frequency is supplied to the counter electrode 3 from the power supply 15 via the variable capacitor 16 so that the plasma 6 is moved to the workpiece 2 side. The first electrode 4 is supplied with high-frequency power from a power source 11 via a variable capacitor 12 so that plasma processing can be performed at a predetermined etch rate. Further, the first electrode 4 is adjusted so that the plasma 6 is generated with a uniform distribution on the surface of the workpiece 2 including the three-dimensional arrangement as shown in FIG. Is uniformly plasma-treated at the set etching rate. The high frequency is generally 30 kHz to 300 GHz, while the high frequency range applied to the plasma generator is a narrow range of about 3 to 30 MHz called HF. The second electrode 7 is supplied with a high frequency similar to that of the first electrode 4 from the power source 13 via the variable capacitor 14 or a low frequency lower than the first electrode 4, and by adjusting the variable capacitor 14, It is possible to prevent the reaction product from adhering to the inner surface 5a.

なお、ここでは、図1に示すように、第1の電極4には電源11が、第2の電極7には電源13が、それぞれ別々に接続されているが、第1の電極4と第2の電極7とを並列に可変チョークまたは可変コンデンサを介して同一高周波電源に接続する構成にしてもよい(図示せず)。または、図29に示すように、第1の電極4には電源11を接続し、第2の電極7には可変チョークまたは可変コンデンサを接続し、電源11から発振された電力を第1の電極4から空気を介して第2の電極7に重畳させ第1の電極4と第2の電極7のそれぞれに印加される電力比を可変チョークまたは可変コンデンサで調整するようにしてもよい。   Here, as shown in FIG. 1, the power source 11 is connected to the first electrode 4 and the power source 13 is connected to the second electrode 7 separately. The two electrodes 7 may be connected in parallel to the same high-frequency power source via a variable choke or a variable capacitor (not shown). Alternatively, as shown in FIG. 29, a power source 11 is connected to the first electrode 4, a variable choke or a variable capacitor is connected to the second electrode 7, and the power oscillated from the power source 11 is supplied to the first electrode. The electric power ratio applied to each of the first electrode 4 and the second electrode 7 may be adjusted with a variable choke or a variable capacitor.

しかし、既述したように第1の電極4の働きによるプラズマ6の発生は、被処理物2の表面上で一様な分布となるように制御できるが、耐圧誘電体部材5の内表面5aの下では中央部では周辺部よりも分布が高くなるといった偏った分布傾向を示す。これに対し、第2の電極7の働きによる耐圧誘電体部材5の内表面5aに沿って形成する電界の強弱は可変コンデンサ14で調整できるが、電界の形成状態は耐圧誘電体部材5の内表面5aに沿う一様なものであるので、このままでは、耐圧誘電体部材5の内表面5aでのプラズマ6の働きと電界の働きとのバランスを採ることはできない。このため、反応生成物の部分的な付着や耐圧誘電体部材5の内表面5aの部分的な削れが生じる。   However, as described above, the generation of the plasma 6 due to the action of the first electrode 4 can be controlled to have a uniform distribution on the surface of the workpiece 2, but the inner surface 5 a of the withstand voltage dielectric member 5. Below, the distribution tends to be biased such that the distribution at the center is higher than that at the periphery. On the other hand, the strength of the electric field formed along the inner surface 5 a of the withstand voltage dielectric member 5 by the action of the second electrode 7 can be adjusted by the variable capacitor 14. Since it is uniform along the surface 5a, the balance between the action of the plasma 6 and the action of the electric field on the inner surface 5a of the withstand voltage dielectric member 5 cannot be taken as it is. For this reason, partial adhesion of reaction products and partial shaving of the inner surface 5a of the withstand voltage dielectric member 5 occur.

そこで、本実施の形態では、第2の電極7による耐圧誘電体部材5の内表面5aの表面に形成する電界の強弱が、第2の電極7の前記耐圧誘電体部材5の内表面5aからの電極距離L2に依存する関係から、この電極距離L2を、耐圧誘電体部材5の内表面5aでの反応生成物付着度と耐圧誘電体部材5の削れ量との違いに応じて設定する。このように、第2の電極7の耐圧誘電体部材5の内表面5aからの電極距離L2が耐圧誘電体部材5の内表面5aへの反応生成物の付着度と耐圧誘電体部材5の削れ量との部分的な違いに応じて設定してあることにより、第1の電極4により耐圧誘電体部材5を介しチャンバ1内にプラズマを従来通りに被処理物2側で均一な密度分布で発生させて均一なプラズマエッチングを行うことを邪魔することなく、第2の電極7からのパワーの電極距離L2に応じた減衰を伴い耐圧誘電体部材5の内表面5aへの各部での反応生成物の付着度と耐圧誘電体部材5の削れ量との違いに応じて過不足なく働き、耐圧誘電体部材5の内表面5aの反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材5の内表面の削れが部分的に多くなるようなことがなくなる。   Therefore, in the present embodiment, the strength of the electric field formed on the surface of the inner surface 5a of the withstand voltage dielectric member 5 by the second electrode 7 is changed from the inner surface 5a of the withstand voltage dielectric member 5 of the second electrode 7. Therefore, the electrode distance L2 is set according to the difference between the reaction product adhesion degree on the inner surface 5a of the withstand voltage dielectric member 5 and the scraping amount of the withstand voltage dielectric member 5. As described above, the electrode distance L2 from the inner surface 5a of the second dielectric layer 7 to the inner surface 5a of the second dielectric layer 7 is determined by the degree of adhesion of the reaction product to the inner surface 5a of the dielectric layer 5 and the abrasion of the dielectric member 5. By setting in accordance with the partial difference from the amount, the plasma is caused to flow into the chamber 1 by the first electrode 4 via the withstand voltage dielectric member 5 with a uniform density distribution on the workpiece 2 as usual. Generation of reaction at each part to the inner surface 5a of the withstand voltage dielectric member 5 with attenuation corresponding to the electrode distance L2 of the power from the second electrode 7 without disturbing the generation of uniform plasma etching. Depending on the difference between the degree of adhesion of the object and the amount of shaving of the proof dielectric member 5, it works without excess and deficiency, sufficiently preventing the reaction products on the inner surface 5 a of the proof dielectric member 5 from adhering to each part, and The internal surface of the dielectric material member 5 is partially cut away Kunar such a thing is eliminated.

この結果、プラズマ6の均一な密度分布による均一なプラズマエッチングを保証しながら、第2の電極7を耐圧誘電体部材5の内表面5aへの反応生成物の部分的な付着度と耐圧誘電体部材5の削れ量との違いに応じて過不足なく働かせて、耐圧誘電体部材5の内表面5aに反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材5の内表面5aの削れが部分的に多くなり耐圧寿命が早期に低下するようなことがなくなる。また、第2の電極7が単体か分割かの違いにかかわらず同一電源13から同一の電力を供給してよく、第2の電極7の耐圧誘電体部材5の内表面5aからの電極距離L2に部分的な差を持たせるだけで構造が特に複雑になるようなことはなくコスト上昇の原因にはならない。   As a result, the partial adhesion of the reaction product to the inner surface 5a of the withstand voltage dielectric member 5 and the withstand voltage dielectric are ensured while ensuring uniform plasma etching by the uniform density distribution of the plasma 6. Depending on the difference in the amount of scraping of the member 5, it works without excess or deficiency, and sufficiently prevents the reaction product from adhering to the inner surface 5 a of the withstand voltage dielectric member 5. The inner surface 5a is not partially scraped and the pressure-resistant life is not lowered early. Further, the same power may be supplied from the same power source 13 regardless of whether the second electrode 7 is a single body or divided, and the electrode distance L2 from the inner surface 5a of the withstand voltage dielectric member 5 of the second electrode 7. By giving a partial difference to the structure, the structure is not particularly complicated and does not cause an increase in cost.

具体的には、図1の例では耐圧誘電体部材5の内表面5aにおける中央部が周辺部よりも削れ量が多くなる一般傾向に対して、電極距離L2は、周辺部よりも中央部を大きくすることにより対応している。当然のことながら、耐圧誘電体部材5の周辺部の削れ量が中央部よりも大きくなる場合には、逆に電極距離L2は、中央部よりも周辺部を大きくすることにより対応することができる。このようにして、反応生成物の付着度と耐圧誘電体部材5の削れ量との差の分布がどのように不均衡でもそれに逆比例する電極距離L2を設定すれば対応できる。なお、電極距離L2を第2の電極7と耐圧誘電体部材5の内表面5aの各対向域で部分的に異ならせることは、図1の例のように第2の電極7の側単独でも、耐圧誘電体部材5の側単独でも、あるいは双方によっても行える。また、第1の電極4も耐圧誘電体部材5の内表面5aからの電極距離L1を中央部から周辺部へ小さくなるように設定して被処理物2の表面上で均一な密度分布を示すようにしている。しかし、これに限定されることはない。   Specifically, in the example of FIG. 1, the electrode distance L <b> 2 is greater in the central portion than in the peripheral portion in contrast to the general tendency that the central portion of the inner surface 5 a of the withstand voltage dielectric member 5 is scraped more than the peripheral portion. We cope by making it larger. As a matter of course, when the shaving amount of the peripheral part of the dielectric material member 5 is larger than that of the central part, the electrode distance L2 can be dealt with by making the peripheral part larger than the central part. . In this way, even if the distribution of the difference between the degree of adhesion of the reaction product and the amount of scraping of the refractory dielectric member 5 is unbalanced, the electrode distance L2 that is inversely proportional to the distribution can be set. It should be noted that the electrode distance L2 may be partially different between the opposing regions of the second electrode 7 and the inner surface 5a of the withstand voltage dielectric member 5 even on the second electrode 7 side alone as in the example of FIG. The voltage-resistant dielectric member 5 can be used alone or both. The first electrode 4 also has a uniform density distribution on the surface of the workpiece 2 by setting the electrode distance L1 from the inner surface 5a of the withstand voltage dielectric member 5 to be small from the central portion to the peripheral portion. I am doing so. However, it is not limited to this.

これに対応して、前記耐圧誘電体部材5の外表面5bは、図2に示すように第2の電極7の立体形態に沿うか図3の例に示すように積層などして近似した立体形態としておくことができる。これにより、耐圧誘電体部材5は立体的な第2の電極7との間のスペースを利用して、電極距離L2の大きいところでは小さいところよりも厚みが増大し、図5に示すような誘電体の厚みとエッチレートとの関係から第1の電極4によるプラズマエッチングの均一性の操作に役立てられるのに併せ、第2の電極7による反応生成物の付着防止作用のパワーにも影響して電極距離L2の大きいところでは小さいところよりも弱められるし、耐圧誘電体部材5の厚みが電極距離L2の大きなところで小さなところよりも削れに対する耐圧許容度を高められる。   Correspondingly, the outer surface 5b of the withstand voltage dielectric member 5 conforms to the solid form of the second electrode 7 as shown in FIG. 2 or approximated by stacking as shown in the example of FIG. It can be in the form. As a result, the withstand voltage dielectric member 5 uses the space between the three-dimensional second electrode 7 to increase the thickness where the electrode distance L2 is large compared to the small area where the dielectric distance as shown in FIG. From the relationship between the body thickness and the etch rate, it is useful for the operation of the plasma etching uniformity by the first electrode 4 and also affects the power of the reaction preventive action of the reaction product by the second electrode 7. Where the electrode distance L2 is large, it is weaker than that where the electrode distance L2 is small, and the withstand voltage tolerance against scraping can be increased compared with the case where the thickness of the dielectric material member 5 is large where the electrode distance L2 is large.

図4に示す例では、電極距離L2を、第2の電極7の平坦な形態と耐圧誘電体部材5の内表面5aの立体形態とで設定してあり、図2、図3の耐圧誘電体部材5と同様な働きをして、第2の電極7を平板のままでよいようにしている。もっとも、図2、図3の例の立体的な第2の電極7と図4に示す立体形態の内表面5aを持った耐圧誘電体部材5との組み合わせによって電極距離L2の変化を複合的に与えるようにしてもよい。このようにすると、より複雑な電極距離L2をも設定しやすくなる。また、第2の電極7および耐圧誘電体部材5の必要立体度を軽減しあえる利点もある。   In the example shown in FIG. 4, the electrode distance L2 is set by the flat form of the second electrode 7 and the three-dimensional form of the inner surface 5a of the withstand voltage dielectric member 5, and the withstand voltage dielectric shown in FIGS. The second electrode 7 can be left as a flat plate by performing the same function as the member 5. Of course, the combination of the three-dimensional second electrode 7 in the example of FIGS. 2 and 3 and the withstand voltage dielectric member 5 having the three-dimensional inner surface 5a shown in FIG. You may make it give. This makes it easier to set a more complicated electrode distance L2. Further, there is an advantage that the required three-dimensionality of the second electrode 7 and the withstand voltage dielectric member 5 can be reduced.

第2の電極7は例えば図6〜図17に示すように、耐圧誘電体部材5の内表面5aでの反応生成物の付着度と耐圧誘電体部材5の削れ量との部分的な違いに応じて、配置密度の差を有して設けることもできる。このように第2の電極7が付着度と耐圧誘電体部材5の削れ量との部分的な違いに対応した配置密度の差を有していることにより、第2の電極7によるパワーが耐圧誘電体部材5の内表面5aへの反応生成物の付着度と耐圧誘電体部材5の削れ量との部分的な違いに応じて過不足なく働くので、耐圧誘電体部材5の内表面5aに反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材5の内表面5aの削れが部分的に多くなるようなことがなくなる。また、第2の電極7の配置密度設定のために形成される第2の電極7が位置しない周方向位置、径方向位置では第1の電極4からチャンバ1内への高周波の透過により全体での透過効率を高められる。   For example, as shown in FIGS. 6 to 17, the second electrode 7 has a partial difference between the adhesion degree of the reaction product on the inner surface 5 a of the withstand voltage dielectric member 5 and the shaving amount of the withstand voltage dielectric member 5. Accordingly, it can be provided with a difference in arrangement density. As described above, the second electrode 7 has a difference in arrangement density corresponding to a partial difference between the adhesion degree and the shaving amount of the withstand voltage dielectric member 5, so that the power by the second electrode 7 can withstand the withstand voltage. Since the working of the reaction product on the inner surface 5a of the dielectric member 5 and the amount of scraping of the withstand voltage dielectric member 5 work in accordance with a partial difference, it works on the inner surface 5a of the withstand voltage dielectric member 5. The reaction product is sufficiently prevented from adhering to each part, and the inner surface 5a of the refractory dielectric member 5 is not partially scraped. Further, at the circumferential position and the radial position where the second electrodes 7 formed for setting the arrangement density of the second electrodes 7 are not located, the entire structure is transmitted by high-frequency transmission from the first electrode 4 into the chamber 1. Can improve the transmission efficiency.

具体的には、図6の例の第2の電極7は、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部7aと中央部を打ち抜いた穴状の高周波透過部7bとを持った単体としてあり、図7、図8、図9に示す各例の第2の電極7は、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部7aと中央部を打ち抜いた穴状の高周波透過部7bを持った外周体7dおよびこの外周体7dの穴部状の高周波透過部7bに環状の高周波透過部7eとなる隙間を持って配置されて外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部7aを有した中央体7fとの組み合わせ体としてある。もっとも、このような配置密度の調整には、図10に示すような中央部を抜いた穴状とし、この穴状部から周辺部に向うスリットによって形成される中央部に向く放射状の突出片を有した高周波透過部7aを持った単体パターンも含まれてもよい。このような第2の電極7の周方向、径方向での多様な配置態様を選択して部分的な配置密度の差を多様に設定することができる。また、図14〜図16の各例に示すように、第2の電極7におけるスリット状の高周波透過部7aの間に窓状に開口した高周波透過部7gを有して配置密度の差を設定することもでき、スリット状の高周波透過部7aの間の窓状の高周波透過部7gによって第2の電極7の周方向での配置密度をさらに弱め、また第1の電極4からの高周波のチャンバ1内への透過効率を高められる。   Specifically, the second electrode 7 in the example of FIG. 6 has a slit-like high-frequency transmitting portion 7a cut radially and having a predetermined interval from the outer periphery and a width smaller than this interval, and a center portion is punched out. The second electrode 7 in each example shown in FIGS. 7, 8, and 9 has a predetermined interval from the outer periphery and a width smaller than this interval. An outer peripheral body 7d having a slit-shaped high-frequency transmitting portion 7a cut radially and a hole-shaped high-frequency transmitting portion 7b punched out at the center, and a ring-shaped high-frequency transmitting portion 7b of the outer peripheral body 7d. This is a combination of a central body 7f having a slit-shaped high-frequency transmitting portion 7a that is arranged with a gap to become a portion 7e and is radially cut from the outer periphery with a predetermined interval and a width smaller than this interval. . However, in order to adjust the arrangement density, a hole having a central portion as shown in FIG. 10 is used, and a radial projecting piece facing the central portion formed by a slit from the hole portion toward the peripheral portion is used. A single pattern having the high-frequency transmission part 7a may also be included. Various arrangement modes in the circumferential direction and radial direction of the second electrode 7 can be selected to set various partial arrangement density differences. Further, as shown in each example of FIGS. 14 to 16, there is a high-frequency transmission portion 7 g opened in a window shape between the slit-like high-frequency transmission portions 7 a in the second electrode 7, and a difference in arrangement density is set. Further, the arrangement density in the circumferential direction of the second electrode 7 is further weakened by the window-like high-frequency transmission part 7g between the slit-like high-frequency transmission parts 7a, and the high-frequency chamber from the first electrode 4 is reduced. The transmission efficiency into 1 can be increased.

特に、図11〜図16に示す各例では、既述した各種パターンで形成する高周波透過部7a、7b、7e、7gを、図11(b)、図14(b)に代表して断面を示すように誘電体21、22で埋めてある。これにより、第2の電極7に高周波透過部7a、7b、7e、7gによる導体近接部分があっても、そこを埋める誘電体によってエアギャップとはならず導体近接部分間で放電するのを防止することができる。なお、第2の電極7を複数に分割する場合は、その分割に応じ第2の電極7への電圧の印加を分割してもよい。   In particular, in each example shown in FIGS. 11 to 16, the high-frequency transmission portions 7 a, 7 b, 7 e, and 7 g formed with the various patterns described above are represented by cross-sections as represented by FIGS. 11B and 14B. As shown, it is filled with dielectrics 21 and 22. As a result, even if the second electrode 7 has a conductor proximity portion due to the high-frequency transmission portions 7a, 7b, 7e, and 7g, it is prevented from being discharged between the conductor proximity portions instead of an air gap due to the dielectric filling it. can do. Note that, when the second electrode 7 is divided into a plurality of pieces, the voltage application to the second electrode 7 may be divided according to the division.

ところで、図17の例、図18の例に示すねじ23のような電極距離L2を調整する距離調整手段を有したものとすることもできる。これにより、プラズマ処理条件によって反応生成物の耐圧誘電体部材5の内表面5aへの付着性が一定しないような場合でも、それに対応して部分的に異なる電極距離L2となるように調整することができる。図17の例では第2の電極7を既述した分割体タイプとしたものの外周体7dと中央体7fとを個別のねじ23、23にて個別に上下動調節することで、相互の電極距離L2を相対的に変化させられるようにしている。しかし、配置密度パターンによっては、図18に示すように外周を固定して内周側をねじ23により難なく上下動作させられ、これによって中央部から周辺部までの電極距離L2の関係を相対的に連続して変化させられる。また、図6に示すような配置密度パターンの第2の電極7であれば、図示しないが中央部を固定して周辺部をねじで難なく上下動させられ、これによって中央部から周辺部までの電極距離L2の関係を相対的に連続して変化させられる。   By the way, it can also have a distance adjusting means for adjusting the electrode distance L2, such as the screw 23 shown in the example of FIG. 17 and the example of FIG. As a result, even when the adhesion of the reaction product to the inner surface 5a of the withstand voltage dielectric member 5 is not constant depending on the plasma processing conditions, the electrode distance L2 is partially adjusted correspondingly. Can do. In the example of FIG. 17, the second electrode 7 is the divided body type described above, and the outer peripheral body 7 d and the central body 7 f are individually adjusted up and down by the individual screws 23 and 23, so that the mutual electrode distance L2 can be changed relatively. However, depending on the arrangement density pattern, as shown in FIG. 18, the outer periphery is fixed and the inner periphery can be moved up and down without difficulty by the screw 23, so that the relationship of the electrode distance L <b> 2 from the central portion to the peripheral portion is relatively It can be changed continuously. Further, in the case of the second electrodes 7 having an arrangement density pattern as shown in FIG. 6, although not shown, the central portion is fixed and the peripheral portion can be moved up and down without difficulty with a screw. The relationship of the electrode distance L2 can be changed relatively continuously.

さらに、第2の電極7は図に矢印でしめすように一方向に回転させるか、または往復弧回動するようにもできる。これにより、第2の電極7の配置密度の設定によって高周波透過部7a、7b、7e、7gが既述のように周方向に分散して形成されるが、回転または往復弧回動によりその分散位置を移動して高周波の透過位置を周方向に移動させてチャンバ1内でのプラズマ発生、耐圧誘電体部材5の内表面5aへの反応生成物の付着防止をより均一にすることができる。   Further, the second electrode 7 can be rotated in one direction as shown by an arrow in the drawing, or can be rotated in a reciprocating arc. As a result, the high-frequency transmission portions 7a, 7b, 7e, and 7g are formed to be dispersed in the circumferential direction as described above by setting the arrangement density of the second electrodes 7, but the dispersion is performed by rotation or reciprocating arc rotation. By moving the position and moving the high-frequency transmission position in the circumferential direction, it is possible to make the generation of plasma in the chamber 1 and the prevention of adhesion of the reaction product to the inner surface 5a of the withstand voltage dielectric member 5 more uniform.

また、図19〜図21の各例で代表して示すように、耐圧誘電体部材5の内表面5aでの反応生成物の付着度と耐圧誘電体部材5の削れ量との部分的な違いに応じて誘電率の差、配置密度の差の少なくとも1つを有して、第2の電極7と前記耐圧誘電体部材5との間に補助誘電体部材31を配したものとすることができる。このような補助誘電体部材31の耐圧誘電体部材5の内表面5aでの反応生成物の付着度と耐圧誘電体部材5の削れ量との部分的な違いに応じた誘電率の差、配置密度の差の少なくとも1つによって、第1の電極4により耐圧誘電体部材5を介しチャンバ1内にプラズマ6を従来通りに被処理物2側で均一な密度分布で発生させての均一なプラズマエッチングを邪魔せず、第2の電極7からのパワーを耐圧誘電体部材5の内表面5aにおける部分的な反応生成物の付着度と耐圧誘電体部材5の削れ量との違いに応じて弱め、耐圧誘電体部材5の内表面5aへの各部での反応生成物の付着度と耐圧誘電体部材5の削れ量との違いに応じて過不足なく働くようにするので、耐圧誘電体部材5の内表面5aの反応生成物が付着するのを各部において十分に防止し、しかも、耐圧誘電体部材5の内表面5aの削れが部分的に多くなるようなことがなくなる。   Further, as representatively shown in the examples of FIGS. 19 to 21, a partial difference between the adhesion degree of the reaction product on the inner surface 5 a of the withstand voltage dielectric member 5 and the shaving amount of the withstand voltage dielectric member 5. The auxiliary dielectric member 31 is disposed between the second electrode 7 and the withstand voltage dielectric member 5 so as to have at least one of a difference in dielectric constant and a difference in arrangement density. it can. The difference in dielectric constant according to the partial difference between the degree of adhesion of the reaction product on the inner surface 5a of the withstand voltage dielectric member 5 of the auxiliary dielectric member 31 and the amount of abrasion of the withstand voltage dielectric member 5, and the arrangement Due to at least one of the density differences, the plasma is generated in the chamber 1 by the first electrode 4 via the proof dielectric member 5 in the chamber 1 with a uniform density distribution on the workpiece 2 side as in the past, and thus uniform plasma. Without interfering with the etching, the power from the second electrode 7 is weakened according to the difference between the degree of adhesion of the partial reaction product on the inner surface 5a of the withstand voltage dielectric member 5 and the amount of abrasion of the withstand voltage dielectric member 5. In addition, since it works in accordance with the difference between the degree of adhesion of the reaction product at each part to the inner surface 5a of the withstand voltage dielectric member 5 and the amount of abrasion of the withstand voltage dielectric member 5, the withstand voltage dielectric member 5 In each part, the reaction product of the inner surface 5a adheres. Preventing the minute, moreover, the scraping of the inner surface 5a of the pressure-resistant dielectric member 5 is partially many becomes like that is eliminated.

ここで、補助誘電体部材31は、石英、マイカなど材料の違い、補助誘電体部材31を設けない空間域の空気層を含んだ組み合わせで部分的な誘電率の差を設定することができる。これにより、部分的な誘電率の差を十分な幅と変化域を持って設定することができる。   Here, the auxiliary dielectric member 31 can set a partial dielectric constant difference by a combination of materials such as quartz and mica and a combination including an air layer in a space area where the auxiliary dielectric member 31 is not provided. As a result, the partial dielectric constant difference can be set with a sufficient width and change range.

具体的には、マイカの誘電率は7.0kε、石英のそれは3.8kε、空気のそれは1.00054kεである。このような差を利用して図19に示す例では、補助誘電体部材31を外周体31aとその内側に環状の高周波透過部31bを持って配置した中央体31cとにおいて、外周体31aを石英とし、中央体31cをマイカとしてある。これにより、容量結合上プラズマ6の耐圧誘電体部材5側での密度分布を中央部で低くし、耐圧誘電体部材5の内表面5aにおける中央部の削れを防止するのに好適である。図20の例では外周体31aを省略した空気層、中央体31cをマイカとした組み合わせにおいて、プラズマ6の中央部での密度分布をより抑えられるようにしている。図21に示す例では、マイカよりなる外周体31aと中央体31cを省略した空気層との組み合わせによって、図19、図20での例とは逆にプラズマ6の周辺部での密度分布を中央部よりも低くして、耐圧誘電体部材5の内表面5aにおける周辺部での削れを抑えるのに好適となる。   Specifically, the dielectric constant of mica is 7.0 kε, that of quartz is 3.8 kε, and that of air is 1.00054 kε. In the example shown in FIG. 19 using such a difference, the outer peripheral body 31a is made of quartz in the outer peripheral body 31a and the central body 31c in which the annular high frequency transmission portion 31b is arranged inside thereof. The central body 31c is mica. Thereby, the density distribution on the side of the withstand voltage dielectric member 5 of the plasma 6 due to capacitive coupling is lowered at the center portion, which is suitable for preventing the center portion of the inner surface 5a of the withstand voltage dielectric member 5 from being scraped. In the example of FIG. 20, the density distribution in the central portion of the plasma 6 is further suppressed in the combination in which the outer circumferential body 31 a is omitted and the central body 31 c is mica. In the example shown in FIG. 21, the density distribution at the periphery of the plasma 6 is centered by the combination of the outer peripheral body 31a made of mica and the air layer from which the central body 31c is omitted, contrary to the examples in FIGS. It becomes suitable for suppressing the abrasion in the peripheral part in the inner surface 5a of the pressure | voltage resistant dielectric member 5 by making it lower than a part.

なお、補助誘電体部材31が第1の電極4からの高周波の透過を邪魔したくない条件設定では、第2の電極7と共に同じパターンの高周波透過部31bを持つのが好適となる。そこで、よりよくは、既述したような誘電体21、22のない図8、図9に示す例の外周体7dと中央体7fとを持った第2の電極7との組み合わせがよく、それらの高周波透過部7a、7b、7e、7gに見合った配置密度パターンの補助誘電体部材31とすればよい。従って、図22、図23に示すような環状で外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部31dを持った有スリット外周体31a、スリット状の高周波透過部31dを有して周方向に分断された分断外周体31a、この有スリット外周体31aまたは分断外周体31aの内側にそれらと既述した環状の高周波透過部31bを有して選択配置される図22、図25に示すような無スリット中央体31c、図23、図26に示すような外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部31dを持った有スリット中央体31c、図24、図26に示すようなスリット状の高周波透過部31dを有して周方向に分断された分断中央体31cの1つとの組合わせとして、配置密度の差を設定すればよい。これにより、補助誘電体部材31の周方向、径方向での多様な配置態様を選択して部分的な配置密度の差を多様に設定することができる。   Note that it is preferable that the auxiliary dielectric member 31 has the same pattern of the high-frequency transmission portion 31 b together with the second electrode 7 under the condition setting that the high-frequency transmission from the first electrode 4 is not disturbed. Therefore, the combination of the second electrode 7 having the outer peripheral body 7d and the central body 7f in the example shown in FIGS. 8 and 9 without the dielectrics 21 and 22 as described above is better. The auxiliary dielectric member 31 having an arrangement density pattern corresponding to the high-frequency transmitting portions 7a, 7b, 7e, and 7g may be used. Therefore, as shown in FIG. 22 and FIG. 23, the outer peripheral body 31a having a slit and the slit-shaped outer peripheral body 31a having a slit-like high-frequency transmitting portion 31d radially cut with a predetermined interval from the outer periphery and a width smaller than this interval. The outer peripheral body 31a is divided in the circumferential direction with a ring-shaped high-frequency transmitting portion 31d, and the annular high-frequency transmitting portion 31b described above is provided inside the outer peripheral body 31a having slits or the outer peripheral body 31a. A slit-free central body 31c as shown in FIGS. 22 and 25, a slit shape cut radially from the outer periphery as shown in FIGS. 23 and 26 with a predetermined interval and a width smaller than this interval. Slit central body 31c having a high-frequency transmitting portion 31d, and a split central body 3 having a slit-shaped high-frequency transmitting portion 31d as shown in FIGS. As one of the combinations of c, it may be set the difference in arrangement density. Accordingly, various arrangement modes in the circumferential direction and the radial direction of the auxiliary dielectric member 31 can be selected to set various partial arrangement density differences.

ここで、第2の電極7の既述した高周波透過部7a、7b、7e、7gを埋めている図11〜図16に示す誘電体21、22は、前記耐圧誘電体部材5や補助誘電体部材31の一部とすることができる。従って、第2の電極7が耐圧誘電体部材5や補助誘電体部材31と対面する構成を利用して第2の電極7の高周波透過部7a、7b、7e、7gを誘電体21、22で埋めることが実現でき、しかも、第2の電極7と耐圧誘電体部材5や補助誘電体部材31とを一体で取り扱えるし、第2の電極7が複数に分割、分断される場合に耐圧誘電体部材5や補助誘電体部材31により一体に支持できる。   Here, the dielectrics 21 and 22 shown in FIGS. 11 to 16 filling the already described high-frequency transmitting portions 7a, 7b, 7e, and 7g of the second electrode 7 are the withstand voltage dielectric member 5 and the auxiliary dielectric. It can be a part of the member 31. Therefore, the high-frequency transmission portions 7a, 7b, 7e, and 7g of the second electrode 7 are made of the dielectrics 21 and 22 by using the configuration in which the second electrode 7 faces the withstand voltage dielectric member 5 and the auxiliary dielectric member 31. In addition, the second electrode 7 and the withstand voltage dielectric member 5 and the auxiliary dielectric member 31 can be handled integrally, and the withstand voltage dielectric when the second electrode 7 is divided and divided into a plurality of parts. The member 5 and the auxiliary dielectric member 31 can be integrally supported.

本発明はプラズマ用の電極と反応生成物の付着防止電極とを用いるプラズマエッチング装置において、均一なプラズマエッチング、付着防止を損なわないで、耐圧誘電体部材の内表面が部分的に削れるようなことを抑制できる。   In the plasma etching apparatus using the plasma electrode and the reaction product adhesion preventing electrode, the inner surface of the withstand voltage dielectric member can be partially scraped without impairing uniform plasma etching and adhesion prevention. Can be suppressed.

本発明に係る実施形態のプラズマエッチング装置の概略構成の1つの例を示す断面図である。It is sectional drawing which shows one example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 本発明に係る実施形態のプラズマエッチング装置の概略構成の別の例を示す要部の断面図である。It is sectional drawing of the principal part which shows another example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 本発明に係る実施形態のプラズマエッチング装置の概略構成の他の例を示す要部の断面図である。It is sectional drawing of the principal part which shows the other example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 本発明に係る実施形態のプラズマエッチング装置の概略構成の今1つの例を示す要部の断面図である。It is sectional drawing of the principal part which shows another example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 誘電体の厚みとエッチレートとの関係を示すグラフである。It is a graph which shows the relationship between the thickness of a dielectric material, and an etch rate. 図1〜図4に示す装置に適用される第2の電極の1つの例を示す平面図である。It is a top view which shows one example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第1の例を示す平面図である。It is a top view which shows the 1st example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第2の例を示す平面図である。It is a top view which shows the 2nd example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第3の例を示す平面図である。It is a top view which shows the 3rd example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第4の例を示す平面図である。It is a top view which shows the 4th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第5の例を示す平面図である。It is a top view which shows the 5th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第6の例を示す平面図である。It is a top view which shows the 6th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第7の例を示す平面図である。It is a top view which shows the 7th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第8の例を示す平面図である。It is a top view which shows the 8th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第9の例を示す平面図である。It is a top view which shows the 9th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第10の例を示す平面図である。It is a top view which shows the 10th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第11の例を示す平面図である。It is a top view which shows the 11th example of the 2nd electrode applied to the apparatus shown in FIGS. 図1〜図4に示す装置に適用される第2の電極の第12の例を示す平面図である。It is a top view which shows the 12th example of the 2nd electrode applied to the apparatus shown in FIGS. 本発明に係る実施形態のプラズマエッチング装置の概略構成のさらに1つの例を示す要部の断面図である。It is sectional drawing of the principal part which shows another example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 本発明に係る実施形態のプラズマエッチング装置の概略構成のさらに別の例を示す要部の断面図である。It is sectional drawing of the principal part which shows another example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 本発明に係る実施形態のプラズマエッチング装置の概略構成のさらに他の例を示す要部の断面図である。It is sectional drawing of the principal part which shows the further another example of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention. 図19〜図21に示す装置に適用される補助誘電体部材の第1の例を示す平面図である。It is a top view which shows the 1st example of the auxiliary dielectric member applied to the apparatus shown in FIGS. 図19〜図21に示す装置に適用される補助誘電体部材の第2の例を示す平面図である。It is a top view which shows the 2nd example of the auxiliary dielectric member applied to the apparatus shown in FIGS. 図19〜図21に示す装置に適用される補助誘電体部材の第3の例を示す平面図である。It is a top view which shows the 3rd example of the auxiliary dielectric member applied to the apparatus shown in FIGS. 図19〜図21に示す装置に適用される補助誘電体部材の第4の例を示す平面図である。It is a top view which shows the 4th example of the auxiliary dielectric member applied to the apparatus shown in FIGS. 図19〜図21に示す装置に適用される補助誘電体部材の第5の例を示す平面図である。It is a top view which shows the 5th example of the auxiliary dielectric member applied to the apparatus shown in FIGS. 従来のプラズマエッチング装置の概略構成例を示す断面図である。It is sectional drawing which shows the schematic structural example of the conventional plasma etching apparatus. 従来の装置でのプラズマ発生状態、反応生成物付着状態、耐圧誘電体部材の削れ状態を示す説明図である。It is explanatory drawing which shows the plasma generation | occurence | production state in a conventional apparatus, the reaction product adhesion state, and the abrasion state of the pressure | voltage resistant dielectric material member. 本発明に係る実施形態のプラズマエッチング装置の概略構成の第2の電極への電力印加方法の他の例を示す要部の断面図である。It is sectional drawing of the principal part which shows the other example of the electric power application method to the 2nd electrode of schematic structure of the plasma etching apparatus of embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 チャンバ
2 被処理物
3 対向電極
4 第1の電極
5 耐圧誘電体部材
5a 内表面
5b 外表面
6 プラズマ
7 第2の電極
7a、7b、7e、7g 高周波透過部
7d 外周体
7f 中央体
11、13、15 電源
12、14、16 可変コンデンサ
21、22 誘電体
23 ねじ
31 補助誘電体部材
31a 外周体
31c 中央体
31b、31d 高周波透過部
DESCRIPTION OF SYMBOLS 1 Chamber 2 To-be-processed object 3 Counter electrode 4 1st electrode 5 Withstand voltage dielectric member 5a Inner surface 5b Outer surface 6 Plasma 7 2nd electrode 7a, 7b, 7e, 7g High frequency permeation | transmission part 7d Outer peripheral body 7f Central body 11, 13, 15 Power source 12, 14, 16 Variable capacitor 21, 22 Dielectric 23 Screw 31 Auxiliary dielectric member 31a Peripheral body 31c Central body 31b, 31d High frequency transmission part

Claims (16)

減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからのプラズマを発生させて対向電極にて支持される被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、
前記第2の電極の前記耐圧誘電体部材の内表面からの電極距離を、耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体の削れ量との部分的な違いに応じて設定したことを特徴とするプラズマエッチング装置。
A chamber capable of depressurization, a counter electrode provided inside the chamber for supporting an object to be processed, and a pressure-resistant dielectric member that forms a partition wall of the chamber; A first electrode that etches the object to be processed supported by the counter electrode, and a reaction product is provided between the first electrode and the withstand voltage dielectric member and adhered to the inner surface of the withstand voltage dielectric member. In the plasma etching apparatus provided with the second electrode for preventing the
The electrode distance of the second electrode from the inner surface of the withstand voltage dielectric member depends on a partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric. A plasma etching apparatus characterized in that it is set.
電極距離は、周辺部よりも中央部を大きくする、あるいは、中央部よりも周辺部を大きくする請求項1に記載のプラズマエッチング装置。 2. The plasma etching apparatus according to claim 1, wherein the electrode distance is set such that the central portion is larger than the peripheral portion, or the peripheral portion is larger than the central portion. 電極距離は、前記耐圧誘電体部材の平坦な内表面と前記第2の電極の立体形態とにより設定している請求項1、2のいずれか1項に記載のプラズマエッチング装置。 The plasma etching apparatus according to any one of claims 1 and 2, wherein the electrode distance is set by a flat inner surface of the withstand voltage dielectric member and a three-dimensional form of the second electrode. 前記耐圧誘電体部材の外表面は前記第2の電極の立体形態に沿うか近似した立体形態としてある請求項3に記載のプラズマエッチング装置。 4. The plasma etching apparatus according to claim 3, wherein an outer surface of the withstand voltage dielectric member has a three-dimensional form that conforms to or approximates the three-dimensional form of the second electrode. 電極距離は、前記第2の電極の平坦な形態と前記耐圧誘電体部材の内表面の立体形態とで設定している請求項1、2のいずれか1項に記載のプラズマエッチング装置。 The plasma etching apparatus according to any one of claims 1 and 2, wherein the electrode distance is set by a flat form of the second electrode and a three-dimensional form of the inner surface of the withstand voltage dielectric member. 前記第2の電極と耐圧誘電体部材の内表面との各対向域における電極距離の差を調整する距離調整手段を有している請求項1、2のいずれか1項に記載のプラズマエッチング装置。 3. The plasma etching apparatus according to claim 1, further comprising a distance adjusting unit that adjusts a difference in electrode distance in each opposed region between the second electrode and the inner surface of the withstand voltage dielectric member. . 距離調整手段は、第2の電極の部分的な高さを一体のままか、分割体ごとに相対的に変化させる請求項6に記載のプラズマエッチング装置。 The plasma etching apparatus according to claim 6, wherein the distance adjusting unit changes the partial height of the second electrode as a single unit or changes relative to each divided body. 減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからなるプラズマを発生させて対向電極に支持した被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、
前記耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体の削れ量との部分的な違いに応じた誘電率の差、厚みの差、配置密度の差の少なくとも1つを有して、前記第2の電極と前記耐圧誘電体部材との間に補助誘電体部材を配したことを特徴とするプラズマエッチング装置。
A chamber capable of depressurization, a counter electrode provided inside the chamber for supporting an object to be processed, and a plasma made of a reactive gas in a chamber provided outside a pressure-resistant dielectric member forming a partition wall of the chamber; A reaction product adheres to the inner surface of the first dielectric electrode that is provided between the first electrode that etches the workpiece supported by the counter electrode and the first electrode and the dielectric dielectric member. In the plasma etching apparatus provided with the second electrode for preventing
At least one of a difference in permittivity, a difference in thickness, and a difference in arrangement density according to a partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric And an auxiliary dielectric member is disposed between the second electrode and the withstand voltage dielectric member.
補助誘電体部材は、石英、マイカなど材料の違い、補助誘電体部材を設けない空間域の空気を含んで誘電率の差を設定してある請求項8に記載のプラズマエッチング装置。 9. The plasma etching apparatus according to claim 8, wherein the auxiliary dielectric member sets a difference in dielectric constant including a difference in materials such as quartz and mica, and air in a space region where no auxiliary dielectric member is provided. 補助誘電体部材は、環状で外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を持った有スリット外周体、スリット状の高周波透過部を有して周方向に分断された分断外周体の1つと、この有スリット外周体または分断外周体の内側にそれらと環状の高周波透過部を有して選択配置される無スリット中央体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を持った有スリット中央体、スリット状の高周波透過部を有して周方向に分断された分断中央体の1つとの組合わせとして、配置密度の差を設定してある請求項8、9のいずれか1項に記載のプラズマエッチング装置。 The auxiliary dielectric member is a ring-shaped outer peripheral body having a slit-like high-frequency transmission portion that is annular and has a slit-like high-frequency transmission portion that is radially cut with a predetermined interval from the outer periphery and a width smaller than this interval, and has a slit-like high-frequency transmission portion. Then, one of the divided outer peripheral bodies divided in the circumferential direction, and a slit-free central body that is selectively disposed with the ring-shaped outer peripheral body or the inner periphery of the divided outer peripheral body and an annular high-frequency transmission part, predetermined from the outer periphery. And a slit central body having slit-like high-frequency transmission portions that are radially cut with a width smaller than this interval, and a split central body having slit-like high-frequency transmission portions and divided in the circumferential direction The plasma etching apparatus according to claim 8, wherein a difference in arrangement density is set as a combination with one of the above. 減圧可能なチャンバと、このチャンバの内部に設けられ被処理物を支持する対向電極と、前記チャンバの隔壁をなす耐圧誘電体部材の外に設けられチャンバ内に反応ガスからなるプラズマを発生させて対向電極にて支持される被処理物をエッチングする第1の電極と、この第1の電極と前記耐圧誘電体部材との間に設けられて耐圧誘電体部材の内表面に反応生成物が付着するのを防止する第2の電極とを備えたプラズマエッチング装置において、
前記第2の電極は、耐圧誘電体部材の内表面への反応生成物の付着度と耐圧誘電体部材の削れ量との部分的な違いに応じて配置密度の差を有して設けたことを特徴とするプラズマエッチング装置。
A chamber capable of depressurization, a counter electrode provided inside the chamber for supporting an object to be processed, and a plasma made of a reactive gas in a chamber provided outside a pressure-resistant dielectric member forming a partition wall of the chamber; A first electrode that etches the object to be processed supported by the counter electrode, and a reaction product is provided between the first electrode and the withstand voltage dielectric member and adhered to the inner surface of the withstand voltage dielectric member. In the plasma etching apparatus provided with the second electrode for preventing the
The second electrode is provided with a difference in arrangement density according to a partial difference between the degree of adhesion of the reaction product to the inner surface of the withstand voltage dielectric member and the amount of abrasion of the withstand voltage dielectric member. A plasma etching apparatus.
第2の電極は、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状の高周波透過部とを持った単体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状で中央部に向く放射状の突出片を有した高周波透過部とを持った単体、外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部と中央部を打ち抜いた穴状の高周波透過部を持った外周体およびこの外周体の穴部に環状の高周波透過部となる隙間を持って配置されて外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を有した中央体との組み合わせ体、のいずれかで配置密度の差を設定してある請求項11に記載のプラズマエッチング装置。 The second electrode is a single unit having a slit-shaped high-frequency transmitting portion cut radially with a predetermined interval from the outer periphery and a width smaller than this interval, and a hole-shaped high-frequency transmitting portion punched out from the center portion, A slit-shaped high-frequency transmitting portion cut radially with a predetermined interval from the outer periphery and a width smaller than this interval, and a high-frequency transmitting portion having a radial protruding piece toward the center in the shape of a hole punched out from the center A single body having a slit, a slit-shaped high-frequency transmitting portion cut radially with a predetermined interval from the outer periphery and a width smaller than this interval, and an outer peripheral body having a hole-shaped high-frequency transmitting portion punched out from the center portion, and this A center having a slit-shaped high-frequency transmitting portion that is arranged in a hole of the outer peripheral body with a gap to be an annular high-frequency transmitting portion and is radially cut from the outer periphery with a predetermined interval and a width smaller than this interval. The plasma etching apparatus of claim 11 in combination thereof, is set a difference in arrangement density in one of the. 第2の電極は、スリット状の高周波透過部の間に窓状に開口した高周波透過部を有して配置密度の差を設定している請求項12に記載のプラズマエッチング装置。 The plasma etching apparatus according to claim 12, wherein the second electrode has a high-frequency transmission part that opens in a window shape between the slit-shaped high-frequency transmission parts, and sets a difference in arrangement density. 外周から所定の間隔とこの間隔よりも小さい幅とを持って放射状に切り込んだスリット状の高周波透過部を有した単体を第2の電極の選択対象に含んで、第2の電極の高周波透過部は、誘電体で埋めてある請求項12、13のいずれか1項に記載のプラズマエッチング装置。 A single electrode having a slit-shaped high-frequency transmission portion cut radially from the outer periphery with a predetermined interval and a width smaller than the predetermined interval is included in the selection target of the second electrode, and the high-frequency transmission portion of the second electrode The plasma etching apparatus according to claim 12, which is filled with a dielectric. 第2の電極の高周波透過部を埋めている誘電体は、前記耐圧誘電体部材の一部である請求項14に記載のプラズマエッチング装置。 The plasma etching apparatus according to claim 14, wherein the dielectric filling the high-frequency transmission part of the second electrode is a part of the withstand voltage dielectric member. 第2の電極は、回転または往復弧回動する請求項12〜15のいずれか1項に記載のプラズマエッチング装置。 The plasma etching apparatus according to claim 12, wherein the second electrode rotates or reciprocates.
JP2006311383A 2006-11-17 2006-11-17 Plasma etching equipment Active JP4888076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311383A JP4888076B2 (en) 2006-11-17 2006-11-17 Plasma etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311383A JP4888076B2 (en) 2006-11-17 2006-11-17 Plasma etching equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011235760A Division JP5310821B2 (en) 2011-10-27 2011-10-27 Plasma etching equipment

Publications (2)

Publication Number Publication Date
JP2008130651A true JP2008130651A (en) 2008-06-05
JP4888076B2 JP4888076B2 (en) 2012-02-29

Family

ID=39556210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311383A Active JP4888076B2 (en) 2006-11-17 2006-11-17 Plasma etching equipment

Country Status (1)

Country Link
JP (1) JP4888076B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267050A1 (en) * 2011-04-21 2012-10-25 Hitachi High-Technologies Corporation Plasma processing apparatus
JP2012227427A (en) * 2011-04-21 2012-11-15 Tokyo Electron Ltd Induction coupling plasma processing apparatus
JP2013129897A (en) * 2011-12-22 2013-07-04 Samco Inc Mask member of inductive coupling type plasma processing apparatus
JP2013149960A (en) * 2011-12-21 2013-08-01 Hitachi High-Technologies Corp Plasma processing device
JP2014116578A (en) * 2012-11-14 2014-06-26 Tokyo Electron Ltd Induction coupling plasma processing apparatus
JP2014120564A (en) * 2012-12-14 2014-06-30 Tokyo Electron Ltd Deposition apparatus, substrate processing apparatus and deposition method
US9453280B2 (en) 2011-09-05 2016-09-27 Tokyo Electron Limited Film deposition apparatus, film deposition method and storage medium
US9932674B2 (en) 2011-05-12 2018-04-03 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer-readable recording medium
WO2020246523A1 (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus
JP2020198282A (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888190A (en) * 1994-09-16 1996-04-02 Nec Corp Plasma treatment equipment and plasma treatment method
JPH08227800A (en) * 1994-12-05 1996-09-03 Tokyo Electron Ltd Plasma treatment device, and plasma treatment method
JP2001345311A (en) * 2000-03-31 2001-12-14 Lam Res Corp Device and method for actively controlling rf peak-to- peak voltage of inductively coupled plasma etching system
JP2002176033A (en) * 2000-12-06 2002-06-21 Hitachi Ltd Plasma treatment device
JP2002190450A (en) * 2000-12-21 2002-07-05 Toshiba Corp Plasma treatment method and apparatus
JP2002237483A (en) * 2001-02-07 2002-08-23 Hitachi Ltd Plasma treatment device
JP2004134495A (en) * 2002-10-09 2004-04-30 Fasl Japan Ltd Plasma processing apparatus
JP2004356430A (en) * 2003-05-29 2004-12-16 Hitachi Ltd Plasma treatment apparatus
JP2005209885A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Plasma etching apparatus
JP2005535117A (en) * 2002-07-31 2005-11-17 ラム リサーチ コーポレーション Method for adjusting the voltage applied to an energized Faraday shield
JP2006216903A (en) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp Plasma processing unit
JP2007012734A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Method and device for plasma etching
JP2007324154A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Plasma treating apparatus
JP2008159660A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Plasma etching apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888190A (en) * 1994-09-16 1996-04-02 Nec Corp Plasma treatment equipment and plasma treatment method
JPH08227800A (en) * 1994-12-05 1996-09-03 Tokyo Electron Ltd Plasma treatment device, and plasma treatment method
JP2001345311A (en) * 2000-03-31 2001-12-14 Lam Res Corp Device and method for actively controlling rf peak-to- peak voltage of inductively coupled plasma etching system
JP2002176033A (en) * 2000-12-06 2002-06-21 Hitachi Ltd Plasma treatment device
JP2002190450A (en) * 2000-12-21 2002-07-05 Toshiba Corp Plasma treatment method and apparatus
JP2002237483A (en) * 2001-02-07 2002-08-23 Hitachi Ltd Plasma treatment device
JP2005535117A (en) * 2002-07-31 2005-11-17 ラム リサーチ コーポレーション Method for adjusting the voltage applied to an energized Faraday shield
JP2004134495A (en) * 2002-10-09 2004-04-30 Fasl Japan Ltd Plasma processing apparatus
JP2004356430A (en) * 2003-05-29 2004-12-16 Hitachi Ltd Plasma treatment apparatus
JP2005209885A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Plasma etching apparatus
JP2006216903A (en) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp Plasma processing unit
JP2007012734A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Method and device for plasma etching
JP2007324154A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Plasma treating apparatus
JP2008159660A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Plasma etching apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227398A (en) * 2011-04-21 2012-11-15 Hitachi High-Technologies Corp Plasma processing apparatus
JP2012227427A (en) * 2011-04-21 2012-11-15 Tokyo Electron Ltd Induction coupling plasma processing apparatus
US20120267050A1 (en) * 2011-04-21 2012-10-25 Hitachi High-Technologies Corporation Plasma processing apparatus
US9543121B2 (en) 2011-04-21 2017-01-10 Tokyo Electron Limited Inductively coupled plasma processing apparatus
US9932674B2 (en) 2011-05-12 2018-04-03 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer-readable recording medium
US9453280B2 (en) 2011-09-05 2016-09-27 Tokyo Electron Limited Film deposition apparatus, film deposition method and storage medium
JP2013149960A (en) * 2011-12-21 2013-08-01 Hitachi High-Technologies Corp Plasma processing device
JP2013129897A (en) * 2011-12-22 2013-07-04 Samco Inc Mask member of inductive coupling type plasma processing apparatus
JP2014116578A (en) * 2012-11-14 2014-06-26 Tokyo Electron Ltd Induction coupling plasma processing apparatus
JP2014120564A (en) * 2012-12-14 2014-06-30 Tokyo Electron Ltd Deposition apparatus, substrate processing apparatus and deposition method
US9583312B2 (en) 2012-12-14 2017-02-28 Tokyo Electron Limited Film formation device, substrate processing device, and film formation method
WO2020246523A1 (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus
JP2020198282A (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus
TWI740526B (en) * 2019-06-05 2021-09-21 日商日新電機股份有限公司 Plasma processing device
CN113841218A (en) * 2019-06-05 2021-12-24 日新电机株式会社 Plasma processing apparatus
JP7238613B2 (en) 2019-06-05 2023-03-14 日新電機株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JP4888076B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888076B2 (en) Plasma etching equipment
JP4840127B2 (en) Plasma etching equipment
JP5467131B2 (en) Plasma etching equipment
EP1573795B1 (en) A system and method for controlling plasma with an adjustable coupling to ground circuit
JP5656458B2 (en) Plasma processing equipment
US8114246B2 (en) Vacuum plasma processor having a chamber with electrodes and a coil for plasma excitation and method of operating same
EP1898444B1 (en) Plasma etching chamber
JP5597456B2 (en) Dielectric thickness setting method and substrate processing apparatus provided with dielectric provided on electrode
JP4418534B2 (en) Plasma reactor with dielectric antenna supplying power through parallel plate electrodes
US9396908B2 (en) Systems and methods for controlling a plasma edge region
KR100550931B1 (en) Vacuum treatment chamber and method for treating surfaces
US20110059615A1 (en) Hybrid rf capacitively and inductively coupled plasma source using multifrequency rf powers and methods of use thereof
US20080283500A1 (en) Plasma processing apparatus and plasma processing method
JP2010186841A (en) Method of processing plasma
JP5310821B2 (en) Plasma etching equipment
JP5407388B2 (en) Plasma processing equipment
KR101840294B1 (en) Ccp plasma device
KR20100102203A (en) Plasma processing apparatus and plasma processing method
WO2008083227A1 (en) Reduced electric field arrangement for managing plasma confinement
JP6889043B2 (en) Plasma processing equipment
JP3417328B2 (en) Plasma processing method and apparatus
KR20160138590A (en) Plasma Processing Device
JP2002050616A (en) Method and apparatus for plasma processing
JP6406631B2 (en) Plasma processing equipment
US20230360889A1 (en) Apparatus for Edge Control During Plasma Processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4888076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3